CaltechAUTHORS
  A Caltech Library Service

Multiple antennas and representation theory

Hassibi, Babak and Hochwald, Bertrand and Shokrollahi, Amin and Sweldens, Wim (2000) Multiple antennas and representation theory. In: IEEE International Symposium on Information Theory, 2000. Proceedings. IEEE , Piscataway, NJ, p. 337. ISBN 0-7803-5857-0. https://resolver.caltech.edu/CaltechAUTHORS:20150227-073943509

[img] PDF - Published Version
See Usage Policy.

101Kb

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20150227-073943509

Abstract

Multiple antennas can greatly increase the data rate and reliability of a wireless communication link in a fading environment, but the practical success of using multiple antennas depends crucially on our ability to design high-rate space-time constellations with low encoding and decoding complexity. It has been shown that full transmitter diversity, where the constellation is a set of unitary matrices whose differences have nonzero determinant, is a desirable property for good performance. We use the powerful theory of fixed-point-free groups and their representations to design high-rate constellations with full diversity. Furthermore, we thereby classify all full-diversity constellations that form a group, for all rates and numbers of transmitter antennas. The group structure makes the constellations especially suitable for differential modulation and low-complexity decoding algorithms. The classification also reveals that the number of different group structures with full diversity is very limited when the number of transmitter antennas is large and odd. We therefore also consider extensions of the constellation designs to nongroups. We conclude by showing that many of our designed constellations perform excellently on both simulated and real wireless channels.


Item Type:Book Section
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1109/ISIT.2000.866635DOIArticle
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=866635PublisherArticle
Additional Information:© 2000 IEEE.
Record Number:CaltechAUTHORS:20150227-073943509
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20150227-073943509
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:55305
Collection:CaltechAUTHORS
Deposited By: Shirley Slattery
Deposited On:28 Feb 2015 00:56
Last Modified:03 Oct 2019 08:04

Repository Staff Only: item control page