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A new approach to the many-electron atom, based on the formal equivalence between the Hartree-Fock
equations and a quantum-mechanical generalization of the collisionless Boltzmann (Vlasov) equation, is
presented. This equivalence casts the problem into the framework of conventional plasma theory, the
Vlasov equation being merely replaced by its quantum-mechanical analog. The quantum Vlasov equation
permits a straightforward expansion of the quantum-mechanical phase space distribution function in
powers of %. The first step of this expansion, corresponding physically to a classical correlationless plasma
obeying Fermi statistics, leads to the Thomas-Fermi model. Successive steps generate quantum and exchange
corrections. The method is applied to the case of the “statistical” correlationless atom (or ion), generalized
for the first time to arbitrary temperature and nonzero total orbital angular momentum, with quantum

and exchange effects being included to order #2.

I. INTRODUCTION

HE Thomas-Fermi statistical model' provides an
approximate description of a broad class of
spatially inhomogeneous polyelectronic systems, with
a degree of success which is surprising in view of its
analytical and conceptual simplicity. Attempts to
understand this success as well as to improve the model
by remedying some of its more obvious shortcomings,
have led naturally to investigations of its theoretical
foundations.

The first step in this direction was taken by Dirac?
who, realizing that the Thomas-Fermi model represents
in some sense a classical limit of the Hartree-Fock?
theory, rewrote the Hartree-Fock equations in terms
of the density matrix, and succeeded thereby in aug-
menting the Thomas-Fermi model to approximately
take account of electron exchange. Subsequent investi-
gations? have generally followed Dirac’s lead, in the
sense that quasi-classical approximations to the density
matrix are studied. In particular, systematic expansions
in % have been developed which lead both to exchange
and so-called “inhomogeneity” corrections.

These approaches, however, suffer from two draw-
backs: (1) Since they are rooted in the Hartree-Fock
approximation, correlation effects are excluded; and
(2) the conceptual simplicity of the Thomas-Fermi
model is destroyed, with the consequence that while the
ordinary Thomas-Fermi model can be trivially general-

! The most recent comprehensive review articles dealing with
the Thomas-Fermi model are those of P. Gombas in Handbuch
der Physik, edited by S. Fliigge (Springer-Verlag, Berlin, 1956),
Vol. 36; and N. H. March, in Advances in Physics, edited by
N. F. Mott (Taylor and Francis, Ltd., London, 1957), Vol. 6, p. 1.

2 P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).

3 D. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1928); V. Fock,
Phys. Z. Sowjetunion 1, 747 (1932).

¢W. R. Theis, Z. Physik 142, 503 (1955); A. S. Kompaneets
and E. S. Pavlovskii, Soviet Phys.—JETP 4, 328 (1957); D. A.
Kirzhnits, Soviet Phys.—JETP 5, 64 (1957); S. Golden, Revs.
Modern Phys. 32, 322 (1960).

ized, for example, to arbitrary temperatures® or nonzero
total orbital angular momenta,® the procedure for
systematically obtaining quantum and exchange correc-
tions in these cases is somewhat obscure.

Recently, an attempt to remedy the former of these
difficulties by supplanting the density matrix formalism
with the more powerful techniques of field theory has
been reported.” While such methods hold promise for
progress on the correlation question, they unfortunately
lead to an aggravation of the second difficulty, since
they are based on a formulation of quantum statistical
mechanics which is even further conceptually removed
from the traditional statistical approach underlying
the Thomas-Fermi model than is the density matrix.

In the present paper, therefore, we step in the
opposite direction and attempt to establish maximal
contact with conventional statistical mechanics by
dealing directly with a quantum-mechanical generaliza-
tion of the phase space density, which turns out, in fact,
to be essentially the Fourier transform of the density
matrix. This difference, although apparently trivial from
a formal standpoint, enables us to cast the problem
entirely into the familiar charged-particle statistical
mechanics, or “plasma’” theory. As a consequence,
difficulty (2) vanishes and, although we do not concern
ourselves here with (1), i.e., the inclusion of correlation,
a close connection between this problem and contempo-
rary difficulties in plasma physics emerges.

Our method is best introduced by briefly outlining
the traditional statistical approach to the problem of
N identical particles which interact both mutually and
with a fixed oppositely charged ‘“nucleus” via their
instantaneous Coulomb forces. One begins with the
6N dimensional phase space distribution function,

5T. Sakai, Proc. Phys. Math. Soc. Japan 24, 254 (1942);
R. P. Feynman, N. Metropolis, and E. Teller, Phys. Rev. 75,
1561 (1949).

6 A. M. Sessler and H. M. Foley, Phys. Rev. 96, 366 (1954).

7 G. A. Baraff and S. Borowitz, Phys. Rev. 121, 1704 (1961).
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Fy(ty,re, -« tx; Pi,Ps,- - - Py; &) whose dynamical (Liou-
ville) equation is obtained from the Newtonian equa-
tions of motion. Singlet, doublet, etc., distribution
functions are then defined as the integral of Fy over
N—1, N—2, etc., dimensional phase subspaces. The
(coupled) dynamical equations for these quantities,
the so-called BBGKY? hierarchy, are obtained by
integrating the Liouville equation over appropriate
phase subspaces. To proceed further, this system of
equations is approximated by truncating the chain at
some point. The simplest such approximation is to as-
sume that the doublet distribution is given simply by the
product of singlet functions, corresponding to the neglect
of all correlations, or “collisions.” As is well known,? this
procedure leads to the “collisionsless” Boltzmann, or
Vlasov!? equation for the singlet distribution function,
Fi(r,p,t). The Vlasov equation is satisfied identically
by the set {F:} of functionals of the constants of the
motion of a single particle in the average field of all the
others. The neglect of collisions is then approximately
remedied by the ansalz that their effect is to single out
that member of {F{} which maximizes the entropy,
subject to the constraints on the total system (i.e., total
energy, number of particles, angular momentum, etc.).
(Tothe extent that only two-body collisions are impor-
tant, this procedure is validated by the H theorem.)
Higher approximations, corresponding to a more exact
treatment of correlations, lead to formidable analytical
difficulties which are currently being attacked on
various fronts."

The question now arises as to how this procedure is to
be quantum-mechanically generalized. The simplest
generalization is to merely introduce the appropriate
quantum statistics into the entropy maximization. This,
we find, leads to the Thomas-Fermi model (with
Fermi-Amaldi®? correction). It is clear, however, that the
Vlasov equation must also be quantum-mechanically
augmented. This has been done by one of us® in a
previous paper along lines analogous to the derivation
of the Vlasov equation sketched above. A quantum-
mechanical phase space distribution function (q.m.d.f.),
Fy(ry,1s, - -ty PPy, - - Py; £), is defined which ap-
proaches the classical distribution function as #— 0.
The quantum analog of the Liouville equation for Fy
is then obtained from the Schroedinger equation for
the N-particle wave function, Y. Decomposition of
Fy into singlet, doublet, etc., functions leads to the
quantum counterpart of the BBGKY chain, which is
then truncated, as before, by neglecting correlations.
This truncation is equivalent to replacing Y by a single

8 A set of equations derived independently by N N Bogolubov,
M. Born, H. S. Green, J. G. Kirkwood, and J. ¥

s M. Rosenbluth and N. Rostoker, Phys Flulds 3 1 (1960).

10 A, Vlasov, J. Phys. (USSR) 9, 25 (1945).

1B, D. Fried and H. W. Wyld, Jr Phys. Rev. 122, 1 (1961).

2 E, Fermi and E. Amaldi, Mem. accad. Italia 6, 117 (1934).

130, von Roos, Phys. Rev. 119, 1174 (1960).
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Slater determinant, so that the quantum Vlasov
equation thus obtained is formally equivalent to the
Hartree-Fock equations. The resulting partial differen-
tial equation for the singlet q.m.d.f., 7, is introduced in
Sec. IL. It has the convenient property of permitting
a straightforward expansion of # in powers of #,
thereby unambiguously generating quantum and ex-
change corrections from the zeroth-order (Thomas-
Fermi) solution.

We illustrate this method by considering an atom (or
ion) at arbitrary temperature, with nonzero total
orbital angular momentum. In Sec. III, the Thomas-
Fermi model for this case is derived from the Vlasov
equation along the lines sketched above. The quantum
and exchange corrections to order 7? are then obtained
from the quantum Vlasov equation in Sec. IV. In the
limit of zero temperature and zero orbital angular
momentum, our result agrees with that obtained by
others' via the density matrix. In the concluding
section, we briefly re-examine the correlation question
from the plasma-theoretic point of view developed in
this paper.

II. QUANTUM VLASOV EQUATION

The quantum Vlasov equation has been derived by
one of us in a previous paper,’s where it was written in
a form facilitating its application to the study of quan-
tum corrected longitudinal plasma oscillations. Since
in the present paper we shall be dealing with V electrons
(mass m, charge — |e|) in the field of a fixed point
nucleus (charge —+Z|e|), rather than the extended
homogeneous plasma considered previously, a few
trivial modifications are required: (i) the elimination of
the action of an electron on itself; (ii) appropriate spin
space averaging of the exchange term.! The resulting
equation for the singlet q.m.d.f, F(r,v,f), can be
written as

i) 1 ~
<—~+ v-V,—V,U- Vv>F
at m

ih 1 w /—ih\* 2
=-——-{ ViF—— 3 (—-——) ——~(\7 -V )"+2UF

2m m n=0 (n+2)!
ie*h N—1 .
— /d"l exp(il- v) f(r,1)
2m* N

1_ # 1 d*’
et 2
l m 2r2 ) |v—v'|?
%
Xﬁ(r+—~l, v, t) l, 6))
m

140, von Roos and J. S. Zmuidzinas, Phys. Rev. 121, 941 (1961).
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where
N—1 -
V2U = —4re? /d% F(r,vyi), (2)
Ze? (Z—=N+41)e?
imU=—— U~ —v-—+— (3
r=0 7 0 r
F(r,v)= )= | & f(r,) exp(il-v), (4)
.U aF
(Vo V)" UF = > ®)
axtax, . aviavj- ..
(4, 7, - - - are Cartesian indices running from 1 to 3)

/ / drdh F(r,v,0)=N, (6)

Gaussian units and the convention that repeated indices
are to be summed are used throughout. Information is
obtained from # (a nonobservable) by integration over
configuration and velocity space, i.e., if G(r,v) is any
function of r and v, then

/G@ﬂﬁﬁﬂﬁﬁM%=@UHm¢®% ™

where G is the operator obtained by well-ordering
G(1,hV,/im), and ¥ (1,1) is the single-particle Hartree-
Fock wave function for the system. Consequently, the
quantum-mechanical expectation value of the electron
number density p(r,) and kinetic energy K (f) of the
system, for example, are given by

puw=/ﬁuwﬁ&u ®)

and

KO [ [C+imParddnen O

Since we shall be interested only in the ground state
of the system, the time dependence of the above
equations will henceforth be suppressed. Consideration
of time dependent effects (e.g., collective oscillations)
will appear in subsequent papers.

The left-hand side of Eq. (1) is the usual Vlasov
operator acting on F. The first term on the right will
generate quantum (‘‘inhomogeneity’’) corrections, while
the second term represents the effect of exchange.

Expansion in 7%

Equations (1)-(3) are conveniently solved by the
following iterative expansion in %: First, in Eq. (1),
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U is assumed to be given, and the expansion
F= Y #F, (10)
n=0

is introduced. F (r+7#1/m, v), appearing in the exchange
term of (1), is expanded in a Taylor series:

Fe+u/m, v)=F(x,v)+ #l/m)-V,F(t,v)+ - - (11)

Introducing (10) and (11) into (1) and equating
coefficients of similar powers of % leads to the following
chain:

Oth order
[v-V.—(1/m)V,U -V, Fy=0, (12)
1st order
[v-V.—(1/m)V,U-V,]F;
= (1/2m)[V2Fo— (1/m)(V,-V,)2UF.], (13)
2nd order

1
(v-V,—»—V,U-V,,)Fg
m

i 1
= [ 2F1——(V V)ZUI“I]———(V V,)iUF,
2m 6

2re? N—1
——-[vao‘ Vb o—V,Fo: V,go], (14)
mt N
where
a’
()= [ ———Fuv), (15)
J o |v—=v'|2

etc. The potential energy U is then rendered self-
consistent by introducing into (2) and (3) the quantity
F(U;r,v). (We indicate here explicit dependence of F
on U.)

Generally, the series (10) will only be partially
summed. Defining the pth approximation to #

- »
FOU;xv)= 2 #Fa(U; 1,v),

n=0

(16)

the corresponding approximation U to the potential
is then determined from

N-1 [
V2U®P) = — 42 /dsv F(p)(U(p); I',V), (17)
Ze? (Z—N+1)e
lm U0 =——, U0 ~ ———y  (18)
=0 r 00 7

a procedure which guarantees the self-consistency of
the potential at every stage of approximation.



210 P. H.

Solution to Second Order

In this paper, we shall consider only corrections to
order %2 and hence will require F®. Before proceeding
to the consideration of special cases, it is useful to
point certain simplifications of the relevant equations
[(12)—(14)] which can be made in general. First,
making use of (12), it is not difficult to show that (13)
can be immediately solved to yield

Fi1=(—1/2m)V ., 2F,, 19)
where

V,2F o= 02F o/ 0x:0v;. (20)

Second, again making use of (12), one can establish
the identity

(Vo Vo) UF=2m[VA(V2Fo) — (1/m) (V.- V, 2 UV 2F ¢ ]

+m[V' Vr(vr'u4F0>_ (l/m)er Vv(vquO)]v (21)
where
Vrv4F0= 64Fg/6x,-6xj6v,~6vj. (22)
Introducing (19) and (21) into (14), there follows
F2= - (I/sz)vrv4F0+G2) (23)
where
1 1
(V' V,-‘—*—VTU' V,,)Gz’—‘- _"‘_‘”(Vr' Vv)sUFO
m 24m3
2we2 N—1
+— "—“——[va()' V.Fo— VvFO : vrgo:l- (24)
m N

Thus, all that remains is to determine F,. Since we
are concerned here with the ground state of the system,
the Fy we seek is that solution of the Vlasov equation
(12) corresponding to minimum total energy and
maximum entropy.

III. ATOM OR ION WITH NONZERO ORBITAL
ANGULAR MOMENTUM

As is well known, the most general solution to the
Vlasov equation is any functional of the constants of
the motion of a particle moving in the potential U (r).
We consider an atom or ion with total orbiral angular
momentum JL, where L is a unit vector. It is clear
that the potential in this case has rotational symmetry
about L, i.e.,

V.U-rX L=0. (25)

A particle moving in such a potential has only two
constants of the motion: the total energy 2m1*+ U (r)
and the projection of the orbital angular momentum
along L, i.e., mrX v- L. Thus, the most general solution
to the Vlasov equation in this case is any functional of
the form

Fo=Fo(3mv*+U (r), mxXv-L). (26)
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To minimize the total energy, S S [3mv*+U(r)]
X Fo(r,v)d*rd*, we clearly seek that distribution in
velocity space which locally minimizes (#/2) /" v*F(x,v)
X d?v subject to the constraints of fixed spatial density
J Fod® and fixed local momentum density S mvFd®v.
It is easily shown that this requirement is met if Fy
possesses spherical symmetry in velocity space (about
some displaced origin), i.e.,

FO:FO([v_d(r)]2y e(r))i (27)
where d and e are arbitrary functions of r. Combining
(26) and (27) leads to a unique form of the minimum
energy solution to the Vlasov equation

Fo=Fo(U (r)+3mv:i—mwrXv- L), (28)
where w is a constant. Note that this implies uniform
rotation with angular frequency w. If we transform to
the rotating frame, the transformed density function
F (), iS
Fo=Fo (U () +imP2—ime? (' X L)?), (29)
and is therefore a function solely of the energy ¢, in
the rotating frame, where the effective potential
energy is
Uet =U (r')—3maw?(r' X L)z (30)
The entropy maximization in the rotating frame
yields, of course, the Fermi distribution, i.e.,

romraoA ()]

The function Fy is therefore determined, and we have
finally

m 3
o)
h

U(t)+Lmv2—mowrXv- L— 1
et 7 g

The Thomas-Fermi (Amaldi) model, generalized to
nonzero angular momentum and nonzero temperature,
follows from (32), (17), and (18) if p=0, i.e., if we
use only the lowest order approximation to #. In the
limit of zero temperature, this leads to the equations
first derived and studied by Sessler and Foley.® For
zero angular momentum, we obtain the usual finite-
temperature Thomas-Fermi model.®

IV. QUANTUM AND EXCHANGE CORRECTIONS

Using the Fy given by (32), we shall now go to second
order in and compute F®. From (19), (25), and (32)
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there follows immediately
Fi=(—=i/2)[v-V.U+me?vX L- LX1]F", (33)

where the primes indicate differentiation of Fy with
respect to its argument, i.e.,

d [ m\?
il
dx \h
x—\ !
X[exp(—)—l—l] }
kT x=U+3m2 —mwr Xv-L .

The solution of (23) and (24) for F., while simple
and straightforward in the absence of angular momen-
tum, is somewhat involved in the general case and is
therefore delegated to the Appendix. The result is

(34)

4¢2(2m)t N—1

211

1
Fo= —————Fo”VﬁU—-%Fo’”[v -V.(v-V,U)
4m

1 3)
+—'V,U' VTUjl‘i‘EFo”IV' LXVTU—%F()”"
m
2me? N—1

X{v- Vi U= gme* (LX) ]} —— Fo
m
'
X | ———=Fo(r,¥"). (35)
[v—v'|2

Introducing (32), (34), and (35) into (17) and (18)
and performing the angular integrations in velocity
space [keeping in mind the symmetry condition (25)]
leads after some algebra to the following equation for
U®:

2 0

3 %
VU= — { ° / dw w0 foltUO — et (LX 1)) +— VU ® / dw W o+ U= ma(LX 1)?)
3%3 N 2 0 16m 0
1 w
+§|:—VU(2)-VU(2>—w2\7U(2)~V(L><r)2—-%mw4[V(L><r)2]2}/ dw wt o (w+UP —Lmw?(vX L)?)
m 0
3¢?(2m)} N—l[ °°d Fo(w+U®—imew? (L )2):12} 36)
_— 0wt fo(w+U® —Imw?(LXr ,
ch N /0 ' :
where
p=[ee( 1] @)
x)=| exp| — ,
! \er
and U® satisfies the boundary conditions
U® ~ —(Z—N+41)e*/r, (38)
lim U®=—Z¢e2/r. (39)

r=(

In the limit of zero temperature, the integrals occurring in (36) can be easily performed, yielding

4¢2 N—1

3nh® N

V2U® =
T—0

(2m\— U(Z)—i—%mw?(LXr)?]}%{ 1

h2
VIO~ U@ +3ma(LX 1)
6

m

#? 1
—aD\— U@ +-4mw?(LXr)? —3[—~VU(2) VUO—u2vU®-V(LX r)z—:i—mw"[V(LXr)?]?:l
m

To establish contact with previously published
results,* we pass to the limit of zero angular momentum
(v —0) in (40) and let

U®=Uy+h2U,, (41)
where U, is the solution of the usual Thomas-Fermi
(Amaldi) equation:

4¢2 N—1

VU= — —T[2m(\—Uy) 5
= W [2m( 0)]

(42)

3¢2(2m)t N—1
o TD—U“)Jr%mw?(LXr)?]“*}- (40)
Y

Assuming #2U,&KU, so that only the lowest order
terms are kept, (40) becomes

4me* N—1
- V2U2+ —[2m()\-— Uo)]%Uz
T N
8m2et yN—1\? e N—1 .
— (=) v Lm0
ht\ N 1273 N

X[AV2U o+ (N—Uo)"'VU,- VU], (43)
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which is the usual quantum and exchange correction
to the Thomas-Fermi model,'* augmented by the Fermi-
Amaldi (N—1)/N factor. Note that the perturbation
procedure used to obtain (43) from (40) destroys the
self-consistency of the potential.

Equations (36) and (37) contain two constants which
require some discussion. The chemical potential A\ is
essentially determined by the boundary condition (38).
The determination of the angular frequency » depends
on the problem being studied. That is, if the total
angular momentum J is put in as an ad hoc constraint,
then!® w is determined from

J= / / @rdio mrXvE (1,v). (44)

On the other hand, in the spirit of the statistical
approach to the atom, one may determine w from the
model itself, as that which minimizes the total energy.
This point will be explored more fully elsewhere.

V. CORRELATIONS

The “quantum plasma” approach to the statistical
atom presented here, establishes a connection between
contemporary problems in plasma physics and the
difficult problem of introducing correlations into the
Thomas-Fermi model. Correlations are introduced in
classical plasma physics by higher order truncations
of the BBGKY hierarchy. Thus, for example, instead of
decomposing the doublet distribution function into a
product of singlet functions, the triplet distribution
function is decomposed into products of singlet and
doublet functions. This results in a complicated set of
coupled equations for the singlet and doublet distribu-
tions.® A precisely analogous procedure can be carried
through for the q.m.d.f. An expansion of the singlet and
doublet g.m.d.f. in powers of 7 can then be performed,
leading to essentially the classical equations in lowest
order. Recalling that the Thomas-Fermi ‘“‘approach”
is wholly tantamount to the solution of these lowest
order equations, it is clear that to introduce correlations
into the Thomas-Fermi model, one must begin by finding
the classical doublet distribution function for a spatially
inhomogeneous plasma whose singlet function is the
Fermi distribution. This problem is as yet unsolved.

APPENDIX. SOLUTION FOR F.
We present here the solution of (23) and (24), where

Fo=Fo(U (1)+3imv*—mwv- LX1). (A1)

Let

Fy=FoA+FoB+ 1,0, (A2)

15 See, for example, Eq. (4.15) of reference 7.
16 More properly »®, in the sense of the definition (16).
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where
1
F2A = __—Vrv4F0 (As)
8m?
1 1
(V'Vr__-er'Vv>F2B= —‘“—‘(V,«'Vv>3UF0, (A4>
m 24m?
and
1
<V . Vr_ "—VTU . Vv)FZC
m
2re? N—1
(AS)

= —_(va()' VTFO— VvFO‘ Vrgo)-
m N

In solving these equations, use is continually made of
the symmetry condition (25) and related identities like:

v-V.(LXr-V,U)=LXr-V,(LXr-V,U)=0, (A6)

etc., to reduce the complexity of the multiple vector
and tensor products which formally arise. As space
does not permit these manipulations to be exhibited in
detail, we present only the skeleton of the calculation.

(A-3) involves only the straightforward evaluation
of V,,'Fo, and we find

Fol=—(1/8m)Fy' ViU —%F¢"[v-V,.(v-VU)
+(1/m)(VU)* ]+ 10F " v- LXVU
+ 502"V, (LX )2 VU4 Fmw?F "’
X (VX LY2=F""{v-V,[U—3me?(LX1r)*]}?
- {Im(F' —wFy"v- LX1)}. (A7)
The last term in curly brackets being a solution of
the homogeneous (Vlasov) equation is then deleted
since we are only interested in the (inhomogeneous)
terms generated directly by the right hand side of (14).
Its appearance in (A7) is a formal consequence of the
shortcut (21), and care must consequently be taken
when evaluating (A3) to delete these spurious terms.

The only real algebraic complexity arises in (A4).
Straightforward evaluation of the right-hand side yields.

1
—————(V,-V,)3UF,
24m?

1
=——{[v—w(LX0)]-V,[V2U}Fy"
8m

1
——i(v—wLX 1) (v—wLXr);(v—wLXr),
' *U
I/, (A8)
é)xiaxjaxk
It is not difficult to show that as a consequence of (25),
LXr-V,.(V,2U)
*FU

=0=(LX1),(LXr);(LXr1)———.

x,-axjé)xk

(A9)
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Consequently, (A8) becomes

1
— (Y, V,SUF,
24m?

1 1
= ——[V-V(VU) B ——[ v+ V. (v- V,(v-VU)) JF"
8m 24

*U
-i—%w ( LX r)wﬂ)k———-———Fo'"—%wz( LX l').' (LX l')j'D]G
202,02
3U
—Fy". (A10)
0x;0;0%y

The contribution of the first two terms of (A10) to
F,B is immediately found, since it is readily verified
that

F()”V2U"‘ _1_F0/I/
24

1 —1
(v‘ vV,——V,U- V,,)(
m 8m

X[v-vxv-vm%(vmz])

1 1
=——{v-V(VU)JF,' ——
8m 24

XV-V,[v-V,(v-VU)JFY".  (A11)

The contribution arising from the remaining terms of
(A10) proceeds as follows. Using the identity

v-V,[v-V,(LXv-VU)]=0, (A12)
one finds
#3U
%w(LX I')i'l)j‘l)/c'——F[)”I
axiax,-c')x,c
=1ovXL-V.(v-VU)F,/". (A13)

This leads to a contribution to FyB of

10Fy""vX L-VU, (A14)
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which can be verified by direct substitution into the
left-hand side of (A4).
In a similar fashion, use of the identity

LXr V,(v-V,(LXr-VU))=0. (A15)
leads, after some algebra, to the relation
»’U
(LX1),(LX1)m——
xiax,-axk
=1v- V[V, (LX1)?-VU]-V,(LXV)?2-V,U. (A16)

The contribution to F.? arising from the last term of
(A10) is immediately apparent and is

— %50 F [ V,(LX1)2- VU4 2m(LX v)?]. (A17)
Collecting terms, there follows for FoB:
1 1 1
FP= ———Fo"V“’U—~F0”’|:v'V,v(v'VU)-{—*(VU)Z]
8m 24 m
FLwFy""vX L-VU—1mwFy" (LX v)?
—f5w?F"V(LX1)2-VU. (A18)

Finally F,¢ the contribution arising from exchange, is
readily obtained since the right-hand side of (A5)
becomes

2re? N—1 1
l:v- V.go——V,U- V,,gg:lFo'
m? N m

2we2 N—1
I w[LXl‘- Vrgo— vX L V,,go]Fo’.

(A19)
m2

It is not difficult to show that the second term of
(A19) vanishes identically. Consequently, we have
immediately

(A20)



