CaltechAUTHORS
  A Caltech Library Service

Flow liquefaction instability prediction using finite elements

Mohammadnejad, Toktam and Andrade, José E. (2015) Flow liquefaction instability prediction using finite elements. Acta Geotechnica, 10 (1). pp. 83-100. ISSN 1861-1125. https://resolver.caltech.edu/CaltechAUTHORS:20150302-150334720

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20150302-150334720

Abstract

In this paper, a mathematical criterion based on bifurcation theory is developed to predict the onset of liquefaction instability in fully saturated porous media under static and dynamic loading conditions. The proposed liquefaction criterion is general and can be applied to any elastoplastic constitutive model. Since the liquefaction criterion is only as accurate as the underlying constitutive model utilized, the modified Manzari–Dafalias model is chosen for its accuracy, relative simplicity and elegance. Moreover, a fully implicit return mapping algorithm is developed for the numerical implementation of the Manzari–Dafalias model, and a consistent tangent operator is derived to obtain optimal convergence with finite elements. The accuracy of the implementation is benchmarked against laboratory experiments under monotonic and cyclic loading conditions, and a qualitative boundary value problem. The framework is expected to serve as a tool to enable prediction of liquefaction occurrence in the field under general static and dynamic conditions. Further, the methodology can help advance our understanding of the phenomenon in the field as it can clearly differentiate between unstable behavior, such as flow liquefaction, and material failure, such as cyclic mobility.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1007/s11440-014-0342-z DOIArticle
http://link.springer.com/article/10.1007%2Fs11440-014-0342-zPublisherArticle
Additional Information:© 2014 Springer-Verlag Berlin Heidelberg. Received: 14 November 2013; Accepted: 6 June 2014; Published online: 30 July 2014.
Subject Keywords:Finite element analysis; Fully implicit return mapping algorithm; Granular materials; Liquefaction instability; Manzari-Dafalias plasticity model; Static and dynamic liquefaction
Issue or Number:1
Record Number:CaltechAUTHORS:20150302-150334720
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20150302-150334720
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:55429
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:03 Mar 2015 23:25
Last Modified:03 Oct 2019 08:05

Repository Staff Only: item control page