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Preferential Ionization of Surface-Active Species 

 

Figure S1. Mass spectra of a solution of tetraethylammonium bromide (TEAB) and cesium 

iodide at a concentration of 10
−4

 M each utilizing (a) ESI, (b) BBI, and (c) ISAT. The left 

column shows the full spectrum, while the right column displays only the low-mass region. The 

response of cesium-associated ions relative to ions of tetraethylammonium is reduced in BBI and 

ISAT in comparison to ESI (methanol adducts are observed in ESI due to the addition of 

methanol to this sample to lower surface tension). Significant abundance of halide-bound dimers 

of tetraethylammnonium is observed in the ISAT spectrum. Given the preferential ionization of 

large halide anions observed in negative mode, the formation of these dimers is likely to result 

from an enrichment in the concentration of these species relative to the bulk solution, either in 

the initial ejected droplet or as a result of the ion desolvation process.  
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Rayleigh Limit Calculations 

The Rayleigh limit for droplet discharge is given by
1-3
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where QR is the charge on the droplet, ϵ0 is the vacuum permittivity, γ is the droplet surface 

tension, and r is the droplet radius. The surface tension of water at 25° C was taken from 

Vargaftik et al.
4
 and utilized for all calculations. For the values presented in Table 1 in the main 

text, the calculated charge per droplet was divided by the droplet charge at the Rayleigh limit 

(QR) to obtain the percentage of the Rayleigh limit for the droplet.  

To estimate the size of droplets produced by BBI, stills were taken from the high speed video 

(240 frames per second, Canon 510HS) of droplets being ejected. The size of droplets produced 

by the ISAT device was measured utilizing a microscope connected to a CCD camera as 

described previously.
5,6

 Briefly, a light-emitting diode (LED) was pulsed in synchronization with 

the RF pulse driving droplet ejection in the ISAT device. A delay time controller introduced a 

variable time between droplet ejection and LED pulsing to allow for visualization of the 

generated droplets.  

Droplet Residence and Droplet Evaporation Calculations 

The transfer time of a droplet through the mass spectrometer inlet capillary is dependent upon 

the gas flow rate through the inlet, which can be approximated using the Poiseuille equation,
7,8

 

� = �
�
8�� ∆�										�2� 

where ∆P represents the pressure difference across the inlet (759 Torr), r is the radius of the 

transfer capillary (250 µm), η is the dynamic viscosity of air (2.5 ×10
−5

 Pa s at 450 K),
9
 L is the 

capillary length (100 mm), and Q is the volumetric flow rate. This equation yields a volumetric 

gas flow of 4.2 × 10
−5

 m
3
 s

−1
, or a gas velocity of ~200 m/s and a gas transfer time of ~0.5 ms, 
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which agrees reasonably well with the gas flow at the MS inlet of ~1 × 10
−5

 m
3
 s

−1
 determined 

with use of a Gilibrator (Sensidyne, St. Petersburg, FL). While this approximation does not take 

into account the change in gas flow velocity across the transfer tube, the transfer time was also 

found to be in good agreement with previous studies and serves as an order of magnitude 

estimate for gas transfer time.
7,10,11

  

When the aspirated droplet initially enters the capillary, its velocity along the axis of the 

capillary is near zero, and the acceleration of the droplet to the carrier gas velocity requires a 

non-negligible amount of time. This rate of acceleration can be estimated from the drag force FD 

exerted on the droplet by the flowing gas, given by
12
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where CD is the coefficient of drag (~0.44 at the high Reynolds numbers encountered in this 

system),
12

 ρg is the gas density (~1 kg/m
3
),

9
 d is the droplet diameter, vgas is the gas velocity, and 

vdroplet is the droplet velocity. Neglecting the effects of turbulent flow, the timescale for droplet 

transit across the capillary can be estimated by accounting for the acceleration caused by the drag 

force on the droplet to yield the differential equation 
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For a droplet of diameter 100 µm, the calculated transit time across a 100 mm capillary is 

approximately 15 ms. 

The rate of change of a droplet of diameter d due to evaporation is given by
12

 

����
�. = 4234

5�#� /
67
87 − 6#

8#0										�5� 

where M is the solvent molar mass, Dv is the diffusivity of the solvent vapor in air, ρd is the 

solvent density, and R is the gas constant. The solvent partial pressure at well away from the 
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droplet surface and at the droplet surface are represented by p∞ and pd, respectively, and the 

corresponding temperatures are denoted by T∞ and Td. Integrating this equation yields the droplet 

evaporation rate as a function of time
12,13
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where ��� is the initial droplet diameter. The solvent evaporation process is endothermic, 

lowering the temperature at the droplet surface, Td, until equilibrium between evaporative 

cooling and heat conduction from the surrounding air is achieved. This steady state temperature 

can be calculated by
12
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where ∆Hvap is the solvent enthalpy of vaporization at temperature Td and kv is the thermal 

conductivity of the gas. Since many of the parameters in equation 7 are temperature-dependent, 

specifically Dv, pd,, ∆Hvap, and kv, the equation must be solved for Td iteratively until a self-

consistent temperature is achieved. The solvent enthalpy of vaporization and equilibrium vapor 

pressure were taken from Yaws,
14

 the diffusion coefficient of water in air was taken from 

Vargaftik et al.,
15

 and the thermal conductivity of air was taken from Kadoya et al.
16

 The value 

of p∞ was approximated by the partial pressure of water vapor in air at 50% relative humidity at 

298 K,
14

 and T∞
 
was set to the transfer capillary temperature (450 K). These parameters gave an 

equilibrium droplet surface temperature, Td, of 318 K, which was used for the calculation of the 

droplet diameter as a function of time according to equation 6, with solvent density at this 

temperature taken from The CRC Handbook of Chemistry and Physics.
9
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Figure S2. Calculated change in droplet diameter with time for droplets of diameter 50 µm (red, 

large dash), 100 µm (purple, small dash), and 250 µm (black, solid line) at a gas temperature of 

450 K and a water vapor pressure of 1571 Pa (50% relative humidity at 298 K). The time axis is 

presented on a logarithmic scale. See text for details. 

The graph of droplet diameter as a function of time calculated from equations 6 and 7 is shown 

in Figure S2 for droplets of diameter 50, 100, and 250 µm, which are found to evaporate in 200 

ms, 780 ms, and 4.9 s, respectively. For the 100 and 250 µm diameter droplets utilized in this 

study, the timescale for evaporation is significantly longer than the maximum available transfer 

time of approximately 15 ms. 
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