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Abstract: Interpreting renormalization group flows as solitons interpolating between

different fixed points, we ask various questions that are normally asked in soliton physics

but not in renormalization theory. Can one count RG flows? Are there different “topological

sectors” for RG flows? What is the moduli space of an RG flow, and how does it compare

to familiar moduli spaces of (supersymmetric) dowain walls? Analyzing these questions in

a wide variety of contexts — from counting RG walls to AdS/CFT correspondence — will

not only provide favorable answers, but will also lead us to a unified general framework that

is powerful enough to account for peculiar RG flows and predict new physical phenomena.

Namely, using Bott’s version of Morse theory we relate the topology of conformal manifolds

to certain properties of RG flows that can be used as precise diagnostics and “topological

obstructions” for the strong form of the C-theorem in any dimension. Moreover, this

framework suggests a precise mechanism for how the violation of the strong C-theorem

happens and predicts “phase transitions” along the RG flow when the topological obstruction

is non-trivial. Along the way, we also find new conformal manifolds in well-known 4d CFT’s

and point out connections with the superconformal index and classifying spaces of global

symmetry groups.
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1. Introduction

The renormalization group (RG) flow is a one-parameter motion [1] in the space of (renor-

malized) coupling constants λi,
d

dt
≡ −βi(λ) ∂

∂λi
(1.1)

with beta-functions βi(λ) as “velocities” and the RG “time” t = − log µ increasing toward

the infra-red (IR). The fixed points of the flow are conformal field theories (CFTs) that we

denote by TUV (when the flow originates at TUV) or by TIR (when the flow ends at TIR) or

simply by T∗ when we wish to make a statement about a general fixed point of the RG flow.

Interested in RG flows from a CFT TUV to another CFT TIR, we denote by T the space

of theories in which the RG trajectories λi(t) are embedded. For instance, T can be the space
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Figure 1: A schematic representation of a renormalization group (RG) flow from a UV conformal

theory TUV to an IR conformal theory TIR. The flow is parametrized by t ∈ (−∞,+∞).

of all d-dimensional Quantum Field Theories (if TUV and TIR are both d-dimensional CFTs).1

Or, more economically, if RG flows preserve certain symmetry and / or supersymmetry of

the fixed points TUV and TIR, then we can choose T to be the space of all theories with such

properties, e.g. the space of 4d N = 1 theories. Clearly, all such choices provide us with

infinite-dimensional theory space T . We can choose to truncate T even further, to a finite-

dimensional class of theories, say, parametrized by a set of couplings λi, i = 1, . . . ,dim(T ).

In all cases, whether T is finite-dimensional or not, we treat λi as coordinates on T .

Then, we can equivalently formulate the renormalization group flow as a one-parameter

flow on the theory space T :

R → T (1.2)

t 7→ Tt

generated by a vector field β. It has important physical property that a theory Tt ∈ T with

space-time metric e−tgµν predicts the same measurements as T0 with the metric gµν .

Since renormalization group equations are PDE’s in the space of couplings, we can count

their solutions much like solutions to any other system of PDE’s. What we really want,

however, is a simple and effective tool that allows to count RG flows between CFTs TUV

and TIR without doing all the hard work of solving the PDEs directly. As in other familiar

enumerative problems, our goal will be to infer some information about such RG flows from

certain data of the endpoints TUV and TIR and, furthermore, relate it to the topology of the

space T .

In many situations, RG flow is a gradient flow. For example, the RG flow in four-

dimensional φ4 theory is a gradient flow up to three loop order [2]. One of the consequences

of the gradient flow is the existence of a “height” function C : T → R that is monotonically

1In some cases, RG flows go across dimensions. Our analysis still applies to such situations, where TUV

and TIR are theories in different dimensions. One simply needs to pick the smallest dimension and regard all

other theories — including the intermediate stages of the RG flow — as theories in that smallest dimension

(possibly, with infinitely many fields).
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decreasing along the flow,
dC(T )
dt

≤ 0 (1.3)

and is stationary at the fixed points:

β(λ∗) = 0 ↔ dC(T )
dt

= 0 (1.4)

One can further adjust the definition of C(T ) so that at fixed points it equals the central

charge of the corresponding CFT, C(T∗) = c(T∗), the quantity that counts the number of

massless degrees of freedom in a CFT T∗. There are many situations where a candidate for

the C-functional is known. Such favorable situations include the celebrated Zamolodchikov’s

c-theorem [3] (in which case T is the space of 2d QFTs) and the “a-theorem” conjecture [4] in

four dimensions, where a is the coefficient of the Euler density that appears in the conformal

anomaly.

To be more precise, one usually distinguishes between three versions of the “C-theorem”

conjecture (nicely summarized e.g. in [5]). The weakest version only involves the values of C
at the endpoints of the RG flow and asserts that C(TUV) > C(TIR). A stronger version requires

C(T ) to exist throughout the entire RG flow and states that it is a monotonically decreasing

function of t, that obeys (1.3)-(1.4). The strongest form of the “C-theorem” asserts that RG

flow is a gradient flow of the C-function. The first two versions are now proven theorems

in two dimensions [3] and in four dimensions [6], while the third, strongest form remains

challenging even in two dimensions [7], despite the proof in conformal perturbation theory [3]

and the compelling non-perturbative arguments [8] that apply to a large class of RG flows.

Similarly, in four dimensions there is substantial evidence for the strongest form of the

C-theorem in a variety of theories — e.g. in the presence of N = 1 supersymmetry [5, 9]

or in conformal theories that admit a holographic dual [10] — and there are no razor-sharp

counterexamples or arguments to the contrary. In fact, a priori it is not even clear what

such “an argument to the contrary” might look like. It is easy to imagine how certain RG

flows can rule out particular candidates for the C-function, such as the a-function. But how

does one show that no C-function with the desired properties can exist? ... unless there is

something special about gradient RG flows and they imply certain relations on the data at

the endpoints which, thereby, can be used as diagnostics for the behavior along the flow. As

we explain below, this is indeed the case and such local data at the endpoints TUV and TIR
involves a careful count of relevant and marginal operators, together with global symmetries;

moreover, the same data is needed to answer the above questions about “counting” RG flows

(without doing the actual count).

Precisely this problem one encounters in Morse theory or, to be more precise, in a variant

of Morse theory developed by Bott [11] that will be needed for proper understanding of RG

flows. Indeed, the main goal of Morse-Bott theory is to learn about topology of the ambient

space T from certain data at the critical points (or, critical manifolds) of the Morse function

C : T → R, without using any detailed knowledge about C(T ), especially away from the
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critical points. Our goal is slightly different — namely, to learn about the behavior of flows

themselves — but we can use the same set of tools. Note, promoting coupling constants λi
to background fields in the customary fashion [12] would result in a more familiar version of

Morse theory [13] in the space T of (background) fields.

Taking this motivation more seriously, and building on earlier applications of Morse

theory to 2d theories [14–16] and to holographic RG flows [17], we develop a general framework

that is detailed enough to teach us useful lessons about the physics of RG flows: make

predictions about new conformal manifolds, account for dangerously irrelevant operators,

and not only provide diagnostics for violation of the strong C-theorem, but also give us a hint

on how and why such violations happen. We start by testing the following three “conjectures”

about a simple and easily accessible quantity

µ(T∗) = #(relevant O) (1.5)

that counts relevant operators at the fixed points of RG flows. The three “conjectures” are

somewhat analogous to the three versions of the C-theorem:

1. The weakest version asserts that the positive integer (1.5) counts degrees of freedom at

the fixed points and, much like the C-function, should decrease along the RG flow:

µ(TUV) > µ(TIR) (1.6)

2. A slightly stronger version is that, if TUV and TIR are connected by an RG flow, then

the (moduli) space of such flows has dimension:

dimM(TUV, TIR) = µ(TUV)− µ(TIR) (1.7)

In particular, it incorporates the weaker version as the statement that M = ∅ when

µIR > µUV and gives a partial answer to the question about counting RG flows.

3. The strongest version can be formulated in situations where one has a C-function(al) on
the theory (mini-super)space T . In such cases, the strongest version of (1.6) and (1.7)

is the conjecture:

µ(T∗) = #
(
negative eigenvalues of Hess(C)|T=T∗

)
(1.8)

where Hess(C) =
(

∂2C
∂λi∂λj

)
is the Hessian of the C-function.

The way they are formulated, “conjectures” (1.6)-(1.8) are a bit too naive and, at best, can

only apply to non-degenerate critical points, i.e. isolated (rigid) CFTs with no marginal

operators or symmetries. Therefore, in the next section, we start by introducing proper

machinery based on Bott’s version of Morse theory that, among other things, will allow us to

analyze CFTs with marginal deformations and non-trivial conformal manifolds. In particular,

it will provide answers to the questions posed in [18,19] about topology of conformal manifolds.
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(Free theories and theories with moduli spaces of vacua are perhaps most subtle from this

perspective; we shall try to avoid them in the present paper and explore more fully in the

future work.)

Another, more serious reason to put quotation marks around “conjectures” (1.6)-(1.8)

and their appropriate refinements in section 2 is that, while counterexamples are rare, they

do exist (and are extremely interesting!). In particular, dangerous irrelevant operators [20]

that play an important role in N = 1 dualities [21–25] start their life as irrelevant operators

in TUV and, upon the RG flow, become relevant in TIR. When there are sufficiently many

such operators, they can lead to µIR > µUV even when the space M(TIR, TUV) is non-empty.

Luckily, a closer look at such flows through the looking glass of Morse-Bott theory suggests

what happens: such behavior can not occur for a gradient flow indicating a “phase transition”

at points where anomalous dimensions of irrelevant operators cross through marginality. At

such points, new directions for the RG flow open up, which is precisely where M(TIR, TUV)

fails to be a manifold, cf. Figure 2. As a result, certain derivatives of the C-function (and,

perhaps, some other quantities) are discontinuous at such points. Therefore, what we really

wish to conjecture is the following:

µ-Theorem: A gradient RG flow “breaks” at the specific points along the flow, which are

precisely the points where irrelevant operators cross through marginality. In the absence of

such “phase transitions” the topological relations (1.6)-(1.8) (or, their appropriate variants

in section 2) must hold.

Therefore, we can use appropriate refinements of (1.6)-(1.8) presented in section 2 as

diagnostics for the strong version of the C-theorem and whether one should expect such “phase

transitions” or not. We collectively refer to such topological relations as the “µ-theorem”, even

though in practice it often involves not only the index (1.5) but also topology of conformal

manifolds at the fixed points and other data. Notice, our proposal for the piecewise structure

of the gradient flow fits well with the known properties of 2d RG flows [3, 8] and 4d N = 1

flows [9, 26]. In particular, the “branch flip” in a-maximization is precisely an example of

such “phase transition” and non-smooth behavior of the a-function.

The proposed piecewise structure of gradient flows is also reminiscent of “wall crossing”

phenomena, where instead of the spectrum of relevant operators one talks about spectrum

of BPS states, and the role of anomalous dimensions is played by masses of BPS states. The

latter change continuously, as piecewise smooth functions, until parameters of the theory hit

a “wall” and the spectrum of states changes. It would be interesting to come up with a model

that makes this analogy precise.

There are several familiar instances where counting RG flows turns into counting of BPS

solitons on the nose. These include supersymmetric domain walls that implement RG flows

as well as gravitational BPS solitons in the holographic dual description. Although these

systems are quite different, the lesson is universal, and we will try to illustrate each of these

with the simplest possible examples. Thus, in section 3 we discuss counting RG walls in the
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Figure 2: The “spectral flow” of scaling dimensions in CFTd and a cartoon illustrating how the space

of flows fails to be a manifold at the “phase transition” point.

setup of the pioneering work [27] where such objects were first studied. And, in section 4,

we discuss holographic RG flows in what one might call2 the “simplest gauged supergravity”.

In part, our motivation for choosing this holographic model is to understand RG flows in

recently discovered 2d N = (0, 2) theories [28,29]. The main motivation, though, to focus on

this gauged supergravity is that, despite being the simplest, it is not well studied. We wish

to emphasize that it has a rich and simple structure of phases, analogous to that of N = 2

theories in two dimensions [30].

Then, in sections 5 and 6 we illustrate the counting of RG flows in 3d and 4d theories,

respectively. As our examples we choose well known CFTs, many of which have marginal

deformations and non-trivial conformal manifolds. In some examples, we find new conformal

manifolds and point out how “topological obstructions” discussed in this paper can be refor-

mulated in terms of the superconformal index. In the case of 4d N = 1 flows, we explain how

“branch flips” in a-maximization fit in this general framework and can be predicted based

on topological criteria and the data at the endpoints of the RG flow. In those example, the

“phase transition” is of second order.

2. Reconstructing theory space from RG flows

In this section we discuss deformation-equivalence of RG flows. In particular, our motivation

comes from such questions as “Are there distinct topological sectors for RG flows?” and,

if so, “What invariants can distinguish different flows?” Since RG flow is a continuous flow

in the theory space T , of course, π0(T ) gives rise to different homotopy types of RG flows.

Moreover, since RG flows are one-dimensional trajectories in T , the fundamental group π1(T )

classifies different homotopy types of such paths.

2following how Nima Arkani-Hamed likes to call N = 4 super-Yang-Mills
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Figure 3: Stable and unstable manifolds, I(T∗) and R(T∗), are spanned by RG flow trajectories in

and out of the CFT T∗. The intersection of R(TUV) and I(TIR) defines the set of RG flows from TUV

to TIR in the theory space T .

To learn more about the relation between RG flows and topology of T we define the

irrelevant manifold of a CFT T∗ to be the set of theories which flow ‘down’ to T∗, i.e. for

which T∗ is the IR fixed point:

I(T∗) := {Tt ∈ T | lim
t→+∞

Tt = T∗} (2.1)

Here, for simplicity, we assume that T∗ is an isolated fixed point, i.e. has no exactly marginal

deformations; the relaxing of this assumption will be discussed later in this section. Similarly,

the relevant manifold R(T∗) is the set of theories which flow ‘up’ to T∗, i.e.

R(T∗) := {Tt ∈ T | lim
t→−∞

Tt = T∗} (2.2)

With this definition of spaces I(T∗) and R(T∗), illustrated in Figure 3, we can be a little

more precise about what we mean by the moduli space of RG flows between TUV and TIR in

(1.7) and define it as

M(TUV, TIR) = R(TUV) ∩ I(TIR) (2.3)

Even though in the context of quantum field theory I(T∗) and R(T∗) may be infinite-

dimensional, the space of flows (2.3) is typically finite-dimensional. When R(TUV) and I(TIR)
intersect transversely, we have

dimM(TIR, TUV) = µ(TUV)− µ(TIR) (2.4)
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where µ(T∗) is defined
3 as the dimension of R(T∗):

µ(T∗) = #(relevant O) (2.5)

Note, the difference in (2.4) can be interpreted as the spectral flow of the dilatation operator

D that measures scaling dimensions ∆(O) of local operators:

DO = ∆O (2.6)

Since in d space-time dimensions (2.5) counts the number of operators with ∆(O) < d, the

difference in (2.4) becomes the “spectral flow” of the operator D − d · 1, i.e. the number of

eigenvalues that move from negative to positive minus the number that move from positive

to negative. An index formula for a family of elliptic operators labeled by t ∈ (−∞,+∞)

with a real, discrete spectrum usually relates the “spectral side” and the “geometric side.”

Therefore, one can interpret (2.4) as an index formula for the dilation operator, with the

geometric left-hand side and the spectral right-hand side.

Let us illustrate these definitions with a concrete example. A simple family of isolated

SCFT’s labelled by an integer n = 2, 3, . . . is the set of N = 2 super-Virasoro minimal models

in two dimensions. The A-type minimal model at level n−2 has central charge c = 3− 6
n and

n− 2 supersymmetric relevant operators, which in the Landau-Ginzburg description [31–34]

of the minimal model correspond to the deformation of the superpotential:

W = Φn  W + δW = Φn + λΦk , k < n (2.7)

Each of these relevant deformations induces a supersymmetric RG flow to a N = 2 minimal

model at level k−2. Hence, in this example, one can take T to be the space of two-dimensional

N = 2 theories and µ(Am) = 2m for the Am minimal model. In particular, the coefficients

of relevant perturbations are complex-valued and the space of supersymmetric RG flows has

real dimension 2(n− k), in accord with (2.4),

M(TIR, TUV) = C
∗ × C

n−k−1 (2.8)

parametrized by complex coefficients of the relevant perturbations Om = Φm, m = k, . . . , n−
1, the first of which must be non-zero (to ensure the flow to the Ak−2 minimal model). Note,

the theory of a free (super)field Φ can flow to any of the An−2 minimal models and has

µ = ∞. This illustrates why free theories are not so simple in this approach. Also note that

the theory with n = 2 is trivial in the IR (has a unique massive vacuum).

More generally, in any dimension we allow TIR to be a vacuum sector of a massive theory

(e.g. confining theory) described by a TQFT (with C = 0). According to (2.5), for RG flows

that end at such “trivial” points we clearly have

µ(TIR) = 0 . (2.9)

3Equivalently, one could try to define µ as minus the number of irrelevant operators, i.e. as the codimension

of I(T∗). Clearly, it is more convenient to count relevant operators than irrelevant ones.
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The factor of C∗ ∼= S1×R in (2.8) illustrates another general fact. Namely, a spontaneous

breaking of the scaling invariance in the RG flow results in a collective coordinate parametrized

by t ∈ R. For this reason, a factor of R is always a part of M(TIR, TUV) and motivates the

definition of the “reduced moduli space” M̃(TIR, TUV), such that

M(TIR, TUV) = R× M̃(TIR, TUV) (2.10)

When the RG flow in question is a gradient flow for some function(al) C(T ), then I(T∗)
and R(T∗) are respectively stable and unstable manifolds of a critical point T∗. Moreover,

µ(T∗) is then the familiar definition of the Morse index and (2.4) becomes the familiar formula

in Morse theory. In fact, many results and conjectures in this paper are almost automatic

for RG flows which are gradient flows. The point, though, is that all of the definitions (2.1)-

(2.5) do not explicitly refer to the C-functional and, therefore, can be used in all situations,

even when RG flows are not gradient flows. From this perspective, counterexamples to the

“conjectures” (1.6)-(1.8) and the statements below are obstructions to the existence of a

C-function for which the RG flow is a gradient flow.

If we were in the context of Morse theory, i.e. if RG flows were indeed gradient flows

for some C∞ function C : T → R, that for now we assume to have only non-degenerate

critical points (cf. [15,16]), then we could infer a lot more information about the “geography”

of the theory space from the critical points of C. In particular, it follows from the Morse

lemma that relevant manifolds R(T∗) are homeomorphic to R
µ and that C-function provides

a decomposition of T into ‘cells’:

T =
⋃

T∗ critical

I(T∗) =
⋃

T∗ critical

R(T∗) (2.11)

By intersecting these two decompositions, we obtain a finer one,

T =
⋃

T1,T2 critical

M(T1, T2) , (2.12)

with the moduli spaces M(T1, T2) defined as in (2.3). The main theorem of Morse theory gives

information about how these pieces fit together: T has the homotopy type of a cell complex,

with one cell of dimension µ for each critical point of index µ. Of course, reconstructing

the space of all theories is too ambitious, and this is not what we are interested in. For us,

T will be something extremely concrete: it will be a small “patch” of the space of theories

that includes all theories visited by RG flows that we wish to study. Hence, we regard (2.12)

merely as a convenient geometric way to package information about RG flows.

Conversely, it means that if T has non-trivial topology, then there must exist non-trivial

CFTs in T (or, else, we get a counterexample to the strongest version of the C-theorem).

Moreover, one can make specific predictions about CFTs just from basic information about

topology of T . Thus, the k-th Betti number of T gives a lower bound on the number of CFTs

in T with µ = k,

Nk ≥ bk(T ) , (2.13)
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where bk = dimHk(T ;R) and

Nk := # (critical points of index µ = k) . (2.14)

The bound (2.13) is what in Morse theory goes by the name of weak Morse inequalities. The

strong Morse inequalities in our context would look like

n∑

k=0

(−1)n−kNk ≥
n∑

k=0

(−1)n−kbk(T ) (2.15)

Sometimes one writes Morse inequalities as

∑

k

Nkq
k =

∑

k

bkq
k + (1 + q)

∑

k

qkQk (2.16)

where Qk are non-negative integers (that depend on C). Of course, the first sum on the

right-hand side P (q) =
∑

k bkq
k is nothing but the Poincaré polynomial of T . It can be

convenient to combine the second sum also into a polynomial (or power series) with non-

negative coefficients Q(q) =
∑

k q
kQk. Setting q = −1 in (2.16) gives the Morse theorem:

χ(T ) =
∑

k

(−1)kNk . (2.17)

The beauty of the relations (2.11)-(2.17) between RG flows and topology of T is that,

while they ought to hold true if the strongest version of the C-theorem holds, they do not

explicitly refer to the C-function. Hence, one can explore (2.11)-(2.17) regardless of whether

the C-function exists (and is known) or not. This will be the philosophy of the present paper.

2.1 Conformal manifolds and RG flows

So far, our inspiration from Morse theory was based on the case where each critical point of

the function(al) C is isolated. While it may be the case in simple examples, this is not the

generic situation, of course. In particular, we will need a variant of Morse theory developed

by Bott [11] that deals with situations when this is not the case, i.e. when Hess(C) has zero
eigenvalues and there are critical submanifolds (rather than critical points) of C.

Such situations have nice physical counterparts in our story. Namely, vanishing eigen-

values of Hess(C) at a critical point T∗ ⊂ T indicate that a CFT T∗ has marginal operators

(that correspond to the 0-eigenspace of Hess(C)) and critical manifolds of C are the so-called

conformal manifolds. We call the space of conformal field theories SCFT (no pun intended)

or simply S(T∗) when we wish to focus on conformal theories connected to T∗. By definition,

S(T∗) is a submanifold of T and much of the previous discussion has a suitable generalization

in which non-degenerate critical points T∗ are replaced by conformal submanifolds S∗ ⊂ T .

In particular, for any T∗ ⊂ SCFT we can continue using the definition (1.5) of the index µ

that counts relevant operators in the CFT T∗. When T is equipped with a smooth C-function,
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we can choose local coordinates in the space of couplings, such that T∗ corresponds to λi = 0

and in the vicinity of this point

C(λ) = C(T∗) +
∑

i

ai(λi)
2 + . . . , (2.18)

where each ai is −1, 0, or 1. The number of negative ai’s is precisely the index µ(T∗), which

now allows to apply (1.8) to conformal manifolds. In the context of Morse theory, such

C : T → R is called Morse-Bott function and it reduces to the earlier definition of the Morse

function when none of the ai’s are zero at every critical point of C. In general, the set of CFTs

in T is a disjoint union of submanifolds of various (co-)dimension, which are precisely the

critical submanifolds of C. In the above coordinate chart, the conformal submanifold SCFT is

given by the equations λi = 0 for all i with ai 6= 0.

One can also relate the geometry of conformal manifolds to the geometry of RG flows,

generalizing (2.11)-(2.17). In particular, now T has the homotopy type of a cell-bundle

complex, so that a generalization of (2.11) looks like

T =
⋃

Si conformal

R(Si) , (2.19)

where each component Si of the conformal manifold with index µi := µ(Si) contributes a

cell-bundle R(Si) of rank µi, i.e. a fiber bundle over Si with fiber Rµi , cf. (2.2). Similarly,

the suitable generalization of (2.16) has the form

∑

i,j

qµi+j dimHj(Si;R) = (1 + q)Q(q) +
∑

k

qk dimHk(T ;R) (2.20)

whereQ(q) is a polynomial with non-negative coefficients, cf. the discussion that follows (2.16).

One can write this relation more succinctly as

MB(q)− P (q) = (1 + q)Q(q) (2.21)

where P (q) is the Poincaré polynomial of T and the Morse-Bott polynomial MB(q) is the

sum on the left-hand side of (2.20). In Morse theory, the philosophy behind (2.20) is that

under a slight deformation of the Morse-Bott function C (that turns it into a Morse function),

each critical submanifold Si breaks up into a finite set of isolated critical points, and for each

Betti number bj of Si there are bj critical points of index j + µi.

This argument has a nice physical interpretation. In many instances, it is hard to argue

that the space of marginal deformations remains exactly marginal once e.g. non-perturbative

corrections are taken into account. The relation (2.20) eliminates the need for such “costly”

arguments, at least as far as applications to RG flows and topology of T are concerned.

Indeed, even if the space of marginal deformations Si is deformed while the strongest form of

the C-theorem still holds, it breaks up into a set of isolated CFTs which have exactly the same

spectrum of µ(T∗) as the contribution of the Poincaré polynomial P (Si) to (2.20). In other

words, for each Betti number bj of Si there are bj conformal theories of index µ = j + µ(Si).
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Sometimes, a weaker version of this argument can be useful: it does not provide as detailed

information as (2.20), but allows to generalize (1.6) to situations with marginal operators that

are not necessarily exactly marginal. In such cases, one simply needs to modify the definition

(1.5) at the UV fixed point by counting not only relevant operators but also marginal ones,

i.e. replace the strict inequality ∆(O) < d by ∆(O) ≤ d:

µ(TUV) = #(O with ∆(O) ≤ d) (2.22)

This leads to a variant of (1.6) that can be further refined if one knows which operators at

the fixed point TUV are marginally relevant and which are marginally irrelevant.

Again, the beauty of the relations (2.19)-(2.21) is that they have no explicit reference to

the C-function and, therefore, can be tested in a much broader context. A counterexample

to any of these relations can be interpreted as an obstruction to the strongest version of the

C-theorem.

2.2 Supersymmetric RG flows

Of particular interest are supersymmetric RG flows. Until 20 years ago, very little was known

about non-trivial superconformal fixed points in dimension d > 2 and RG flows between them.

Then, following the pioneering work [35,36] and related developments in string theory (most

notably, the AdS/CFT correspondence [37]) a lot of new superconformal theories have been

discovered in the course of the past 20 years. Thanks to these developments, now we have a

good supply of SCFTs in diverse dimensions and RG flows between them that can be used

to test the ideas in the present paper.

When supersymmetry is maintained throughout the RG flow, the relevant operators come

in complete multiplets and, as a result, the index µ(T∗) is either an even number (in theories

with four real supercharges), or a multiple of 4 (in theories with eight real supercharges).

Therefore, by analogy with ĉ that, depending on the amount of supersymmetry, is a suitable

multiple of the central charge in 2d SCFT, it is convenient to introduce

µ̂ :=
µ

2
(4 real supercharges) (2.23)

and

µ̂ :=
µ

4
(8 real supercharges) (2.24)

In particular, in 3d SCFT the standard conventions are such that these two cases correspond

to N = 2 and N = 4, respectively. Therefore, in three dimensions we could simply write

µ = N · µ̂.
This multiplicity is a familiar feature of supersymmetric theories. It has many different

manifestations, including e.g. the fact that it is often convenient to use “complex dimension”

or “quaternionic dimension” to count the dimension of moduli spaces or target spaces in

supersymmetric theories. This, in fact, is exactly the case in our setup since µ(T∗) is the

dimension of a relevant manifold R(T∗) which, depending on the amount of supersymmetry,
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can be a complex or quaternionic space. Indeed, in such cases, the relevant deformations that

parametrize R(T∗) come in chiral multiplets or hypermultiplets, so that we can write (2.11)

and (2.19) as

T =
⋃

Si conformal

Si × C
µ̂i (chiral multiplets) (2.25)

or

T =
⋃

Si conformal

Si ×H
µ̂i (hypermultiplets) (2.26)

This cell-bundle decomposition of the theory space T has an important implication for the

Poincaré polynomial P (T ), which in both of these cases simply equals the Morse-Bott poly-

nomial, cf. (2.21):

P (T ) =
∑

Si conformal

qµ(Si) · P (Si) (2.27)

In other words, when all fixed points have even values of µ(T∗) (or multiple of 4, which is a

special case), then all coefficients Qk in (2.16) and (2.20) must vanish.

This is a special case of a basic principle in Morse theory — called the lacunary principle

of Morse — that any gap in the sequence N0, N1, N2, . . . forces a relation between MB(q)

and Q(q). In particular, when MB(q) contains only even powers of q it follows from (2.21)

that neither P (q) nor (1 + q)Q(q) can contain odd powers of q and we arrive at (2.27). As

usual, we should point out that a counterexample to any of these conclusions is an obstruction

to the strongest version of the C-theorem, of course, assuming all the details are taken into

account.

Another virtue of supersymmetric RG flows is that they provide additional tools for

analyzing the behavior near the end-points of the flow, which is precisely how we want to

approach the study of moduli spaces, topology of T , etc. In particular, one tool that can be

useful for computing the index µ(T∗) at the critical point is the superconformal index I(T∗).

In holographic RG flows, supersymmetry also leads to considerable simplifications and

often yields a system of first-order gradient flow equations (that follow from setting SUSY

variations of fermions to zero).

2.3 Symmetries

As we mentioned earlier, it is often convenient to restrict our attention to a class of theories

with certain symmetry properties. The version of Morse theory developed by Bott is perfectly

suited to deal with such situations and, in fact, was largely motivated by applications to

symmetric spaces, some of which led to spectacular results.

Let G be a symmetry group acting on couplings λi that parametrize space T of theories

that enjoy such symmetry transformations. In such cases, C : T → R needs to be a G-invariant

function and its critical points are orbits of the form

Si = G/Ki (2.28)
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for some subgroups Ki, which are the stabilizers of these critical orbits and, therefore, are

global symmetries of the CFTs T∗ ∈ Si. Note, the role of the quotient by the symmetry

group Ki is precisely the same as in [9, 18, 19], and many familiar conformal manifolds of

SCFTs with large amount of supersymmetry are indeed symmetric coset spaces4 of the form

(2.28). We also point out that orbits G/K are Kähler manifolds and their complex analogues,

GC/KC, are hyper-Kähler (see e.g. [38] for a review of these and other facts about geometry

and topology of coadjoint orbits).

When RG flow is a gradient flow of a G-invariant C-function, the relations described

in the previous subsections have a very powerful refinement, formulated in terms of the G-

equivariant cohomology groups. For example, a suitable generalization of (2.20) looks like

∑

i,j

qµi+j dimHj
G(Si;R) = (1 + q)Q(q) +

∑

k

qk dimHk
G(T ;R) (2.29)

where, as usual, Q(q) is a polynomial (or, power series) with non-negative coefficients. Now,

even a simple non-degenerate critical point, S = point, makes a rather non-trivial contribution

to the equivariant Morse-Bott series (2.29) since

H∗
G(point) = H∗(BG) (2.30)

where BG is the classifying space of the group G. For example, when G = U(1) the classifying

space BG = CP∞ contributes to (2.29) the Poincaré series

P (CP∞) =
1

1− q2
(2.31)

More generally, for G = U(N) we have

P (BG) =
1

(1− q2) · · · (1− q2N )
(2.32)

Furthermore, the G-equivariant cohomology of any G-space has a rich algebraic structure of

an H∗(BG)-module.

In the next section, we will encounter yet another, more interesting and seemingly unre-

lated appearance of classifying spaces.

3. Counting RG walls

There are examples of RG flows where the RG scale t can literally be interpreted as one of the

space-time dimensions. Although examples of such RG flows are relatively rare, they provide

good intuition and a concrete realization of the idea that RG flows can be viewed as domain

walls interpolating between two vacua. In such cases, one can actually interpret Figure 1 as

an illustration of a soliton (domain wall) in a larger theory that interpolates between vacua

4In fact, such conformal manifolds are believed to contain infinitely many “rational” CFTs.
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TUV and TIR. In all such (admittedly, special) situations counting of RG flows and studying

their moduli spaces (2.3) reduces to a familiar problem in soliton physics.

One class of such examples is based on the AdS/CFT correspondence [37] and consists

of holographic RG flows. In these examples, fixed points of the RG flow are indeed realized

as vacua of a gravitational theory in d + 1 dimensions, and the RG flow itself is a described

by a gravitational soliton that interpolates between these vacua. The holographic RG flows

have been extensively studied in the literature and, with sufficient supersymmetry, yield BPS

solutions which are gradient flows, see e.g. [39,40]. As we illustrate in section 4, they provide

excellent arena for testing the relations (1.6)-(1.8) and (2.19)-(2.20).

Another special class of examples where RG scale t is one of the space-time directions

involves the so-called RG walls, which are similar to the holographic RG flows, except that

the “ambient theory” is still d-dimensional and does not contain gravity. (The direction t in

Figure 1 should be interpreted as one of the d space-time directions.) Again, counting RG

flows and studying their moduli spaces in these examples turns into a more familiar problem

of counting RG walls.

The notion of RG walls was introduced and studied in [27] in the context of 2d examples,

which will serve us well for illustrating the “count” of RG walls. The basic idea of [27] is to

divide the d-dimensional space-time of a CFT TUV into several domains and turn on relevant

perturbations that initiate the RG flow to TIR only in some domains. Then, separating

domains of TUV and TIR is the RG defect / domain wall, for which the RG time t in Figure 1

is now one of the space-time dimensions. Following [27], we study N = 2 supersymmetric

RG flows between minimal model orbifolds:

An−2/Zn  Ak−2/Zk (3.1)

with k < n (that, for simplicity, we further assume to be relatively prime). The generalization

to counting of RG walls in 3d and 4d theories is fairly straightforward and will be discussed

in the end of this section.

Much like N = 2 minimal models mentioned in section 2, the orbifold theories in (3.1)

admit a Landau-Ginzburg description with the superpotentials W = Y n and W = Xk,

respectively. In fact, the minimal model orbifold An−2/Zn is precisely the mirror dual of the

An−2 minimal model, so that the RG flow (3.1) is related to (2.7) by mirror symmetry. This

can give us some intuition about what to expect in (3.1).

On the mirror side (2.7), the RG flows relate different Landau-Ginzburg theories with

polynomial superpotential W (Φ), so that the space of theories is basically the space of coeffi-

cients of W (Φ). If, for a moment, we restrict our attention to degree-n superpotentials, then

this space is (n+1)-dimensional, namely C
n+1 \ {0}, where we had to exclude the origin {0}

since in N = 2 minimal models and their deformations the superpotential can not be trivial,

W (Φ) 6= 0. Moreover, rescaling W (Φ) by a non-zero (complex) number does not affect the

IR physics, so that in our present example the space of couplings is CPn =
(
C
n+1 \ {0}

)
/C∗.

Taking the inductive limit as n → ∞, we conclude that RG flows between N = 2 minimal
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models belong to the space

T = CP∞ ∼= BU(1) (3.2)

To be more precise, this is the space of F-term couplings. As is customary in supersymmetric

theories, we view the entire space of couplings — all of which are renormalized along the RG

flow — as a fibration over the space of superpotential couplings. As long as the fiber of this

fibration is contractible, one can project the space of all couplings to the base, namely to

the space of superpotential couplings without loosing any information, and this will be our

strategy in the present paper, also in applications to higher-dimensional theories. This, in

particular, answers the question posed in [16].

The identification of the space T with the classifying space BG — in this case, for

G = U(1) — is very intriguing and we plan to explore it more fully in the future. However,

some aspects are already clear at the present stage. For instance, the group G = U(1) here

is obviously the flavor symmetry group of a free chiral multiplet (that acts on Φ by phase

rotations). Moreover, its complexification by D-terms gives precisely GC = C
∗ that we saw

earlier, in (2.8) as the moduli space of ‘basic’ RG flow between neighboring minimal models,

Am and Am−1. Complexification of the global symmetry group also plays an important role

in 4d N = 1 flows [9, 18, 19], essentially for the same reason: in both cases, it arises as an

obstruction to conformal invariance. We expect this to be the case for all other G: their

classifying spaces BG have rich and interesting topology that encodes information about RG

flows within the corresponding class of CFTs labeled by G and a cohomology class of T = BG,

m ∈ H∗(BG) ⇒ CFTG,m (3.3)

Another aspect of the RG flow (3.1) that we expect from its mirror (2.7) is that the

moduli space of RG walls that realize (3.1) is of complex dimension (n − k), cf. (2.8). In

order to verify this and other properties, it is convenient to describe the RG flow (3.1) by

embedding it into a larger theory that contains both chiral fields X and Y used in the LG

description of minimal model orbifolds:

2d N = (2, 2) GLSM:
X Y

U(1)gauge −n k
W = XkY n (3.4)

Without the superpotentialW , the geometry of the linear sigma-model is given by the solution

to the D-term constraint [30,41]:

−n|X|2 + k|Y |2 = t (3.5)

modulo the U(1) action

(X,Y ) → (Xe−nθ, Y ekθ) (3.6)

Here, t is the running FI coupling

t = ζ + (k − n) log Λ (3.7)
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so that, for k < n, the UV fixed point (Λ → ∞) is at t = −∞ and the IR fixed point (Λ → 0)

is at t = +∞. This model was discussed in detail in the context of closed string tachyon

condensation [41].

In the phase t ≪ 0, the chiral superfield X has a large vev and U(1) is spontaneously

broken to Zn. Taking into account the superpotential W we recover the Landau-Ginzburg

description of the minimal model orbifold An−2/Zn. On the other hand, when t ≫ 0, the

field Y has a vev and U(1) is spontaneously broken to Zk, so that we recover Ak−2/Zk.

Therefore, the RG flow between these two theories can be understood as the flow in the space

of complexified FI parameter from t = −∞ to t = +∞.

For simplicity, let is consider the ‘basic’ RG flow (3.1) with k = n−1. By embedding into

the above linear sigma-model, it can be understood as a flow in the space of the parameter

t, which takes values in the cylinder, exp(t) ∈ CP1 \ {0,∞} ∼= S1 × R
1. This is precisely the

complexification of G = U(1) in the above discussion. We can identify this cylinder with the

moduli space of RG flows / RG walls, M(An−2/Zn, An−3/Zn−1) ∼= C
∗, cf. (2.8). Indeed, as

explained in [30], for k 6= n the quantum theory (3.4) has no singularity on the t-cylinder and

(n−k) extra massive IR vacua with σ 6= 0, so that the total index Tr (−1)F remains invariant

under the RG flow.

From the viewpoint of the RG wall, these extra (n − k) vacua are trapped on the wall.

In the Landau-Ginzburg description of the minimal model orbifolds, the RG wall (3.1) is

given [27] by the (equivariant) matrix factorization of the superpotentialW (X,Y ) = Y n−Xk:

M : M0
p0−−−−−→M1

p1−−−−−→M0 , p0p1 =W · Id (3.8)

The spectrum of chiral operators H∗(M) on such a wall (not only RG wall) can be understood

as a special case of local operators that change the one-dimensional wall/defect from M to

M ′. In other words, such local operators are supported at points on the 1d defect, such that

to the left of a point one has the defect M and to the right of it the defect is M ′. We need

only a special case of this general setup since local operators that live on a defect M (and

don’t change its type) correspond to M ′ =M .

Equivalently, using the so-called ‘folding trick’, the local operators onM can be described

as defect-changing local operators that can be placed between M ⊗M and a trivial defect. In

other words, they can be identified with local operators on which the tensor product defect

M ⊗M can end [42]. Here, the dual defect, also known as “anti-defect” (or, “anti-wall”)

M is defined as a matrix factorization of the superpotential −W , and is obtained from (3.8)

simply by reversing the sign of p1:

M : M0
p0−−−−−→M1

−p1−−−−→M0 (3.9)

Now, using the standard rules (see e.g. [42,43]), we can explicitly describe the fusion product

M ⊗M of the wall M and anti-wall M :

M ⊗M :



M0 ⊗M0⊕

M1 ⊗M1



0

d0−−−−−→



M1 ⊗M0⊕

M0 ⊗M1



1

d1−−−−−→



M0 ⊗M0⊕

M1 ⊗M1



0

(3.10)
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where

d0 =

[
p0 ⊗ id id⊗ p1
id⊗ p0 p1 ⊗ id

]
, d1 =

[
p1 ⊗ id −id⊗ p1
−id⊗ p0 p0 ⊗ id

]
(3.11)

Note, in general, the fusion product of defect lines described by matrix factorizations of the

superpotentials Wi is a matrix factorization of the potential
∑

iWi. In particular, in our

present case, since M is described by a matrix factorization of W (X,Y ) = Y n − Xk while

M is described by a matrix factorization of −W (X,Y ), it is easy to see that (3.10) is a

matrix factorization of the zero superpotential. Therefore, the differential d in (3.10) is a true

(nilpotent) differential of a chain complex, so that the spectrum of chiral operators H∗(M) is

simply the cohomology of this complex:

Hi(M) = H i(d) =
ker (di : (M ⊗M)i → (M ⊗M)i+1)

im (di−1 : (M ⊗M)i−1 →M ⊗M)i)
(3.12)

where i = 0, 1 mod 2. In particular, the supersymmetric index Tr (−1)F that counts states

localized on RG wall in this case is

Tr wall(−1)F = dimH0(M)− dimH1(M) (3.13)

Similarly, by treating RG walls as ordinary domain walls, one can use the standard

methods from soliton physics to introduce analogues of (3.13) in a variety of other contexts.

For example, when RG walls are BPS objects, one can use the CFIV index [44–46] or its

appropriate version to count RG walls:

Tr wall (−1)F = χ
(
Mwall

)
= χ

(
R(TUV) ∩ I(TIR)

)
(3.14)

In 3d and 4d theories, concrete examples of counting domain walls that interpolate between

different sectors of SUSY theories have been studied in [47] and [48]. In particular, in 3dN = 2

theories one can actually refine the index (3.14) and study the flavored (or, equivariant) elliptic

genus that counts degrees of freedom localized on half-BPS walls that preserve N = (0, 2)

supersymmetry on its two-dimensional world-volume [47]:

Tr wall (−1)F qHLxflavor (3.15)

4. µ-theorem in 2d

Since conformal theories and RG flows among them are best understood in two dimensions,

this is a natural starting point for testing the proposed relations (1.6)-(1.8). In fact, in two

dimensions Zamolodchikov [3] proved that the trace anomaly, c, is strictly decreasing and

the RG flow is the gradient flow of the c-function, at least in conformal perturbation theory.

This suggests that Zamolodchikov’s c-function should be interpreted as Morse-Bott function

on the space of 2d theories T . The Hessian of this function automatically obeys the strongest
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form of the µ-theorem (1.8) due to the fact, used in [3], that in the vicinity of any 2d RG

fixed point (cf. (2.18) up to rescaling):

c(T ) = c(T∗) + 3(∆i − 2)(λi)
2 + . . . (4.1)

where, without loss of generality, we chose the critical point T∗ to be at λi = 0.

There are many concrete examples of 2d conformal theories that can be used to test

(1.6)-(1.8) and to explore the geography of the space of RG flows T via relations in section 2.

Among the simplest examples are two-dimensional (non-supersymmetric) minimal models Tm
labeled by m = 2, 3, 4, . . .. These theories have central charge

c(Tm) = 1− 6

m(m+ 1)
(4.2)

(The theory with m = 2 is empty.) Moreover, Tm has m− 2 relevant operators, so that

µ(Tm) = m− 2 (4.3)

and from (1.7) we expect n-dimensional space of flows between theories Tm and Tm−n.

4.1 Counting N = (0, 2) flows

Supersymmetric cousins of these theories, namely N = (2, 2) minimal models were already

mentioned earlier in section 2, cf. (2.7)-(2.8). Indeed, supersymmetry often helps to maintain

analytical control throughout the entire RG flow, providing a good supply of interesting

examples to test (1.6)-(1.8). Half-way between non-supersymmetric (N = 0) and N =

(2, 2) theories are two-dimensional models with N = (0, 2) supersymmetry. Such models are

interesting for a number of reasons. Their gauge dynamics, akin to that of 4d N = 1 theories

is very interesting and exhibits rich phase structure, non-perturbative effects, etc. Conformal

theories that are of our prime interest here can be used as world-sheet theories for the heterotic

string. Yet, the RG flows between 2d N = (0, 2) SCFTs are largely unexplored and our goal

in this section is to start filling this gap, in part motivated by the recent developments [28,29].

An intricate tree of RG flows can be obtained by considering IR fixed points of 2d

N = (0, 2) SQCD with gauge group U(Nc) and the following matter content:

2d N = (0, 2) SQCD

Φ Ψ P Γ Ω

U(Nc) � � � 1 det

SU(Nf ) 1 � 1 1 1

SU(Nb) � 1 1 � 1

SU(2Nc +Nf −Nb) 1 1 � � 1

SU(2) 1 1 1 1 �
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where Φ and P are N = (0, 2) chiral (bosonic) multiplets, whereas Ψ, Γ, and Ω are Fermi

multiplets. In the “conformal window” Nc ≤ Nb ≤ Nc + Nf the theory flows to an ex-

actly solvable N = (0, 2) SCFT labeled by the triple (Nc, Nf , Nb). For example, the exact

superconformal R-charges of the “E6 theory” with (Nc, Nf , Nb) = (1, 2, 2) are

RΦ = RP = RΓ =
1

3
, RΨ = RΩ = 0 (4.4)

Turning on the relevant deformation O = Φ2Ψ2 initiates an RG flow to another theory in this

class with Nc = Nf = Nb = 1 and

RP = RΓ =
1

2
, RΦ = RΨ = RΩ = 0 (4.5)

(In fact, the latter is a free theory of gauge-invariant “mesons” Ψ′ = Φ1Ψ1.) Since both

theories are exactly solvable, it is easy to verify directly that µ indeed decrees along the RG

flow.

In the rest of this section we will focus on the most basic holographic RG flows between

2d conformal theories with N = (0, 2) supersymmetry. These flows are described by the sim-

plest gauged supergravity theory, namely N = 2 three-dimensional U(1)-gauged supergravity

coupled to matter, and can serve as a prototype for more interesting holographic RG flows in

higher dimensions.

4.2 Phases of 3d N = 2 gauged supergravity

The simplest way to obtain 3d N = 2 supergravity coupled to matter is via dimensional

reduction of the analogous 4d system with N = 1 supersymmetry, which is well known and

is well described in many textbooks (see e.g. [49]). Here, we choose to do something a little

more interesting and consider much less known 3d N = 2 gauged supergravity coupled to

matter that involves Chern-Simons coupling for the U(1) gauge field and, therefore, can not

be obtained by reduction from four dimensions. In fact, our discussion below easily extends

to a larger class of matter-coupled supergravity theories with arbitrary abelian groups, but

we refrain from doing so here to avoid clutter.

The first examples of such theories were studied in [50–52] and then generalized in a

systematic approach [53] (see [54] for a nice summary). Below we explore the phase structure

of such theories in a way that parallels the study of abelian N = 2 gauge theories in two

dimensions [30]. Indeed, the latter share a number of similar features with our theories here:

the number of supersymmetries is the same, the spaces of scalar fields and parameters are

Kähler in both cases, etc. There are, however, also some differences, the most important of

which perhaps is that scalar potential in our case is induced by gauging U(1) isometry of the

Kähler target space.

In three dimensions, N = (p, q) extended supergravity is associated with the AdS3 su-

pergroup

OSp(p|2) ×OSp(q|2) (4.6)
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that extends the isometry group SO(2, 2) of AdS3. (Note, the latter is not a simple group

but rather the direct product of two SL(2,R) factors.) Via AdS/CFT correspondence [37],

maximally supersymmetric AdS3 vacua of such theories are dual to 2d conformal field theories

with N = (p, q) supersymmetry. Here we will be interested in the case p = 0 and q = 2,

whose dual CFT is 2d N = (0, 2) theory. Such supergravity has two gravitini fields that we

combine into a complex vector-spinor ψµ. The bosonic content includes the dreibein eaµ and

the spin-connection field ωab
µ .

We wish to couple this supergravity theory to a sigma-model with a target space M (not

necessarily compact):

L = LSUGRA + Lmatter (4.7)

The fields of the sigma-model are complex scalar fields φi and spinors χi. The scalar fields φi

parametrize a target manifold M endowed with a Kähler metric gij = ∂i∂jK, where K(φ, φ)

is the Kähler potential. The coupling to supergravity depends on the SO(2) target space

connection Qi(φ, φ):

Qi(φ, φ) =
1

2
∂iK(φ, φ) , Qi(φ, φ) =

1

2
∂iK(φ, φ) (4.8)

which enters, in particular, the supersymmetry transformations of the fermions.

The last and the final step in building the desired matter-coupled supergravity is gauging

a U(1) isometry of the target manifold M . In order to preserve N = 2 supersymmetry, the

U(1) isometry must be holomorphic, i.e. should leave the complex structure invariant. In

other words, the problem at hand naturally leads us to study a holomorphic S1-action on a

Kähler manifold M that preserves the Kähler structure.

Let v denote the vector field on M that generates this S1-action. We are interested in

circle actions that have at least one fixed point on M . Indeed, as we shall see below, fixed

points of the circle action correspond to supersymmetric AdS3 vacua of the matter-coupled

supergravity theory and, via the standard holographic duality, these are fixed points of RG

flow in the dual 2d N = (0, 2) boundary theory. Then, such circle action is automatically

Hamiltonian, i.e. there exists a moment map H :M → R such that

ιvω = dH (4.9)

where ω is the Kähler form on M .

The Killing vector field v = vi∂i + vi∂i generates a Kähler transformation

δK = vi∂iK + vi∂iK = f(φ) + f(φ) (4.10)

for some holomorphic function f(φ). A constant shift of this function, f → f + iζ, with a

real-valued parameter ζ is interpreted as the Fayet-Iliopoulos term. Such constant shifts act

as H → H + ζ on the moment map

H = ivjQj − ivjQj −
i

2
(f − f) (4.11)
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In order to gauge this U(1) isometry, we introduce an abelian gauge field Aµ and couple

it to the system (4.7) by extending the pure supergravity with a Chern-Simons term and

gauging a subgroup of the sigma-model isometries:

L  L − g

8
ǫµνρAµFνρ + gLYukawa + g2V (4.12)

Here, g is the coupling constant and V is the scalar potential on M induced by gauging,

V = 2W 2 − gii∂iW∂iW (4.13)

which is expressed in terms of the real “superpotential”

W (φ, φ) = (H + ζ)2 +W0 (4.14)

A real constant W0 corresponds to gauging the R-symmetry group U(1)R. After gauging, the

supersymmetry variations are also modified by g-dependent terms. In particular, the SUSY

variations of the gravitini ψµ and fermions χi have the form:

δψµ =
(
Dµ − gWγµ

)
ǫ (4.15)

δχi =
(
Dµφ

iγµ + ggii∂iW
)
ǫ

These variations vanish for field configurations that describe supersymmetric flows and vacua

in 3d N = 2 supergravity coupled to matter. In particular, BPS “walls” that preserve

2-dimensional Poincaré symmetry are described by the following general metric ansatz (in

mostly plus metric conventions, cf. [55]):

ds2 = dr2 + e2A(r)ηµνdx
µdxν (4.16)

where ηµν is the flat 2d Minkowski metric and we assume γrǫ = ǫ. With these conventions,

the radial flow in 3d supergravity via AdS/CFT corresponds to the RG flow in the 2d N =

(0, 2) boundary theory with the renormalization scale eA(r). In particular, up to a sign, the

standardly used radial variable r plays the role of the RG time t = −r, so that r → +∞ in the

UV and r → −∞ in the IR, see Figure 1. All holographic RG flows described by this ansatz

correspond to space-dependent profile of the scalar fields φi(r) and the metric (4.16) which

is encoded in a single function A(r). Since the scalar fields parametrize the Kähler manifold

M , we are led to identify the target space of our sigma-model with the “theory space” T of

the boundary theory,

T =M (4.17)

which, in principle, may be infinite-dimensional. Indeed, the scalar fields φi of 3d N = 2

gauged, matter-coupled supergravity correspond to spin-0 operators Oi of the 2d N = (0, 2)

boundary theory, so that one-dimensional motion in the space of fields (4.17) corresponds to

a one-dimensional motion in the space of 2d theories in this class.
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Moreover, for a general holographic RG flow of the form (4.16), the C-function of the

d-dimensional boundary CFTd is [39]:

C =
C0

(A′)d−1
(4.18)

In the present case, d = 2 and the first equation in (4.15) provides a relation between the

C-function (or, equivalently, A′) and the value of the superpotential W :

A′ − 2gW = 0 (4.19)

The second equation in (4.15) says that stationary points of the flow are critical points of W ,

i.e. solutions to ∂iW = 2(H + ζ)∂iH = 0. In particular, the supersymmetric anti-de Sitter

space of radius ℓ corresponds to A(r) = r
ℓ and is a stationary point of the RG flow in the 2d

N = (0, 2) boundary theory. Since we are working with a two-derivative gravity theory with

the Lagrangian (4.7) and (4.12), the central charges cL and cR of the 2d N = (0, 2) SCFT

are equal and given by the celebrated Brown-Henneaux formula:

cL = cR =
3ℓ

2GN
(4.20)

Now it is easy to verify that the holographic RG flows between different AdS3 vacua in

this U(1) gauged N = 2 supergravity indeed satisfy (1.6)-(1.8).

4.3 Toy model

As we pointed out earlier, fixed points of the holomorphic S1-action on the space M (that

we now identify (4.17) with the theory space T of the boundary theory) are automatically

fixed points of the flow equations that follow from (4.15). The behavior near an isolated fixed

point is modeled on a basic example:

T = C
n (4.21)

with the standard Kähler form:

ω =
i

2

n∑

k=1

dzk ∧ dzk (4.22)

and the Kähler potential

K =
1

2

n∑

k=1

|zk|2 (4.23)

Note, from (4.8) we get Qi =
1
4zi and Qi =

1
4zi. A holomorphic S1-action on T = C

n is

(eiθ) · (z1, . . . , zn) = (eiw1z1, . . . , e
iwnzn) (4.24)

where wk ∈ Z \ {0} are the weights (1 ≤ k ≤ n). This action is generated by the vector field

v = i
n∑

k=1

wk(zk
∂

∂zk
− zk

∂

∂zk
) (4.25)
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with components vk = iwkzk and vk = −iwkzk. Therefore, using (4.10) and (4.11) we find

the moment map:

H = −1

2

n∑

k=1

wk|zk|2 (4.26)

and the real superpotential

W =

(
ζ − 1

2

n∑

k=1

wk|zk|2
)2

+W0 (4.27)

Note, that in a vacuum (i.e. at the stationary point zk = 0 of the holographic RG flow) we

have W = ζ2 +W0 and the AdS3 radius is given by (4.19):

ℓ2 = (2gW )−2 =
1

4g2(ζ2 +W0)2
(4.28)

Our next goal is to compute the mass matrix for the complex scalar fields zk = xk +

iyk. Differentiating the scalar potential (4.13) and setting zk = 0 we find the (normalized)

eigenvalues of the mass matrix

m2
i ℓ

2 =

(
ζwi

ζ2 +W0
+ 1

)2

− 1 (4.29)

Note, all mass eigenvalues come in pairs since N = 2 supersymmetry requires scalar fields to

be complex valued. We also point out that mass eigenvalues (4.29) automatically obey the

Breitenlohner-Freedman bound, which for scalar fields in AdSd+1 reads m2ℓ2 ≥ −d2

4 .

The standard dictionary of the AdS/CFT correspondence [56,57] relates the mass spec-

trum of scalar fields in AdSd+1 with conformal dimensions of the corresponding operators Oi

in the dual CFTd:

scalars : m2ℓ2 = ∆(∆− d) (4.30)

In particular, scalar fields with m2 < 0 (resp. m2 > 0) correspond to relevant (resp. irrele-

vant) operators of the boundary CFT:

m2 < 0 ⇔ relevant

m2 > 0 ⇔ irrelevant

In our present problem, from (4.29) we see that, for small values ζw
ζ2+W0

≪ 1, the mass

spectrum of scalar fields in AdS3 vacuum is completely determined by the weights {wi} of

the holomorphic S1-action at a given fixed point T∗ ∈ T , so that the sign of m2
i ℓ

2 is the same

as that of wi. Therefore, in this case, the index (1.5) that counts relevant operators in a CFT

T∗ ∈ T is equal to the Morse index of the perfect Morse-Bott function (4.9).

It is easy to generalize our toy model here to RG flows in more interesting spaces T ,

including infinite-dimensional theory spaces. According to (4.15), all such flows are gradient

flows, which in the vicinity of a fixed point are modeled on our basic example (4.21). For
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example, the simplest Kähler manifold T that has non-trivial topology and admits a holomor-

phic S1-action is CP1 = C ∪ {∞}. It has the Fubini-Study metric with the Kähler potential

K = 1
2 log

(
1 + |z2|

)
and the Kähler form

ω =
i

2

dz ∧ dz
(1 + |z|2)2 (4.31)

In this metric, there is an obvious holomorphic circle action on T = CP1 with the moment

map,

H = −1

2

|z|2
|z|2 + 1

(4.32)

and two critical points (at z = 0 and z = ∞) that correspond to the AdS3 vacua with

ℓ−1 = 2g(ζ2 + W0) and ℓ−1 = 2g((ζ − 1
2)

2 + W0). The two critical points have µUV = 2

and µIR = 0, and admit a 2-parameter family of gravitational solitons (domain walls) that

interpolate them. The moduli space of such gravitational solitons,

M = C
∗ ∼= S1 × R (4.33)

is parametrized by the center-of-mass (in the r-direction) and the angular variable that de-

termines the direction of the flow on T = CP1. This agrees with the general conjecture (1.7).

If we represent CP1 as a 2-sphere,

x21 + x22 + x23 = 1 (4.34)

and use the polar coordinates x1 = sin θ cosψ, x2 = sin θ sinψ, x3 = cos θ, then we obtain

a description of this model presented in [55], with a slight generalization. Indeed, in these

coordinates the symplectic form is ω = d cos θdψ and the moment map looks like H = cos θ,

so that

W = (ζ + cos θ)2 +W0 (4.35)

The two critical points (AdS3 vacua) are now at θ = 0 and θ = π.

It would be interesting to study in detail RG flows in theories with parameter spaces T =

CPn, CP∞, etc., as well as flows among recently discovered 2d N = (0, 2) theories [28,29]. In

these, as well as higher-dimensional examples of holographic RG flows, the theory space T is

simply the space of scalar fields of the bulk (super)gravity. In particular, non-trivial topology

of T is a signal for (new) conformal theories.

5. µ-theorem in 3d

A simple example of isolated 3d N = 2 CFT is a three-dimensional version of the Landau-

Ginzburg model (2.7), namely a theory of a chiral superfield Φ with the superpotential W =

Φ3. The superpotential interaction drives the theory to a stable fixed point, at which ∆(Φ) =
2
3 . Viewed as TUV, this theory has only one non-trivial relevant perturbation, which drives
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the theory to a trivial IR fixed point. Clearly, in this example µ(TUV) = 2 and µ(TIR) = 0,

so that both (1.6) and (1.7) hold.

In order to verify (1.8), we need to compute the Hessian of the appropriate C-function.
In three dimensions, the candidate for the latter is the free energy of the Euclidean theory

on a 3-sphere [58,59] (or, equivalently [60], disk entanglement entropy):

C(T ) = − log |ZS3(T )| (5.1)

Hence, the Hessian of this quantity at a fixed point T∗ is related to a two-point function of

the relevant perturbations Oi and Oj . We leave it to an interested reader to compare this

quantity with (1.8).

More interesting examples of RG flows can be found by starting with 3d N = 2 super-

symmetric QED, that is a theory of a U(1) vector multiplet coupled to chiral multiplets Q, Q̃

of charge +1 and −1, respectively. Supersymmetric RG flows are induced by turning on su-

perpotential for gauge-invariant operators, which in this case include QQ̃ and vortex-creation

(monopole) operators V± with charge ±1 under topological U(1) symmetry of N = 2 SQED.

For example, a perturbation by the quartic superpotential

∆W = mQQ̃QQ̃ (5.2)

drives the theory to N = 4 SQED. At this point, however, we should remember that N = 2

SQED has an exactly marginal deformation that parametrizes a one-complex-dimensional

conformal manifold which is expected to be CP1 (see [61] for a discussion of possible alter-

natives):

SCFT(SQED) = CP1 ∼= {0} ∪ Cλ−1 (5.3)

In other words, we are precisely in the situation of section 2.1. Here, {0} denotes the original

IR fixed point and Cλ−1 = C
∗
λ ∪ {λ = ∞} corresponds to its perturbation that in SQED is

represented by turning on the sextic superpotential [61]:

W = λ(Q3Q̃3 + V 3
+ + V 3

−) (5.4)

The best way to see this is via 3d mirror symmetry that relates N = 2 SQED to the so-

called XYZ model [62,63]. The latter is a theory of three chiral multiplets X, Y , Z with the

superpotential W = XY Z and with the following identification of gauge-invariant operators:

X ∼ QQ̃

Y ∼ V+ (5.5)

Z ∼ V−

Using this dictionary we see that deformation of N = 2 SQED by the superpotential coupling

(5.4) on the XYZ side corresponds to a general family of cubic superpotentials:

W = λ0XY Z + λ(X3 + Y 3 + Z3) (5.6)
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Moreover, using 3d mirror symmetry and the dictionary (5.5), it is easy to see that the

perturbation (5.2) in the XYZ model corresponds to the mass deformation ∆W = mX2 for

the chiral superfield X.

When λ = 0 in (5.4)-(5.6), integrating out X in the presence of ∆W leaves behind a

marginally irrelevant superpotential W ∼ (Y Z)2. Therefore, for λ = 0 the perturbation by

∆W = mX2 induces the RG flow from XYZ model to a theory of two free chiral multiplets

(Y,Z), or equivalently, a theory of a free N = 4 hypermultiplet. The latter, in turn, is

precisely a free theory of vortex solutions in N = 4 SQED, which is the endpoint of RG flow

induced by (5.2). Recall, that in (5.3) λ = 0 corresponds to T∗ = {0}.
Now, let us consider RG flows from N = 2 SQED (or dual XYZ model) with λ 6= 0.

They all flow to the same IR fixed point, which consists of two (decoupled) copies of the basic

N = 2 theory with the cubic superpotential W = Φ3 that we discussed in the very beginning

of this section.5 Indeed, at least for small values of λ, one can first integrate out X as in

the above discussion. This pushes the theory toward IR free fixed point of Y and Z. Then,

the cubic superpotential W = λ(Y 3 + Z3) takes over and diverts the RG flow to a new fixed

point, which consists of two copies of Φ3 theory.

To summarize, the perturbation (5.2) drives TUV ∈ SCFT = {0} ∪Cλ−1 to one of the two

isolated fixed points:

TIR =

{
N = 4 SQED , TUV = {0}
TY 3 ⊗ TZ3 , TUV ∈ Cλ−1

(5.7)

depending on whether TUV is either {0} or in Cλ−1 , in the notations of (5.3). Moreover,

there is a two-parameter family of flows from the first fixed point (viewed as a theory of free

N = 2 multiplets Y and Z) to the second fixed point, parametrized by coefficients of relevant

perturbations Y 3 and Z3. Therefore, combining this with the results in the beginning of this

section, we conclude that the two fixed points in (5.7) have µ̂ ≡ µ
2 = 4 and µ̂ = 2, respectively.

Therefore, from (2.25) we conclude that the sequence of RG flows starting from N = 2

SQED goes through the “patch” of the theory space with the cell decomposition

T = {pt} ∪ C
2 ∪ C

4 ∪ CP1 × C
5 (5.8)

which, according to (2.12), should be viewed a convenient geometric way to package the

information about moduli spaces of RG flows. Similarly, the Poincaré polynomial (2.27) of

the space T of RG flows,

P (T ) = 1 + q4 + q8 + q10 + q12 (5.9)

is a convenient way to package the topology of conformal manifolds and values of µ(T∗).

5.1 Index µ from the superconformal index

As we mentioned earlier, one bonus feature of supersymmetry is that it allows to define a

refinement of the Witten index that takes into account the superconformal R-charge at the

5We thank M. Strassler for helpful discussions on this point.
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RG fixed point. Thus, in 3d N = 2 superconformal theory such index can be defined as [64]:

I(T∗; q) = Tr (−1)F q
R
2
+j3 (5.10)

possibly with additional fugacities for flavor symmetries, similar to (3.15). This index receives

contribution only from the states with ∆ = R + j3, so that spinless chiral operators of

conformal dimension ∆ contribute to the q
∆
2 term in (5.10). In particular, marginal operators

contribute to the coefficient of q, while relevant operators contribute to the lower powers of

q, which by analogy with [65,66] one might call the “polar part” of I(q).

For example, the superconformal index of a free chiral multiplet with R-charge RΦ is [67]:

I(Φ) =
(q1−RΦ/2; q)∞
(qRΦ/2; q)∞

(5.11)

where (x, q)∞ =
∏∞

i=0(1−xqi) is the Pochhammer symbol. Among other things, it illustrates

why free theories are actually subtle and delicate from the perspective of our approach to

counting RG flows. The counting of relevant and marginal operators, as well as the index

(5.11), all depend on the R-charge assignment. In that sense, isolated CFTs — such as

minimal models — are most convenient for counting RG flows and reconstructing the topology

of the space T of RG flows, then come theories with conformal manifolds as in section 2.1,

etc.

From the general expression (5.11) one can easily obtain the index of the Φ3 theory

considered in the very beginning of this section

I(Φ3 theory) =
(q2/3; q)∞
(q1/3; q)∞

= 1 + q1/3 + q4/3 − q2 + q7/3 + q8/3 + . . . (5.12)

and the index of 3d N = 2 SQED which has a fairly rich space of RG flows (5.8):

I(SQED) =
(q2/3; q)3∞
(q1/3; q)3∞

= 1 + 3q1/3 + 3q2/3 + q + 3q4/3 + 6q5/3 + . . . (5.13)

and where one can clearly recognize contribution of three chiral multiplets (of the dual XYZ

model) with RΦ = 2
3 . In these expressions, the relevant perturbation of the Φ3 theory con-

tributes to the q1/3 term in (5.12) and the marginal operator of the N = 2 SQED contributes

to the linear term in (5.13), although in general, of course, there can be cancelations since

(5.10) is only an index and not the trace (Poincaré polynomial). Yet, in simple examples like

the ones considered here the index can be a useful tool for counting relevant and marginal

deformations. Indeed, naively interpreting (5.12) one might conclude that the fixed point in

question has no marginal operators and one relevant perturbation, while (5.13) suggests one

marginal deformation and six relevant operators.

6. µ-theorem in 4d

6.1 Counting N = 1 flows

The advantage of supersymmetry is that it relates the R-symmetry and the dilatation operator

(2.6). At a fixed point of N = 1 RG flow, both generators are in the same superconformal
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multiplet and their eigenvalues are related via

∆(O) =
3

2
R(O) = 1 +

1

2
γ(O) (6.1)

where R(O) is the R-charge of a chiral operator O, and γ(O) is its anomalous dimension. If

N = 1 supersymmetry is maintained throughout the RG flow, the relation (6.1) still holds,

although its use is more limited. Another advantage of supersymmetry is that at fixed points

of an RG flow, the spectrum of chiral operators (including relevant and marginal ones) can

be studied with the help of the superconformal index. (We will not use this powerful tool in

the analysis here.)

Here, we will be interested in supersymmetric RG flows induced by chiral operators. As

explained in section 2, such RG flows map out a complex manifold T and therefore we shall

use (2.23) and (2.25). As with other examples considered in this paper, it is much easier

to test (1.6) than (1.7) or (1.8). A simple example, considered in [68], is a 4d N = 1 flow

between two versions of SU(3) SQCD with different number of flavors and superpotential

interactions. Namely, the theory TUV has Nf = 9 chiral multiplets Qi in the fundamental

representation and Nf = 9 chiral multiplets Q̃i in the anti-fundamental representation, with

the superpotential

WUV = λUV

(
Q1Q2Q3 +Q4Q5Q6 +Q7Q8Q9 + Q̃1Q̃2Q̃3 + Q̃4Q̃5Q̃6 + Q̃7Q̃8Q̃9

)
(6.2)

This theory has a non-trivial conformal manifold SUV which at least contains a curve γQ(g, λUV) =

0. (All chiral matter multiplets have the same anomalous dimension in this theory.) Pertur-

bation by the relevant operator O = m(Q3Q̃3 +Q6Q̃6 +Q9Q̃9) gives a mass to three flavors

and initiates an RG flow to the IR theory TIR, which is SU(3) SQCD with Nf = 6 and the

quartic superpotential

WIR = λIR

(
Q1Q2Q̃1Q̃2 +Q4Q5Q̃4Q̃5 +Q7Q8Q̃7Q̃8

)
(6.3)

This theory also has a non-trivial conformal manifold SIR. Hence, in order to examine the

difference µ̂UV − µ̂IR, we need to use (2.22), so that µ̂UV counts all chiral operators in TUV

with R(O) ≤ 2 and µ̂IR counts all chiral operators in TIR with R(O) < 2. Since the R-charge

of the remaining six flavors is renormalized from R = 2
3 to R = 1

2 upon the RG flow, the

operators composed of these six flavors make equal contribution to µ̂UV and µ̂IR. Therefore,

the difference µ̂UV − µ̂IR precisely accounts for those relevant operators in TUV that contain

at least one of the three massive flavors (and are not in the spectrum of TIR).

Now let us consider some interesting examples with dangerously irrelevant operators. A

simple, yet fairly rich class of N = 1 RG flows was first studied in [69] and later generalized

and put in a broader context of Arnold’s classification in [70]:

Â  Ak  Ak′ (6.4)
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Here, k > k′ and the theory Â is the IR fixed point of N = 1 super-Yang-Mills theory with

gauge group SU(Nc) coupled to a chiral superfield X in the adjoint representation and Nf

chiral multiplets in the fundamental representation, cf. Table 1. Then, each theory Ak is

Qi=1,...,Nf
Q̃i=1,...,Nf

X

SU(Nc) � � adj

SU(Nf ) � 1 1

SU(Nf ) 1 � 1

U(1)R y y 1−y
x

Table 1: The field content of N = 1 adjoint SQCD, the theory Â.

obtained by adding to Â a classical superpotential for the adjoint superfield X:

Ak : W = TrXk+1 (6.5)

Although such superpotential deformations (for k > 1) are irrelevant in the UV adjoint SQCD,

upon the RG flow to the IR fixed point — which is what we will be mostly interested in — the

R-charge of X is renormalized and some of these deformations become relevant, depending

on the values of Nc, Nf , and k. The chiral ring of theories Â and Ak is generated by the

generalized “mesons”

QiXnQ̃j (6.6)

and single trace operators

TrXn (6.7)

To avoid unnecessary complications and extra relations among the chiral ring generators, we

assume Nc, Nf ≫ 1 while keeping the ratio x := Nc

Nf
fixed. Since the N = 1 adjoint SQCD is

asymptotically free for Nf < 2Nc, we focus on the range of parameters:

x =
Nc

Nf
>

1

2
(6.8)

Then, the first flow in (6.4) takes place for the following values of x:

xk < x ≤ k (6.9)

where the upper bound comes from the stability of the vacuum and the lower bound is the

value of x where (6.5) becomes a relevant deformation, R(Xk+1) < 2. Explicitly,

xk =





√
1
20

(
(5k−4)2

9 + 1
)
, k < 15

4−
√
3

6 k + . . . , k ≫ 1

(6.10)

Thus, x2 =
1
2 , x3 =

√
26
6 ≃ 0.850, x4 =

√
53
6 ≃ 1.213, etc.
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Figure 4: The spectrum of N = 1 adjoint SQCD, the theory Â, as a function of x = Nc

Nf
. R-charges of

generalized mesons QXnQ̃ for n = 0, 1, 2, 3 (Left) and R-charges of Tr (Xn) for n = 2, 3, 4, 5 (Right).

The dashed lines represent R = 2 and R = 2

3
.

For larger values of x ≥ 3 +
√
7, the generalized mesons (6.6) of the Â theory hit the

unitarity bound R(O) ≥ 2
3 and the story gets more delicate (or, more interesting, depending

on how one looks at it). To keep things simple, we will limit our attention to the range

x ≤ 3+
√
7 where this does not happen and a-maximization produces fairly simple expressions

for the R-charges R(Q) and R(X) = 1−R(Q)
x of the Â theory [69]:

y = R(Q) = R(Q̃) =
3 + x(−3− 6x+

√
20x2 − 1)

3− 6x2
(6.11)

Now let us take a closer look at the relevant and marginal operators in theories Â and

Ak that determine µ(Â), µ(Ak), S(Â), and S(Ak), which in turn determine topology of the

space of RG flows. At the Ak fixed point:

y = R(Q) = R(Q̃) = 1− 2x

k + 1
, R(X) =

1− y

x
=

2

k + 1
(6.12)

so that

R(QXnQ̃) = 2 +
2n− 4x

k + 1
, R(TrXn) =

2n

k + 1
(6.13)

Note, the “relevance” of the generalized mesons does not depend on k (only those with n < 2x

are relevant), but the dimension of their products does. Therefore, at the second stage of

the RG flow (6.4), the theory Ak′ has the same list of the generalized mesons as the parent

theory Ak, but in general a different list of their products with ∆ < 3. Similarly, the list

of relevant multi-trace operators made of TrXn depends on k and, in general, we have to

consider products of (6.6) and (6.7).

This brings us to an important point which apparently has not been previously discussed

in the literature. The theory Â has no marginal deformations for generic values of x. Indeed,

operators O which are products of (6.6) and (6.7) do not satisfy R(O) = 2 for generic values

of x, especially if we recall that x is a rational number (6.8) and R-charges of (6.6)-(6.7)

take values in quadratic number fields. However, a theory Ak generically has lots of marginal
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deformations for all values of x. The reason is that the R-charge (6.12) of the adjoint superfield

X determined by the superpotential (6.5) allows for marginal deformations by

δW =
∏

i

(TrXni) with
∑

i

ni = k + 1 (6.14)

When used as perturbations of (6.5), these have ni = 2, . . . , k − 1 since the gauge group

is SU(Nc) and TrXk is excluded by the chiral ring relation. Consistent with these con-

straints, the first non-trivial example is a theory A3, where one can consider a general quartic

superpotential

W = λ0TrX
4 + λ1(TrX

2)2 (6.15)

Clearly, at least one of the coefficients λj here needs to be non-zero in order to give (6.12).

We claim that (6.14) are exactly marginal deformations and offer two proofs based on the

techniques of both [9] and [68]. Within the approach of [68], deformations (6.14) are exactly

marginal when the anomalous dimension of the adjoint superfield X satisfies γX(g, λj) =
6

k+1 − 2. Together with the β-function for the gauge coupling g, this equation cuts out

a a codimension-1 hypersurface in the space of couplings λj (= coefficients of (6.14)). In

the approach of [9] the proof is literally one line: since there is no global continuous non-R

symmetry acting on (6.14) all such deformations are exactly marginal. Therefore, we conclude

that each theory Ak≥3 comes equipped with a conformal manifold S(Ak) parametrized by the

coefficients of exactly marginal deformations (6.14):

dimC S(A3) = 1 , dimC S(A4) = 1 , dimC S(A5) = 3 , etc. (6.16)

For special values of x, additional combinations of the generalized mesons can yield extra

marginal deformations and increase the dimension of the conformal manifold S(Ak).

As a concrete example, let us consider a cascading RG flow (6.4) with k = 4 and k′ = 2.

We take x & x4 just above the bound xk =
√
53
6 ≃ 1.213 for k = 4. Then, as is clear from

Figure 4 and eq. (6.11), the theory Â has the following relevant operators:

i) QXnQ̃ with n = 0, 1, 2;

ii) TrXn with n = 2, 3, 4, 5;

iii) and the products (QQ̃)(TrX2), (TrX2)(TrX2), (TrX2)(TrX3).

At the fixed point A4, the R-charges are given by (6.12), and it is easy to verify that the list

of relevant operators looks almost the same, except for TrX4 which becomes trivial in the

chiral ring of the A4 theory, while TrX5 and (TrX2)(TrX3) become marginal. So far (1.6)

holds.

Upon turning on the relevant deformation O = TrX3, one can continue the RG flow from

A4 to A2. The chiral ring of the latter theory is generated only by the generalized mesons

(6.6) and at x ≃ x4 has relevant operators QXnQ̃ with n = 0, 1, 2. The delicate feature of

this stage of the RG flow is that mesons M = QQ̃ hit the unitarity bound R ≥ 2
3 . It is

believed that their R-charge is corrected to R(M) = 2
3 , so that M decouple and become free

fields. If this is the case, the list of relevant operators in theory A2 at x ≃ x4 also includesM2
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and (QXQ̃)M . Curiously, this appears to violate (1.6) and, therefore, provides a concrete

obstruction to the strongest form of the C-theorem. A careful reader may not find this too

surprising since free theories are definitely most subtle for applying the ideas of Morse-Bott

theory. Plus, if something discontinuous happens when M become free fields, intuitively it

is clear that such phenomena are not likely to be captured by smooth gradient flows of the

C-function. However, as the next example shows, this is not the source of the problem.

Another illustrative example is the RG flow from the Â theory to N = 1 SQCD with

no adjoints. The IR limit of the latter theory is believed to be an interacting SCFT when
3
2Nc < Nf < 3Nc (or, equivalently, 1

3 < x < 2
3) [36], which we can call A1 theory in the

nomenclature (6.5) since the flow is induced by the relevant perturbation TrX2. Note, the

range of x ∈ (13 ,
2
3) has a fairly modest overlap with (6.8), so without much loss of generality

we can assume x & 1
2 just above the bound (6.8). In this regime, the theory Â is weakly

coupled and the R-charges of Q, Q̃, and X are just a little under their canonical value of

R = 2
3 . This should not worry us since gauge-invariant operators (6.6)-(6.7) all obey the

unitarity bound, and the relevant ones are QQ̃, QXQ̃, TrX2, and TrX3.

Upon the flow from the Â theory to N = 1 SQCD with no adjoints (a.k.a. theory A1),

the R-charges are renormalized to their new values, still given by (6.12) with k = 1:

R(Q) = R(Q̃) = 1− x (6.17)

Note, for x ∈ (12 ,
2
3) the R-charges of all mesons M = QQ̃ are above the unitarity bound and

the IR theory is an interacting SCFT. However, the same phenomenon as we observed in a

strongly coupled flow from A4 to A2 takes place: meson mass operators, O =M2, which were

irrelevant in the UV become relevant in the IR. Therefore, we find another interesting example

of dangerously irrelevant operators and a topological obstruction to the strongest form of

the C-theorem. Incidentally, precisely this type of behavior, where a double-trace operator

crosses through marginality is known [26] to cause the “branch flip” in a-maximization and is

responsible for non-smooth behavior of the a-function under RG flow. This strongly suggests

that a violation of (1.6)-(1.8) is indeed a signal for violation of the strongest form of the

C-theorem, and that “phase transitions” along such N = 1 RG flows are of second order.

To be completely fair, one needs to perform a more detailed study of moduli spaces in

these theories and the conformal manifolds S(Ak) parametrized by (6.14). Relegating further

details to a separate publication, here we wish to point out two important features of this

analysis.6 First, the entire RG flow (6.4) enjoys the symmetry group G = SU(Nf )×SU(Nf )

whose action is summarized in Table 1. Therefore, we are in the setup of section 2.3 and

need to use equivariant version of the Morse-Bott theory. Moreover, the Higgs branch of

these N = 1 theories has a decomposition into “Schubert cells”, similar to the cotangent

bundle of the Grassmannian T ∗Gr(Nc, Nf ). In fact, the latter is precisely the Higgs branch

6We do not, however, expect such analysis to change the conclusion about topological obstructions to the

strongest form of the C-theorem found here, and expect the gradient RG flows to “break” precisely at the

“branch flip” points.
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of the theory Â with the cubic superpotential W = QXQ̃. Equivariant cohomology of the

Grassmannian also plays an important role in a closely related theory (in three dimensions)

that categorifies gauged WZW model and the Verlinde formula.

It would also be interesting to extract the index µ(T∗) from the superconformal index of

N = 1 theories T∗ along the lines of [71,72].

6.2 Counting N = 2 flows

Among 4d N = 2 superconformal theories, the closest analogues of “minimal models” are the

Argyres-Douglas theories [73] and their generalizations. In these theories, computing µ(T∗)

is relatively easy and boils down to counting lattice points inside the Newton polygon of

the local Seiberg-Witten geometry that describes the singularity type. In other words, µ is

essentially the Milnor number of the corresponding singularity.

Let us consider an example of the cascading RG flow passing through several Argyres-

Douglas theories. Namely, we consider the example studied in [74] keeping track of the value

of µ(T∗) at each fixed point T∗:

E6  D4  I3,2  Free hyper  Empty theory (6.18)

The E6 theory, also known as (A1, E6) ≃ I3,4 = (A2, A3), has

E6 : x3 + z4 = 0 , [x] =
4

7
, [z] =

3

7
, a =

75

56
, µ̂ = 6 (6.19)

where, following [74], we record the local form of the Seiberg-Witten curve, dimensions of x

and z, the anomaly coefficient a and, most importantly, µ(T∗) using the shorthand notation

µ̂ ≡ µ
4 introduced in (2.24). The E6 theory flows to the D4 theory, a.k.a. I3,3, ≃ II3,3 =

(A1,D4), which has

D4 : x3 + z3 = 0 , [x] =
1

2
, [z] =

1

2
, a =

7

12
, µ̂ = 4 (6.20)

The next critical point in the cascading RG flow (6.18) is the original Argyres-Douglas the-

ory [73]:

I3,2 : x3 + z2 = 0 , [x] =
2

5
, [z] =

3

5
, a =

43

120
, µ̂ = 2 (6.21)

Flowing deeper in the IR, we arrive at a theory of a free hypermultiplet:

Free hyper: x3 + xz = 0 , a =
1

24
, µ̂ = 1 (6.22)

The only relevant N = 2 operator O in this theory is the mass term for the hypermultiplet,

which drives the theory to the endpoint of the RG flow (6.18):

Empty theory: x3 + z = 0 , a = 0 , µ̂ = 0 (6.23)

– 34 –



Clearly, (1.6) holds true at all stages of the flow, and it would be interesting to directly verify

(1.7) and (1.8).

Using (2.26) and (2.27), we conclude that the cascading RG flow (6.18) goes through the

patch of the theory space with the following cell decomposition

T = {pt} ∪ H ∪ H
2 ∪ H

4 ∪ H
6 (6.24)

and the Poincaré polynomial

P (T ) = 1 + q4 + q8 + q16 + q24 (6.25)

which provide a convenient geometric way to package the information about moduli spaces

of RG flows (2.12) and the values of µ(T∗).
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