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Recently, there has been growing interest in the creation of artificial magnetic fields for uncharged particles, such as
cold atoms or photons. These efforts are partly motivated by the resulting desirable features, such as transport along
edge states that is robust against backscattering. We analyze how the optomechanical interaction between photons and
mechanical vibrations can be used to create artificial magnetic fields for photons on a lattice. The ingredients required
are an optomechanical crystal, i.e., a free-standing photonic crystal with localized vibrational and optical modes, and
two laser beams with the right pattern of phases. One of the two schemes analyzed here is based on optomechanical
modulation of the links between optical modes, while the other is a lattice extension of optomechanical wavelength-
conversion setups. We analyze both schemes theoretically and present numerical simulations of the resulting optical
spectrum, photon transport in the presence of an artificial Lorentz force, edge states, and the photonic Aharonov–
Bohm effect. We discuss the requirements for experimental realizations. Finally, we analyze the completely general
situation of an optomechanical system subject to an arbitrary optical phase pattern and conclude that it is best de-
scribed in terms of gauge fields acting in synthetic dimensions. In contrast to existing nonoptomechanical approaches,
the schemes analyzed here are very versatile, since they can be controlled fully optically, allowing for time-dependent
in situ tunability without the need for individual electrical addressing of localized optical modes. © 2015 Optical

Society of America

OCIS codes: (230.5298) Photonic crystals; (230.4555) Coupled resonators; (230.4685) Optical microelectromechanical devices.
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1. INTRODUCTION

Light interacting with nano-mechanical motion via the radiation
pressure force is studied in the field of optomechanics. The field
has seen rapid progress in the last few years (see the recent review
[1]). So far, most experimental achievements have been realized in
setups comprising one optical mode coupled to one vibrational
mode. Obviously, one of the next frontiers will be the combina-
tion of many such optomechanical cells into an optomechanical
array, enabling the optical in situ investigation of (quantum)
many-body dynamics of interacting photons and phonons.
Many experimental platforms can be scaled up to arrays.
However, optomechanical crystals seem to be the best-suited can-
didates at the present stage. Optomechanical crystals are formed
by the periodic spatial patterning of regular dielectric and elastic
materials, resulting in an enhanced coupling between optical and
acoustic waves via moving boundary or electrostriction radiation
pressure effects. Two-dimensional (2D) optomechanical crystals
with both photonic and phononic bandgaps [2] can be fabricated
by standard microfabrication techniques through the lithographic
patterning, plasma etching, and release of a thin-film material [3].

These 2D crystals for light and sound can be used to create a
circuit architecture for the routing and localization of photons
and phonons [3–7].

Optomechanical arrays promise to be a versatile platform for
exploring optomechanical many-body physics. Several aspects
have already been investigated theoretically, e.g., synchronization
[8–10], long-range interactions [11,12], reservoir engineering
[13], entanglement [14,15], correlated quantum many-body
states [10], slow light [16], transport in a one-dimensional
(1D) chain [17], and graphene-like Dirac physics [18].

One of the central aims in photonics is to build waveguides
that are robust against disorder and do not display backscattering.
Recently there have been several proposals [19–23] to engineer
nonreciprocal transport for photons. On the lattice, this corre-
sponds to an artificial magnetic field, which would (among other
effects) enable chiral edge states that display the desired robustness
against disorder. First experiments have shown such edge states
[24–26]. These developments in photonics are related to a grow-
ing effort across various fields to produce synthetic gauge fields for
neutral particles [27–30].
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In this paper we will propose two schemes to generate arbitrary
artificial magnetic fields for photons on a lattice. These schemes
break time-reversal symmetry by incorporating amplitude-
modulated laser fields with different modulation phases at differ-
ent sites. In contrast to any previous proposals or experiments for
photonic magnetic fields on a lattice, these would be controlled
all-optically, and, crucially, they would be tunable in situ by
changing the properties of a laser field (frequency, intensity,
and phase pattern). They require no more than a patterned
dielectric slab illuminated by two laser beams with suitably
engineered optical phase fields. The crucial ingredient is the
optomechanical interaction.

2. OPTOMECHANICAL SCHEMES FOR PHOTON
MAGNETIC FIELDS

On the classical level, a charged particle subject to a magnetic field
experiences a Lorentz force. In the quantum regime, the appear-
ance of Landau levels leads to the integer and fractional quantum
Hall effects, where topologically protected chiral edge states are
responsible for a quantized Hall conductance. On a closed orbit,
a particle with charge q will pick up a phase that is given by the
magnetic flux Φ through the circumscribed area, where
Φ � �q∕ℏ� R B · dS in units of the flux quantum, with B denot-
ing the magnetic field. On a lattice, a charged particle hopping
from site i to j acquires a Peierls phase ϕij � �q∕ℏ� R rj

ri Adr
determined by the vector potential A. Conversely, if we can
engineer a Hamiltonian for neutral particles containing arbitrary
Peierls phases,

Ĥ hop � ℏJ
X

hiji
eiϕij â†j âi � h:c:; (1)

we are able to produce a synthetic magnetic field. Here âi is the
(bosonic) annihilation operator on lattice site i. We note in
passing that different phase configurations can lead to identical
flux patterns, reflecting the gauge invariance of Maxwell’s equa-
tions under the transformation A → A� ∇ξ�r� for any scalar
function ξ.

A. Optomechanical Interaction as a Tool for
Generating Synthetic Magnetic Fields

Every defect in an optomechanical crystal [3–7] supports a local-
ized vibrational mode (annihilation operator b̂, eigenfrequency
Ω0) and an optical mode (â, frequency ωcav) that interact via
radiation pressure, giving rise to the standard optomechanical
interaction [1],

Ĥ int � −ℏg0â
†â�b̂† � b̂�: (2)

This can be utilized in two basic ways to introduce phases for
the hopping of photons. First, one can drive the optical mode
by a control laser (frequency ωL) close to the red sideband,
ωL ∼ ωcav − Ω0. Following the standard procedure of lineariza-
tion and rotating wave approximation (RWA) [1] one recovers
a swap Hamiltonian, gâ†b̂� h:c:, in which the phase ϕ of the
coupling g ∈ C is set by the control laser phase. We will show
below how this can be used to create a photonic gauge field.
There is, however, also a second route, namely, driving the
vibrational mode into a large amplitude coherent state,
hb̂�t�i � jβje−i�Ωt�ϕ�, using the radiation pressure force. These
oscillations then weakly modulate the optical eigenfrequency,

ωcav�t� � ωcav;0 � 2g0jβj cos�Ωt � ϕ�, with the phase ϕ set
by the oscillations. Again, in a suitable setting this will lead to
an artificial magnetic field for the photons. With both of our pro-
posed schemes it is possible to generate arbitrary gauge field con-
figurations. This is achievable because by engineering the spatial
structure of the laser phase pattern one can obtain an arbitrary
configuration of photon hopping phases on the lattice, leading
to an arbitrary magnetic flux distribution. We now describe both
methods in turn.

B. Modulated-Link Scheme

Recently Fang et al. [22,31] proposed to create a photonic gauge
field by electro-optically modulating the photon hopping rate
Jij � J cos�Ωt � ϕij) between neighboring cavities. This would
require locally wired electrodes for each link of the lattice. Here
we propose a potentially more powerful all-optical implementa-
tion of that idea. We employ optomechanically driven photon
transitions, as first discussed in [32], but extended to a scheme
with modulated interface modes, depicted in Fig. 1(a). We now
discuss the leftmost three optical modes in the first row, âA, âI ,
and âB (from left to right), exemplary of the full grid. Their co-
herent dynamics are governed by the Hamiltonian

Ĥ∕ℏ �
X

i�A;B

ωi â
†
i âi � ωI �t�â†I âI − J�â†I âA � â†BâI � h:c:�: (3)

The terms describe, in this order, the first (A) and third (B) optical
modes, the temporally modulated interface mode (I ), and its
tight-binding coupling to the neighboring A and B modes with
photon tunneling rate J . As discussed further below, the eigen-
frequency ω̄I of the interface mode should be well separated from

Fig. 1. Proposed schemes to create a photonic gauge field in optome-
chanical arrays by engineering photon hopping phases. (a) Modulated-
link scheme. (b) Corresponding optical spectrum of a row with relevant
sidebands (dashed). Driven vibrational modes (yellow) optomechanically
modulate the frequency of optical link modes. Tunneling photons are
thus upconverted to the first sideband and pick up the phase of the
modulation. Arrows in (b) indicate the resonant photon transmission
process in a row. (c) Wavelength-conversion scheme and (d) correspond-
ing optical spectrum: neighboring modes in a row couple to a vibrational
mode (yellow) optomechanically (red lines, denoting the linearized
optomechanical interaction). Two lasers, driving the optical modes close
to the red sidebands [wiggly arrows in (d)], give rise to resonant photon–
phonon–photon conversion with the phase set by the lasers. Different
rows are connected via simple photon hopping (blue lines), without a
phase, in both schemes (a),(c). The indicated phase configuration corre-
sponds to a constant magnetic field.
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the eigenfrequencies of the adjacent A and B modes, for the
transition A–I–B to be virtual. The interface mode is optome-
chanically coupled to a mechanical mode, which itself is driven
into a large amplitude coherent state. As mentioned above, this
gives rise to a weak modulation of its optical eigenfrequency,
ωI �t� � ω̄I � 2g0jβj cos�Ωt � ϕ�, with the phase ϕ set by
the driving. The required mechanical driving is easily generated
by two-tone laser excitation at a frequency difference Ω. The
beating between the laser beams gives rise to a sinusoidal
radiation pressure force, which drives the mechanical mode. If
ωB � ωA �Ω, then a photon hopping from site A to B picks
up the phase ϕ of the modulation: starting from âA, it tunnels
into âI , where it is inelastically upscattered into the first sideband
by the modulation and subsequently tunnels into âB resonantly,
as shown by the spectrum in Fig. 1(b). We can derive an effective
Hamiltonian, ℏJ eff eiϕâ

†
BâA � h:c:, for this process by integrating

out the interface mode I using Floquet perturbative methods to
third order (see Supplement 1). For the effective hopping rate we
find Jeff � g0jβjJ2∕��ωA − ωI ��ωB − ωI ��, to leading order in J
and jβj. Concatenating such three-mode blocks, we create a linear
chain [the first row in Fig. 1(a)], with its optical spectrum sche-
matically depicted in Fig. 1(b). Every time a photon hops to the
right, it is upconverted and picks up the phase of the drive.
To obtain a 2D grid, we stack identical chains and connect neigh-
boring rows by direct photon hopping (whose rate must be
chosen to equal Jeff , to obtain isotropic hopping), as depicted
in Fig. 1(b). The phase configuration in Fig. 1(a) corresponds
to a constant magnetic field. Note that in contrast to the general
Hamiltonian (1), this scheme does not allow for phases when
hopping between rows, yet it is still possible to achieve an arbi-
trary flux through every plaquette. Hence, arbitrary spatial distri-
butions of magnetic flux can be generated, provided that one can
control the driving laser phase at every interface mode. With the
help of wave front engineering, this can be achieved with no more
than two lasers: a homogeneous ‘carrier’ beam E1 � E10e−iωLt

and a ‘modulation’ beam E2 � E20e−i�ωL�Ω�t−iϕ�x;y�, with
an imprinted phase pattern ϕ�x; y�. Interference yields the
desired temporally modulated intensity jE10j2 � jE20j2�
2Re�E�

10E20e−i�ωLt�ϕ�x;y���, exerting a radiation force with a
site-dependent phase. Care has to be taken to avoid exciting other
vibrational modes (those not at the interface mode), by engineer-
ing them to have different mechanical frequencies. To this end,
the driving frequency Ω would usually be chosen close to the
mechanical eigenfrequency Ω0, so the mechanical amplitude is
enhanced by the mechanical quality factor and is thus much larger
than any spurious amplitude in other (off-resonant) modes. By
engineering the intensity pattern jE20�x; y�j as well, one could
suppress any such unwanted effects even further.

Note that interface sites are not required for the creation of a
spatially constant magnetic field. Instead, it is sufficient to modu-
late the sites themselves, as proposed in [33] for the case of optical
lattices (see also Refs. [34,35]). The modulation can be accom-
plished by driving a suitable vibrational mode on the site in the
same way as discussed for the links before. In this situation, a
photon is upconverted at site A by the modulation, picks up
the corresponding phase ϕA, and subsequently tunnels resonantly
to the neighboring site B (which has to be chosen resonant with
the sideband, i.e., ωB � ωA �Ω). In addition, there is another
equally important contribution to the effective tunneling rate: the
photon can virtually tunnel into the neighboring site B, where it is

resonantly upconverted, acquiring the phase ϕB . For a constant
magnetic field, the phases in a row are equal, i.e., ϕA � ϕB , and
both processes add up equally to the effective hopping rate.
However, if one wants to go to arbitrary flux patterns, the phases
would have to become unequal, and, as a result, the magnitude of
the hopping amplitude, jJ eff j ∼ j exp�iϕA� � exp�iϕB�j, would
start to depend on the values of those phases. This would be
an undesirable feature, since it couples the hopping amplitudes
to the flux distribution. Therefore, the links remain beneficial
in a more general situation with arbitrary spatial flux configura-
tions, allowing for more flexibility. In addition, if one wants to
include photon–phonon coupling on the sites (as discussed in
Section 4), then the links permit us to spatially separate the ex-
ternally driven vibrational mode that generates the artificial field
from the dynamical vibrational modes on the sites themselves.

C. Wavelength-Conversion Scheme

There is another, alternative way of engineering an optical Peierls
phase, and it is related to optomechanical wavelength conversion
[36,37]. In wavelength-conversion setups, low-frequency photons
in one mode are upconverted to a higher frequency in another
mode by exploiting the modes’mutual optomechanical coupling
to a vibrational mode. We propose to scale up this idea into a grid
as depicted in Fig. 1(c). The leftmost three modes in the first row
depict (in this order) an optical mode (annihilation operator âA,
frequency ωA), a mechanical mode (b̂, Ω0), and another optical
mode (âB , ωB ≠ ωA). The mechanical mode couples optome-
chanically to both optical modes. A and B are driven by a laser
with frequency ωL1 and ωL2, respectively: for mode A, we require
ωA − ωL1 � Ω0 � δ ≡Ω, where ωL1 denotes the driving laser’s
frequency and δ ≪ Ω0 is the detuning from the red sideband.
For mode B, a similar relation ωB − ωL2 � Ω holds, as depicted
in the spectrum in Fig. 1(d). After application of the standard
linearization and RWA procedure [1], the dynamics in a frame
rotating with the drive are governed by the Hamiltonian

Ĥ∕ℏ � Ω
X

i�A;B

â†i âi �Ω0b̂
†b̂ − �g�AâAb̂† � gBâ

†
Bb̂� h:c:�: (4)

Elimination of the mechanical mode leads to an effective
Hamiltonian ℏJeff eiϕâ

†
BâA � h:c: to leading order in jgA;Bj∕δ,

with effective hopping rate J eff � jgAjjgBj∕δ and hopping phase
ϕ � ϕB − ϕA. Here, ϕA and ϕB are the phases of the linearized
optomechanical interaction, of the form gA � jgAjeiϕA , which are
set by the phase of the laser drive at the corresponding site.
Connecting alternating A and B sites by mechanical link modes
yields a row whose spectrum is depicted in Fig. 1(d). As in the
previous scheme, we can simply connect rows by photonic hop-
ping without phases (at a rate Jeff ) to yield a 2D grid. Phase front
engineering of the two driving lasers is sufficient to realize arbi-
trary magnetic fields for photons in the grid. We note that the
scheme also works for driving far away from the red sideband
(yielding enhanced values of Ω and thereby Jeff ; see below),
though that requires stronger driving.

D. Comparison with Other Schemes

In general, a variety of schemes exist for nonreciprocal photon
transport on a lattice, both as proposals and (partially) as
proof-of-principle implementations. In comparison to those,
the optomechanical schemes provide all-optical control as a cru-
cial novel advantage. The resulting in situ tunability sets them
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apart from existing schemes based on geometry (e.g., those based
on suitably coupled ring resonators [20]). At the same time, every-
thing is controlled by the laser phase pattern, avoiding the chal-
lenging fabrication overhead required in other tunable schemes
(e.g., those with local electrodes for modulation of photon tun-
neling between localized optical modes [22]).

Another optomechanical scheme for nonreciprocal photon
transport that could potentially be extended to a lattice is based
on optical microring resonators [23], but the connection of such
rather large rings via waveguides would presumably result in a less
compact structure than what can be done with the photonic-
crystal-based approaches analyzed here.

E. Limitations

We now discuss the limitations imposed on the achievable effec-
tive hopping Jeff . The important end result will be that J eff is
limited to about the mechanical frequency Ω0, even though
perturbation theory would seem to imply a far smaller limit
(for possible technical limitations connected to the driving
strength, see Supplement 1).

We denote as ϵ ≪ 1 the order of the three small parameters
J∕jωA − ωI j, J∕jωB − ωI j, and g0jβj∕Ω in the modulated-link
scheme [Figs. 1(a) and 1(b)]. Then the effective coupling strength
in the perturbative regime reads J eff � O�ϵ3�Ω. Even though the
modulation frequency Ω need not equal the eigenfrequency Ω0,
they should usually be close to yield a significant mechanical
response and avoid other resonances. For the wavelength-
conversion scheme, where jgA;Bj∕δ � O�ϵ�, we recover
J eff � O�ϵ2�δ � O�ϵ3�Ω0, since RWA requires δ∕Ω0 to be small
as well. In any experimental realization, photons will decay at the
rate κ. Thus they travel ∼J eff∕κ ∼ �Ω0∕κ�O�ϵ3� sites. In order for
the photons to feel the magnetic field (or to find nontrivial trans-
port at all), this number should be larger than 1. That precludes
being in the deep perturbative limit ϵ ≪ 1, even for a fairly well
sideband-resolved system (where typically κ ∼ 0.1Ω0). Similar
considerations apply for other proposed (nonoptomechanical)
schemes based on modulation [22].

3. NUMERICAL SIMULATIONS

A. Optical Spectrum of Photons Subject to Synthetic
Magnetic Field

We now explore numerically the full dynamics, beyond the per-
turbative limit. The optical local density of states (LDOS) is

experimentally accessible by measuring the reflection when prob-
ing an optical defect mode via a tapered fiber, and it reveals the
spectrum of the Hamiltonian. It thus provides a reasonable way to
assess the validity of the effective Hamiltonian beyond the per-
turbative limit. Figure 2(a) shows the LDOS in the bulk calcu-
lated with the ideal effective Hofstadter model (1) for a spatially
constant magnetic field, depicting the famous fractal Hofstadter
butterfly structure [38]. For comparison, we plot the LDOS of
the modulated-link scheme in Figs. 2(b) and 2(c). It is obtained
by numerically calculating the Floquet Green’s function of the full
equations of motion (with time-periodic coefficients); see
Supplement 1. The results indicate that the scheme works even
for J eff ∼ 0.1Ω > κ, although perturbation theory clearly breaks
down in this regime. We stress that the butterfly in Figs. 2(b) and
2(c) could even be observed experimentally at room temperature,
since the spectrum is insensitive to thermal fluctuations. One
would also observe sidebands; see Fig. 2(d). Similar results hold
for the wavelength-conversion scheme (not shown here). Note
that some states may not show up in the LDOS (or their contri-
bution may be suppressed), depending on their wavefunction
and the location. This is particularly true for the contribution
of the edge states, since we chose a location in the middle of
the sample. Nevertheless the features of the usual Hofstadter
butterfly spectrum (which is the eigenvalue spectrum) manifest
themselves in the experimentally accessible LDOS, as evidenced
by Fig. 2(a).

B. Spatially Resolved Photon Transport

In addition to measuring the optical spectrum, it is also possible to
look at photon transport in a spatially resolved manner, by inject-
ing a probe laser locally and then imaging the photons leaving the
sample. This provides another way to observe the effects of the
artificial gauge field, which gives rise to distinct transport phe-
nomena as depicted in Figs. 3(a) and 3(b). For small magnetic
fields, jϕj ≪ 2π, the dynamics can be understood in the con-
tinuum limit when probing the bulk: one recovers the standard
Landau level picture for electrons in a constant magnetic field
[38,39], with effective mass m� � ℏ∕2Ja2 and cyclotron fre-
quency ωcyc � 2ϕJ, where a is the lattice constant. In Fig. 3(a)
the n � 1 Landau level is selected via the probe’s detuning Δp
with respect to the drive. The circles indicate the semiclassical
cyclotron orbits with radius R � a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2n� 1�∕ϕ

p
. In this semi-

classical picture, the momentum of a photon injected locally at a
site in the bulk is equally distributed over all directions,

Fig. 2. Comparison between (a) experimentally accessible optical spectrum (LDOS) of the ideal effective Hofstadter model and (b)–(d) actual results
from the proposed modulated-link scheme, for different optical decay rates and magnetic fluxes. The simulation results indicate that the scheme works
even beyond the perturbative regime. The resulting Hofstadter butterfly could be observed by a local tapered fiber probe. Modulation of links produces
higher sidebands (d). The phase configuration corresponds to a constant magnetic flux Φ per plaquette; see Fig. 1. [Parameters: grid (a) 10 × 10,
(b)–(d) 12 × 12; (a)–(d) Jeff � 0.108Ω0; (a),(c),(d) κ � 0.01Ω0, (b) κ � 0.05Ω0; (b)–(d) J � 0.3Ω0; (b)–(d) g0jβj � 0.3Ω0; optical eigenfrequencies
(relative to first mode) in a row (left to right) including interface modes: (b)–(d) �0; 0.5; 1; 1.5;…�Ω0.]
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since the position is well-defined. Thus, the observed response
resembles a superposition of semiclassical circular Lorentz trajec-
tories with different initial velocity directions. A probe injected
closer to the edge excites chiral integer quantum Hall effect edge
states; see Fig. 3(b).

The Aharonov–Bohm effect [40] is one of the most intriguing
features of quantum mechanics. In an interferometer, electrons
can acquire a phase difference determined by the magnetic flux
enclosed by the interfering pathways, even though they never feel
any force due to the magnetic field. Figure 3(c) depicts a setup
that is based on the wavelength-conversion scheme and realizes an
optical analog of the Aharonov–Bohm effect: a local probe is
transmitted via two pathways, leading to an interference pattern
in the transmission. The pattern is shifted according to the flux
through the “ring” [see Fig. 3(d)], confirming the effect.

All the effects displayed in Fig. 3 have been simulated numeri-
cally for the wavelength-conversion scheme (see Supplement 1),
but similar results hold for the modulated-link scheme.

4. GAUGE FIELDS IN SYNTHETIC DIMENSIONS

So far we have analyzed schemes to engineer hopping phases for
photons. We now ask about situations in which the phonons are
not only employed as auxiliary virtual excitations, but rather occur
as real excitations, which can be interconverted with the photons.
This means, in addition to the modes making up the lattices
described above (in either of the two schemes), we now consider
on-site vibrational modes b̂j coupled optomechanically to the
corresponding optical modes âj. Using the standard approach
[1], we arrive at a linearized optomechanical interaction of the
form −gâ†j b̂j � h:c. Moreover, to be general (and generate non-
trivial features connected to the gauge field structure), we will
assume that the neighboring phonon modes may also be
coupled, as described by a tight-binding Hamiltonian of the form
−K

P
hijib̂

†
j b̂i � h:c.

When discussing the effects of gauge fields in such a setting,
the system is best understood within the concept of ‘synthetic’
dimensions [41–44]. The optomechanical interaction can be
viewed in terms of an extension of the 1D or 2D lattice into such
an additional synthetic dimension. In our case, this dimension

only has two discrete locations, corresponding to photons versus
phonons. In that picture, the optomechanical interaction, con-
verting photons to phonons, corresponds to a simple hopping be-
tween sites along the additional direction. Figure 4(a) sketches
this for an optomechanical ring: photons and phonons represent
two layers separated along the synthetic dimension. Applying any
of our two previously discussed schemes, a photon hopping from
site i to j will acquire a phase ϕij �

R rj
ri drA. The gauge field A

must now be viewed as a vector field in this new three-
dimensional (3D) space, where one of the dimensions is synthetic.
A finite hopping phase ϕ at one of the optical links creates a mag-
netic flux through the optical plaquette as desired; see Fig. 4(a).
However, and this is the important point, since the magnetic field
B is divergence-free, the field must penetrate at least one addi-
tional plaquette, causing the opposite magnetic flux in the syn-
thetic dimension (assuming g ∈ R). In general, realizing that
there is this kind of behavior is crucial to avoid puzzles about
seeming violations of gauge symmetry in situations with photon
magnetic fields in optomechanical arrays. It is necessary to keep
track of the full vector potential in the space that includes the
synthetic dimension.

We now take a step back, getting rid of the previously dis-
cussed engineered schemes that required two lasers and some
arrangement of ‘link’ modes. Rather we will consider simple
optomechanical arrays, i.e., lattices of optical and vibrational
modes, with photon and phonon tunnel coupling between modes
and with the optomechanical interaction. We ask: What is the
effect of an arbitrary, spatially varying optical phase field in the
driving laser that sets the strength of the optomechanical cou-
pling? It turns out that the resulting spatially varying phase of
the optomechanical coupling, gj � jgjjeiφj , can be chosen to cre-
ate arbitrary magnetic fields perpendicular to the synthetic dimen-
sion. A particularly simple example is a simple linear chain of
optomechanical cells. Shining a tilted laser (i.e., with a phase
gradient, φj � j · δφ) onto such a 1D optomechanical array
creates a constant magnetic flux through the plaquettes of the
“optomechanical synthetic ladder” that can be drawn to
understand the situation; cf. Fig. 4(b). The quantum mechanics

Fig. 3. Microscopic simulation of the wavelength-conversion scheme,
Eq. (4), indicating its feasibility: spatial distribution of light intensity
upon local injection of a probe laser (a) in the bulk and (b) at the edge,
for a constant artificial magnetic field. Bulk transport (a) is governed by
Landau levels and can be understood as a superposition of classical cyclo-
tron orbits (yellow circles) for different momentum directions. (b) At the
edges robust edge channels exist. (c) Optical Aharonov–Bohm effect in
minimal symmetric setup. (d) The interference pattern (normalized
probe laser transmission intensity) is shifted by the magnetic flux through
the ring. [Parameters: (a),(b) 22 × 22 grid; (a),(b) δ � 0.3Ω0, (d) δ �
0.1Ω0; (a),(b) g � 0.2Ω0, (d) g � 0.01Ω0; (a),(b) κ � 0.01Ω0;
Γ � κ∕10; (a),(b) Φ � 2π∕8; (a),(b) J � 0.13Ω0, (d) J � 0.001Ω0,
(a) Δp � 1.278Ω0, (b) Δp � 1.260Ω0, (d) Δp � 1.103Ω0.]

Fig. 4. Optomechanical gauge fields within the concept of synthetic
dimensions. (a) The optomechanical coupling, g , can be viewed as con-
necting sites along a synthetic dimension (photons versus phonons). A
phase for the photon hopping, engineered using the schemes from above,
creates a flux in the optical plaquette (blue, top) and in the adjacent syn-
thetic plaquette (gray). Hence, the magnetic field (black lines) in the full
space is divergence-free. (b) Engineering exclusively the phases of g allows
us to create magnetic fields/fluxes, but only perpendicular to the syn-
thetic dimension. Shining a single tilted laser on a 1D chain yields a syn-
thetic optomechanical ladder system with constant synthetic magnetic
flux. (c) 2D array, with the field inside the (physical) plane generated
by an arbitrary laser phase pattern.
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of excitations tunneling between the two ‘rails’ of the ladder (cor-
responding to photon–phonon conversion) are directly analogous
to experiments on electron tunneling between parallel wires in a
magnetic field [45]. The magnetic field shifts the momenta of the
tunneling particles, giving rise to resonance phenomena when the
shifted dispersion curves ω�k� of the excitations match. Via phase
front engineering one could create arbitrary synthetic magnetic
fields also in 2D grids; see Fig. 4(c). We note, though, that this
method is constrained since it cannot directly create magnetic
fluxes through optical or mechanical plaquettes, and in general
only the schemes discussed above provide full flexibility. On
the other hand, if either the photon or the phonon modes are
occupied only virtually, then effective fluxes can still be generated
for the remaining real excitations, even with a single laser, and this
works best for phonons (see [46,47]).

5. POSSIBLE EXPERIMENTAL REALIZATIONS

We now discuss the most salient aspects of the experimental reali-
zation. Both the ‘butterfly’ optical spectrum and spatially resolved
transport can be probed using homodyne techniques, which are
insensitive to noise. Real-space optical imaging is feasible, as the
defects are a few micrometers apart. The optical phase pattern can
be engineered using spatial light modulators. No time-dependent
changes of the pattern are needed here, since the time dependence
is generated via the beat-note between the two laser beams.

For the modulated-link scheme, the mechanical oscillation
amplitude β used for the modulation should overwhelm any
thermal fluctuations. In the example of Fig. 2, we assumed
g0β � 0.3Ω0. At recently achieved parameters [7] g0∕2π �
220 kHz and Ω0∕2π � 9 GHz, this would imply β ∼ 104,
i.e., a phonon number of 108 reached by driving, certainly larger
than the thermal population. If we drive the mechanical vibration
using a radiation pressure force oscillating at resonance (assuming
the quoted g0 also for the optical mode used in that driving), then
we have β � 2g0nc∕Γ, where nc is the circulating photon number
and Γ is the mechanical damping rate. Given a mechanical quality
factor of Ω0∕Γ � 2 · 105, this requires nc ∼ 103 photons for
Fig. 2, a realistic number. We note that thermal fluctuations
of the mechanical amplitude give rise to a fractional deviation
of

ffiffiffiffiffiffi
n̄th

p
∕β in J eff , with a slow drift on the time scale Γ−1. At typ-

ical temperatures used in experiments, we have nth ∼ 100 − 1000,
and so the fractional change is on the order of a percent, which
will not noticeably impact transport.

In the alternative wavelength-conversion scheme, one should
strive for a large photon-enhanced optomechanical coupling rate
g � g0α. A general estimate implies that we always need the pho-
ton number to be larger than �κ∕g0�2 in order to see the butterfly
spectrum and the transport effects. This condition (compatible
with Fig. 3) would require a circulating photon number of around
3 · 105 for the parameters demonstrated in a recent successful
wavelength-conversion setup based on optomechanical crystals
[36]. It is also important to estimate the unwanted influx of
thermal excitations from the phonon subsystem into the photon
subsystem, at least if the setup is to be applied in the quantum
regime, for observing the transport of single photons in the pres-
ence of a magnetic field. In the wavelength-conversion scheme,
there is a detuning δ ≫ κ between the red sideband of the laser
and the phonon mode, such that photon–phonon conversion is
suppressed. Nevertheless, it still happens at a rate γn̄, where

γ � g2∕δ is the “cooling rate” (for the detuned case applicable
here) and n is the number of phonons in the mode.
Fortunately, this phonon number is also reduced by the very same
off-resonant cooling process. Balancing the inflow and outflow of
excitations, we find that there will be a remaining unwanted pho-
ton occupation of n̄thphot � n̄thΓ∕κ due to the conversion of ther-
mal phonons into photons, where nth is the bulk thermal phonon
occupation. The factor Γ∕κ suppresses this number strongly,
and it should be possible to reach the regime n̄thphot ≪ 1 in
low-temperature setups.

Reducing fabrication-induced disorder will be crucial for any
future applications of photonic crystals, including the one envis-
aged here (as well as other photonic magnetic field schemes). In
first experimental attempts, the optical and mechanical disorder is
on the percent level, which makes especially the fluctuations of
the optical resonance frequencies significant. Nevertheless, strong
reductions of the disorder will be possible by post-fabrication
methods [48–50], such as local laser-induced oxidation. These
are expected to reduce the fluctuations down to the level of
10−5 relative optical frequency fluctuations. This is enough to
suppress the optical disorder to some fraction of the photon hop-
ping rate J eff ∼ Ω, which will enable near-ideal photon transport
(e.g., Anderson localization lengths would be at least hundreds of
sites, larger than the typical arrays). Disorder in the mechanical
frequencies can be reduced by similar techniques, but is much less
problematic, due to the difference in absolute frequency scales
between optics and mechanics.

6. OUTLOOK

Optomechanical crystals represent an interesting system for the
realization of artificial photonic magnetic fields. The fact that
the magnetic field is not generated by the geometry of device
fabrication but rather controlled all-optically offers the signifi-
cant advantage of in situ tunability. At the same time, the
robustness of the resulting edge states against backscattering by
disorder is better than in topological-insulator inspired photonic
schemes, since the latter are still susceptible to certain kinds of
disorder.

The rich nonlinear (quantum) dynamics [10] of optomechan-
ical arrays could be explored in the presence of such an artificial
magnetic field. In general, the very flexible optical control could
be used to create and explore novel features, e.g., varying the op-
tomechanical coupling strength spatially and/or temporally, both
adiabatically and with sudden quenches. Moreover, a second
strong control laser could be used to create a spatially and tem-
porarily varying optical on-site potential landscape, such that the
combined effect of that potential and the magnetic field on the
photon transport can be explored.
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