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Abstract

In this paper we study stochastic dynamic games with many players; these are a fundamental model

for a wide range of economic applications. The standard solution concept for such games isMarkov

perfect equilibrium(MPE), but it is well known that MPE computation becomes intractable as the num-

ber of players increases. We instead consider the notion ofstationary equilibrium(SE), where players

optimize assuming the empirical distribution of others’ states remains constant at its long run average.

We make two main contributions. First, we provide a rigorousjustification for using SE. In particular,

we provide a parsimonious collection of exogenous conditions over model primitives that guarantee ex-

istence of SE, and ensure that an appropriate approximationproperty to MPE holds, in a general model

with possibly unbounded state spaces. Second, we draw a significant connection between the validity of

SE, and market structure: under the same conditions that imply SE exist and approximates MPE well,

the market becomes fragmented in the limit of many firms. To illustrate this connection, we study in

detail a series of dynamic oligopoly examples. These examples show that our conditions enforce a form

of “decreasing returns to larger states”; this yields fragmented industries in the limit. By contrast, viola-

tion of these conditions suggests “increasing returns to larger states” and potential market concentration.

In that sense, our work uses a fully dynamic framework to alsocontribute to a longstanding issue in

industrial organization: understanding the determinantsof market structure in different industries.
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1 Introduction

A common framework to study dynamic economic systems of interacting agents is astochastic game, as

pioneered by Shapley (1953). In a stochastic game agents’ actions directly affect underlying state variables

that influence their payoff. The state variables evolve according to a Markov process in discrete time, and

players maximize their infinite horizon expected discounted payoff. Stochastic games provide a valuable

general framework for a range of economic settings, including dynamic oligopolies—i.e., models of compe-

tition among firms over time. In particular, since the introduction of the dynamic oligopoly model of Ericson

and Pakes (1995), they have been extensively used to study industry dynamics with heterogeneous firms in

different applied settings (see Doraszelski and Pakes (2007) for a survey of this literature).

The standard solution concept for stochastic games isMarkov perfect equilibrium(MPE) (Fudenberg

and Tirole 1991), where a player’s equilibrium strategy depends on the current state of all players. MPE

presents two significant obstacles as an analytical tool, particularly as the number of players grows large.

First iscomputability: the state space expands in dimension with the number of players, and thus the “curse

of dimensionality” kicks in, making computation of MPE infeasible in many problems of practical interest.

Second isplausibility: as the number of players grows large, it becomes increasingly difficult to believe that

individual players track the exact behavior of the other agents.

To overcome these difficulties, previous research has considered an asymptotic regime in which the

number of agents is infinite (Jovanovic and Rosenthal 1988, Hopenhayn 1992). In this case, individuals

take a simpler view of the world: they postulate that fluctuations in the empirical distribution of other

players’ states have “averaged out” due to a law of large numbers, and thus they optimize holding the state

distribution of other players fixed. Based on this insight, this approach considers an equilibrium concept

where agents optimize only with respect to the long run average of the distribution of other players’ states;

Hopenhayn (1992) refers to this concept asstationary equilibrium(SE), and we adopt his terminology. SE

are much simpler to compute and analyze than MPE, making thisa useful approach across a wide range of

applications. In particular, SE ofinfinite modelshave also been extensively used to study industry dynamics

(see, for example, Luttmer 2007, Melitz 2003, Klette and Kortum 2004, and Hopenhayn and Rogerson

1993).

In this paper, we address two significant questions. First,under what conditions is it justifiable to

use SE as a modeling tool? We provide theoretical foundations for the use of SE. In particular, our main

results provide a parsimonious collection ofexogenous conditions over model primitivesthat guarantee

existence of SE, and ensure that an appropriate approximation property holds. These results provide a

rigorous justification for using SE of infinite models to study stochastic games with a large but finite number

of players.

The second question we address relates to a longstanding topic of research in industrial organization:

when do industries fragment, and when do they concentrate?In a fragmented industry all firms have small

market shares, with no single firm or group of firms becoming dominant. By contrast, in a concentrated

industry, few participants that hold a notable market sharecan exert significant market power. In dynamic

oligopoly models in particular, this is a challenging question to answer due to the inherent complexity of

MPE. Our second main contribution is to draw a significant connection between the validity of SE, and
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market structure: under the same conditions that imply SE exist and an appropriate approximation property

holds, the market becomes fragmented in the limit of many firms. In particular, we interpret our conditions

over model primitives as enforcement of a form of “decreasing returns to larger states” for an individual

firm, that yields fragmented industries in the limit. By contrast, as we discuss, violation of these conditions

suggests “increasing returns to larger states” and potential market concentration.

Our main results are described in detail below.

1. Theoretical foundations for SE: Existence of SE. We provide natural conditions over model primitives

that guarantee existence of SE overunboundedstate spaces. This is distinct from prior work on SE,

which typically studies models withcompactstate spaces. Crucially, considering unbounded state

spaces allows us to obtain sharp distinctions between increasing and decreasing returns to higher

states, and the resulting concentration or fragmentation of an industry.

In addition, even though SE of a given model may exist over anycompact state space, it may fail to

exist over an unbounded state space. The reason is that agents may have incentives to grow unbound-

edly large and in this case the steady-state distribution isnot well defined. Hence, a key aspect of our

conditions is that they ensure the stability of the stochastic process that describes each agent’s state

evolution, and that the resulting steady-state distribution is well defined. In this way, we guarantee

the compactness of an appropriately defined “best-response” correspondence. Our conditions also en-

sure the continuity and convexity of this correspondence, allowing us to use a topological fixed-point

approach to prove existence.

2. Theoretical foundations for SE: Approximating MPE. We show that the same conditions over model

primitives that ensure the existence of SE, imply that SE of infinite models approximate well MPE of

models with a finite number of players, as the number of agentsincreases. An important condition

that is required for this approximation result to hold is that the distribution of players’ states in the

SE under consideration must possess alight-tail, as originally observed in Weintraub et al. (2008)

for a sequence of finite games, and in Weintraub et al. (2011) for a limiting infinite model like the

one studied in this paper. In a light-tailed equilibrium, nosingle agent is “dominant;” without such

a condition it is not possible for agents’ to rationally ignore the state fluctuations of their dominant

competitors.

Crucially, the light-tail assumption as used in Weintraub et al. (2008) and Weintraub et al. (2011) is an

endogenouscondition on the equilibrium outcome. A central contribution of this work is to develop

exogenous conditions over model primitivesthat ensure the existence of light-tailed SE. In fact, the

conditions that guarantee compactness in the existence result ensure thatall SE are light-tailed. Thus

approximation need not be verified separately; verificationof our conditions simultaneously guaran-

tees existence of SE as well as a good approximation to MPE as the number of agents increases.

3. Market structure in dynamic industries. Our results provide important insights into market structure

in dynamic industries. The literature on dynamic oligopolymodels has largely study individual indus-

tries in which market outcomes are very sensitive to certainmodel features and parameters (Doraszel-
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ski and Pakes 2007). In contrast, our results provide conditions for which we can predict important

features of the equilibrium market structure for a broad range of parameters and specifications.

In particular, our conditions over model primitives imply that all SE are light-tailed, and therefore, in

all SE the industry yields a fragmented market structure andno dominant firms emerge. Moreover, all

these SE are valid approximations to MPE. While these conditions cannot pin-down the equilibrium

exactly, they guarantee that in all of them the market structure is fragmented. In that sense, our work

contributes to the “bounds approach” in the industrial organization literature pioneered by Sutton

(1991), which aims to identify broad structural propertiesin industries that would yield a fragmented

or a concentrated market structure. A novelty of our analysis compared to previous work is that it is

done in afully dynamicframework.

To illustrate the connection between our theoretical results and market structure in dynamic industries,

we study in detail a collection of three examples in industrial organization. For each of these examples,

we demonstrate that our conditions on model primitives thatguarantee existence of light-tailed SE can be

interpreted as enforcing “decreasing returns to higher states.” Conversely, our analysis of the examples

suggests that when these conditions are violated, the resulting models exhibit “increasing returns to higher

states,” and SE are not expected to provide accurate approximations or may not even exist. We note that, as

emphasized above, unbounded state spaces are necessary to highlight the difference between increasing and

decreasing returns to higher states.

The first example we discuss is a quality-ladder dynamic oligopoly model where firms can invest to

improve a firm-specific state; e.g., a firm might invest in advertising to improve brand awareness, or invest

in R&D to improve product quality (Pakes and McGuire 1994). Firms’ single period profits are determined

through a monopolistic competition model. Through a limiting construction where the number of firms and

market size both scale to infinity, we use our conditions to show that light-tailed SE exist and approximate

MPE asymptotically if the single period profit function exhibits diminishing marginal returns to higher

quality.

Next, we discuss a model with positive spillovers between firms (Griliches 1998). Here our conditions

impose a form of decreasing returns in the spillover effect that, together with the decreasing returns to

investment condition introduced in the previous model, ensure SE exist and provide good approximations to

MPE. When the spillover effect is controlled in this way, themarket is more likely to fragment.

Finally, we discuss a dynamic oligopoly that incorporates “learning-by-doing”, so that firms become

more efficient as they gain experience in the marketplace (Fudenberg and Tirole 1983). In this case, we

find that firms’ learning processes must exhibit decreasing returns to scale to ensure existence of light-tailed

SE. These conditions are consistent with prior observations in the literature that suggest industries with

prominent learning-by-doing effects will tend to concentrate; our results compactly quantify such intuition.

Indeed, in all these examples, our results validate intuition by providing quantifiable insight into market

structure. Industries with increasing returns are typically concentrated and dominated by few firms, so SE

would not be good approximations. By contrast, our conditions on model primitives delineate a broad range

of industries with decreasing returns that become fragmented in the limit and for which SE provide accurate

approximations.
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The remainder of the paper is organized as follows. Section 2describes related literature. Section 3

introduces our stochastic game model, and there we define both MPE and SE. We then preview our results

and discuss the motivating examples above in detail in Section 4. In Section 5, we develop exogenous

conditions over model primitives that ensure existence of light-tailed SE. In Section 6, we show that under

our conditions any light-tailed SE approximates MPE asymptotically. Section 7 revisits the examples in

light of the theoretical results provided in the two previous sections. We conclude and discuss future research

directions in Section 8. The appendices contain all mathematical proofs as well as important complementary

material.

2 Related Work

Our work is related to previous literature that studies stationary equilibria or closely-related equilibrium

concepts. SE is sometimes calledmean field equilibriumbecause of its relationship to mean field mod-

els in physics, where large systems exhibit macroscopic behavior that is considerably more tractable than

their microscopic description. (See, e.g., Blume (1993) and Morris (2000) for related ideas applied to

static games.) In the context of stochastic games, SE and related approaches have been proposed under a

variety of monikers across economics and engineering; see,e.g., studies of anonymous sequential games

(Jovanovic and Rosenthal 1988, Bergin and Bernhardt 1995);dynamic stochastic general equilibrium in

macroeconomic modeling (Stokey et al. 1989); Nash certainty equivalent control (Huang et al. 2006, 2007);

mean field games (Lasry and Lions 2007); and dynamic user equilibrium (Friesz et al. 1993). SE has also

been studied in recent works on information percolation models (Duffie et al. 2009), sensitivity analysis in

aggregate games (Acemoglu and Jensen 2009), coupling of oscillators (Yin et al. 2010), scaling behavior

of markets (Bodoh-Creed 2011), and in analysis of stochastic games with complementarities (Adlakha and

Johari 2010).

Prior work has considered existence of equilibrium in stochastic games in general, but these are typically

established only in restricted classes such as zero-sum games and games of identical interest; see Mertens

et al. (1994) for background. Doraszelski and Satterthwaite (2010) and Escobar (2008) show existence

of MPE for different classes of stochastic games under appropriate concavity assumptions. Our work is

particularly related to Jovanovic and Rosenthal (1988) andHopenhayn (1992) that consider existence of SE.

The former paper considers a model similar to ours but restricts attention to compact sets, while the latter

paper is focused on a specific model of oligopoly competition. Adlakha and Johari (2010) also consider

existence of SE; they focus on games with strategic complementarities, and establish existence using a

constructive approach based on lattice theoretic methods.The preceding three papers study a different

setting to ours and do not establish an approximation theorem. Several prior papers have considered various

notions of approximation properties for SE in specific settings, either with bounded state spaces (Glynn

2004, Tembine et al. 2009, Bodoh-Creed 2011) or with an exogenous compactness assumption (Adlakha

et al. 2010), or in linear-quadratic payoff models (Huang etal. 2007, Adlakha et al. 2008).

We briefly discuss here relation to our own prior work. In our previous conference papers (Adlakha

et al. 2008, 2010), we study SE in a less general model of stochastic games than this paper. Though we
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study existence of SE and an appropriate approximation property, we make anendogenousassumption of

compactness; in other words, we assume the model is such thatin searching for SE we can restrict attention

to a compact set. As a result, those results do not relate model primitives to either validity of SE as an

approximation, nor to market structure. By contrast, in this paper, we deriveexogenousconditions on model

primitives that guarantee compactness, existence of SE, and an appropriate approximation property. In

addition, as a consequence, we are able to apply our results to derive sharp insight into market structure.

Our paper is also closely related to Weintraub et al. (2011),who study a class of industry dynamic

models. They also show a result that depends endogenously onSE: if a given SE satisfies an appropriate

light-tail condition, then it approximates MPE well as the number of firms grows. Our paper provides

several important contributions with respect to Weintraubet al. (2011). First, we consider a more general

stochastic game model that allows us, for example, to study the models with spillovers and learning-by-

doing. On the other hand, we do not consider entry and exit as they do; we discuss this extension in the

conclusions section. We also consider a stronger approximation property. Second, and more importantly,

the light-tail condition used to prove the approximation result in Weintraub et al. (2011) is a condition over

equilibrium outcomes; by contrast, we provide conditions overmodel primitivesthat guarantee all SE are

light-tailed and hence approximate MPE asymptotically. Asa consequence, these conditions also give sharp

insight into market structure in our paper. Finally, we provide a novel result pertaining to existence of SE,

particularly over unbounded state spaces. We close by noting that Weintraub et al. (2011) also consider

an analog of SE called “oblivious equilibrium” (OE) in models with finitely many agents. They study the

relation between OE and SE by analyzing the hemicontinuity of the OE correspondence at the point where

number of firms becomes infinite.

3 Preliminaries and Definitions

In this section we define our general model of a stochastic game, and proceed to define two equilibrium

concepts: Markov perfect equilibrium (MPE) and stationaryequilibrium (SE). We conclude by defining the

asymptotic Markov equilibrium property, which requires that SE approximates MPE well as the number of

players grows large.

3.1 Stochastic Game Model

In this section, we describe our stochastic game model. Compared to standard stochastic games in the

literature (Shapley 1953), in our model, every player has anindividual state. Players are coupled through

their payoffs and state transitions. A stochastic game has the following elements:

Time.The game is played in discrete time. We index time periods byt = 0, 1, 2, . . ..

Players.There arem players in the game; we usei to denote a particular player.

State. The state of playeri at time t is denoted byxi,t ∈ X , whereX ⊆ Z
d is a subset of thed-

dimensional integer lattice. We usext to denote the state of all players at timet andx−i,t to denote the state

of all players except playeri at timet. For indication of how to proceed with compact but not necessarily

discrete state spaces, we refer the reader to the recent independent work of Bodoh-Creed (2011).
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Action. The action taken by playeri at timet is denoted byai,t ∈ A, whereA ⊆ R
q is a subset of the

q-dimensional Euclidean space. We useat to denote the action of all players at timet.

Transition Probabilities. The state of a player evolves in a Markov fashion. Formally, let ht =

{x0,a0, . . . ,xt−1,at−1} denote thehistory up to timet. Conditional onht, players’ states at timet are

independentof each other. This assumption implies that random shocks are idiosyncratic, ruling out aggre-

gate random shocks that are common to all players. The assumption is important to derive our asymptotic

results. Playeri′s statexi,t at timet depends on the past historyht only through the state of playeri at time

t− 1, xi,t−1; the states of other players at timet− 1, x−i,t−1; and the action taken by playeri at timet− 1,

ai,t−1. We represent the distribution of the next state as a transition kernelP, where:

P(x′i | xi, ai,x−i) = Prob
(

xi,t+1 = x′i | xi,t = xi, ai,t = ai,x−i,t = x−i

)

. (1)

Payoff. In a given time period, if the state of playeri is xi, the state of other players isx−i, and the

action taken by playeri is ai, then the single period payoff to playeri is π
(

xi, ai,x−i

)

∈ R.

Discount Factor.The players discount their future payoff by a discount factor 0 < β < 1. Thus a player

i’s infinite horizon payoff is given by:
∑∞

t=0 β
tπ
(

xi,t, ai,t,x−i,t

)

.

In a variety of games, coupling between players is independent of the identity of the players. The notion

of anonymitycaptures scenarios where the interaction between players is via aggregate information about

the state (e.g., see Jovanovic and Rosenthal 1988). Letf
(m)
−i,t(y) denote the fraction of players (excluding

playeri) that have their state asy at timet, i.e.:

f
(m)
−i,t(y) =

1

m− 1

∑

j 6=i

1{xj,t=y}, (2)

where1{xj,t=y} is the indicator function that the state of playerj at timet is y. We refer tof (m)
−i,t as the

population stateat timet (from playeri’s point of view).

Definition 1 (Anonymous Stochastic Game). A stochastic game is called ananonymous stochastic game

if the payoff functionπ(xi,t, ai,t,x−i,t) and transition kernelP(x′i,t | xi,t, ai,t,x−i,t) depend onx−i,t

only throughf (m)
−i,t. In an abuse of notation, we writeπ

(

xi,t, ai,t,f
(m)
−i,t

)

for the payoff to playeri, and

P(x′i,t | xi,t, ai,t,f
(m)
−i,t) for the transition kernel for playeri.

For the remainder of the paper, we focus our attention on anonymous stochastic games. For ease of

notation, we often drop the subscripti andt and denote a generic transition kernel byP(· | x, a, f), and a

generic payoff function byπ(x, a, f), wheref represents the population state of players other than the player

under consideration. Anonymity requires that a firm’s single period payoff and transition kernel depend on

the states of other firms via their empirical distribution over the state space, and not on their specific identify.

The examples we discuss in the next section satisfy this assumption. Second, in an anonymous stochastic

game the functional form of the payoff function is the same, regardless of the number of playersm. In

that sense, we often interpret the profit functionπ(x, a, f) as representing a limiting regime in which the

number of agents is infinite. In Section 4 we discuss how to derive this limiting profit function in different
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applications. Moreover, in Appendix B we briefly discuss howour results can be extended to include the

case where there is a sequence of payoff functions that depends on the number of agents.

We introduce some additional useful notation. LetF be the set of all possible population states onX :

F =
{

f : X → [0, 1] | f(x) ≥ 0,
∑

x∈X

f(x) = 1
}

. (3)

In addition, we letF(m) denote the set of all population states inF overm− 1 players, i.e.:

F(m) =
{

f ∈ F : there existsx ∈ Xm−1 with f(y) =
1

m− 1

∑

j

1{xj=y}, ∀y ∈ X
}

.

3.2 Markov Perfect Equilibrium

In studying stochastic games, attention is typically focused onMarkov strategies, where the action of a

player at each time is a function of only current state of every player (Fudenberg and Tirole 1991, Maskin

and Tirole 1988). In the context of anonymous stochastic games, a Markov strategy depends on the current

state of the player as well as the current population state. Because a player using such a strategy tracks the

evolution of the other players, we refer to such strategies in our context ascognizantstrategies.

Definition 2. LetM be the set of cognizant strategies available to a player. That is,M =
{

µ | µ : X ×F →

A
}

.

Consider anm-player anonymous stochastic game. At every timet, playeri chooses an actionai,t that

depends on its current state and on the current population statef (m)
−i,t ∈ F(m). Lettingµi ∈ M denote the

cognizant strategy used by playeri, we haveai,t = µi(xi,t,f
(m)
−i,t). The next state of playeri is randomly

drawn according to the kernelP:

xi,t+1 ∼ P
(

·
∣

∣

∣ xi,t, µi(xi,t,f
(m)
−i,t),f

(m)
−i,t

)

. (4)

We letµ(m) denote the strategy vector where every player has chosen strategyµ. DefineV (m)
(

x, f | µ′,µ(m−1)
)

to be the expected net present value for a player with initialstatex, and with initial population statef ∈

F(m), given that the player follows a strategyµ′ and every other player follows the strategyµ. In particular,

we have

V (m)
(

x, f | µ′,µ(m−1)
)

,

E

[

∞
∑

t=0

βtπ
(

xi,t, ai,t,f
(m)
−i,t

) ∣

∣ xi,0 = x, f
(m)
−i,0 = f ;µi = µ′,µ−i = µ(m−1)

]

, (5)

whereµ−i denotes the strategies employed by every player excepti. Note that state sequencexi,t and

population state sequencef (m)
−i,t evolve according to the transition dynamics (4).

We focus our attention on asymmetric Markov perfect equilibrium(MPE), where all players use the

same cognizant strategyµ. In an abuse of notation, we writeV (m)
(

x, f | µ(m)
)

to refer to the expected
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discounted value as given in equation (5) when every player follows the same cognizant strategyµ.

Definition 3 (Markov Perfect Equilibrium). The vector of cognizant strategiesµ(m) ∈ M is a symmetric

Markov perfect equilibrium (MPE) if for all initial statesx ∈ X and population statesf ∈ F(m) we have

supµ′∈M V (m)
(

x, f | µ′,µ(m−1)
)

= V (m)
(

x, f | µ(m)
)

.

Thus, a Markov perfect equilibrium is a profile of cognizant strategies that simultaneously maximize

the expected discounted payoff for every player, given the strategies of other players.1 It is a well known

fact that computing a Markov perfect equilibrium for a stochastic game is computationally challenging in

general (Doraszelski and Pakes 2007). This is because to findan optimal cognizant strategy, each player

needs to track and forecast the exact evolution of the entirepopulation state. In certain scenarios, it might

be infeasible to exchange or learn this information at everystep because of limited communication capacity

between players or limited cognitive ability. Moreover, even if this is possible, the computation of an

optimal cognizant strategy is subject to a curse of dimensionality; the state spaceF(m) grows too quickly

as the number of agentsm and/or the number of individual statesX becomes large. As a consequence,

computing Markov perfect equilibrium in practice is only possible in models with few agents and few

individual states, severely restricting the set of problems for which this equilibrium concept can be used.

In the next subsection, we describe a scheme for approximating Markov perfect equilibrium that alleviates

these difficulties.

3.3 Stationary Equilibrium

In a game with a large number of players, we might expect that fluctuations of players’ states “average out”

and hence the actual population state remains roughly constant over time. Because the effect of other players

on a single player’s payoff and transition probabilities isonly via the population state, it is intuitive that, as

the number of players increases, a single player has negligible effect on the outcome of the game. Based on

this intuition, related schemes for approximating MPE havebeen proposed in different application domains

via a solution concept we callstationary equilibriumor SE (see Sections 1 and 2 for references on SE and

related work).

We consider a limiting model with an infinite number of agentsin which a law of large numbers holds

exactly. In an SE of this model, each player optimizes its payoff assuming the population state is fixed at

its long-run average. Thus, rather than keep track of the exact population state, a single player’s immediate

action depends only on his own current state. We call such playersoblivious, and refer to their strategies as

oblivious strategies. (This terminology is due to Weintraub et al. 2008.) Formally, we letMO denote the set

of (stationary, nonrandomized) oblivious strategies, defined as follows.

Definition 4. LetMO be the set of oblivious strategies available to a player. That is,MO =
{

µ | µ : X →

A
}

.

1Under the assumptions we make later in this paper, it can be shown that for any vector of cognizant strategies of players other
thani, an optimal cognizant strategy always exists for playeri.
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Given a strategyµ ∈ MO, an oblivious playeri takes an actionai,t = µ(xi,t) at timet; as before, the

next state of the player is randomly distributed according to the transition kernelP:

xi,t+1 ∼ P(· | xi,t, µ(xi,t), f) (6)

Note that because we are considering a limiting model, the player’s state evolves according to a transition

kernel with fixed population statef . The interpretation is that a single player conjectures thepopulation

state to bef ; therefore, in determining a player’s future expected payoff stream, it considers a transition

kernel where its own state evolution is affected by the fixed population statef .

We define theoblivious value functioñV
(

x | µ, f
)

to be the expected net present value for any oblivious

player with initial statex, when the long run average population state isf , and the player uses an oblivious

strategyµ. We have

Ṽ
(

x | µ, f
)

, E

[

∞
∑

t=0

βtπ
(

xi,t, ai,t, f
)

∣

∣

∣ xi,0 = x; µ
]

. (7)

Note that the state sequencexi,t is determined by the strategyµ according to the dynamics (6), where the

population state is fixed atf . We define theoptimal oblivious value functioñV ∗(x | f) as Ṽ ∗(x | f) =

supµ∈MO
Ṽ (x | µ, f). Given a population statef , an oblivious player computes an optimal strategy by

maximizing its oblivious value function. Note that becausean oblivious player does not track the evolution

of the population state and its state evolution depends onlyon the population statef , if an optimal stationary

nonrandomized strategy exists, it will only be a function ofthe player’s current state—i.e., it must be obliv-

ious even if optimizing over cognizant strategies. We capture this optimization step via the correspondence

P defined next.

Definition 5. The correspondenceP : F → MO maps a distributionf ∈ F to the set of optimal oblivious

strategies for a player. That is,µ ∈ P(f) if and only ifṼ
(

x | µ, f
)

= Ṽ ∗(x | f) for all x.

Note thatP maps a distribution to astationary, nonrandomizedoblivious strategy. This is typically

without loss of generality, since in most models of interestthere always exists such an optimal strategy. We

later establish that under our assumptionsP(f) is nonempty.

Now suppose that the population state isf , andall players are oblivious and play using a stationary

strategyµ. Because of averaging effects, we expect that if the number of agents is large, then the long run

population state should in fact be an invariant distribution of the Markov process onX that describes the evo-

lution of an individual agent, with transition kernel (6). We capture this relationship via the correspondence

D, defined next.

Definition 6. The correspondenceD : MO × F → F maps the oblivious strategyµ and population statef

to the set of invariant distributionsD(µ, f) associated with the dynamics(6).

Note that the image of the correspondenceD is empty if the strategy does not result in an invariant

distribution. We later establish conditions under whichD(µ, f) is nonempty. In addition, while we do not

impose this restrictiona priori, there are many models of interest whereD is actually afunction; that is,
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for all µ andf the Markov process associated with the dynamics (6) will be ergodic and admit a unique

invariant distribution.

We can now define stationary equilibrium. If every agent conjectures thatf is the long run population

state, then every agent would prefer to play an optimal oblivious strategyµ. On the other hand, if every

agent playsµ and the population state is in factf , then we should expect the long run population state of

all players to be an invariant distribution of (6). Stationary equilibrium requires a consistency condition: the

equilibrium population statef must in fact be an invariant distribution of the dynamics (6)under the strategy

µ and the same population statef .

Definition 7 (Stationary Equilibrium). An oblivious strategyµ ∈ MO and a distributionf ∈ F constitute a

stationary equilibrium (SE) ifµ ∈ P(f) andf ∈ D(µ, f).

In the event that the Markov chain induced byµ andf has multiple invariant distributions, the agents

must all conjecture the population state in equilibrium to bef . Further, in the event that there exist multiple

optimal strategies givenf , the agents must all choose to playµ. In many models of interest (such as the

examples presented in Section 4), bothP andD are singletons, so such problems do not arise. For later

reference, we define the correspondenceΦ : F → F as follows:

Φ(f) = D(P(f), f). (8)

Observe that with this definition,a pair (µ, f) is an SE if and only iff is a fixed point ofΦ, f ∈ Φ(f), such

thatµ ∈ P(f) andf ∈ D(µ, f)

3.4 Approximation

A central goal of this paper is to determine conditions underwhich SE provides a good approximation to

MPE as the number of players grows large. Here we formalize the approximation property of interest,

referred to as the asymptotic Markov equilibrium (AME) property. Intuitively, this property requires that a

stationary equilibrium strategy is approximately optimaleven when compared against Markov strategies, as

the number of players grows large.

Definition 8 (Asymptotic Markov Equilibrium). A stationary equilibrium(µ, f) possesses the asymptotic

Markov equilibrium (AME) property if for all statesx and sequences of cognizant strategiesµm ∈ M, we

have:

lim sup
m→∞

V (m)
(

x, f (m) | µm,µ(m−1)
)

− V (m)
(

x, f (m) | µ(m)
)

≤ 0, (9)

almost surely, where the initial population statef (m) is derived by sampling each other player’s initial state

independently from the probability mass functionf .

Note thatV (m)
(

x, f (m) | µ′,µ(m−1)
)

is theactualvalue function of a player as defined in equation (5),

when the player uses a cognizant strategyµ′ and every other player plays an oblivious strategyµ. Similarly,

V (m)
(

x, f (m) | µ(m)
)

is the actual value function of a player as defined in equation(5) when every player

is playing the oblivious strategyµ. AME requires that the error when using the SE strategy approaches
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zero almost surely with respect to the randomness in the initial population state. Hence, AME requires that

the SE strategy becomes approximately optimal as the numberof agents grows, with respect to population

states that have nonzero probability of occurrence when sampling individual states according to the invariant

distribution.2 This definition can be shown to be stronger than the definitionconsidered by Weintraub et al.

(2008), where AME is defined only in expectation with respectto randomness in the initial population state.

3.5 Extensions to the Basic Model

We briefly mention two extensions for which all our results follow. These extensions are often important in

applications, but do not require any significant technical arguments. See Appendix A for further details.

First, note that players are ex-ante homogeneous in the model considered, in the sense that they share the

same model primitives. This is not a particularly consequential choice, and is made primarily for notational

convenience; indeed, by an appropriate redefinition of state we can model agent heterogeneity via types.

Second, note that in the game defined here, players are coupled through their states: both the transition

kernel and the payoff depend on the current state of all players. However, in many models of interest the

transition kernel and payoff of a player may depend on both the current state andcurrent actionsof other

players. In particular, the example in Section 4.3 is a modelwhere players are coupled through their actions.

All the results of this paper naturally extend to a setting where players may also be coupled through their

actions, i.e., where the transition kernel and payoff may depend on the current actions of all players as well.

In the context of this paper, when players are coupled through actions, for technical simplicity we focus on

finite action spaces. In this setting, to ensure existence ofequilibrium, we assume that players maximize

payoffs with respect to randomized strategies. In addition, we briefly discuss how our results could be

extended to include continuous action spaces as well (see Appendix A).

4 Preview of Results and Motivating Examples

As discussed in the Introduction, this paper makes two complementary contributions. On one hand, we es-

tablish sufficient conditions over model primitives that provide justification for use of SE (in particular, that

guarantee existence of SE and the AME property). On the otherhand, we demonstrate that our conditions

encode an economic dichotomy, broadly, between “increasing” and “decreasing” returns to higher states;

the latter corresponds to those models where the industry becomes fragmented in the limit and SE is an

appropriate modeling tool. In this way, our conditions directly provide insight into market structure.

This section is devoted to introducing examples drawn from industrial organization that motivate and

illustrate our results. Each example presents the same basic difficulty: in terms of the parameters of the

model, where does the boundary lie between those markets where fragmentation might arise, and those

markets where concentration might be expected? As suggested by the preceding discussion, we use SE as

a tool to inform this market structure question. In each example, we discuss how our technical results yield

2As noted earlier, under the assumptions we make an optimal cognizant strategy can be shown to exist, for any vector of
cognizant strategies of the opponents. Therefore the AME property can be equivalently stated as the requirement that for all x:

limm→∞

(

supµm∈M
V (m)

(

x, f (m) | µm,µ(m−1)
)

− V (m)
(

x, f (m) | µ(m)
)

)

= 0, almost surely.
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sharp conditions under which SE exist, the AME property holds, and all SE yield market fragmentation. We

also discuss how failure of the conditions would suggest market concentration.

To set the stage, we first briefly preview the approach behind our main technical results (see Section 5

and 6). The mathematical complexity in our analysis arises due to unbounded state spaces; these are essential

if we hope to identify a boundary between fragmentation and concentration in the limit of many firms.

Unfortunately, with unbounded state spaces, both existence of SE and the AME property may become

difficult to establish. Informally, this is because mass in the population state may “escape” to larger states

as the number of firms grows; alternatively, firms may choose strategies that lead to unbounded steady state

distributions over the state space.

The key condition we require to overcome these hurdles is to ensure that SE havelight tails, i.e., limited

mass at larger states (in a sense we make precise later). We develop exogenous conditions over model

primitives that ensure all SE population states havelight tails, and we further show that all light-tailed SE

satisfy the AME property (extending a prior result of Weintraub et al. (2011)). Light tails ensure that no

single dominant agent emerges in the limit of many firms. Notethat in market structure terms, this is exactly

market fragmentation.

Interpretation of our exogenous conditions reveals exactly the dichotomy introduced above: the con-

ditions enforce a form of “decreasing returns to higher states” in the optimization problem faced by an

individual agent, while their failure corresponds roughlyto “increasing returns.” Notably, all our results

in the examples are simply applications of thesametheoretical architecture. As we point out, when the

examples below violate the assumptions we require—in particular, in models that exhibit increasing returns

to higher states—we also expect that SE willnotsatisfy the AME property, and indeed, may not exist. Thus

despite the fact that we only discusssufficientconditions for existence and approximation in this paper,

the examples suggest that perhaps these sufficient conditions identify a reasonable boundary between those

models that admit analysis via SE, and those that do not.

For the rest of this section, we consider stochastic games with m players in which the state of a player

takes values onZ+.

4.1 Dynamic Oligopoly Models

Dynamic oligopoly models have received significant attention in the recent industrial organization literature

(see Doraszelski and Pakes 2007 for a survey). In these models, firms’ states correspond to some variable

that affects profitability; for example, the state could represent the firm’s product quality, its current produc-

tivity level, or its capacity. Per period profits are based ona static competition game, with heterogeneity

among firms determined by their respective quality levels. Firms take actions to improve their quality; in

the absence of this investment quality degrades over time.

Such models are extremely broad and capture a wide range of dynamic phenomena in industrial orga-

nization. In this context, we address the following important question: under what conditions on the model

primitives do we obtain concentration of the market, and under what conditions do we obtain fragmentation?

Intuitively, we might expect that firms need to exhibit decreasing returns to their investments to obtain frag-

mentation. Our technical results yield a simple condition on model primitives that formalizes this intuition:
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we require that the single stage profit function exhibits decreasing returns to firm quality. In this case SE

exist, the AME property holds, and the market structure is fragmented in the limit.

We now describe our specific model and our result in more detail.

States. For concreteness, here we consider the quality ladder model of Pakes and McGuire (1994), where

the statexi,t ∈ Z+ represents the quality of the product produced by firmi at timet.

Actions. Investments improve the state variable over time. At each time t, firm i investsai,t ∈ [0, a]

to improve the quality of its product. The action changes thestate of the firm in a stochastic fashion as

described below.

Payoffs. We consider a payoff function derived from price competition under a classic logit demand

system. In such a model, there aren consumers in the market. In periodt, consumerj receives utilityuijt
from consuming the good produced by firmi given by:uijt = θ1 ln(xit +1)+ θ2 ln(Y − pit)+ νijt, where

θ1, θ2 > 0, Y is the consumer’s income, andpit is the price of the good produced by firmi. Hereνijt are

i.i.d. Gumbel random variables that represent unobserved characteristics for each consumer-good pair.

We assume that there arem firms that set prices in the spot market. For a constant marginal production

costc, there is a unique Nash equilibrium in pure strategies of thepricing game, denotedp∗t (Caplin and

Nalebuff 1991). For our limit profit function, we consider anasymptotic regime in which the market sizen

and the number of firmsm grow to infinity at the same rate. The limiting profit functioncorresponds to a

logit model of monopolistic competition (Besanko et al. 1990) and is given byπ(x, a, f) = c̃(x+1)θ1
∑

y f(y)(y+1)θ1
−

da, wherec̃ is a constant that depends on the limit equilibrium price,c, θ2, andY . Here the second term is

the cost of investment, whered > 0 is the marginal cost per unit investment.

Transition dynamics.We use dynamics similar to those in Pakes and McGuire (1994) that have been

widely used in dynamic oligopoly models. Compared to that paper, we assume random shocks are idiosyn-

cratic. At each time period, a firm’s investment ofa is successful with probability αa
1+αa for someα > 0,

in which case the quality level of its product increases by one level. The parameterα represents the ef-

fectiveness of the investment. The firm’s product depreciates one quality level with probabilityδ ∈ (0, 1)

independently at each time period. Thus a firm’s state decreases by one with probability δ
1+αa ; it increases

by one with probability(1−δ)αa
1+αa and stays at the same level with probability1−δ+δαa

1+αa .

Discussion. Our main result for this model is the following proposition.The proof can be found in

Section 7.1.

Proposition 1. Suppose thatθ1 < 1. Then there exists an SE for the dynamic oligopoly model, andall SE

possess the AME property.

The preceding result has a natural interpretation in terms of increasing and decreasing returns to higher

states. Recall thatθ1 represents how much consumers value the quality of the products, and hence ifθ1 < 1,

firms have strictlydecreasingmarginal returns in their payoff from increasing their own state. This implies

that as their state grows, firms have less incentives to invest in improving their own state and ensures that, in

equilibrium, the distribution of firms over the state space has a light tail and, therefore, the market structure

becomes fragmented in the limit. On the other hand, ifθ1 ≥ 1, then firms have anincreasingmarginal gain

in their payoff from increasing their own state. Because themarginal cost of investment is constant, firms

may continue to invest large amounts to improve their state even at very large states. Thus, a single firm
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optimization problem may not even induce a stable Markov process, and hence an SE may not exist (and the

AME property may fail).

This result matches our intuition for exactly those regimeswhere SE work well as approximations to

equilibria in finite models. In industries with decreasing returns, we expect to see a fragmented structure in

the limit. By contrast, in industries with increasing returns, market concentration would likely result in the

limit, i.e., a few firms capture most of the demand in the market. This is precisely where the AME property

ceases to hold.

4.2 Dynamic Oligopoly Models with Positive Spillovers

In this section, we extend the previous model to account for positive spillovers, or externalities, across

firms. Spillovers are commonly observed in industry data andcould arise, for example, due to laggard firms

imitating leaders’ R&D activities (Griliches 1998). The main difference from the preceding model is that

now transition dynamics are coupled among the firms: one firm’s state is more likely to increase if other

firms are at higher quality levels.

Again, we are led to consider the effect of spillovers on market structure. From a technical standpoint,

the main complexity is that firms’ best responses may lead to unbounded distributions over the state space,

due to the spillover effect. Thus, in order to ensure existence of SE and the AME property, we need a

condition that controls the spillover effect: intuitively, if the spillover effect is not “too strong”, then the

dynamics will effectively exhibit decreasing returns. Ourresults quantify this sufficient condition. As

before, in this case, market fragmentation is obtained in the limit of many firms.

To introduce spillovers, we consider a formal model in whichthe state space, action space, and payoff

are identical to the previous section, and we continue to usethe same notation. However, we modify the

transition kernel to include spillovers, as described below.

Transition dynamics. We follow the model of Xu (2008), in which transition dynamics depend not only

on the action of the firm, but also on the state of its competitors. Formally, lets(m)
−i,t be thespillover effect

of the population state on playeri at timet, where:s(m)
−i,t =

∑

y∈X f
(m)
−i,t(y)hi,t(y). Herehi,t(y) is a weight

function that distinguishes the effect of different states. For this example, we usehi,t(y) = ζ(y)1{y>xi,t} for

some uniformly bounded functionζ(y). In this case, a firm is affected with spillovers only from firms that

have a better state than its own, which seems natural. We define theeffective investmentof playeri at time

t by: ai,t + γs
(m)
−i,t , ei,t. The constantγ is a spillover coefficient and it captures the effect of industry state

on the state transition. A higher value ofγ means a higher spillover effect. With an effective investment

of e, similar to Section 4.1, a firm’s state increases by one levelwith probability αe
1+αe . Finally, as before,

the firm’s product depreciates in quality by one level with probability δ ∈ (0, 1) independently at each time

period.

Discussion.Since the kernel now depends on the population statef through the spillover effect, even

if θ1 < 1, the population state of an agent may grow due to large competitor states. This may lead to a

scenario where the image ofΦ is unbounded, because firms may exhibit unbounded growth. The following

proposition provides a simple condition for existence of SE. The proof can be found in Section 7.2.
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Proposition 2. Suppose thatθ1 < 1, and:

γ <
δ

(1− δ)α supy ζ(y)
(10)

Then there exists an SE for the dynamic oligopoly model with spillovers, and all SE possess the AME

property.

Condition (10) admits a simple interpretation. This condition enforces a form of decreasing returns in

the spillover effect. If the spillover effect is too large relative to depreciation—i.e., if (10) fails—then the

state of a given firm has positive drift whenever other firms have large states; and in this case we expect that,

for somef , the spillover effect can lead to optimal oblivious strategies that yield unbounded growth. On the

other hand, when (10) holds, then this effect is controlled,and despite the presence of positive spillovers the

state distribution has a light tail in equilibrium and the industry becomes fragmented in the limit.

What happens when the sufficient condition fails? We presentone informal scenario that suggests market

concentration may result. Observe that it is plausible thatif the condition fails, few firms will have enough

incentives to grow large to obtain a competitive advantage.Moreover, it is also plausible that a significant

fraction of “fringe” firms will remain small to free-ride on the “dominant” firms. In this sense, when our

condition is violated, a dramatically different market structure might be expected.

4.3 Learning-By-Doing

Another example that commonly arises in oligopoly settingsis learning-by-doing, where firms become more

efficient by producing goods. In a learning-by-doing model,the state of the firm represents its experience

level; this grows in response to production, and otherwise depreciates over time.

In this type of model, it is clear that we require a dichotomy between “increasing” and “decreasing”

returns to experience. Firms have to produce even in the absence of learning, simply to earn profits in each

period. Note that if experience levels continue to grow without bound, then it will be impossible to ensure

SE are light tailed. We show this is in fact sufficient: as longas experience begins to depreciate at sufficiently

large states (in a sense we make precise), then SE exist, the market becomes fragmented in the limit, and the

AME property holds.

We now describe our model; the variant we study is inspired byFudenberg and Tirole (1983).

States. We let the statexi,t represent the cumulative experience level of a firm at timet; this represents

the knowledge accumulated through past production.

Actions. The actionai,t represents the firm’s output (i.e., goods produced) at timet. We consider a

model in which firms compete on quantity; thus firms are coupled to each other through theiractions. As

discussed in Section 3.5, such an extension can be accommodated within our framework by restricting pure

actions to lie on a finite subsetS = {0, 1, . . . , smax} of the integers.3

3This amounts to discretizing the action space of productionquantities. In this case, we allow for mixed strategies to ensure
existence of SE (see Proposition 5). However, note that in many models of interest, under the appropriate concavity assumptions,
this is not very restrictive as firms will mix between two adjacent pure actions in equilibrium.
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Payoffs. At each time period, firms produce goods and compete in a market with n consumers. Let

Pn(·) ≥ 0 be the inverse demand function for a market size ofn. For statex, pure actions, and population

state-action profilef , we can write the payoff function asπn
(

x, s, f,m
)

= sPn

(

s+(m−1)
∑

x′,s′ s
′f(x′, s′)

)

−

C(x, s), where the argument ofPn is the aggregate output (fromm firms) in the market. Note thatf

is a distribution over state-action pairs. Here,C(x, s) denotes the cost of producing quantitys when the

firm’s experience level isx. We assume thatC is nonnegative, decreasing, and convex inx; is increas-

ing and convex ins; and has decreasing differences betweenx and s. Consider a limiting case where

both the number of firmsm and the market sizen become large at the same rate. We assume that there

exists a limiting decreasing continuous demand functionP such that the limit profit function is given by

π
(

x, s, f
)

= sP
(

∑

x′,s′ s
′f(x′, s′)

)

− C(x, s). Note that the limiting case represents perfect competition

as firms become price takers.

Transition dynamics. A firm’s cumulative experience is improved as it produces more goods since it

learns from the production process. On the other hand, experience capital depreciates over time due to

“organizational forgetting.” We assume that a firm’s experience evolves independent of the experience level

or the output of other firms in the market. For concreteness, we assume the transition dynamics are the same

as those described in Section 4.1.

Discussion. Let limx→∞C(x, s) = C(s), that is,C(s) is the cost of producing quantitys for a firm

with infinite experience. Our main result for this model is the following proposition. The proof can be found

in Section 7.3.

Proposition 3. Lets∗ be the production level that maximizessP (0)−C(s). Suppose that for all sufficiently

large x and all actionss ∈ [0, s∗], we have
∑

x′ x′P(x′|x, s) < x; i.e., the state has negative drift at all

such pairs(x, s). Then there exists an SE for the learning-by-doing model, and all SE possess the AME

property.

Observe thatsp − C(x, s) is the single period profit to a firm when the market price isp, the firm

produces quantitys, and its experience level isx. Generally speaking, because of learning, firms at low

experience levels face strong incentives to increase theirexperience, leading them to produce beyond the

single period optimal quantity. However, for firms at high experience levels, the choice of optimal quantity

is driven primarily by maximization of single period profit (becauseC(x, s) is decreasing and convex in

x). The quantitys∗ is an upper bound on the maximizer of single period profits, sothe drift condition in

the proposition ensures that at high experience levels, firms’ maximization of single period profit does not

continue to yield unbounded growth in the experience level.4

The condition requires that the transition kernel must exhibit sufficiently strong decreasing returns to

scale; as long as the possible productivity gains induced bylearning-by-doing are reduced at larger states,

light-tailed SE will exist and the market becomes fragmented in the limit. However, if there are not di-

minishing returns to learning-by-doing, then a firm’s experience level will grow without bound and hence a

4For example, considerC(x, s) = s/x. Thens∗ is the largest allowable pure action, hence, the condition requires that all
actions have negative drift for sufficiently large experience levels. For a less restrictive case, considerC(x, s) = s2/x + s2/c.
Then,s∗ = cP (0)/2, so the condition requires that all actions less than or equal to cP (0)/2 eventually have negative drift.
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light-tailed SE may not exist. This is consistent with priorobservations: an industry for which learning-by-

doing is prevalent may naturally become concentrated over time (Dasgupta and Stiglitz 1988).

5 Theory: Existence

In this section, we study the existence oflight-tailed stationary equilibria. We recall that(µ, f) is a station-

ary equilibrium if and only iff is a fixed point ofΦ(f) = D(P(f), f), such thatµ ∈ P(f) andf ∈ D(µ, f).

Thus our approach is to find conditions under which the correspondenceΦ has a fixed point; in particular,

we aim to apply Kakutani’s fixed point theorem toΦ to find an SE.

Kakutani’s fixed point theorem requires three essential pieces: (1)compactnessof the range ofΦ; (2)

convexityof both the domain ofΦ, as well asΦ(f) for eachf ; and (3) appropriatecontinuityproperties

of the operatorΦ. It is clear, therefore, that our analysis requires topologies on both the set of possible

strategies and the set of population states. For the set of oblivious strategiesMO, we use the topology of

pointwise convergence.

For the set of population states, we recall that a key conceptin our analysis is that of “light-tailed”

population states. To formalize this notion, for the set of population states we consider a topology induced by

the1-p norm. Givenp > 0, the1-p-norm of a functionf : X → R is given by‖f‖1-p =
∑

x∈X ‖x‖pp |f(x)|,

where‖x‖p is the usualp-norm of a vector. LetFp be the set of all possible population states onX with finite

1-p norm, i.e.,Fp =
{

f ∈ F : ‖f‖1-p < ∞
}

. The requirementf ∈ Fp imposes alight-tail condition over

the population statef . The exponentp controls the weight in the tail of the population state: distributions

with finite 1-p-norms for largerp have lighter tails. The condition essentially requires that larger states must

have a small probability of occurrence underf . As we discussed in the context of our examples, light-tailed

SE imply that the market structure becomes fragmented in thelimit of a large number of firms.

We start with the following restatement of Kakutani’s theorem.

Theorem 1 (Kakutani-Fan-Glicksberg). Suppose there exists a setC ⊆ Fp such that (1)C is convex and

compact (in the1-p norm), withΦ(C) ⊂ C; (2) Φ(f) is convex and nonempty for everyf ∈ C; and (3)Φ

has a closed graph onC.5 Then there exists a stationary equilibrium(µ, f) with f ∈ C.

In the remainder of this section, we find exogenous conditions on model primitives to ensure these

requirements are met. We tackle them in reverse order. We first show that under an appropriate continuity

condition,Φ has a closed graph. Next, we study conditions under whichΦ(f) can be guaranteed to be

convex. Finally, we provide conditions on model primitivesunder which there exists a compact, convex set

C with Φ(F) ⊂ C. The conditions we provide suffice to guarantee thatΦ(f) is nonempty for allf ∈ F.

Taken together our conditions ensure existence of SE, as well as an additional stronger characterization:all

SE are light-tailed, i.e., they have finite1-p norm. This fact will allow us to show that every SE satisfies the

AME property in the next section.

5Φ has a closed graph if the set{(f, g) : g ∈ Φ(f)} ⊂ Fp × Fp is closed (whereFp is endowed with the1-p norm).
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5.1 Closed Graph

In this section we develop conditions to ensure the model is appropriately “continuous.” Before stating

the desired assumption, we introduce one more piece of notation. Without loss of generality, we can view

the state Markov process in terms of the increments from the current state. In particular, we can write

xi,t+1 = xi,t + ξi,t, whereξi,t is a random increment distributed according to the probability mass function

Q(· | x, a, f) defined byQ(z′ | x, a, f) = P(x + z′ | x, a, f). Note thatQ(z′ | x, a, f) is positive for only

thosez′ such thatx+ z′ ∈ X . We make the following assumptions over model primitives.

Assumption 1(Continuity). 1. Compact action set. The set of feasible actions for a player, denoted by

A, is compact.

2. Bounded increments. There existsM ≥ 0 such that, for allz with ‖z‖∞ > M , Q(z | x, a, f) = 0,

for all x ∈ X , a ∈ A, andf ∈ F.

3. Growth rate bound. There exist constantsK andn ∈ Z+ such thatsupa∈A,f∈F |π(x, a, f)| ≤ K(1 +

‖x‖∞)n for everyx ∈ X , where‖·‖∞ is the sup norm.

4. Payoff and kernel continuity. For each fixedx, x′ ∈ X andf ∈ F, the payoffπ(x, a, f) and the kernel

P(x′ | x, a, f) are continuous ina ∈ A.

In addition, for each fixedx, x′ ∈ X , the payoffπ(x, a, f) and the kernelP(x′ | x, a, f) are jointly

continuous ina ∈ A andf ∈ Fp (whereFp is endowed with the1-p norm).6

The assumptions are fairly mild and are satisfied in a varietyof models of interest. For example, all

models in Section 4 satisfy it. The first assumption is standard. We also place a finite (but possibly large)

bound on how much an agent’s state can change in one period (Assumption 1.2), an assumption that is

reasonably weak. The polynomial growth rate bound on the payoff is quite weak, and serves to exclude the

possibility of strategies that yield infinite expected discounted payoff.

Finally, Assumption 1.4 ensures that the impact of action onpayoff and transitions is continuous. It also

imposes that the payoff function and transition kernel are “smooth” functions of the population state under

an appropriate norm. We note that whenX is finite, then‖f‖1-p induces the same topology as the standard

Euclidean norm. However, whenX is infinite, the1-p-norm weights larger states higher than smaller states.

In many applications, other players at larger states have a greater impact on the payoff; in such settings,

continuity of the payoff inf in the 1-p-norm naturally controls for this effect. Given a particular model,

the exponentp should be chosen to ensure continuity of the payoff and transition kernel.7 The following

proposition establishes that the continuity assumptions embodied in Assumption 1 suffice to ensure thatΦ

has a closed graph.

Proposition 4. Suppose that Assumption 1 holds. ThenΦ has a closed graph onFp.

6Here we viewP(x′ | x, a, f) as a real valued function ofa andf , for fixedx, x′; note that since we have also assumed bounded
increments, this notion of continuity is equivalent to assuming thatP(· | x, a, f) is jointly continuous ina andf , for fixedx, with
respect to the topology of weak convergence on distributions overX .

7See Section 4 and Section 7 for concrete examples. For example, in subsection 4.1 the payoff function depends on the distri-
butionf via itsθ1 moment so it is natural to endow the set of distributions withthe1-p norm withp = θ1.
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5.2 Convexity

Next, we develop conditions to ensure thatΦ(f) is convex. We first provide a result for mixed strategies and

then a result for pure strategies.

5.2.1 Mixed Strategies

We start by considering a simple model, where the action setA is the simplex ofrandomized actionson

a base set of finite pure actions. This setting is particularly useful when we assume players are coupled

through actions (see Section 3.5). Formally, we have the following definition.

Definition 9. An anonymous stochastic game has afinite action spaceif there exists a finite setS such that

the following three conditions hold:

1. A consists of all probability distributions overS: A = {a ≥ 0 :
∑

s a(s) = 1}.

2. π(x, a, f) =
∑

s a(s)π(x, s, f), whereπ(x, s, f) is the payoff evaluated at statex, population state

f , and pure actions.

3. P(x′ | x, a, f) =
∑

s a(s)P(x′ | x, s, f), whereP(x′ | x, s, f) is the kernel evaluated at statesx′ and

x, population statef , and pure actions.

Essentially, the preceding definition allows inclusion ofrandomizedstrategies in our search for SE. This

model inherits Nash’s original approach to establishing existence of an equilibrium for static games, where

randomization induces convexity on the strategy space. We show next that in any game with finite action

spaces, the setΦ(f) is always convex.

Proposition 5. Suppose Assumption 1 holds. In any anonymous stochastic game with a finite action space,

Φ(f) is convex for allf ∈ F.

The preceding result ensures that if randomization is allowed over a set of finite actions, then the map

Φ is convex-valued. We conclude by noting that another simplification is possible when working with a

finite action space. In particular, it is straightforward toshow thatif Assumption 1 holds for the payoff and

transition kernel over all pure actions, then it also holds for the payoff and transition kernel over all mixed

actions; Proposition 4 follows similarly. The proof follows in an easy manner using the linearity of the

payoff and transition kernel. This is a valuable insight, since in applications it simplifies the complexity of

checking the model assumptions necessary to guarantee existence of an equilibrium. We discuss a similar

point in Section 5.3.

5.2.2 Pure Strategies

In contrast to the preceding section, many relevant applications typically require existence of equilibria in

pure strategies. For such examples, we employ an approach based on the following proposition.

Proposition 6. Suppose thatP(f) is a singleton for allf ∈ F. ThenΦ(f) is convex for allf ∈ F.
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The proof is straightforward:D(µ, f) is convex-valued for any fixedµ andf , since the set of invariant

distributions for the kernel defined byµ andf are identified by a collection of linear equations. Thus if

P(f) is a singleton, thenΦ(f) = D(P(f), f) will be convex.

We now provide two different assumptions over model primitives that guarantee thatP(f) is a singleton,

for all f ∈ F. The first assumption is a condition introduced by Doraszelski and Satterthwaite (2010) and is

described in detail there. The assumption has found wide application in dynamic oligopoly models.

Assumption 2. 1. The state space is scalar, i.e.,X ⊆ Z+, and the action spaceA is a compact interval

of the real numbers.

2. The payoffπ(x, a, f) is strictly decreasing and concave ina for fixedx andf .

3. For all f ∈ F, the transition kernelP is unique investment choice (UIC) admissible: there exist

functionsg1, g2, g3 such thatP(x′ | x, a, f) = g1(x, a, f)g2(x
′, x, f) + g3(x

′, x, f), ∀x′, x, a, f ,

whereg1(x, a, f) is strictly increasing and strictly concave ina.

The preceding conditions ensure that for all population statesf and initial statesx, and all continuation

value functions, the maximization problem in the right handside of Bellman’s equation (cf. (16) in the

Appendix) is strictly concave, or that the unique maximizeris a corner solution.

The previous assumption requires a single-dimensional state space and action space. Our next assump-

tion imposes a different set of conditions over the payoff and the transition kernel, and allows for multi-

dimensional state and action spaces. Before providing our second condition, we require some additional

terminology. LetS ⊂ R
n. We say that a functiong : S → R is nondecreasingif g(x′) ≥ g(x) whenever

x′ ≥ x (where we writex′ ≥ x if x′ is at least as large asx in every component). We sayg is strictly

increasingif the inequality is strict. LetPθ be a family of probability distributions onX indexed byθ ∈ S.

Given a nondecreasing functionu : X → R, defineEθ[u] =
∑

x u(x)Pθ(x). We say thatPθ is stochasti-

cally nondecreasingin the parameterθ, if Eθ[u] is nondecreasing inθ for every nondecreasing functionu.

Similarly, we say thatPθ is stochastically concavein the parameterθ if Eθ[u] is a concave function ofθ for

every nondecreasing functionu. We say thatPθ is strictly stochastically concaveif, in addition,Eθ[u] is

strictly concave for every strictly increasing functionu. We have the following assumption.

Assumption 3. 1. The action setA is convex.

2. The payoffπ(x, a, f) is strictly increasing inx for fixeda and f , and the kernelP(· | x, a, f) is

stochastically nondecreasing inx for fixeda andf .

3. The payoff is concave ina for fixedx andf , and the kernel is stochastically concave ina for fixedx

andf , with at least one of the twostrictly concave ina.

The following result shows the preceding conditions on model primitives ensure the optimal oblivious

strategy is unique.

Proposition 7. Suppose Assumption 1 holds, and that at least one of Assumptions 2 or 3 holds. ThenP(f)

is a singleton, and thusΦ(f) is convex for allf ∈ F.

21



5.3 Compactness

In this section, we provide conditions under which we can guarantee the existence of a compact, convex,

nonempty setC such thatΦ(F) ⊂ C. The assumptions we make are closely related to those neededto

ensure thatΦ(f) is nonempty. To see the relationship between these results,observe that in Lemma 2 in

the Appendix, we show that under Assumption 1 an optimal oblivious strategy always exists for anyf ∈ F.

Thus to ensure thatΦ(f) is nonempty, it suffices to show that there exists at least onestrategy that possesses

an invariant distribution. Our approach to demonstrating existence of an invariant distribution is based

on theFoster-Lyapunov criterionMeyn and Tweedie (1993). Intuitively, this criterion checks whether the

process that describes the evolution of an agent eventuallyhas “negative” drift and in this way controls for

the growth of the agent’s state. This same argument also allows us to bound the moments of the invariant

distribution—precisely what is needed to find the desired set C that is compact in the1-p norm.

One simple condition under whichΦ(f) is nonempty is that the state space is finite; any Markov chain

on a finite state space possesses at least one positive recurrent class. In this case the entire setF is compact

in the1-p norm. Thus we have the following result.

Proposition 8. Suppose Assumption 1 holds, and that the state spaceX is finite. ThenΦ(f) is nonempty

for all f ∈ F, andF is compact in the1-p norm.

We now turn our attention to the setting where the state spacemay be unbounded; for notational simplic-

ity, in the remainder of the section we assumeX = Z
d
+. In this case, we must make additional assumptions

to control for the agent’s growth; these assumptions ensurethe optimal strategy does not allow the state to

become transient, and also allows us to bound moments of the invariant distribution of any optimal oblivious

strategy.

In the sequel we restrict attention to multiplicatively separable transition kernels, as defined below.

Definition 10. The transition kernel ismultiplicatively separableif there exist transition kernelsP1, . . . ,Pd

such that for allx, x′ ∈ X , a ∈ A, f ∈ F, there holdsP(x′|x, a, f) =
∏d

ℓ=1Pℓ(x
′
ℓ|x, a, f). In this case we

letQ1, . . . ,Qℓ be the coordinatewise increment transition kernels; i.e.,Qℓ(zℓ|x, a, f) = Pℓ(xℓ+zℓ|x, a, f),

for z such thatx+ z ∈ X .

This is a natural class of dynamics in models with multidimensional state spaces. We note that ifX is

one-dimensional, the definition is vacuous. We introduce the following assumption.

Assumption 4. 1. For all∆ ∈ Z
d
+, there holdslim sup‖x‖∞→∞ supa∈A,f∈F π(x+∆, a, f)−π(x, a, f) ≤

0.

2. The transition kernelP is multiplicatively separable.

3. For ℓ = 1, . . . , d, Pℓ(·|x, a, f) is stochastically nondecreasing inx ∈ X anda ∈ A for fixedf ∈ F.

4. For ℓ = 1, . . . , d, and for eacha ∈ A and f ∈ F, Qℓ(·|x, a, f) is stochastically nonincreasing in

x ∈ X . Further, for allx ∈ X , supf
∑

zℓ
zℓQℓ(zℓ|x, a, f) is continuous ina.

5. There exists a compact setA′ ⊂ A, a constantK ′, and a continuous, strictly increasing function

κ : R+ → R+ with κ(0) = 0, such that:
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(a) For all x ∈ X , f ∈ F, a 6∈ A′, there existsa′ ∈ A′ with a′ ≤ a, such thatπ(x, a′, f) −

π(x, a, f) ≥ κ(‖a′ − a‖∞).

(b) For all ℓ, and allx′ such thatx′ℓ ≥ K ′, supa′∈A′ supf∈F
∑

zℓ
zℓQℓ(zℓ|x

′, a′, f) < 0.

Some of the previous conditions are natural, while others impose a type of “decreasing returns to higher

states.” First, we discuss the former. Multiplicative separability (Assumption 4.2) is natural. The first part of

Assumption 4.3 is also fairly weak. The transition kernel isstochastically nondecreasing in state in models

for which the state is persistent, in the sense that a larger state today increases the chances of being at a

larger state tomorrow. The transition kernel is stochastically nondecreasing in action in models where larger

actions take agents to larger states.

Assumption 4.1, 4.4, and 4.5 impose a form of “decreasing returns to higher states” in the model. In

particular, Assumption 4.1 ensures the marginal gain in payoff by increasing one’s state becomes nonpositive

as the state grows large. This assumption is used to show thatfor large enough states agents effectively

become myopic; increasing the state further does not provide additional gains. Assumption 4.5 then implies

that as the state grows large, optimal actions produce negative drift inducing a “light-tail” on any invariant

distribution of the resulting optimal oblivious strategy.The setA′ can be understood as (essentially) the set

of actions that maximize the single period payoff function.Assumption 4.5 is often natural because in many

models of interest increasing the state beyond a certain point is costly and requires dynamic incentives;

agents will take larger actions that induce positive drift only if they consider the future benefits of doing so.

The first part of Assumption 4.4 imposes a form of decreasing returns in the transition kernel. The

second part of Assumption 4.4 will hold if, for example, the transition kernel is coordinatewise stochastically

nonincreasing inf ∈ F (with respect to the first order stochastic dominance ordering) and Assumption 1

holds. In this casesupf
∑

zℓ
zℓQℓ(zℓ|x, a, f) =

∑

zℓ
zℓQℓ(zℓ|x, a, f), wheref is the distribution that

places all its mass at state0.

Much of the difficulty in the proof of the result lies in ensuring that the tail of any invariant distri-

bution obtained from an optimal oblivious strategy is uniformly light over the image ofΦ. The fact that

Assumptions 4.1, 4.4, and 4.5 are uniform overf are crucial for this purpose.

Under the preceding assumptions we have the following result.

Proposition 9. SupposeX = Z
d
+, and Assumptions 1 and 4 hold. ThenΦ(f) is nonempty for allf ∈ F,

and there exists a compact, convex, nonempty setC such thatΦ(F) ⊂ C.

Note that the preceding result ensuresΦ(f) ⊂ C for all f ∈ F.

We conclude this section with a brief comment regarding finite action spaces, cf. Definition 9. The key

observation we make is thatif Assumption 4 holds with respect to the pure actions—i.e.,withA replaced by

S—then the same result as Proposition 9 holds for mixed actions. A nearly identical argument applies to

establish the result.

5.4 Summary of Results

The previous results can be summarized by the following corollary that imposes conditions over model

primitives to guarantee the existence of a light-tailed SE.
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Corollary 1. Suppose that (1) Assumption 1 holds; (2) either the game has afinite action space, or Assump-

tion 2 holds, or Assumption 3 holds; and (3) either the state spaceX is finite, orX = Z
d
+ and Assumption

4 holds. Then, there exists a SE, and every SE(µ, f) hasf ∈ Fp.

As we have discussed and as one can show in the examples in Section 4, many models of interest satisfy

Assumption 1 and Assumptions 2 or 3 (or, more generally, somecondition that guarantees uniqueness of

the optimal oblivious strategy); see Section 7. Hence, if these models have a finite state space, existence

of SE follows immediately. If the state space is unbounded, the only condition that remains to be checked

to guarantee existence of SE is Assumption 4. As discussed inthe examples in Section 4, this condition

imposes a form of “decreasing returns to higher states.”

We conclude by emphasizing that under the assumptions of theexistence result all SE havef ∈ Fp; in

other words, all the resulting SE have a light-tail. In the context of our examples, as previously discussed,

this implies that all SE yield a fragmented market structure. In addition, the light-tail property, together with

Assumption 1, will be used in the next section to ensure that the AME property holds.

6 Theory: Approximation

In this section we show that under the assumptions of the preceding section, any SE(µ, f) possesses the

AME property. We emphasize that the AME property is essentially a continuity property in the population

statef . Under reasonable assumptions, we show that the timet population state in the system withm

players,f (m)
−i,t, approaches the deterministic population statef in an appropriate sense almost surely for allt

asm → ∞; in particular, this type of uniform law of large numbers will hold as long asf has tails that are

sufficiently light. If f (m)
−i,t approachesf almost surely, then informally, if the payoff satisfies an appropriate

continuity property inf , we should expect the AME property to hold. The remainder of the section is

devoted to formalizing this argument.

Theorem 2(AME). Suppose Assumption 1 holds. Let(µ, f) be a stationary equilibrium withf ∈ Fp. Then

the AME property holds for(µ, f).

Observe that Assumption 1 is also required for the existenceof SE that satisfyf ∈ Fp. In this sense,

under our assumptions,the AME property is a direct consequence of existence.This relationship between

existence and the AME property is a significant insight of ourwork.

The proof of the AME property exploits the fact that the1-p-norm off must be finite (sincef ∈ Fp)

to show that
∥

∥

∥f
(m)
−i,t − f

∥

∥

∥

1-p
→ 0 almost surely asm → ∞; i.e., the population state of other players

approachesf almost surely under an appropriate norm. Continuity of the payoff π in f , together with the

growth rate bounds in Assumption 1, yields the desired result.

In practice, the light-tail condition—i.e., the requirement thatf ∈ Fp—ensures that an agent’s state

rarely becomes too large under the invariant distributionf associated with the dynamics (6). Weintraub

et al. (2011) provide a similar result in a dynamic industry model with entry and exit. Our result, on the

other hand, is more general in terms of the definition of the AME property, as well as the payoff functions

and transition kernels considered. In particular, we allowfor dependence of the transition kernel on the
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population state. This necessitates a significantly different proof technique, since agents’ states do not

evolve independently in general. We note that the light-tail condition is consequential, as it is possible to

construct examples for which stationary equilibria exist,but f /∈ Fp and the AME property does not hold

(Weintraub et al. 2011).

We conclude by noting that in many models of interest it is more reasonable to assume that the payoff

function explicitly depends on the number of agents. To study these environments, we consider a sequence

of payoff functions indexed by the number of agents,πm(x, a, f). Here, the profit functionπ is a limit:

limm→∞ πm(x, a, f) = π(x, a, f). (See Section 4 for concrete examples.) In this case, if the number of

players ism, the actual expected net present value is defined withπm; hence, the payoff function in the AME

property depends onm. In Appendix B we show that under a strengthening of Assumption 1, Theorem 2

can be generalized to this setting.

7 Examples Revisited

In this section we revisit each of the examples presented in Section 4 and show thatall the propositions for

these examples are consequences of Corollary 1 and Theorem 2. This establishes the key connection in the

paper between existence of SE and the AME property on one hand, and the impact of model primitives on

market structure on the other hand. In particular, our conditions over model primitives imply that all SE

are light-tailed, and therefore, in all SE the industry yields a fragmented market structure, and the AME

property is satisfied.

Formally, recall that the conditions required to establishthe main results of this paper are Assumption 1

(used to ensure continuity properties); Assumption 2 and/or 3 (used to ensure convexity of the image of

Φ); and Assumption 4 (used to ensure the existence of a compactsubsetC ⊂ F such thatΦ(C) ⊂ C). Of

these properties, continuity and convexity are typically straightforward to guarantee in each of the models

we consider below. Thus we primarily focus on the role of Assumption 4.

7.1 Dynamic Oligopoly Models

In this section, we provide the proof of Proposition 1. Note that the payoff function depends on the dis-

tribution f via its θ1 moment, and hence we endow the set of distributions with the topology induced by

the1-p norm withp = θ1. Since the payoff is continuous and nonincreasing in theθ1 moment off , and

the transition kernel is independent off , it is straightforward to check that Assumption 1 holds. In addition,

Doraszelski and Satterthwaite (2010) show that the transition kernel of this model satisfies Assumption 2 (it

can also be shown that Assumption 3 is satisfied).

Thus the desired result is reduced determining whether Assumption 4 holds. It is straightforward to

check that Assumptions 4.2-4 hold; we omit the details. Assumption 4.5 holds because positive drift is

costly, as the kernel defined above exhibits depreciation; in particular, it suffices to setA′ = {0}. Thus the

central condition to check in this model is Assumption 4.1. This assumption holdsif and only ifθ1 < 1: in

this case,supa,f π(x+∆, a, f)−π(x, a, f) → 0 asx → ∞ for all ∆ > 0. Using Corollary 1 and Theorem

2, the result follows.
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Thus, existence of SE and the AME property are closely tied tothe parameterθ which represents how

much consumers value the quality of the product. Forθ < 1, the firms have decreasing marginal returns in

their payoff from increasing their state. This ensures thatthe Markov process associated with a single firm

optimization process is stable which in turn ensures that the range ofΦ is compact. As discussed earlier,

this condition leads to a natural separation between industries where we expect to see a fragmented market

structure and the industries where market concentration islikely to result in the limit.

7.2 Dynamic Oligopoly Models with Positive Spillovers

In this section we provide the proof of Proposition 2. Assumption 1 and 2 follow as in the preceding result;

the proof is omitted. Again we focus on Assumption 4. Assumption 4.1, 4.2, 4.3, and the first part of 4.4

hold as before; we omit the details. The key assumptions thatwe need to verify are thus the second part of

Assumption 4.4, and Assumption 4.5.

Observe that the maximum possible value of the effective investment when a firm takes actiona is

emax(a) , a+ γ supy ζ(y). A straightforward calculation yields:

sup
f

∑

z

zQ(z|x, a, f) = (1− δ)

(

αemax(a)

1 + αemax(a)

)

− δ

(

1

1 + αemax(a)

)

(11)

=
αemax(a)

1 + αemax(a)
− δ. (12)

It follows from the definition of the transition kernel that the second part of Assumption 4.4 holds. In order

for Assumption 4.5 to hold withA′ = {0}, it follows that we need:

γ <
δ

(1− δ)α supy ζ(y)

Using Corollary 1 and Theorem 2, we conclude that the result of the proposition follows if (10) holds.

For industries with spillovers, the compactness assumptions requires that the spillover effect is not too

large relative to depreciation. This along with decreasingmarginal returns in the payoff ensures that the

firms do not have unbounded growth in their state. As a result,the market structure becomes fragmented in

the limit of a large number of firms.

7.3 Learning-By-Doing

In this section, we provide the proof of Proposition 3. SinceP is decreasing andC(x, s) is decreasing inx,

Assumption 1 follows in a straightforward manner in this model, as long asP is continuous. Since this

is a model with finite action spaces, the result of Proposition 5 also applies. Thus, as before, the proof is

reduced to determining whether Assumption 4 holds for the given model. As in the preceding examples, it

is straightforward to check that Assumptions 4.2, 4.3, and 4.4 hold. Note thatπ(x+∆, s, f)−π(x, s, f) =

C(x, s)−C(x+∆, s) for all x, s, f and∆ ≥ 0, and the action space is finite. Thus Assumption 4.1 follows

sinceC(x, s) is nonnegative, decreasing, and convex inx.
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Therefore, our focus turns to Assumption 4.5. Using standard supermodularity arguments, it is simple

to check that anys that maximizesπ(x, s, f) for somex, f is contained in the interval[0, s∗]. In particular,

then, suppose that for all sufficiently largex and all actionss ∈ [0, s∗], we have
∑

z zQ(z|x, s) < 0. Then

Assumption 4.5 holds, so using Corollary 1 and Theorem 2 the result follows.

In learning-by-doing models, compactness of the image ofΦ is ensured by requiring that the transition

kernel exhibits decreasing returns to higher states. In other words, if the productivity gains induced by

learning-by-doing are reduced at larger states, light-tailed SE will exist and the AME property will hold.

As discussed earlier this is consistent with the observation that a very strong learning-by-doing effect (that

persists even at large scale) will likely lead to market concentration.

8 Conclusions

This paper considered stationary equilibrium in dynamic games with many players. Our main results provide

a parsimonious set of assumptions on the model primitives which ensure that a stationary equilibrium exists

in a large variety of games. We also showed that the same set ofassumptions ensure that SE yield fragmented

market structures, and is a good approximation to MPE in large finite games. Through a set of examples,

we illustrate that our conditions on model primitives can benaturally interpreted as enforcing “decreasing

returns to higher states.”

We conclude by noting several extensions that can be developed for the models described here.

1. Entry and exit.A natural extension, particularly relevant for dynamic oligopoly models, would be to

consider a scenario where agents (i.e., firms) make entry andexit decisions endogenously in equilib-

rium. We conjecture that under some mild additional assumptions our results would extend to this

setting.

2. Connections between SE and oblivious equilibrium in finite models.In some contexts, particularly in

empirical settings, it may be more appropriate to work over amodel with a finite number of agents.

In these cases, as discussed in Section B, it is possible to define an “oblivious equilibrium” for finite

models (Weintraub et al. 2008). We conjecture that under some additional technical conditions over

the model primitives we can prove that a sequence of OE satisfies the AME property.

3. Nonstationary equilibrium.Our focus was on SE because it is of practical interest and hasreceived

significant attention in the literature. We conjecture, however, that our results can be extended to

nonstationary versions of an equilibrium concept based on averaging effects that could be used to

approximate transitional short-run dynamics as oppose to long-run behavior.

We leave these directions for future research.
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A Extensions to the Basic Model

A.1 Heterogeneous Players

In this section, we study anonymous stochastic games with ex-ante heterogeneous players. To represent

this heterogeneity, at the beginning of the game, a player isassigned atype(denoted byθ) that stays fixed

for the entire duration of the game. For simplicity, we assume that the players’ types are randomly and

independently drawn out of afinite setΘ with a common prior distributionΓ. Let P(·|x, a, f ; θ) and

π(x, a, f ; θ) denote the transition kernel and payoff of a typeθ player.

To analyze a stochastic game with heterogeneous players, wedefine a new state as follows. Letx̂ =

(x, θ) be an extended state; if a player’s extended state isx̂, we interpret it to mean that the player is in state

x and has a typeθ. We let X̂ = X × Θ denote the expanded state space. Letf̂ denote a population state

over the expanded state space, i.e.,f̂ is a distribution overX̂ . Givenf̂ , we defineF (f̂) ∈ F by:

F (f̂)(x) =
∑

θ

f̂(x, θ).

We have the following two definitions:

π̂(x̂, a, f̂ ) = π(x, a, F (f̂ ); θ);

P̂(x̂′|x̂, a, f̂ ) =

{

0, if θ′ 6= θ;

P(x′|x, a, F (f̂ ); θ), if θ′ = θ.

These definitions simply map the payoff and transition kernel with respect to the extended state back to

the payoff and transition kernel in the original game. Now observe that in the new game defined in this

way, it can be verified that if the original game satisfied Assumptions 1, 2 or 3, and 4 for eachθ, then the

extended game satisfies the same assumptions as well. Thus all our preceding results apply even in games

with heterogeneous players. Because strategies are a function of the extended state, in this case players of

different types will use different strategies.

A.2 Coupling Through Actions

In the main development of this paper, we considered anonymous stochastic games where players are cou-

pled to each other via the population state as defined in equation (2); note, in particular, that the population

state gives the fraction of players at each state. As discussed in the Introduction, however, in many models of

interest the transition kernel and payoff of a player may depend on both the current state andcurrent actions
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of other players. In particular, the example in Section 4.3 is a model where players are coupled through their

actions.

To formally model such a scenario, we consider anm player stochastic game being played in discrete

time over the infinite horizon, where again the payoff and transition kernel of a player are denoted by

π(x, a, f) andP(·|x, a, f) respectively.8 However, we now assume thatf is a distribution over both states

and actions. We refer tof as thepopulation state-action profile(to distinguish it from just the population

state, which is the marginal distribution off overX ). For simplicity, since the prior development in this

paper assumes state spaces are discrete, for the purposes ofthis subsection we restrict attention to a game

with a finite action spaceS ⊂ Z
k, cf. Definition 9; in particular, we assume that players maximize payoffs

with respect to randomized strategies overS. Thus the population state-action profile is a distributionover

X × S.

We again letxi,t ∈ X be the state of playeri at timet, whereX ⊆ Z
d. We letsi,t ∈ S be the (pure)

action taken by playeri at time t. Let f (m)
−i,t denote the empirical population state-action profile at time

t in anm-player game; in other words,f (m)
i,t (x, s) is the fraction of players other thani at statex who

play s at time t. With these definitions,xi,t evolves according to the transition kernelP as before, i.e.,

xi,t+1 ∼ P(·|xi,t, ai,t, f
(m)
−i,t).

A player acts to maximize their expected discounted payoff,as before. Note that a potential challenge

here is that a player’s timet payoff and transition kernel depend on the actions of his competitors, which

are chosensimultaneouslywith his own action. Thus to evaluate the timet expected payoffs and transi-

tion kernel, a player must take an expectation with respect to the randomized strategies employed by his

competitors.

Our first step is to extend the appropriate assumptions to this game model. LetF now denote the set

of all distributions overX × S, and letFp denote the set of all distributions inF with finite 1-p-norm as

before. Assumptions 1 and 4 thus extend naturally to games with coupling through actions, with these new

interpretations ofF andFp.

The AME property continues to hold for games with coupling through actions. Recall that in the proof

of Theorem 2, we establish that if(µ, f) is a stationary equilibrium, then‖f (m)
−i,t − f‖1-p → 0 almost surely

for all t, if players’ initial states are sampled independently fromf , all players other thani follow strategy

µ, and playeri follows any strategy. (See Lemma 10 in the Appendix.) In a game with coupling through

actions,f (m)
−i,t also tracks the empirical distribution of players’ actions. However, since all players other

thani use the same oblivious strategyµ, and since the base action spaceS is finite, it is straightforward to

extend the argument of Lemma 10 to the current setting. The remainder of the existing proof of Theorem 2

carries over essentially unchanged under Assumption 1; forbrevity we omit the details.

Next, recall that to prove existence of a stationary equilibrium, we consider two maps:P(f) (which

identifies the set of optimal oblivious strategies givenf ), andD(µ, f) (which identifies the set of invariant

distributions of the Markov process induced byµ andf ). The analysis ofP(f) proceeds exactly as before

(but with randomized strategies, as discussed in Section 5.2.1). However, in a game with coupling through

actions, we redefineD(µ, f) to be the set of invariant distributions overX ×S induced byµ andf . In other

8For the purposes of this subsection we assume players are homogeneous.
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words,f ′ ∈ D(µ, f) if and only if there exists a distributiong overX such that the following two conditions

hold:

g(x′) =
∑

x

g(x)P(x′|x, µ(x), f), for all x′;

f ′(x, s) = g(x) · µ(x)(s), for all x, s.

Note that hereµ(x)(s) is the probability assigned to pure actions by the randomized strategyµ at statex.

The first equation requires thatg is an invariant distribution of the state Markov process induced byµ andf

(recall Definition 9 of the transition kernel with mixed actions). The second equation requiresf ′ to be

derived fromg in the natural way, viaµ. As before, we letΦ(f) = D(P(f), f).

It is now straightforward to show that if Assumption 1 holds,then the result of Proposition 4 holds, i.e.,Φ

has a closed graph. Further, if Assumptions 1 and 4 hold, thenthe result of Proposition 9 holds as well. From

this and the result in Proposition 5 we conclude that under those assumptions, a stationary equilibrium exists,

and all SE are light-tailed (i.e., have finite1-p norm). The arguments involved are analogous to the existing

proofs, and we omit the details.

We conclude by commenting on the restriction that the actionspace must be finite. From a computational

standpoint this is not very restrictive, since in many applications discretization is required or can be used

efficiently. From a theoretical standpoint, we can analyze games with general compact Euclidean action

spaces using techniques similar to this paper, at the expense of additional measure-theoretic complexity,

since now the population state-action profile is a measure over a continuous extended state space.

B Approximation: Sequence of Payoff Functions

In many models of interest it is more reasonable to assume that the payoff function explicitly depends on the

number of agents. To study these environments, in this section we consider a sequence of payoff functions

indexed by the number of agents,πm(x, a, f). Here, the profit functionπ is alimit: limm→∞ πm(x, a, f) =

π(x, a, f). See Section 4 for concrete examples.

In this case, the actual expected net present value of a player using a cognizant strategyµ′ when every

other of them− 1 players uses an oblivious strategyµ is given by equation (5), but whereπ is replaced by

πm. That is, if the number of players ism, the payoff obtained each period is given byπm. Hence, with

some abuse of notation, for this section, we define:

V (m)
(

x, f | µ′,µ(m−1)
)

,

E

[

∞
∑

t=0

βtπm
(

xi,t, ai,t,f
(m)
−i,t

) ∣

∣ xi,0 = x, f
(m)
−i,0 = f ;µi = µ′,µ−i = µ(m−1)

]

. (13)

We generalize Theorem 2 for this setting. First, we need to strengthen Assumption 1.

Assumption 5. For eachm ∈ Z+, Assumption 1 holds, with the following strengthened properties.
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1. Equicontinuity. The set of functions{πm(x, a, f) : m ∈ Z+} is jointly equicontinuous9 in a ∈ A

andf ∈ Fp.

2. Uniform growth rate bound.There exist constantsK andn ∈ Z+ such thatsupm∈Z+,a∈A,f∈Fp
|πm(x, a, f)| ≤

K(1 + ‖x‖∞)n for everyx ∈ X .

The following result is more general than Theorem 2, becausethe payoff function in the AME property

depends onm.

Theorem 3(AME). Suppose Assumption 5 holds. Let(µ, f) be a stationary equilibrium withf ∈ Fp. Then

the AME property holds for(µ, f).

The proof is similar to Theorem 2, but requires an additionalstep to accommodate the sequence of

payoff functions. However, note that similar to Theorem 2, the stationary equilibrium(µ, f) is fixed and is

computed with the limit payoff functionπ. Alternatively, it is possible to define an “oblivious equilibrium”

(OE) for each finite model. An OE is similar to SE in the sense that agents optimize assuming that the long

run population state is constant; the main difference is that it is defined in a finite model rather than in the

limit model. Under auniform light-tail condition, it can be shown that the sequence of OEsatisfies the AME

property Weintraub et al. (2008). In addition, we conjecture that a version of the assumptions that guarantee

existence of SE in Section 5, but that applies uniformly overall finite models, would guarantee that such

a uniform light-tail condition holds. For clarity of presentation, we chose to work with the SE of the limit

model directly.

Moreover, we believe that the existence result for the limitmodel that we provide is important, because

even though OE might exist under mild conditions for each finite model, SE in the limit model may fail to

exist. In particular, as we discuss in Section 4, this might be the case in applications that exhibit “increasing

returns to scale”. See in particular Sections 4.1, 4.2, and 4.3, for examples of how limit models are derived

in specific applications, and also conditions in such modelsthat ensure stationary equilibria provide accurate

approximations.

C Additional Examples

In this section we present two additional applications to our results, to a model of supply chain competition,

and a model of consumer learning.

C.1 Supply Chain Competition

We now consider an example of supply chain competition amongfirms (Cachon and Lariviere 1999), where

the firms use a common resource that is sold by a single supplier. The firms only interact with each other in

the sourcing stage as the goods produced are assumed to be sold in independent markets.

9Let X andY be two metric spaces, with metricsdX anddY respectively. A set of functionsF mappingX to Y is said to be
equicontinuous atx0 ∈ X , if for everyǫ > 0, there exists aδ > 0 such thatdY(f(x), f(x0)) < ǫ for all f ∈ F and allx such that
dX (x0, x) < δ.
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States.We let the statexi,t be the inventory of goods held by firmi at timet.

Actions.At each time period, the supplier runs an auction to sell the goods. Each firmi places a bidai,t
at timet; for example,ai,t may denote the willingness-to-pay of the supplier, or it maybe a two-dimensional

bid consisting of desired payment and quantity. Since the interaction between firms is via their action profiles

we again assume that the action taken by a firm lies in a finite subsetS of the integer lattice.

Transition dynamics.Suppose that each firmi sees demanddi,t at timet; we assumedi,t are i.i.d. and

independent across firms, with bounded nonnegative supportand positive expected value. Further, suppose

that when a firm bidss and the population state-action profile isf , the firm receives an allocationξ(s, f).

Then the state evolution for a firmi is given byxi,t+1 = max{xi,t − di,t, 0} + ξ(si,t,f
(m)
−i,t). Note that

ξ depends onf (m)
−i,t only through the marginal distribution over actions. We make the natural assumptions

that ξ(s, f) is increasing ins and decreasing inf (where the set of distributions is ordered in the first

order stochastic dominance sense). Thus the transition kernel captures inventory evolution in the usual way:

demand consumes inventory, and procurement restocks inventory. The amount of resource procured by a

firm and the price it pays depends on its own bid, as well as bidsof other firms competing for the resource.

As one example of howξ might arise, suppose that the supplier uses aproportional allocation mecha-

nism(Kelly 1997). In such a mechanism, the bids denotes the total amount a firm pays. Further, suppose

the total quantityQm of the resource available scales with the number of firms, i.e., Qm = mQ. Let

k(s|f) =
∑

x f(x, s) denote the fraction of agents biddings in population state-action profilef .

Asm → ∞, and introducingR as a small “reserve” bid that ensures the denominator is always nonzero,

we obtain the following limiting proportional allocation function:ξ(s, f) = sQ/
(

R+
∑

s′ s
′k(s′|f)

)

. Note

that this expression is increasing ins and decreasing inf .

Payoffs.A firm earns revenue for demand served, and incurs a cost both for holding inventory, as well

as for procuring additional goods via restocking. We assumeevery firm faces an exogenous retail priceφ.

(Heterogeneity in the retail price could be captured via thedescription in Section 3.5.) Leth be the unit

cost of holding inventory for one period and letΩ(s, f) be the procurement payment made by a firm with

bid s, when the population state-action profile isf ; of course,Ω also depends onf only throughk(·|f).

In general we assume thatΩ is increasing inf for each fixeds. In the proportional allocation mechanism

described above, we simply haveΩ(s, f) = s. Since the demand is i.i.d., the single period payoff for a

firm is given by the expected payoff it receives, where the expectation is over the demand uncertainty; i.e.

π(x, s, f) = φE[min{d, x}] − hx− Ω(s, f).

Discussion.We have the following proposition.

Proposition 10. Suppose thatd has positive expected value. Then there exists an SE for the supply chain

competition model with the proportional allocation mechanism, and all SE possess the AME property.

Proof. We present the proof in a more general setting, and specialize to the proportional allocation mech-

anism. Ifξ andΩ are uniformly bounded and appropriately continuous inf for each pure actions, then

Assumption 1 follows in a straightforward manner. For example, in the proportional allocation mechanism

with a positive reserve bidR, note thatξ is continuous inf in the1-p norm withp = 1, sinceξ depends

on f through its first moment. Since this is a model with finite action spaces, the result of Proposition 5
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also applies. Thus, as before, the proof is reduced to determining whether Assumption 4 holds for the given

model.

As before, Assumption 4.2, Assumption 4.3, and Assumption 4.4 are easy to check. Assumption 4.1

follows because the payoff function is decreasing inx for largex. Finally, suppose0 ∈ S andξ(0, f) = 0

for all f ; this will be the case, for example, in the proportional allocation mechanism with reserveR. Then

if A′ = {0}, it follows that Assumption 4.5 holds, as long as (1)d has positive expected value; and (2)

bidding zero is myopically optimal, and this induces negative drift in the inventory level. Note that bidding

zero is myopically optimal for the proportional allocationmechanism, and this induces negative drift in the

inventory. Using Corollary 1 and Theorem 2 the result follows.

More generally, for other choices of allocation mechanism,it can be shown that the same result holds if

d has positive expected value and the following conditions hold: (1) if ξ andΩ are uniformly bounded and

appropriately continuous inf for each pure actions; (2) 0 ∈ S andξ(0, f) = 0 for all f ; and (3) bidding

zero maximizes a firm’s single period payoff, and this induces negative drift in the inventory level.

In this model, decreasing returns to higher states are naturally enforced because the payoff function

becomesdecreasingin the state as the state grows. Simply because holding inventory is costly, firms prefer

not to become arbitrarily large. Thus in this model light tails in the population state can be guaranteed under

fairly weak assumptions on the model primitives.

C.2 Consumer Learning

In this section, we analyze a model of social learning. Imagine a scenario where a group of individuals decide

to consume a product (e.g., visiting a restaurant). These individuals learn from each other’s experience,

perhaps through product reviews or word-of-mouth (see, forexample, Ching 2010).

States.We letxi,t be the experience level of an individual at timet.

Actions. At each time periodt, an individual invests an “effort”ai,t ∈ [0, a] in searching for a new

product.

Payoffs.At each time period, an individual selects a product to consume. The quality of the product is a

normally distributed random variableQ with a distribution given byQ ∼ N (γa, ω(x, f)), whereγ > 0 is a

constant. Thus, the average quality of the product is proportional to the amount of effort made. Furthermore,

the variance of the product is dependent on both individual and population experience levels.

We assume thatω(x, f) is continuous in the population statef (in an appropriate norm, cf. Section

5). We make the natural assumption thatω(x, f) is a nonincreasing function off and strictly decreasing

in x (where the set of distributions is ordered in the first order stochastic dominance sense). This is natural

as we expect that as an individual’s experience increases orif she can learn from highly expert people, the

randomness in choosing a product will decrease. We also assume that there exists constantsσL, σH , such

thatσ2
L ≤ ω(x, f) ≤ σ2

H .

The individual receives a utilityU(Q), whereU(·) is a nondecreasing concave function of the quality.

For concreteness, we letU(Q) = 1−e−Q. Since at each time, the individual selects the product or the restau-

rant in an i.i.d. manner, the single period payoff is given byπ(x, a, f) = E [U(Q) | Q ∼ N (γa, ω(x, f))]−

da = 1− e−γa+ 1
2
ω(x,f) − da,, whered is the marginal cost of effort.

35



Transition dynamics.An individual’s experience level is improved as she expendseffort because she

learns more about the quality of products. However, this experience level also depreciates over time; this

depreciation is assumed to be player-specific and comes about because an individual’s tastes may change

over time. Thus, an individual’s experience evolves (independently of the experience of others or their in-

vestments) in a stochastic manner. Several specifications for the transition kernel satisfying our assumptions

can be used; for concreteness we assume that the dynamics arethe same as those described in Section 4.1.

Discussion.Our main result is the following proposition.

Proposition 11. Suppose that:

d ≥ γe−γc0+
1
2
σ2
H , (14)

wherec0 = δ/(α(1 − δ)). Then there exists an SE for the consumer learning model, andall SE possess the

AME property.

Proof. Note thatω(x, f) < σ2
H and thus the growth rate bound in Assumption 1 is trivially satisfied. If

ω(x, f) is continuous inf (in the appropriate1-p norm), then Assumption 1 follows in a straightforward

manner. To verify thatΦ(f) is convex, we note that Assumption 3 will hold ifπ(x, a, f) is strictly increasing

in x and concave ina. Sinceω(x, f) is strictly decreasing inx, these conditions are naturally satisfied for

our model. Thus, to complete the proof, we need to verify Assumption 4.

It is straightforward to check that Assumption 4.2-4 hold; we omit the details. Assumption 4.1 follows

sinceω(x, f) is nonincreasing inx and bounded below, soω(x, f)−ω(x+∆, f) → 0 asx → ∞. In order

for Assumption 4.5 to hold, we requireA′ to contain allmyopicallyoptimal actions. A straightforward

calculation shows thatargmaxa π(x, a, f) = a∗(x, f), where

a∗(x, f) =
1

2γ
ω(x, f)−

1

γ
log

(

d

γ

)

;

for simplicity we assume0 < a∗(x, f) < a for all x, f , though an analogous argument holds otherwise.

Thus we defineA′ = [0, amax], where:

amax =
1

2γ
σ2
H −

1

γ
log

(

d

γ

)

.

To verify Assumption 4.5(a), note that ifa 6∈ A′, then:

π(x, a∗(x, f), f)− π(x, a, f) = e−γa∗(x,f)+ 1
2
ω(x,f)(e−γ(a−a∗(x,f)) − 1) + d(a− a∗(x, f))

=
d

γ
κ(a− a∗(x, f)),

whereκ(x) = e−γx−1+γx, which is strictly increasing and nonnegative withκ(0) = 0. Here the preceding

derivation follows by observing that the optimality condition fora∗(x, f) ensures thatγe−γa∗(x,f)+ 1
2
ω(x,f) =

d. Thus Assumption 4.5(a) holds.

When do the actions inA′ produce negative drift in the state? For the dynamics given in Section 4.1, one

can easily verify that the drift is negative if the action is sufficiently small; in particular, the drift is negative
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for any actiona such that:

a <
δ

(1− δ)α
, c0,

whereδ ∈ (0, 1) is the probability that the experience depreciates andα > 0 controls the probability that a

player is successful in improving the experience. The aboveinequality is satisfied by alla′ ∈ A′ if :

d ≥ γe−γc0+
1
2
σ2
H .

Using Corollary 1 and Theorem 2 the result follows.

Recall thatδ ∈ (0, 1) is the probability that the experience depreciates andα > 0 controls the probability

that a player is successful in improving the experience. Theright hand side is an upper bound to the marginal

gain in utility due to effort, at effort levelc0; while the left hand side is the marginal cost of effort. Thus

the condition (14) can be interpreted as a requirement that the marginal cost of effort should be sufficiently

large relative to the marginal gain in utility due to effort.Otherwise, an individual’s effort level when her

experience is high will cause her state to continue to increase, so a light-tailed SE may not exist. Hence we

see the same dichotomy as before: decreasing returns to higher states yield existence of SE and the AME

property, while increasing returns may not.

D Existence and AME: Preliminary Lemmas

We begin with the following lemma, which follows from the growth rate bound and bounded increments in

Assumption 1.

Lemma 1. Suppose Assumption 1 holds. Letx0 = x. Let at ∈ A be any sequence of (possibly history

dependent) actions, and letft ∈ F be any sequence of (possibly history dependent) populationstates.

Let xt be the state sequence generated, i.e.,xt ∼ P(· | xt−1, at−1, ft−1). Then for allT ≥ 0, there exists

C(x, T ) < ∞ such thatE
[
∑∞

t=T βt|π(xt, at, ft)|
∣

∣ x0 = x
]

≤ C(x, T ). Further,C(x, T ) → 0 asT → ∞.

Proof. Observe that by Assumption 1, the increments are bounded. Thus starting from statex, we have

‖xt‖∞ ≤ ‖x‖∞ + tM . Again by Assumption 1,|π(xt, at, ft)| ≤ K(1 + ‖xt‖∞)n. Therefore:

E

[

∞
∑

t=T

βt|π(xt, at, ft)| | x0 = x

]

≤ K

∞
∑

t=T

βt(1 + ‖x‖∞ + tM)n.

We defineC(x, 0) as the right hand side above whenT = 0:

C(x, 0) = K

∞
∑

t=0

βt(1 + ‖x‖∞ + tM)n.

Observe thatC(x, 0) < ∞.
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We now reason as follows forT ≥ 1:

K

∞
∑

t=T

βt(1 + ‖x‖∞ + tM)n = KβT
∞
∑

t=0

βt(1 + ‖x‖∞ + tM + TM)n

= KβT
∞
∑

t=0

βt
n
∑

j=0

(

n

j

)

(1 + ‖x‖∞ + tM)j(TM)n−j

≤ KβT
∞
∑

t=0

βt
n
∑

j=0

(

n

j

)

(1 + ‖x‖∞ + tM)n(TM)n

= KβT 2n(TM)n
∞
∑

t=0

βt(1 + ‖x‖∞ + tM)n

= C(x, 0)βT (2MT )n.

Here the inequality holds because1 + ‖x‖∞ + tM ≥ 1, M ≥ 0, andT ≥ 1. So forT ≥ 1, define:

C(x, T ) = C(x, 0)βT (2MT )n. (15)

ThenC(x, T ) → 0 asT → ∞, as required.

We now show that the Bellman equation holds for the dynamic program solved by a single agent given

a population statef . Given our unbounded state space, our proof involves the useof a weighted sup norm,

defined as follows. For eachx ∈ X , letW (x) = (1 + ‖x‖∞)n. For a functionF : X → R, define:

‖F‖W -∞ = sup
x∈X

∣

∣

∣

∣

F (x)

W (x)

∣

∣

∣

∣

.

This is the weighted sup norm with weight functionW . We letB(X ) denote the set of all functionsF :

X → R such that‖F‖W -∞ < ∞.

LetTf denote the dynamic programming operator with population statef : given a functionF : X → R,

we have(TfF )(x) = supa∈A

{

π(x, a, f)+β
∑

x′∈X F (x′)P(x′ | x, a, f)
}

. We defineT k
f to be the compo-

sition of the mappingTf with itself k times. The following lemma applies standard dynamic programming

arguments.

Lemma 2. Suppose Assumption 1 holds. For allf ∈ F, if F ∈ B(X ) thenTfF ∈ B(X ). Further,

there existk, ρ independent off with 0 < ρ < 1 such thatTf is a k-stageρ-contraction onB(X ); i.e., if

F,F ′ ∈ B(X ), then for allf :
∥

∥

∥
T k
f F − T k

f F
′
∥

∥

∥

W -∞
≤ ρ ‖F − F ′‖W -∞ .

In particular, value iteration converges tõV ∗(·|f) ∈ B(X ) from any initial value function inB(X ),

and for all f ∈ F andx ∈ X , the Bellman equation holds:

Ṽ ∗(x | f) = sup
a∈A

{

π(x, a, f) + β
∑

x′∈X

Ṽ ∗(x′ | f)P(x′ | x, a, f)
}

. (16)

Further, Ṽ ∗(x|f) is continuous inf ∈ Fp.
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Finally, there exists at least one optimal oblivious strategy among all (possibly history-dependent, pos-

sibly randomized) strategies; i.e.,P(f) is nonempty for allf ∈ F. An oblivious strategyµ ∈ MO is optimal

givenf if and only ifµ(x) achieves the maximum on the right hand side of(16) for everyx ∈ X .

Proof. We have the following three properties:

1. By growth rate bound in Assumption 1 we havesupa |π(x, a, f)|/W (x) ≤ K for all x.

2. We have:

W (x) = sup
a∈A

∑

x′

P(x′ | x, a, f)W (x′) ≤ (1 + ‖x‖∞ +M)n,

since the increments are bounded (Assumption 1). ThusW (x)/W (x) ≤ (1 +M)n for all x.

3. Finally, fixρ such that0 < ρ < 1 and let:

W k(x) = sup
µ∈MO

E[W (xk)|x0 = x, µ],

where the state evolves according toxt+1 ∼ P(· | xt, µ(xt), f). By bounded increments in Assump-

tion 1, we have:

βkW k(x) ≤ βk(1 + ‖x‖∞ + kM)n ≤ βk(1 + kM)nW (x).

By choosingk sufficiently large so thatβk(1 + kM)n < ρ, we have:

βkW k(x) ≤ ρW (x).

Given (1)-(3), by standard arguments (see, e.g., Bertsekas2007), it follows thatTf is a k-stageρ-

contraction with respect to the weighted sup norm, value iteration converges tõV ∗(· | f), the Bellman

equation holds, and any (stationary, nonrandomized) oblivious strategy that maximizes the right hand side

in (16) for eachx ∈ X is optimal. Observe that sincẽV ∗(· | f) ∈ B(X ) for any f , it follows that

Ṽ ∗(x | f) < ∞ for all x. In fact, by Lemma 1,|Ṽ ∗(x | f)| ≤ C(x, 0) for all x.

Next we show that̃V ∗(x | f) is continuous inf . DefineZ(x) = 0 for all x, and letV (ℓ)
f = T ℓ

fZ. We

first show thatV (ℓ)
f (x) is continuous inf . To see this, we proceed by induction. The result is trivially true

at ℓ = 0. Next, observe thatπ(x, a, f) is jointly continuous ina andf for each fixedx by Assumption 1.

SupposeV (ℓ)
f (x) is continuous inf for eachx; then V

(ℓ)
f (x′)P(x′ | x, a, f) is jointly continuous ina

andf for each fixedx, x′. Since the kernel has bounded increments from Assumption 1,we conclude that
∑

x′ V
(ℓ)
f (x′)P(x′ | x, a, f) is jointly continuous ina andf for each fixedx. It follows by Berge’s maximum

theorem (Aliprantis and Border 2006) thatV
(ℓ+1)
f (x) is continuous inf .

Fix ǫ > 0. SinceTf is ak-stageρ-contraction in the weighted sup norm for everyf , it follows that for

all sufficiently largeℓ, for everyf there holds:

|V
(ℓ)
f (x)− Ṽ ∗(x | f)| ≤ W (x)ǫ.

39



So now suppose thatfn → f in the1-p norm. SinceV ℓ
f (x) is continuous inf , for all sufficiently largen

there holds:

|V
(ℓ)
fn

(x)− V
(ℓ)
f (x)| ≤ ǫ.

Thus using the triangle inequality, for all sufficiently largen we have:

|Ṽ ∗(x | f)− Ṽ ∗(x | fn)| ≤ (2W (x) + 1)ǫ.

Sinceǫ was arbitrary it follows that the left hand side approaches zero asn → ∞, as required. Finally,

observe that by a similar argument as above,

∑

x′

Ṽ ∗(x′ | f)P(x′ | x, a, f)

is a continuous function ofa for each fixedx andf ; sinceπ(x, a, f) is also continuous ina for each fixed

f , the right hand side of (16) is continuous ina for each fixedf . SinceA is compact, it follows that there

exists an optimal action at each statex, and thus there exists an optimal strategy givenf .

E Existence: Proof

E.1 Closed Graph: Proof

Throughout this subsection we suppose Assumption 1 holds.

Lemma 3. For eachf , P(f) is compact; further, the correspondenceP is upper hemicontinuous onFp.

Proof. By Assumption 1,π(x, a, f) is jointly continuous ina andf . Lemma 2 establishes that the optimal

oblivious value functioñV ∗(x | f) is continuous inf , and so as in the proof of that lemma, it follows that for

a fixed statex, π(x, a, f)+β
∑

x′ Ṽ ∗(x′ | f)P(x′ | x, a, f) is finite and jointly continuous ina andf . Define

the setPx(f) ⊂ A as the set of actions that achieve the maximum on the right hand side of (16); this is

nonempty asA is compact (Assumption 1) and the right hand side is continuous ina. By Berge’s maximum

theorem, for eachx the correspondencePx is upper hemicontinuous with compact values (Aliprantis and

Border 2006).

By Lemma 2,µ ∈ P(f) if and only if µ(x) ∈ Px(f) for eachx. Note that we have endowed the set

of strategies with the topology of pointwise convergence. The range space ofP is an infinite product of

the compact action spaceA (Assumption 1) over the countable state space. Hence by Tychonoff’s theo-

rem (Aliprantis and Border 2006), the range space ofP is compact. Further, sincePx is compact-valued,

it follows thatP is compact-valued. SincePx(f) is compact-valued and upper hemicontinuous, the Closed

Graph Theorem ensures thatPx has a closed graph (Aliprantis and Border 2006). This in turnensures that

P has closed graph; again by the Closed Graph Theorem, we conclude thatP is upper hemicontinuous.

Proof of Proposition 4. Supposefk → f in the 1-p norm, and thatgk → g in the 1-p norm, where

gk ∈ Φ(fk) for all k. We must show thatg ∈ Φ(f). For eachk, let µk ∈ P(fk) be an optimal oblivious
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strategy such thatgk ∈ D(µk, fk). As in the proof of Lemma 3, the range space ofP is compact in the

topology of pointwise convergence; therefore, taking subsequences if necessary, we can assume without

loss of generality thatµk converges to some strategyµ ∈ MO pointwise. By upper hemicontinuity ofP

(Lemma 3), we haveµ ∈ P(f).

By definition ofD, it follows that for allx:

gk(x) =
∑

x′

gk(x
′)P(x|x′, µk(x

′), fk). (17)

SinceP(x|x′, a, f) is jointly continuous in action and population state (Assumption 1), it follows that for

all x andx′:

P(x|x′, µk(x
′), fk) → P(x|x′, µ(x′), f)

ask → ∞. Further, ifgk → g in the1-p norm, then in particular,gk(x) → g(x) for all x. Finally, observe

that for alla andf , we haveP(x|x′, a, f) = 0 for all statesx′ such that‖x′ − x‖∞ > M , since increments

are bounded (Assumption 1). Thus:

∑

x′

gk(x
′)P(x|x′, µk(x

′), fk) →
∑

x′

g(x′)P(x|x′, µ(x′), f)

ask → ∞. Taking the limit ask → ∞ on both sides of (17) yields:

g(x) =
∑

x′

g(x′)P(x|x′, µ(x′), f), (18)

which establishes thatg ∈ D(µ, f). Since we hadµ ∈ P(f), we concludeg ∈ Φ(f), as required.

E.2 Convexity: Proof

Proof of Proposition 5. Fix f ∈ Fp, and letg1, g2 be elements ofΦ(f). Let µ1, µ2 ∈ P(f) be strategies

such thatgi ∈ D(µi, f), i = 1, 2. Then fori = 1, 2 and allx′ ∈ X , we have:

gi(x
′) =

∑

x

gi(x
′)P(x′ | x, µi(x), f).

Fix δ, 0 ≤ δ ≤ 1, and for eachx, defineg(x) by:

g(x) = δg1(x) + (1− δ)g2(x).

We must showg ∈ Φ(f). Define a new strategyµ as follows: for eachx such thatg(x) > 0,

µ(x) =
δg1(x)µ1(x) + (1− δ)g2(x)µ2(x)

g(x)
.

For eachx such thatg(x) = 0, letµ(x) = µ1(x).
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We claim thatµ ∈ P(f), i.e.,µ is an optimal oblivious strategy givenf ; and thatg ∈ D(µ, f), i.e., that

g is an invariant distribution given strategyµ and population statef . This suffices to establish thatg ∈ Φ(f).

To establish the claim, first observe that under Definition 9,the right hand side of (16) islinear in a.

Thus any convex combination of two optimal actions is also anoptimal action. This establishes that for

everyx, µ(x) achieves the maximum on the right hand side of (16); so we concludeµ ∈ P(f).

Let T = {x : g(x) > 0}. Then:

g(x′) = δg1(x
′) + (1− δ)g2(x

′)

=
∑

x

δg1(x)P(x′ | x, µ1(x), f) + (1− δ)g2(x)P(x′ | x, µ2(x), f)

=
∑

x

∑

s

(δg1(x)µ1(x)(s) + (1− δ)g2(x)µ2(x)(s))P(x′ | x, s, f)

=
∑

x∈T

∑

s

g(x)µ(x)(s)P(x′ | x, s, f).

The first equality is the definition ofg(x′), and the second equality follows by expanding the invariant

distribution equations forg1 andg2. The third equality follows by expanding the sum over pure actions

s. Finally, in the last equality, we substitute the definitionof g(x), and we also observe that forx 6∈ T ,

g(x) = 0—and therefore,g1(x) = g2(x) = 0. Sinceg(x) = 0 for x 6∈ T , it follows that:

∑

x 6∈T

∑

s

g(x)µ(x)(s)P(x′ | x, s, f) = 0.

It follows that:

g(x′) =
∑

x

g(x)P(x′ | x, µ(x), f),

as required.

Lemma 4. Suppose Assumptions 1 and 3 hold. ThenṼ ∗(· | f) is strictly increasing for everyf ∈ Fp, and

the right hand side of(16) is strictly concave ina.

Proof. DefineZ(x) = 0 for all x, and letV (ℓ)
f = T ℓ

fZ. Observe that ifV (ℓ)
f is nondecreasing, then under

the conditions of the lemma, it follows thatV (ℓ+1)
f will be nondecreasing. Taking the limit asn → ∞, we

conclude (from convergence of value iteration) thatṼ ∗(· | f) is nondecreasing, and thus the right hand side

of (16) isstrictly increasingin x. From this it follows that in fact,̃V ∗(· | f) is strictly increasing.

SinceṼ ∗(· | f) is strictly increasing,π(x, a, f) is concave ina, and the kernel is stochastically concave

in a, with at least one of the last two strictly concave, it follows that the right hand side of (16) is strictly

concave ina.

Proof of Proposition 7. Under Assumptions 1 and 2, the optimal action in (16) can be shown to be unique

(see Doraszelski and Satterthwaite 2010). It follows thatP(f) is a singleton.

From the preceding lemma, Assumptions 1 and 3 together also guarantee a unique optimal solution in

the right hand side of (16), for everyx ∈ X . Thus under either of these conditions the optimal strategygiven
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f is unique, i.e.,P(f) is a singleton. The result follows by Proposition 6.

E.3 Compactness: Proof

Throughout this subsection we supposeX = Z
d
+ and that Assumptions 1 and 4 are in effect.

Lemma 5. Givenx′ ≥ x, x, x′ ∈ X , a ∈ A, and f ∈ F, there exists a probability space with random

variablesξ′ ∼ Q(· | x′, a, f), ξ ∼ Q(· | x, a, f), such thatξ′ ≤ ξ almost surely, andx′ + ξ′ ≥ x+ ξ almost

surely.

Proof. The proof uses a coupling argument. LetU be a uniform random variable on[0, 1]. LetFℓ (resp.,F ′
ℓ)

be the cumulative distribution function ofQℓ(· | x, a, f) (resp.,Qℓ(· | x
′, a, f)), and letGℓ (resp.,G′

ℓ) be the

cumulative distribution function ofPℓ(· | x, a, f) (resp.,Pℓ(· | x
′, a, f)). By Assumption 4,Pℓ(· | x, a, f)

is stochastically nondecreasing inx, andQℓ(· | x, a, f) is stochastically nonincreasing inx. Thus for allz,

Fℓ(z) ≤ F ′
ℓ(z), but for ally, Gℓ(y) ≥ G′

ℓ(y); further,Gℓ(y) = Fℓ(y − xℓ) (andG′
ℓ(y) = F ′

ℓ(y − x′ℓ)). Let

ξℓ = inf{zℓ : Fℓ(zℓ) ≥ U}, and letξ′ℓ = inf{zℓ : F
′(zℓ) ≥ U}. Thenξℓ ≥ ξ′ℓ for all ℓ, i.e.,ξ ≥ ξ′. Rewriting

the definitions, we also havexℓ+ξℓ = inf{yℓ : Fℓ(yℓ−xℓ) ≥ U}, andx′ℓ+ξ′ℓ = inf{yℓ : F
′
ℓ(yℓ−x′ℓ) ≥ U},

i.e.,xℓ + ξℓ = inf{yℓ : Gℓ(yℓ) ≥ U}, andx′ℓ + ξ′ℓ = inf{yℓ : G
′
ℓ(yℓ) ≥ U}. Thusxℓ + ξℓ ≤ x′ℓ + ξ′ℓ for all

ℓ, i.e.,x′ + ξ′ ≥ x+ ξ, as required.

Given a setS defineρ∞(x, S) = infy∈S ‖x − y‖∞. Thusρ∞ gives the∞-norm distance to a set. We

have the following lemma.

Lemma 6. As‖x‖∞ → ∞, supf∈F supµ∈P(f) ρ∞(µ(x),A′) → 0.

Proof. Suppose the statement of the lemma fails; then there existsr > 0 and a sequencefn ∈ F, µn ∈

P(fn), andxn (where‖xn‖∞ → ∞) such thatρ∞(µn(xn),A
′) ≥ r for all n. We use this fact to construct

a profitable deviation from the policyµn, for sufficiently largen.

Observe that by Assumption 4, there must exista′n ∈ A′ with a′n ≤ µn(xn), such that:

π(xn, a
′
n, fn)− π(xn, µn(xn), fn) ≥ κ(‖a′n − µn(xn)‖∞) ≥ κ(r) > 0,

where the last inequality follows sinceκ is strictly increasing withκ(0) = 0. Importantly, note the bound

on the right hand side is a constant, independent ofn.

Letx0,n = xn, and letxt,n andat,n denote the state and action sequence realized underµn, starting from

x0,n, under the kernelP(·|x, a, fn). We consider a deviation fromµn, where at time0, instead of playing

a0,n = µn(xn), the agent playsa′0,n = a′n; and then at all times in the future, the agentfollows the same

actions as the original sequence, i.e.,a′t,n = at,n. Letx′t,n denote the resulting state sequence.

Since the kernel is stochastically nondecreasing ina, and a′n ≤ an, it follows that there exists a

common probability space together with incrementsξ0,n, ξ
′
0,n, such thatξ0,n ∼ Q(·|xn, an, fn), ξ′0,n ∼

Q(·|xn, a
′
n, fn), andξ′0,n ≤ ξ0,n almost surely. Thus we can couple togetherx1,n andx′1,n, by letting

x1,n = xn+ξ0,n, andx′1,n = xn+ξ′0,n. In particular, observe that with these definitions we havex1,n ≥ x′1,n.

Let∆n = ξ0,n − ξ′0,n ≥ 0. Note that‖∆n‖∞ ≤ 2M , by Assumption 1 (bounded increments).
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Next, it follows from Lemma 5 that there exists a probabilityspace with random variablesξ1,n, ξ′1,n
such thatξ1,n ∼ Q(·|x1,n, a1,n, fn) and ξ′1,n ∼ Q(·|x′1,n, a1,n, fn), ξ1,n ≤ ξ′1,n almost surely, and yet

x1,n + ξ1,n ≥ x′1,n + ξ′1,n almost surely. Thus we can couple togetherx2,n andx′2,n, by lettingx2,n =

x1,n + ξ1,n, and letx′2,n = x′1,n + ξ′1,n. Proceeding inductively, it can be shown that there exists ajoint

probability measure under which0 ≤ xt,n − x′t,n ≤ ∆n, almost surely, for allt ≥ 1 (where the inequalities

are interpreted coordinatewise); this follows by a standard application of the Kolmogorov extension theorem.

We now compare the payoffs obtained under these two sequences. We have:

E

[

∑

t

βt(π(xt,n, at,n, fn)− π(x′t,n, a
′
t,n, fn))

]

= π(xn, µn(xn), fn)− π(xn, a
′
n, fn)

+ E





∑

t≥1

βt(π(xt,n, at,n, fn)− π(x′t,n, at,n, fn))





≤ −κ(r) + E





∑

t≥1

βt sup
δ≥0:‖δ‖∞≤2M

sup
a,f

(π(xt,n, a, f)− π(xt,n − δ, a, f))



 .

Since increments are bounded (Assumption 4), in timet, the maximum distance the state could have

moved in each coordinate from the initial statex is bounded bytM . Thus ifx0,n = xn, then:

sup
δ≥0:‖δ‖∞≤2M

sup
a,f

(π(xt,n, a, f)−π(xt,n−δ, a, f)) ≤ sup
δ≥0,ǫ:‖δ‖∞≤2M,

‖ǫ‖∞≤tM

sup
a,f

(π(xn+ǫ, a, f)−π(xn+ǫ−δ, a, f)).

Let At,n denote the right hand side of the preceding equation; note that this is a deterministic quantity, and

that the supremum is over a finite set. Thus from Assumption 4,we havelim supn→∞At,n ≤ 0.

Finally, observe that sincelim sup‖x‖∞→∞ supa,f (π(x+ δ, a, f) − π(x, a, f)) ≤ 0, it follows that:

sup
y∈Zd

+,δ≥0:‖δ‖∞≤2M

sup
a,f

(π(y, a, f)− π(y − δ, a, f)) < ∞.

We denote the left hand side of the preceding inequality byD. Note that this is a constant independent ofn.

Combining our arguments, we have that for all sufficiently largen, there holds:

E

[

∑

t

βt(π(xt,n, at,n, fn)− π(x′t,n, a
′
t,n, fn))

]

≤ −κ(r) +
T
∑

t=1

βtAt,n +
βTD

1− β
.

By takingT sufficiently large, we can ensure that the last term on the right hand side is strictly less than

κ(r)/2; and by then takingn sufficiently large, we can ensure that the second term on the right hand side is

also strictly less thanκ(r)/2. Thus for sufficiently largen, we conclude that the left hand side is negative—

contradicting optimality ofµn. The lemma follows.

Lemma 7. There existsǫ > 0 andK such that for allℓ and allx with xℓ ≥ K,

supf supµ∈P(f)

∑

zℓ
zℓQℓ(zℓ | x, µ(x), f) < −ǫ.
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Proof. Fix ǫ > 0 so that for allℓ and allx′ with x′ℓ ≥ K ′, supa′∈A′ supf
∑

zℓ
zℓQℓ(zℓ|x

′, a′, f) < −ǫ; such a

constant exists by the last part of Assumption 4. Observe that sinceA is compact andsupf
∑

zℓ
zℓQℓ(zℓ | x, a, f)

is continuous ina (Assumption 4), it follows thatsupf
∑

zℓ
zℓQℓ(zℓ | x, a, f) is in factuniformlycontinuous

in a ∈ A. Let e(ℓ) denote theℓ’th standard basis vector (i.e.,e(ℓ)ℓ′ = 0 for ℓ′ 6= ℓ, ande(ℓ)ℓ = 1). By uniform

continuity, we can conclude there must exist aδℓ > 0 such that if‖a− a′‖∞ < δℓ, then:

∣

∣

∣

∣

∣

sup
f

∑

zℓ

zℓQℓ(zℓ|K
′e(ℓ), a, f)− sup

f

∑

zℓ

zℓQℓ(zℓ|K
′eℓ, a′, f)

∣

∣

∣

∣

∣

< ǫ/2.

Note in particular, ifρ∞(a,A′) < δℓ, then there existsa′ ∈ A′ with ‖a − a′‖∞ < δℓ. By our choice

of ǫ we havesupf
∑

zℓ
zℓQℓ(zℓ |K ′e(ℓ), a, f) < − ǫ

2 . Now let δ = min{δ1, . . . , δd}. Since the incre-

ment kernel is stochastically nonincreasing inx, it follows that if ρ∞(a,A′) < δ and xℓ ≥ K ′, then

supf
∑

zℓ
zℓQℓ(zℓ|x, a, f) < − ǫ

2 . Sincesupf supµ∈P(f) ρ∞(µ(x),A′) → 0 as‖x‖∞ → ∞, the result

follows if we let ǫ = ǫ/2.

Lemma 8. For everyf ∈ F, Φ(f) is nonempty.

Proof. As described in the discussion of Section 5.3, it suffices to show that the state Markov chain induced

by an optimal oblivious strategy possesses at least one invariant distribution—i.e., thatD(µ, f) is nonempty,

whereµ is an optimal oblivious strategy givenf .

We first show that for everyf and everyµ ∈ P(f), the Markov chain onX induced byµ andf has at

least one closed class. LetS = {x : ‖x‖∞ ≤ K + M}. By Lemma 7, ifx 6∈ S, then there exists some

statex′ with P(x′|x, µ(x), f) > 0 such thatx′ℓ ≤ xℓ − ǫ for all ℓ wherexℓ > K. On the other hand, since

increments are bounded, for anyℓ wherexℓ ≤ K, we havex′ℓ ≤ K +M . Applying this fact inductively,

we find that for anyx 6∈ S, there must exist a positive probability sequence of statesfrom x to S; i.e., a

sequencey0, y1, y2, . . . , yτ such thaty0 = x, yτ ∈ S, andP(yt|yt−1, µ(yt−1), f) > 0 for all t. We say that

S is reachablefrom x.

So now suppose the chain induced byµ and f has no closed class. Fixx0 ∈ S. Since the class

containingx0 is not closed, there must exist a statex′ reachable fromx0 with positive probability, such that

the chain never returns tox0 starting fromx′. If x′ ∈ S, let x1 = x′. If x′ 6∈ S, then using the argument

in the preceding paragraph, there must exist a statex1 ∈ S reachable fromx′. Arguing inductively, we can

construct a sequence of statesx0, x1, x2, . . . wherext ∈ S for all t, and yetx0, . . . , xt−1 are not reachable

from xt. But S is finite, so at least one state must repeat in this sequence—contradicting the construction.

We conclude that the chain must have at least one closed class.

To complete the proof, we use a Foster-Lyapunov argument. Let U(x) =
∑

ℓ x
2
ℓ . Then{x ∈ X :

U(x) ≤ R} is finite for allR. So now letω = (2dKM+dM2+1)/(2ǫ), and suppose‖x‖∞ > max{ω,K}.
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We reason as follows:

∑

x′

U(x′)P(x′|x, µ(x), f) = U(x) + 2
∑

ℓ

xℓ
∑

zℓ

zℓQℓ(zℓ|x, µ(x), f) +
∑

ℓ

∑

zℓ

z2ℓQℓ(zℓ|x, µ(x), f)

≤ U(x) + 2
∑

ℓ:xℓ≤K

Mxℓ − 2
∑

ℓ:xℓ>K

ǫxℓ + dM2 ≤ U(x)− 1.

The first equality follows by definition ofQ andU , and multiplicative separability ofQ. The next step

follows since increments are bounded (Assumption 4), and byapplying Lemma 7 forxℓ > K. The last

inequality follows from the fact that the state space isd-dimensional,‖x‖∞ > max{K,ω}, and by definition

of ω. Since increments are bounded, it is trivial that for everyR:

sup
x:‖x‖∞≤R

(

∑

x′

U(x′)P(x′ | x, µ(x), f)− U(x)

)

< ∞.

It follows by the Foster-Lyapunov criterion that every closed class of the Markov chain induced byµ is

positive recurrent, as required (Hajek 1982, Meyn and Tweedie 1993, Glynn and Zeevi 2006).

Lemma 9. For everyη ∈ Z+, supf supφ∈Φ(f)

∑

x ‖x‖
η
ηφ(x) < ∞.

Proof. We again use a Foster-Lyapunov argument. We proceed by induction; the claim is clearly true if

η = 0. So assume the claim is true up toη − 1; in particular, define:

αk = sup
f

sup
φ∈Φ(f)

∑

x

‖x‖kkφ(x)

for k = 0, . . . , η − 1. Fix f , and letµ ∈ P(f) be an optimal oblivious strategy givenf . The preceding

lemma establishes that the Markov chain induced byµ possesses at least one invariant distribution. Let

U(x) =
∑

ℓ x
η+1
ℓ . Then we have:

∑

x′

U(x′)P(x′| x, µ(x), f) =
∑

ℓ

∑

zℓ

(xℓ + zℓ)
η+1Qℓ(zℓ | x, µ(x), f)

=
∑

ℓ

∑

zℓ

η+1
∑

k=0

(

η + 1

k

)

xkℓ z
η+1−k
ℓ Qℓ(zℓ | x, µ(x), f)

= U(x) + (η + 1)
∑

ℓ

xηℓ

∑

zℓ

zℓQℓ(zℓ | x, µ(x), f)

+
∑

ℓ

∑

zℓ

η−1
∑

k=0

(

η + 1

k

)

xkℓ z
η+1−k
ℓ Q(z | x, µ(x), f).

Defineg(x) as:

g(x) =

η−1
∑

k=0

(

η + 1

k

)

Mη+1−k
∑

ℓ

xkℓ .
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By the inductive hypothesis,

γ , sup
f

sup
φ∈Φ(f)

∑

x

g(x)φ(x) < ∞.

Further, by Lemma 7, for allℓ and allx such thatxℓ ≥ K, we have:

∑

zℓ

zℓQℓ(zℓ | x, µ(x), f) < −ǫ.

Defineh(x) as:

h(x) = −(η + 1)M
∑

ℓ:xℓ≤K

xηℓ + ǫ(η + 1)
∑

ℓ:xℓ>K

xηℓ .

It follows that:
∑

x′

U(x′)P(x′ | x, µ(x), f) − U(x) ≤ −h(x) + g(x).

Now fix any distributionφ ∈ D(µ, f). Since the Markov chain induced byµ andf must be irreducible on

the support ofφ, it follows by the Foster-Lyapunov criterion (Meyn and Tweedie 1993) that:

∑

x

h(x)φ(x) ≤
∑

x

g(x)φ(x) ≤ γ.

Rearranging terms, we conclude that:

∑

x





∑

ℓ:xℓ>K

xηℓ



φ(x) ≤
γ

ǫ(η + 1)
+

dMK
η

ǫ
.

Thus:
∑

x

‖x‖ηηφ(x) ≤
γ

ǫ(η + 1)
+

(

dM

ǫ
+ d

)

K
η
.

(Recall that the sum is only overx ∈ Z
d
+.) Since the right hand side is finite and independent off andφ,

the result follows.

Proof of Proposition 9. We have already established thatΦ(f) is nonempty for allf ∈ F in Lemma 8.

DefineB = supf supφ∈Φ(f)

∑

x ‖x‖
p+1
p+1φ(x) < ∞, where the inequality is the result of Lemma 9.

We define the setC =
{

f ∈ F :
∑

x ‖x‖
p+1
p+1f(x) ≤ B

}

. By the preceding observation,Φ(F) ⊂ C.

It is clear thatC is nonempty and convex. It remains to be shown thatC is compact in the1-p-norm.

It is straightforward to check thatC is complete; we show thatC is totally bounded, thus establishing

compactness.

Fix ǫ > 0. ChooseKǫ so thatB/Kǫ < ǫ. Then for allf ∈ C:

∑

x:‖x‖∞≥Kǫ

‖x‖ppf(x) ≤
B

Kǫ
< ǫ. (19)
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Let Sǫ = {x : ‖x‖∞ < Kǫ} and letSC be the projection ofC ontoSǫ; i.e.,

SC = {g ∈ R
Sǫ : ∃ f ∈ C with g(x) = f(x)∀ x ∈ Sǫ}.

It is straightforward to check thatSC is a compact subset of the finite-dimensional spaceR
Sǫ ; so let

f1, . . . , fk ∈ SC be aǫ-cover ofSC (i.e., SC is covered by the balls aroundf1, . . . , fk of radiusǫ in

the1-p-norm). Then it follows thatf1, . . . , fk is a2ǫ-cover ofC, since (19) bounds the tail of anyf ∈ C by

ǫ. This establishes thatC is totally bounded in the1-p-norm, as required.

E.4 Finite Actions

We conclude by briefly discussing how the proof of Proposition 9 may be adapted in the case of finite action

spaces (cf. Definition 9). Suppose thatS ⊂ R
q is a finite set. We now show that as long as Assumption 4

holds with respect to pure actions—i.e., withA replaced byS—Proposition 9 continues to hold.

Lemma 5 follows as before, except withA replaced byS. Lemma 6 follows the same argument if we

restrict attention topurestrategiesµ, i.e., strategies that take a pure action in every state. LetP̂(f) denote

the set of optimal pure strategies givenf . Then Lemma 6 then yields that as‖x‖∞ → ∞:

sup
f

sup
µ∈P̂(f)

ρ∞(µ(x),A′) → 0.

SinceA′ ⊂ S, it is finite as well. It follows that there existsζ such that forx such that‖x‖∞ ≥ ζ, for all

f , and allµ ∈ P̂(f), we haveµ(x) ∈ A′. From this and Assumption 4 the result of Lemma 7 holds for

µ ∈ P̂(f), i.e., there existsǫ > 0 such that for allℓ and allx with xℓ ≥ K ′,

sup
f

sup
µ∈P̂(f)

∑

zℓ

zℓQℓ(zℓ | x, µ(x), f) < −ǫ.

To complete our proof, we need only note that the set of all optimal oblivious strategiesP(f) can be

obtained by pointwise convex combinations of optimal pure oblivious strategies; this follows from Bellman’s

equation and the fact that the payoff is linear in the mixed action. Thus we also have:

sup
f

sup
µ∈P(f)

∑

zℓ

zℓQℓ(zℓ | x, µ(x), f) < −ǫ.

The remainder of the proof follows as before.

F AME: Proof

Throughout this section we suppose Assumption 1 holds. We begin by defining the following sets.
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Definition 11. For everyx ∈ X , define

Xx =
{

z ∈ X
∣

∣

∣
P(x | z, a, f) > 0 for somea ∈ A and for somef ∈ Fp

}

. (20)

Also defineXx,t as

Xx,t =
{

z ∈ X
∣

∣

∣ ‖z‖∞ ≤ ‖x‖∞ + tM
}

. (21)

Thus,Xx is the set of all initial states that can result in the final state asx. Since the increments are

bounded (Assumption 1), for everyx ∈ X , the setXx is finite. The setXx,t is a superset of all possible

states that can be reached at timet starting from statex (since the increments are uniformly bounded over

actiona and distributionf ); note thatXx,t is finite as well.

The following key lemma establishes that as the number of players grows large, the population empirical

distribution in a game with finitely many players approachesthe limiting SE population. The result is

similar in spirit to related results on mean field limits of interacting particle systems, cf. Sznitman (1991);

there the main insight is that, under appropriate conditions, the stochastic evolution of a finite-dimensional

interacting particle system approaches the deterministicmean field limit over finite time horizons. Our

model introduces two sources of complexity. First, agents’state transitions are coupled, so the population

state Markov process is not simply the aggregation of independent agent state dynamics. Second, our state

space is unbounded, so additional care is required to ensurethe tail of the population state distribution is

controlled in games with a large but finite number of players.This is where the light tail condition plays a

key role. Our proof proceeds by induction over time periods.

Lemma 10. Let (µ, f) be a stationary equilibrium withf ∈ Fp. Consider anm-player game. Letx(m)
i,0 =

x0 and suppose the initial state of every player (other than player i) is independently sampled from the

distributionf . That is, supposex(m)
j,0 ∼ f for all j 6= i; let f (m) ∈ F(m) denote the initial population state.

Leta(m)
i,t be any sequence of (possibly random, possibly history dependent) actions. Suppose players’ states

evolve asx(m)
i,t+1 ∼ P

(

· | x
(m)
i,t , a

(m)
i,t , f

(m)
−i,t

)

and for all j 6= i, asx(m)
j,t+1 ∼ P

(

· | x
(m)
j,t , µ(x

(m)
j,t ), f

(m)
−j,t

)

.

Then, for every initial statex0, for all timest,
∥

∥

∥
f
(m)
−i,t − f

∥

∥

∥

1-p
→ 0 almost surely10 asm → ∞.

Proof. Note thatf ∈ Fp and hence‖f‖1-p < ∞. Thus, given anyǫ > 0, there exists a finite setCǫ,f such

that:

∑

x/∈Cǫ,f

‖x‖pp f(x) < ǫ. (22)

At t = 0, we have

f
(m)
−i,0(x) =

1

m− 1

m−1
∑

j=1

1{Xj,0=x},

10Note that the convergence is almost surely in the randomnessassociated with the initial population state.
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whereXj,0 are i.i.d random variables distributed according to the distribution f . Define:

Yj = ‖Xj,0‖
p
p 1{Xj,0 6∈Cǫ,f}.

Note that theYj are i.i.d. random variables, with:

E[Yj] =
∑

x 6∈Cǫ,f

‖x‖pp f(x).

Further, observe that:
∑

x 6∈Cǫ,f

‖x‖pp f
(m)
−i,0(x) =

1

m− 1

m−1
∑

j=1

Yj .

Thus by the strong law of large numbers, almost surely asm → ∞,

∑

x 6∈Cǫ,f

‖x‖pp f
(m)
−i,0(x) →

∑

x 6∈Cǫ,f

‖x‖pp f(x) < ǫ.

Now observe that:

∥

∥

∥f
(m)
−i,0(x)− f

∥

∥

∥

1-p
≤
∑

x∈Cǫ,f

‖x‖pp |f
(m)
−i,0(x)− f(x)|+

∑

x/∈Cǫ,f

‖x‖pp f
(m)
−i,0(x) +

∑

x/∈Cǫ,f

‖x‖pp f(x).

Each of the second and third terms on the right hand side is almost surely less thanǫ for sufficiently large

m. For the first term, observe that|f (m)
−i,0(x) − f(x)| → 0 almost surely, again by the strong law of large

numbers (sincef (m)(x) is the sample average ofm− 1 Bernoulli random variables with parameterf(x)).

Thus the first term approaches zero almost surely asm → ∞ by the bounded convergence theorem. Since

ǫ was arbitrary, this proves that
∥

∥

∥
f
(m)
−i,0 − f

∥

∥

∥

1-p
→ 0 almost surely asm → ∞.

We now use an induction argument; let us assume that,
∥

∥

∥
f
(m)
−i,τ − f

∥

∥

∥

1-p
→ 0 almost surely asm → ∞

for all timesτ ≤ t. From the definition off (m)
−i,t+1 we have:

f
(m)
−i,t+1(y) =

1

m− 1

∑

j 6=i

1
{x

(m)
j,t+1=y}

,

wherex(m)
j,t+1 ∼ P

(

· | x
(m)
j,t , µ(x

(m)
j,t ), f

(m)
−j,t

)

for all j 6= i. Note that if two players have same initial state,

then the population state from their viewpoint is identical. That is, ifx(m)
j,t = x

(m)
k,t , thenf (m)

−j,t(y) = f
(m)
−k,t(y)

for all y ∈ X . We can thus redefine the population state from the viewpointof a player at a particular

state. Letf̂ (x,m)
t be the the population state at timet from the viewpoint of a player at statex. Then, if

x
(m)
j,t = x

(m)
k,t = x, then for ally ∈ X , f (m)

−j,t(y) = f
(m)
−k,t(y) = f̂

(x,m)
t (y). Without loss of generality, we

assumem > 1. Let η(m)
−i,t(x) be the total number of players (excluding playeri) that have their state at time

t asx, i.e.,η(m)
−i,t(x) = (m−1)f

(m)
−i,t(x). Note thatη(m)

−i,t(x) = 0 if and onlyf (m)
−i,t(x) = 0. We can now write
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f
(m)
−i,t+1(y) as:

f
(m)
−i,t+1(y) =

1

m− 1

∑

x∈X

η
(m)
−i,t(x)
∑

j=1

1
{Y

(m)
j,x,t=y}

=
∑

x∈X

f
(m)
−i,t(x)







1

η
(m)
−i,t(x)

η
(m)
−i,t(x)
∑

j=1

1
{Y

(m)
j,x,t=y}







=
∑

x∈Xy

f
(m)
−i,t(x)







1

η
(m)
−i,t(x)

η
(m)
−i,t(x)
∑

j=1

1
{Y

(m)
j,x,t=y}






(23)

where the last equality follows from the Definition 11. Here,Y
(m)
j,x,t are random variables that are indepen-

dently drawn according to the transition kernelP(· | x, µ(x), f̂
(x,m)
t ). Note that ifη(m)

−i,t(x) = 0, we interpret

the term inside the parentheses as zero.

Let us now look atf̂ (x,m)
t . We have

f̂
(x,m)
t (z) = f

(m)
−i,t(z) +

1

m− 1
1
{x

(m)
i,t

=z}
−

1

m− 1
1{z=x}.

Consider
∥

∥

∥f̂
(x,m)
t − f

∥

∥

∥

1-p
. We have:

∥

∥

∥f̂
(x,m)
t − f

∥

∥

∥

1-p
=
∑

z∈X

‖z‖pp

∣

∣

∣f̂
(x,m)
t (z)− f(z)

∣

∣

∣

=
∑

z∈X

‖z‖pp

∣

∣

∣

∣

f
(m)
−i,t(z) +

1

m− 1
1
{x

(m)
i,t =z}

−
1

m− 1
1{z=x} − f(z)

∣

∣

∣

∣

≤
∑

z∈X

‖z‖pp

∣

∣

∣f
(m)
−i,t(z)− f(z)

∣

∣

∣+
1

m− 1

∑

z∈X

‖z‖pp 1
{x

(m)
i,t =z}

+
1

m− 1

∑

z∈X

‖z‖pp 1{z=x}

=
∥

∥

∥f
(m)
−i,t − f

∥

∥

∥

1-p
+

1

m− 1

∑

z∈X

‖z‖pp 1
{x

(m)
i,t =z}

+
1

m− 1

∑

z∈X

‖z‖pp 1{z=x}

From the induction hypothesis, we have
∥

∥

∥
f
(m)
−i,t − f

∥

∥

∥

1-p
→ 0 almost surely asm → ∞. Note that at timet,

x
(m)
i,t ∈ Xx0,t from equation (21), andXx0,t is finite. Thus,

sup
m

∑

z∈X

‖z‖pp 1
{x

(m)
i,t

=z}
< ∞, almost surely.

This implies that for all statesx ∈ X ,
∥

∥

∥f̂
(x,m)
t − f

∥

∥

∥

1-p
→ 0 almost surely asm → ∞. From Assumption 1,

we know that the transition kernel is continuous in the population statef (whereFp is endowed with the1-p
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norm). Thus for everyx ∈ X , we have almost surely:

P(· | x, µ(x), f̂
(x,m)
t ) → P(· | x, µ(x), f), (24)

asm → ∞.

Next, we show thatf (m)
−i,t+1(y) → f(y) almost surely asm → ∞, for all y. We leverage equation (23).

Observe that the set of pointsx ∈ X where‖x‖p ≤ 1 is finite, sinceX is a subset of an integer lattice. From

the induction hypothesis, as
∑

x∈X ‖x‖pp|f
(m)
−i,t(x) − f(x)| → 0 almost surely asm → ∞, it follows that

f
(m)
−i,t(x) → f(x) almost surely for allx ∈ X asx → ∞.

Suppose thatx ∈ Xy andf(x) > 0. Sincef (m)
−i,t(x) → f(x), it follows thatη(m)

−i,t → ∞ asm → ∞,

almost surely. Note thatY (m)
j,x,t are random variables that are independently drawn according to the transition

kernelP(·|x, µ(x), f̂
(x,m)
t ). From equation (24), and Lemma 11, we get that for everyx, y ∈ X , there holds

1

η
(m)
−i,t(x)

η
(m)
−i,t(x)
∑

j=1

1
{Y

(m)
j,x,t=y}

→ P(y|x, µ(x), f),

almost surely asm → ∞.

On the other hand, supposex ∈ Xy andf(x) = 0. Again, sincef (m)
−i,t(x) → f(x) asx → ∞, it follows

that asm → ∞, almost surely:

f
(m)
−i,t(x)







1

η
(m)
−i,t(x)

η
(m)
−i,t(x)
∑

j=1

1
{Y

(m)
j,x,t=y}






→ 0,

since the term in brackets is nonnegative and bounded. (Recall we interpret the term in brackets as zero if

f
(m)
−i,t(x) = 0.)

We conclude that, almost surely, asm → ∞:

f
(m)
−i,t+1(y) =

∑

x∈Xy

f
(m)
−i,t(x)







1

η
(m)
−i,t(x)

η
(m)
−i,t(x)
∑

j=1

1
{Y

(m)
j,x,t=y}






→
∑

x∈Xy

f(x)P(y|x, µ(x), f) = f(y).

To complete the proof, we need to show that
∥

∥

∥
f
(m)
−i,t+1 − f

∥

∥

∥

1-p
→ 0 almost surely asm → ∞. Since

f
(m)
−i,t(x) → f(x) almost surely, for allǫ > 0 we have:

∑

x∈Cǫ,f

‖x‖ppf
(m)
−i,t(x) →

∑

x∈Cǫ,f

‖x‖ppf(x).
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This together with the fact that‖f (m)
−i,t − f‖1-p → 0 implies that, almost surely:

lim sup
m→∞

∑

x∈Cǫ,f

‖x‖ppf
(m)
−i,t(x) < ǫ. (25)

Now at timet+ 1, we have

∑

x/∈Cǫ,f

‖x‖pp f
(m)
−i,t+1 =

∑

x/∈Cǫ,f

d
∑

ℓ=1

|xℓ|
pf

(m)
−i,t+1(x)

≤
∑

x/∈Cǫ,f

d
∑

ℓ=1

(

|xℓ|+M
)p
f
(m)
−i,t(x), (26)

where the equality follows becauseX is a subset of thed-dimensional integer lattice. The last inequality

follows from the fact that the increments are bounded (Assumption 1). Without loss of generality, assume

that |xℓ| ≥ 1 and thatM ≥ 1. Then we have:

(

|xℓ|+M
)p

=

p
∑

j=1

(

p

j

)

|xℓ|
jMp−j

≤

p
∑

j=1

(

p

j

)

|xℓ|
pMp

= 2pMp|xℓ|
p = K1|xℓ|

p,

where we letK1 = (2M)p. Substituting in equation (26), we have, almost surely,

lim sup
m→∞

∑

x/∈Cǫ,f

‖x‖pp f
(m)
−i,t+1 ≤

∑

x/∈Cǫ,f

d
∑

ℓ=1

K1|xℓ|
pf

(m)
−i,t(x)

= K1

∑

x/∈Cǫ,f

‖x‖pp f
(m)
−i,t(x)

< K1ǫ,

where the last inequality follows from equation (25). Now observe that:

∥

∥

∥f
(m)
−i,t+1 − f

∥

∥

∥

1-p
≤
∑

x∈Cǫ,f

‖x‖pp |f
(m)
−i,t+1(x)− f(x)|+

∑

x/∈Cǫ,f

‖x‖pp f
(m)
−i,t+1(x) +

∑

x/∈Cǫ,f

‖x‖pp f(x).

In taking a limsup on the left hand side, the second term on theright hand side is almost surely less thanK1ǫ.

From the definition ofCǫ,f and equation (22), we get that the third term on the right handside is also less

thanǫ. Finally, since for everyx |f
(m)
−i,t+1(x) − f(x)| → 0 almost surely asm → ∞, andCǫ,f is finite, the

first term in the above equation approaches zero almost surely asm → ∞ by the Bounded Convergence

Theorem. Sinceǫ was arbitrary, this proves the induction step and hence the lemma.
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The preceding proof uses the following refinement of the strong law of large numbers.

Lemma 11. Suppose0 ≤ pk ≤ 1 for all k, and thatpk → p ask → ∞. For eachk, let Y (k)
1 , . . . , Y

(k)
k be

i.i.d. Bernoulli random variables with parameterpk. Then almost surely:

lim
k→∞

1

k

k
∑

i=1

Y
(k)
i = p.

Proof. Let ǫ > 0. By Hoeffding’s inequality, we have:

Prob

(∣

∣

∣

∣

∣

1

k

k
∑

i=1

Y
(k)
i − pk

∣

∣

∣

∣

∣

> ǫ

)

≤ 2e−kǫ2
k ,

since0 ≤ Y
(k)
i ≤ 1 for all i, k. Let ǫk = 1/k; then by the Borel-Cantelli lemma, the event on the left

hand side in the preceding expression occurs for only finitely manyk, almost surely. In other words, almost

surely:

lim
k→∞

[

pk −
1

k

k
∑

i=1

Y
(k)
i

]

= 0.

The result follows.

Before we prove the AME property, we need some additional notation. Let(µ, f) be a stationary equi-

librium. Consider again anm player game and focus on playeri. Let x(m)
i,0 = x0 and assume that playeri

uses a cognizant strategyµm. The initial state of every other playerj 6= i is independently drawn from the

distributionf , that is,x(m)
j,0 ∼ f . Denote the initial distribution of allm− 1 players (excluding playeri) by

f (m) ∈ F(m). The state evolution of playeri is given by

x
(m)
i,t+1 ∼ P

(

· | x
(m)
i,t , a

(m)
i,t ,f

(m)
−i,t

)

, (27)

wherea(m)
i,t = µm

(

x
(m)
i,t ,f

(m)
−i,t

)

andf (m)
−i,t is the actual population distribution. Here the superscript m on

the state variable represents the fact that we are considering anm player stochastic game. Let every other

playerj use the oblivious strategyµ and thus their state evolution is given by

x
(m)
j,t+1 ∼ P

(

· | x
(m)
j,t , µ

(

x
(m)
j,t

)

, f
(m)
−j,t

)

. (28)

DefineV (m)
(

x, f (m) | µm,µ(m−1)
)

to be the actual value function of playeri, with its initial statex, the

initial distribution of the rest of the population asf (m) ∈ F(m), when the player uses a cognizant strategyµm

and every other player uses an oblivious strategyµ. We have

V (m)
(

x, f (m) | µm,µ(m−1)
)

= E

[

∞
∑

t=0

βtπ
(

xi,t, ai,t,f
(m)
−i,t

) ∣

∣ xi,0 = x, f
(m)
−i,0 = f (m);

µi = µm,µ−i = µ(m−1)
]

. (29)
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We define a new player that is coupled to playeri in them player stochastic games defined above. We

call this player thecoupledplayer. Letx̂(m)
i,t be the state of this coupled player at timet. The subscripti and

the superscriptm reflect the fact that this player is coupled to playeri in anm player stochastic game. We

assume that the state evolution of this player is given by:

x̂
(m)
i,t+1 ∼ P

(

· | x̂
(m)
i,t , â

(m)
i,t , f

)

, (30)

whereâ(m)
i,t = a

(m)
i,t = µm

(

x
(m)
i,t ,f

(m)
−i,t

)

. In other words, this coupled player takes the same action asplayeri

at every timet and this action depends on theactualpopulation state ofm− 1 players. However, note that

the state evolution is dependent only on the mean field population statef . Let us define

V̂ (m)
(

x
∣

∣

∣ f ;µm,µ(m−1)
)

= E

[

∞
∑

t=0

βtπ
(

x̂
(m)
i,t , â

(m)
i,t , f

)

| x̂
(m)
i,0 = x0, â

(m)
i,t = µm(xi,t,f

(m)
−i,t);µ

(m−1)

]

.

(31)

Thus,V̂ (m)(x | f ;µm, µ) is the expected net present value of this coupled player, when the player’s initial

state isx, the long run average population state isf , and the initial population state isf (m)
−i,0 = f (m). Observe

that

V̂ (m)
(

x | f ;µm,µ(m−1)
)

≤ sup
µ′∈M

V̂ (m)(x | f ;µ′,µ(m−1)) = sup
µ′∈MO

V̂ (m)(x | f ;µ′,µ(m−1))

= Ṽ ∗(x | f) = Ṽ (x | µ, f). (32)

Here, the first equality follows from Lemma 2, which implies that the supremum over all cognizant strategies

is the same as the supremum over oblivious strategies (sincethe state evolution of other players does not

affect the payoff of this coupled player), and the last equality follows sinceµ ∈ P(f).

Lemma 12. Let (µ, f) be a stationary equilibrium and consider anm player game. Let the initial state of

playeri bex(m)
i,0 = x, and letf (m) ∈ F(m) be the initial population state ofm−1 players whose initial state

is sampled independently from the distributionf . Assume that playeri uses a cognizant strategyµm and

every other player uses the oblivious strategyµ. Their state evolutions are given by equation(27) and (28).

Also define a coupled player with initial statex̂(m)
i,0 = x and let its state evolution be given by equation(30).

Then, for all timest, and for everyy ∈ X , we have
∣

∣

∣
Prob

(

x̂
(m)
i,t = y

)

− Prob
(

x
(m)
i,t = y

)

∣

∣

∣
→ 0, almost

surely11 asm → ∞.

Proof. The lemma is trivially true fort = 0. Let us assume that it holds for all timesτ = 0, 1, · · · , t − 1.

11The almost sure convergence of the probabilities is in the randomness associated with the initial population state.
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Then, we have

Prob
(

x
(m)
i,t = y

)

=
∑

z∈Xy

Prob
(

x
(m)
i,t−1 = z

)

P
(

y
∣

∣

∣
z, µm(z, f

(m)
−i,t−1), f

(m)
−i,t−1

)

Prob
(

x̂
(m)
i,t = y

)

=
∑

z∈Xy

Prob
(

x̂
(m)
i,t−1 = z

)

P
(

y
∣

∣

∣
z, µm(z, f

(m)
−i,t−1), f

)

.

Here we use the fact that the coupled player uses the same action as playeri and the state evolution of the

coupled player is given by equation (30). Note that the summation is over all states in the finite setXy,

whereXy is defined as in equation (20).

From Lemma 10, we know that for all timest,
∥

∥

∥
f
(m)
−i,t − f

∥

∥

∥

1-p
→ 0 almost surely asm → ∞. From As-

sumption 1, we know that the transition kernel is jointly continuous in the actiona and distributionf (where

the set of distributionsFp is endowed with1-p norm). Since the action set is compact, this implies that forall

y, z ∈ X , limm→∞ supa∈A

∣

∣

∣P
(

y
∣

∣

∣ z, a, f
(m)
−i,t−1

)

−P
(

y
∣

∣

∣ z, a, f
)∣

∣

∣ = 0. almost surely. It follows that for

everyy, z ∈ X , limm→∞

∣

∣

∣
P
(

y
∣

∣

∣
z, µm(z, f

(m)
−i,t−1), f

(m)
−i,t−1

)

−P
(

y
∣

∣

∣
z, µm(z, f

(m)
−i,t−1), f

)∣

∣

∣
= 0 almost

surely. From the induction hypothesis, we know that for every z ∈ X ,
∣

∣

∣
Prob

(

x̂
(m)
i,t−1 = z

)

− Prob
(

x
(m)
i,t−1 = z

)

∣

∣

∣
→

0 almost surely asm → ∞. This along with the finiteness of the setXy, gives that for everyy ∈ X
∣

∣

∣
Prob

(

x̂
(m)
i,t = y

)

− Prob
(

x
(m)
i,t = y

)

∣

∣

∣
→ 0 almost surely asm → ∞. This proves the lemma.

Lemma 13. Let (µ, f) be a stationary equilibrium and consider anm player game. Let the initial state of

playeri bex(m)
i,0 = x, and letf (m) ∈ F(m) be the initial population state ofm−1 players whose initial state

is sampled independently from the distributionf . Assume that playeri uses a cognizant strategyµm and

every other player uses the oblivious strategyµ. Their state evolutions are given by equation(27) and (28).

Also define a coupled player with initial statex̂(m)
i,0 = x and let its state evolution be given by equation(30).

Then, for all timest, we havelim supm→∞ E

[

π
(

x
(m)
i,t , µm

(

x
(m)
i,t ,f

(m)
−i,t

)

,f
(m)
−i,t

)

− π
(

x̂
(m)
i,t , µm

(

x
(m)
i,t ,f

(m)
−i,t

)

, f
)]

≤

0, almost surely12

Proof. Let us writea(m)
i,t = µm

(

x
(m)
i,t ,f

(m)
−i,t

)

. We have

∆
(m)
i,t = E

[

π
(

x
(m)
i,t , a

(m)
i,t ,f

(m)
−i,t

)

− π
(

x̂
(m)
i,t , a

(m)
i,t , f

)]

= E

[

π
(

x
(m)
i,t , a

(m)
i,t ,f

(m)
−i,t

)

− π
(

x
(m)
i,t , a

(m)
i,t , f

)]

+ E

[

π
(

x
(m)
i,t , a

(m)
i,t , f

)

− π
(

x̂
(m)
i,t , a

(m)
i,t , f

)]

, T
(m)
1,t + T

(m)
2,t .

Consider the first term. We have
12The almost sure convergence of the expected value of the payoff is in the randomness associated with the initial population

state.
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T
(m)
1,t ≤

∑

y∈X

Prob
(

x
(m)
i,t = y

)

sup
a∈A

∣

∣

∣
π
(

y, a,f
(m)
−i,t

)

− π (y, a, f)
∣

∣

∣

=
∑

y∈Xx,t

Prob
(

x
(m)
i,t = y

)

sup
a∈A

∣

∣

∣
π
(

y, a,f
(m)
−i,t

)

− π (y, a, f)
∣

∣

∣
,

where the last equality follows from the fact thatx
(m)
i,0 = x and from equation (21). From Assump-

tion 1, we know that the payoff is jointly continuous in action a and distributionf (with the set of dis-

tributions Fp endowed with1-p norm) and the setA is compact. Thus, for everyy ∈ X , we have

supa∈A

∣

∣

∣π
(

y, a,f
(m)
−i,t

)

− π (y, a, f)
∣

∣

∣ → 0, almost surely asm → ∞. This along with the fact thatXx,t is

finite shows thatlim supm→∞ T
(m)
1,t ≤ 0 almost surely.

Now consider the second term. We have

T
(m)
2,t = E

[

π
(

x
(m)
i,t , a

(m)
i,t , f

)

−
(

x̂
(m)
i,t , a

(m)
i,t , f

)]

≤
∑

y∈X

∣

∣

∣
Prob

(

x
(m)
i,t = y

)

− Prob
(

x̂
(m)
i,t = y

)

∣

∣

∣
sup
a∈A

∣

∣π
(

y, a, f)
∣

∣

=
∑

y∈Xx,t

∣

∣

∣Prob
(

x
(m)
i,t = y

)

− Prob
(

x̂
(m)
i,t = y

)

∣

∣

∣ sup
a∈A

∣

∣π
(

y, a, f)
∣

∣ ,

where the last equality follows from the fact thatx
(m)
i,0 = x̂

(m)
i,0 = x and from Definition 11. From Lemma 12,

we know that for everyy ∈ X ,
∣

∣

∣Prob
(

x
(m)
i,t = y

)

− Prob
(

x̂
(m)
i,t = y

)

∣

∣

∣ → 0 almost surelym → ∞. Since

Xx,t is finite for every fixedx ∈ X and every timet, this implies thatlim supm→∞ T
(m)
2,t ≤ 0 almost surely.

This proves the lemma.

Before we proceed further, we need one additional piece of notation. Once again let(µ, f) be a stationary

equilibrium and consider an oblivious player. Letx̃t be the state of this oblivious player at timet. We assume

that x̃0 = x and since the player used the oblivious strategyµ, the state evolution of this player is given by

x̃t+1 ∼ P
(

· | x̃t, ãt, f
)

(33)

whereãt = µ(x̃t). We letṼ
(

x | µ, f
)

(as defined in equation (7)) to be the oblivious value function for this

player starting from statex.

Also, consider anm player game and focus on playeri. We represent the state of playeri at timet by

x̌
(m)
i,t . As before, the superscriptm on the state variable represents the fact that we are considering anm

player stochastic game. Letx̌(m)
i,0 = x and let playeri also use the oblivious strategyµ. The initial state

of every other playerj 6= i is drawn independently from the distributionf , that is,x̌(m)
j,0 ∼ f . Denote the

initial distribution of allm− 1 players (excluding playeri) by f (m) ∈ F(m). The state evolution of playeri
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is then given by

x̌
(m)
i,t+1 ∼ P

(

· | x̌
(m)
i,t , ǎ

(m)
i,t ,f

(m)
−i,t

)

, (34)

whereǎ(m)
i,t = µ

(

x̌
(m)
i,t

)

. Note that even though the player uses an oblivious strategy, its state evolution is

affected by theactual population state. Let every other playerj also use the oblivious strategyµ and let

their state evolution be given by

x̌
(m)
j,t+1 ∼ P

(

·
∣

∣

∣ x̌
(m)
j,t , µ

(

x̌
(m)
j,t

)

, f
(m)
−j,t

)

. (35)

DefineV (m)
(

x, f (m) | µ(m)
)

to be the actual value function of the player, when the initial state of the player

is x, the initial population distribution isf (m) and every player uses the oblivious strategyµ. That is,

V (m)
(

x, f (m) | µ(m)
)

= E

[

∞
∑

t=0

βtπ
(

x̌i,t, ǎi,t,f
(m)
−i,t

) ∣

∣ x̌i,0 = x, f
(m)
−i,0 = f (m);µi = µ,µ−i = µ(m)

]

.

(36)

Lemma 14. Let(µ, f) be a stationary equilibrium and consider anm player stochastic game. Letx̌(m)
i,0 = x,

and letf (m) ∈ F(m) be the initial population state ofm− 1 players whose initial state is sampled indepen-

dently fromf . Assume that every player uses the oblivious strategyµ and their state evolutions are given by

equations(34) and (35). Also, consider an oblivious player with̃x0 = x and let its state evolution be given

by equation(33). Then, for every timet and for all y ∈ X , we have
∣

∣

∣Prob(x̃t = y)− Prob(x̌
(m)
i,t = y)

∣

∣

∣ →

0, almost surely asm → ∞.

Proof. The lemma is trivially true fort = 0. Let us assume that it holds for all timesτ = 0, 1, · · · , t − 1.

Then, we have

Prob (x̃t = y) =
∑

z∈Xy

Prob (x̃t−1 = z)P
(

y
∣

∣

∣
z, µ(z), f

)

Prob
(

x̌
(m)
i,t = y

)

=
∑

z∈Xy

Prob
(

x̌
(m)
i,t−1 = z

)

P
(

y
∣

∣

∣
z, µ(z),f

(m)
−i,t

)

.

Note that the summation above is over all states in a finite setXy (as defined in Definition 11).

From Lemma 10, we know that for all timest,
∥

∥

∥
f
(m)
−i,t − f

∥

∥

∥

1-p
→ 0 almost surely asm → ∞. From

Assumption 1, we know that the transition kernel is continuous in the distribution (where the set of distribu-

tionsFp is endowed with1-p norm). From the induction hypothesis, we know that
∣

∣

∣Prob
(

x̃t−1 = z
)

− Prob
(

x̌
(m)
−i,t−1 = z

)

∣

∣

∣→

0. This along with the finiteness of the setXy, gives that for everyx ∈ X

∣

∣

∣
Prob (x̃t = x)− Prob

(

x̌
(m)
i,t = x

)

∣

∣

∣
→ 0

almost surely asm → ∞. This proves the lemma.
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Lemma 15. Let (µ, f) be a stationary equilibrium and consider anm player stochastic game. Letx̌(m)
i,0 =

x, and letf (m) ∈ F(m) be the initial population state ofm − 1 players whose initial state is sampled

independently fromf . Assume that every player uses the oblivious strategyµ and their state evolutions are

given by equations(34) and (35). Also, consider an oblivious player with̃x0 = x and let its state evolution

be given by equation(33). Then for all timest, we haveE
[

π
(

x̃t, µ(x̃t), f
)

− π
(

x̌
(m)
i,t , µ(x̌

(m)
i,t ),f

(m)
−i,t

)

]

→

0, almost surely asm → ∞.

Proof. Define∆(m)
i,t as

∆
(m)
i,t = E

[

π
(

x̃t, µ(x̃t), f
)

− π
(

x̌
(m)
i,t , µ(x̌

(m)
i,t ),f

(m)
−i,t

)

]

= E

[

π
(

x̃t, µ(x̃t), f
)

− π
(

x̃t, µ(x̃t),f
(m)
−i,t)

]

+ E

[

π
(

x̃t, µ(x̃t),f
(m)
−i,t)− π

(

x̌
(m)
i,t , µ(x̌

(m)
i,t ),f

(m)
−i,t

)

]

, T
(m)
1,t + T

(m)
2,t .

Note that from Lemma 10, we have that
∥

∥

∥f
(m)
−i,t − f

∥

∥

∥

1-p
→ 0 almost surely asm → ∞. From Assump-

tion 1, we know that the payoff is continuous in the distribution, where the set of distributionsFp is endowed

with 1-p norm. Thus, for everyy anda, we have

∣

∣

∣π(y, a, f)− π(y, a,f
(m)
−i,t)

∣

∣

∣→ 0, (37)

asm → ∞. Consider the first term. We have:

T
(m)
1,t =

∑

y∈X

Prob (x̃t = y)
∣

∣

∣
π(y, µ(y), f)− π(y, µ(y),f

(m)
−i,t)

∣

∣

∣

=
∑

y∈Xx,t

Prob (x̃t = y)
∣

∣

∣π(y, µ(y), f)− π(y, µ(y),f
(m)
−i,t)

∣

∣

∣ ,

where the last equality follows from the fact thatx̃0 = x and from Definition 11. SinceXx,t is a finite set

for every initial statex ∈ X and every timet, we get thatT (m)
1,t → 0 almost surely asm → ∞.

Consider now the second term. We have:

T
(m)
2,t = E

[

π
(

x̃t, µ(x̃t),f
(m)
−i,t)− π

(

x̌
(m)
i,t , µ(x̌

(m)
i,t ),f

(m)
−i,t

)

]

=
∑

y∈X

Prob
(

x̃t = y
)

π
(

y, µ(y),f
(m)
−i,t)−

∑

y∈X

Prob
(

x̌
(m)
i,t = y

)

π
(

y, µ(y),f
(m)
−i,t

)

=
∑

y∈Xt

(

Prob
(

x̃t = y
)

− Prob
(

x̌
(m)
i,t = y

)

)

π
(

y, µ(y),f
(m)
−i,t).

From Lemma 14, equation (37), and the finiteness ofXx,t, we get thatlim supm→∞ T
(m)
2,t ≤ 0 almost surely.

This proves the lemma.

Proof of Theorem 2.Let us define

∆V (m)(x, f (m)) , V (m)
(

x, f (m) | µm,µ(m−1)
)

− V (m)
(

x, f (m) | µ(m)
)

.
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Then we need to show that for allx, lim supm→∞∆V (m)(x, f (m)) ≤ 0 almost surely. We can write

∆V (m)(x, f (m)) = V (m)
(

x, f (m) | µm,µ(m−1)
)

− Ṽ (x | µ, f) + Ṽ (x | µ, f)− V (m)
(

x, f (m) | µ(m)
)

≤ V (m)
(

x, f (m) | µm,µ(m−1)
)

− V̂ (m)
(

x | f ;µm,µ(m−1)
)

+ Ṽ (x | µ, f)− V (m)
(

x, f (m) | µ(m)
)

, T
(m)
1 + T

(m)
2 .

Here the inequality follows from equation (32). Consider the termT
(m)
1 . We have

T
(m)
1 = V (m)

(

x, f (m) | µm,µ(m−1)
)

− V̂ (m)
(

x | f ;µm,µ(m−1)
)

= E

[

∞
∑

t=0

βt
(

π
(

x
(m)
i,t , a

(m)
i,t ,f

(m)
−i,t

)

− π
(

x̂
(m)
i,t , â

(m)
i,t , f

)

)

]

,

where the last equality follows from equations (29) and (31). Note thatxi,0 = x̂i,0 = x and ai,t =

âi,t = µm

(

xi,t,f
(m)
−i,t

)

and the state transitions of players are given by equations (27), (28), and (30). From

Lemma 13, we havelim supm→∞ E

[

∑T−1
t=0 βt

(

π
(

x
(m)
i,t , a

(m)
i,t ,f

(m)
−i,t

)

− π
(

x̂
(m)
i,t , â

(m)
i,t , f

)

)]

≤ 0, almost

surely for any finite timeT . From Lemma 1, we have, almost surely

E

[

∞
∑

t=T

βt
(

π
(

x
(m)
i,t , â

(m)
i,t ,f

(m)
−i,t

)

− π
(

x̂
(m)
i,t , a

(m)
i,t , f

)

)

]

≤ 2C(x, T ),

which goes to zero asT → ∞. This proves thatlim supm→∞ T
(m)
1 ≤ 0 almost surely. Similar analysis

(with an application of Lemma 15) shows thatlim supm→∞ T
(m)
2 ≤ 0 almost surely, yielding the result.

Proof of Theorem 3.Similar to the proof of Theorem 2, let us define

∆V (m)(x, f (m)) , V (m)
(

x, f (m) | µm,µ(m−1)
)

− V (m)
(

x, f (m) | µ(m)
)

.

Then we need to show that for allx, lim supm→∞∆V (m)(x, f (m)) ≤ 0 almost surely. We can write

∆V (m)(x, f (m)) = V (m)
(

x, f (m) | µm,µ(m−1)
)

− Ṽ (x | µ, f) + Ṽ (x | µ, f)− V (m)
(

x, f (m) | µ(m)
)

≤ V (m)
(

x, f (m) | µm,µ(m−1)
)

− V̂ (m)
(

x | f ;µm,µ(m−1)
)

+ Ṽ (x | µ, f)− V (m)
(

x, f (m) | µ(m)
)

, T
(m)
1 + T

(m)
2 ,

whereV̂ (m) is defined as in (31) (and in particular, using the limit profitfunctionπ). Here the inequality
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follows from equation (32). Consider the termT (m)
1 . We have

T
(m)
1 = V (m)

(

x, f (m) | µm,µ(m−1)
)

− V̂ (m)
(

x | f ;µm,µ(m−1)
)

= E

[

∞
∑

t=0

βt
(

πm
(

x
(m)
i,t , a

(m)
i,t ,f

(m)
−i,t

)

− π
(

x̂
(m)
i,t , â

(m)
i,t , f

)

)

]

,

where the last equality follows from equation (29) (withπ replaced byπm) and equation (31). Note that

xi,0 = x̂i,0 = x andai,t = âi,t = µm

(

xi,t,f
(m)
−i,t

)

and the state transitions of players are given by equa-

tions (27), (28), and (30). Now,

T
(m)
1 = E

[

∞
∑

t=0

βt
(

πm
(

x
(m)
i,t , a

(m)
i,t ,f

(m)
−i,t

)

− πm
(

x̂
(m)
i,t , â

(m)
i,t , f

)

)

+
(

πm
(

x̂
(m)
i,t , â

(m)
i,t , f

)

− π
(

x̂
(m)
i,t , â

(m)
i,t , f

)

)

]

,

Using equicontinuity and the uniform growth rate bound, a similar argument to the proof of Theorem 2 (via

Lemmas 13 and 15) shows that:

lim sup
m→∞

E

[

∞
∑

t=0

βt
(

πm
(

x
(m)
i,t , a

(m)
i,t ,f

(m)
−i,t

)

− πm
(

x̂
(m)
i,t , â

(m)
i,t , f

)

)

]

≤ 0,

almost surely. Recall that, for allx, a, f , limm→∞ πm(x, a, f) = π(x, a, f). SinceA is compact and

increments are bounded, it follows thatπm(x̂
(m)
i,t , â

(m)
i,t , f) − π(x̂

(m)
i,t , â

(m)
i,t , f) → 0 almost surely asm →

∞, for all timest. Using the fact that increments are bounded, the uniform growth rate bound, and the

dominated convergence theorem, the expectation of the preceding difference also approaches zero almost

surely. Finally, by truncating the sum at timeT , an argument similar to the proof of Theorem 2 gives:

lim sup
m→∞

E

[

∞
∑

t=0

βt
(

πm
(

x̂
(m)
i,t , â

(m)
i,t , f

)

− π
(

x̂
(m)
i,t , â

(m)
i,t , f

)

)

]

≤ 0.

This proves thatlim supm→∞ T
(m)
1 ≤ 0 almost surely. Similar analysis shows thatlim supm→∞ T

(m)
2 ≤ 0

almost surely, yielding the result.
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