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Equation (1) was chosen because it described well the empirically observed
decay of the mean fitness as a function of the mutation rate. The following cal-
culation, due to Peter Schuster (University of Vienna), shows that an equation
of the same form can be derived from the quasi-species model [1,2].

In mutation-selection equilibrium, the average fitness w(µ) of a population
consisting of a master sequence I0 and its mutants is given to second order by
[2,3]

w(µ) = W00 +
∑
k 6=0

W0kWk0

W00 −Wkk

, (*)

where W = {Wij; i, j = 0, . . . , n} is the matrix of selective values and mutation
probabilities, and it is assumed that the master sequence I0 has n different
possible mutants. In our experiments with digital organisms, mutations arise
with a uniform probability R = µ/L per site, and hence the elements of the
matrix W are of the form

Wik = wkε
d(i,k)(1−R)L ,

where the replication rate of genotype k is given by wk, L is the sequence length,
d(i, k) is the Hamming distance between the two genotypes i and k, and the
quantity ε = R/[(1−R)(κ− 1)] is the modified mutation rate, with κ being the
cardinality of the genetic alphabet (κ = 4 for the natural alphabet, AUGC,
and κ = 28 in the case of these digital organisms).

In the following, all terms of order higher than R2 will be ignored. In the
sense of a mean field approximation, we represent all single-site mutants of
the master sequence by their mean replication rate w(1) and by the difference
of their mean replication rate to the replication rate of the master sequence,
∆w(1) = w0−w(1). Here, the subscript “(1)” refers to the family of all sequences
that differ from the master sequence by exactly one mutation. Noting that there
are L(κ− 1) different single-site mutants, equation (*) becomes

w(µ) = w(RL) = w0(1−R)L
[
1 +

Lw(1)

(κ− 1)∆w(1)

( R

1−R

)2]
.

Expansion in a power series of the mutation rate µ yields:

w(µ) = w0

[
1− µ+

(L− 1

2L
+

w(1)

L(κ− 1)∆w(1)

)
µ2 +O(µ3)

]
. (**)

Likewise, equation (1) can be expanded into

w(µ) = w0

[
1− aµ+

(a2

2
− b
)
µ2 +O(µ3)

]
. (***)

1



A comparison between equations (**) and (***) reveals two conditions on the
parameters a and b: (i) a2/2 > b, since the coefficient in front of µ2 in equation
(**) is always positive, and (ii) a . 1, because from µ = LR follows that aL
gives a measure for the effective genome length of the organism.

We compared a and b in all 24 organisms that we studied, and found cri-
terion (i) satisfied in all but 3 cases. We cannot expect complete agreement
between the theory and our measurements, for the following reasons. First, the
derivation of equation (**) assumes equilibrium. We have, however, measured
the mean population fitness after fifteen generations, in order to obtain a re-
sult with predictive value for the (short-term) competition experiments. Fifteen
generations do not guarantee full equilibration of the quasi-species. Second, if
there is a strong disparity between the one-mutant replication rates, where some
are almost neutral (i.e., have almost identical replication rate to the master se-
quence) while others replicate much slower, the mean field approximation that
led to equation (**) may not be justified. From earlier studies [4], we know that
such a disparity among the one-mutants does indeed exist. Regarding criterion
(ii), we observed that a < 1 in sixteen cases, whereas a > 1 in eight others.
In principle, a > 1 implies an effective genome length greater than the actual
length, which is difficult to comprehend. However, it must be emphasized that
these values were obtained by fitting a two-parameter model, exp(−aµ− bµ2),
to empirical data. In all cases with a > 1, the decay initially accelerated with
increasing µ, but then slowed down, so that the curve fitting tended to over-
estimate parameter a and underestimate b. Despite such subtle discrepancies,
the measured fitness functions w(µ) agree well with the quasi-species theory.
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