Location of the elevation axis in
a large optical telescope

Stephen Padin

Proposed designs for the next generation of large optical telescopes favor a tripod or quadrupod secondary
support, and a primary supported from the back, but it is not yet clear whether the elevation axis should
be in front of the primary or behind it. A study is described of the effect of elevation-axis location on key
performance parameters (fundamental frequency, blockage, and wind-induced secondary decenter) for a
30-m Cassegrain telescope with a mount configuration that is typical of the new designs. For a fast (e.g.,
f/1) primary, the best location for the elevation axis is behind the primary. The penalty for moving the
elevation axis in front of the primary is roughly a 40% decrease in fundamental frequency and a

corresponding reduction in the control bandwidth for pointing and optical alignment. © 2004 Optical

Society of America

OCIS codes: 350.1260, 220.4880.

1. Introduction

The position of the elevation axis in a large telescope
is an important design consideration because it af-
fects many key parameters, e.g., the fundamental
frequency of the structure, the blockage that is due to
the secondary, the wind-induced decenter of the sec-
ondary, the size and cost of the telescope enclosure,
and the location of instruments. There are many
optical and radio telescope designs, with a wide range
of elevation axis locations, but there are no quanti-
tative studies of the effect of moving the elevation
axis in a particular design. Such a study is the goal
in this paper. The analysis is done first for a con-
ventional optical telescope with a tube on a fork
mount. This is a familiar configuration, with many
examples that can provide at least a qualitative check
of the results. The emphasis of the paper is on a
quadrupod and c-ring mount configuration, which is
typical of the new designs for large optical telescopes
(and many existing radio telescopes).

Most optical telescopes have a tube structure
with a spider to support the secondary mirror (or
prime focus instrument). This configuration has
low support blockage, typically just 1-2%, but the
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wind cross section of the upper tube and spider is
quite large (see Section 2 below). In most tele-
scopes (e.g., Keck,! the Very Large Telescope,2
Subaru,? and Magellan4), the elevation axis, which
provides access to the Nasmyth foci, is in front of
the primary. (An exception is Gemini,> which can-
not support a Nasmyth focus because the elevation
axis intersects the primary.) Proposed designs for
the next generation of large optical telescopes have
abandoned the tube, or at least its upper section, in
favor of a tripod or quadrupod secondary support to
reduce the effects of wind buffeting (see Section 4
below). Most of the designs [e.g., the Giant Seg-
mented Mirror Telescope® and Euro50 (Ref. 7)] have
the elevation axis behind the primary, as in a typ-
ical radio telescope; the California Extremely Large
Telescope® (CELT) has its elevation axis in front, so
multiple Nasmyth instruments can be illuminated
simply by tilting the tertiary.

Moving the elevation axis toward the secondary
decreases the size of the secondary required for an
instrument at the Nasmyth focus, but the mass of the
secondary support must be increased to balance the
telescope, thus decreasing the fundamental fre-
quency of the structure. A more massive or a
shorter secondary support is stiffer, so moving the
elevation axis closer to the secondary also reduces the
wind-induced decenter of the secondary. The trade-
off between these effects is explored in the following
sections with simple, lumped-element, coupled-
oscillator structural models applied to a 30-m Casse-
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Fig. 1. Telescope with a tube and a fork mount.
centers of mass of the telescope components.

Filled circles,

grain telescope with a flat tertiary feeding the
Nasmyth focus.

2. Telescope with a Tube on a Fork Mount

A. Structure

Figure 1 shows a telescope with a conventional tube-
style secondary support and a simple fork mount
(roughly the same size as the arms of the Keck yoke
structure!). The elevation (EL) bearings support
rings attached to the tube, and the azimuth (AZ)
bearings run on a track on a stiff pier. If the pier is
not stiff, it will participate in the fundamental mode
of the telescope, giving a lower fundamental fre-
quency. All the structures in Fig. 1 are drawn as
solids, but in practice they would be space frames.
Typical design constraints for existing telescopes of
this type are that they have (1) a balanced tube and
(2) matched gravitational deflections in the top and
bottom tubes to maintain alignment of the optics as
the telescope elevation changes. The second con-
straint is one of several options, but it is a common
approach. If the secondary is equipped with active
position control, we might instead design the tube for
minimum mass, to give a high fundamental fre-
quency, or for a particular stiffness, to limit the wind-
induced decenter of the secondary. In the following
analysis, all the structures are made from steel,
which reduces the cost, but it may be practical to
make the top tube from a composite. This would
reduce the tube mass and increase the fundamental
frequency of the telescope.
Refer to Fig. 1; for a balanced tube,

myd —h) +m,

M— E-F h_|_ h+£
g Mg TR T MR TG

(1)
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where m, is the mass of the secondary (~10* kg for a
4-m-diameter secondarys®),

m, = wDad — h)nyp (2)
is the mass of the top tube,
my = ’erlabhnbp (3)

is the mass of the bottom tube, m,, is the mass of the
primary (~150 X 10 kg for a 30-m- diameter, 50-mm-
thick segmented mirror?), and

m, = w(D./2)’tn.p (4)

is the mass of the mirror cell; m,, m,, and n. are
space-frame filling factors, and p is the density of the
space-frame material. & is the distance of the ele-
vation axis in front of the primary. It is the key
variable in this analysis. A constant secondary-
mirror aspect ratio gives m, « D, whereas a partic-
ular primary segment size, and hence thickness,
gives m,, « D>,

For matched gravitational deflections perpendicu-
lar to the optical axis,

m N 3mt 3mb N m, L e mc 5)
k, 8k, 8k, ky, K
where

M.\ 3wEDa,
k== 05— 6
' (3)&d—hﬁ’ ©)

) 3TEDa
o = (3) D ™

respectively, are the top and bottom tube stiffnesses
for end loading (see Appendix A) and the stiffnesses
for uniform loading are a factor of 8/3 higher; E is
Young’s modulus for the tube material. Given the
tube lengths and space-frame filling factors, Eqs. (1)
and (5) can be solved for the tube wall thicknesses.
To match gravitational deflections along the optical
axis, we must also adjust the relative axial stiffnesses
of the top and bottom tubes but without significantly
changing the relative radial stiffnesses. We can do
this by adding beams parallel to the optical axis or by
changing the axial stiffness of the spider arms in the
secondary support.

B. Dynamics

The fundamental mode of the telescope structure in
Fig. 1is a rocking motion roughly about the elevation
axis. This involves bending of the forks, rigid-body
rotation of the entire tube assembly, and bending of
the top and bottom tube sections. An equivalent
lumped-element, coupled-oscillator model is shown in
Fig. 2. The forks, the azimuth drives, and the ele-
vation drives are represented by a single spring with

stiffness
k= g+ 1 h (8)
1 kd kf )
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Fig. 2. Lumped-element, coupled-oscillator model of the telescope
in Fig. 1: x4, x5, and x5, lateral displacements of the forks and of
the bottom and the top tubes respectively; x,, rotation of the entire
tube about the elevation axis; &, spring constant (e.g., in units of N

Rigid-body rotation of the tube (through angle x,) is
resisted by elevation-axis torque stiffness 7, = k,r”
(e.g., in units of N m rad!). The equations of mo-
tion for Fig. 2 are

0=mk, + kixy + ky(hx,
—(d = h)xyl,
0 = myiy + ky(hx, — T4%4/ R,
0 = mgits + ks[xs — x1 — (d — h)xy] + 7424/(d — h),
0=k, + 71424 + ks[5 — 21— (d — h)x,](d — h)
— ko(hxy — x1 + x9)h, (15)

where

— X1+ x9) + Ry[x3— x

x1+x2) -

d — h)* h?
SCE.

m~Y); 7, torque stiffness (e.g., in units of N m rad1); m, mass. J=myd — h)2 + g +m, h?
t 2
mc<h + ) (16)
where %, is the stiffness of a drive and 2
is the moment of inertia of the tube assembly. For a
. mode involving the entire structure at frequency o,
B | 9ED, (9)  the solution has the form x; = g; cos wt, so Egs. (15)
3] e4L? become
k1 - k2 - k3 - w2m1 k2 kgh - k3(d - h)
_(1)2m2 k2 - (1)2m2 kzh - T4/d2
0= —w?m, 0 ky-o'ms  —kyd-h)t1/d-n) |47A A7
0 —kyh ks(d —h) 14— kyh®—ky(d — h)* —

is the stiffness of the forks for uniform loading (see
Appendix A). Equation (9) models the forks as a
single space-frame beam, 3D,/4 X D,/2 X L, where

L=[(h+t)*+ (Dy/2)"]"~
The mass of the forks (represented by m, in Fig. 2) is
3D’Ln P
—5

The top and bottom tube models are not straightfor-
ward because part of the mass is distributed, but
effective stiffnesses for the low-order modes can be
estimated from gravitational deflections of the tube
with the telescope pointing at the horizon [Eq. (5)].
For the bottom tube,

(10)

mf:

b~ b (m, + m,+ m,) (11
? b(mp+mc+3mb/8)’

my=my+m, + m,; (12)
for the top tube,

hom M) (13)
" (m, + 3m,/8)’

ms = m; + mg. (14)

The smallest positive nonzero root of det(A) is the
fundamental frequency of the telescope. It can be
found numerically after some tedious algebra to de-
velop the 8th-order polynomial corresponding to

det(A).

C. Blockage and Decenter

The fraction of the primary that is blocked by the
secondary and the spider is

—?@2+§ﬂwp—p) (18)
€ - D1 1TD12 1 2/

where the first term is the blockage that is due to the
secondary mirror itself and the second term is the
blockage for a spider with four arms, each of width w.
(For the Keck telescopes, w = 25 mm, D; = 10 m, and
D, = 1.5m, so the secondary and spider blockages are
~2% and 0.5% respectively.l) The diameter of the
secondary is®

(d +e)D,
D, = f + 2ad, (19)

where e is the back focal distance (e = D,/2 — h if the
Nasmyth focus is at the tube wall), fis the final focal
length, « is the angular radius of the field of view, d =
(f — e)/(y + 1) is the primary to secondary spacing,
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Fig. 3. (a) Fundamental frequency, (b) blockage, (c) mass contributions, and (d) secondary decenter in a 5-m s~ ! wind; (e) tube stiffness
for end loading and (f) tube wall thickness for a 30-m telescope as in Fig. 1; &, distance of the elevation axis in front of the primary. In
all the figures except (c) the curves represent different primary mirror focal ratios: f/1 (solid curves), f/1.5 (dashed curves), and f/2 (dotted
curves). The mass contributions in (c) are m (thinner solid curve), m, (dashed curve), m, (dotted curve), and total mass (thicker solid

In (e) the upper curve near A = 0 is for the bottom tube, and in (f) the upper curve is for the top tube.

curve), all for an f/1.5 primary.
Blockages in (b) are for the spider (roughly horizontal curves) and the secondary mirror (curves running from top left to bottom right).

Telescope parameters are given in Table 1.

v = f/f1 is the secondary magnification, and f; is the
primary focal length.

Wind buffeting causes bending and rigid-body mo-
tion of the tube. The corresponding image motion
can be corrected by a fast-steering mirror (e.g., the
tertiary), but a decenter of the secondary causes
higher-order aberrations.’® It is difficult to estimate
the decenter because the spectrum and the correla-
tion length of wind pressure fluctuations vary over
the telescope, but a useful upper bound can be ob-
tained from the static deflection of the top tube in a
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uniform air flow. A space-frame tube with n sides
typically has 2n roughly axial members and at least
one ring (see Appendix A), so for a hexagonal tube the

wind cross section is

A, ~12a,d — h) + wD;a,. (20)

The cross section of the secondary mirror is

A, ~Dy/B, (21)



Table 1. Telescope Parameters for Figs. 3 and 6 (below)

Parameter Value Unit Description
D, 30 m Primary diameter
Y 10 Secondary magnification
e D,/2 — h Back focal distance
« 10 arcmin Radius of field of view
t D,/6 Primary mirror cell thickness
R D,/2 c-ring radius
r 2 m Radius of elevation drive ring
mg 10* (Dy/4)3 kg Secondary mass (D, in meters)
B 6 Secondary aspect ratio
m, 150 X 10® (D,/30)? kg Primary mass (D in meters)
my, 0 kg Counterweight mass
N Mo 0.01 Tube filling factors
Np Nes Mo Ny 0.005 Space-frame filling factors
ky 1010 Nm! Drive stiffness
w 0.1 m Spider arm width
v 5 ms ! Wind speed
Pair 1.29 kgm? Density of air
E 2 X 1011 Pa Young’s modulus for steel
Y 2 X 108 Pa Yield modulus for steel
P 7833 kg m 3 Density of steel
S 2 Stress safety factor

where B is the aspect ratio, and the cross section of a
four-arm spider is

A, ~2w(D, - Dz)(Dz/B)- (22)

If the air flow has a high, but subcritical, Reynolds
number, the drag coefficient of the structure is
roughly 1, and the decenter of the secondary is

d 1 2§A +A+A 1 (23)
zpairv 8 t s x kt’

where p,;,. is the density of air and v is the wind
speed.l? The factor 3/8 represents the higher stiff-
ness for uniform wind loading on the tube walls com-
pared with end loading that is the result of wind
forces on the secondary and spider.

D. Results

Figure 3 shows the fundamental frequency, blockage,
and wind-induced secondary decenter for a 30-m
tube-style telescope with the parameters given in Ta-
ble 1. The space-frame filling factors in Table 1 are
from the California Extremely Large Telescope con-
ceptual design,® and the drive stiffness is from a 30-m
telescope design based on the Large Binocular Tele-
scope.’2  The drive stiffness and the diameter of the
elevation drive ring are important for setting the fre-
quency scale in Fig. 3(a). A large drive ring gives
high torque stiffness and high fundamental fre-
quency, but there is a severe mass penalty because
the ring must have a filling factor of at least 0.1;
otherwise its stiffness will limit 7,. For Fig. 3,r =2
m, which was scaled from the Gemini elevation trun-
nion design,? but a larger drive ring with a high filling
factor may be possible. As the elevation axis is
moved toward the secondary, the fundamental fre-

quency decreases because the mass of the tube in-
creases. At h = d/2, it becomes impossible to
balance the tube; the mass explodes and the funda-
mental frequency of the telescope drops to zero. At
small £, the fundamental frequency curves cross be-
cause the motion of the tube changes from rigid-body
rotation to bending. Stress and buckling in the tube
members limit the tube-wall thickness (Section 3), so
designs with & close to zero may not be practical; they
are in any case of limited interest because the tube
stiffness is low, so wind-induced decenter of the sec-
ondary is high. If & is small, the bottom tube will be
stiff enough to support the elevation axis, as in the
Gemini design,5; otherwise a stiff ring must be in-
cluded between the top and bottom tubes, as in the
Keck telescopes.! Adding a ring will increase the
mass of the telescope and reduce its fundamental
frequency.

3. Telescope with a c-Ring Mount and a Quadrupod

A. Structure

Figure 4 shows a telescope with a quadrupod second-
ary support and c-rings that support the back of the
primary. The c-rings provide the elevation axis
bearing surfaces, and the azimuth bearings run on a
track on a stiff pier, as in the fork mount of Fig. 1. If
the c-rings are large, the elevation axis can be in front
of the primary, and the structure can be balanced
without a counterweight. (The Lovell Telescope,!3
for example, uses this approach.) Active control of
the secondary position is required for maintaining
the optical alignment of the telescope, so the quadru-
pod can be designed to maximize the fundamental
frequency or to limit wind-induced decenter of the
secondary. For the following analysis, the design
constraints are a balanced structure and minimum
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Fig. 4. Telescope with a quadrupod and a c-ring mount.

blockage, i.e., minimum quadrupod mass. The sec-
ond constraint, which maximizes the fundamental
frequency of the telescope, is a good choice because it
also maximizes the control bandwidth for pointing
and optical alignment.

Stress in a horizontal quadrupod leg sets a lower
limit on the leg’s diameter. The stress is minimized
if the leg is as thick as possible in the direction of the
gravity vector, so a quadrupod leg in the plane of the
elevation axis should have an aspect ratioof 1. Aleg
in a different position can have a higher aspect ratio
to reduce the stress without compromising the block-
age. The following analysis is for a simple quadru-
pod with legs made from round tubes. The
maximum stress in a horizontal leg supported at each
end is4

l
o =" (24)
where
Traqz"qql p
mleg = (25)
4
is the mass of the leg,
D 2 1/2
l = (41 + d2) (26)
is the length of the leg, and
T
Z= 39 a,;n,(2 —m,) (27)

is the section modulus; , is the leg filling factor, and
g is the acceleration that is due to gravity. The

1102 APPLIED OPTICS / Vol. 43, No. 5 / 10 February 2004

stress must be smaller than the yield modulus Y by a
safety factor S, so the minimum leg diameter is
Sgpl?
a,> . (28)
Y2 -,

As an aside, the Euler bucking load for a vertical leg
is

w’El
Fo="F4", (29)
where
™oy
I= 674 a, ”[]q(2 - ’Y]q) (30)

is the moment of inertia.'* If m,,g < F,,/S, then
2 216»S’gpl3

7 7’E(2 -,

which is a less severe constraint than Eq. (28) for

steel legs longer than ~4 m if S = 2.
Refer to Fig. 4; for a balanced telescope,

a (31)

d
myd — h) + mq(z - h) —myh

t (h +1)
mc<h + 2) m, 2

4R
=m,—+my,R, (32)
3

where

m, = 4m, = ma,,lp (33)
is the mass of the quadrupod,

m, = 3R*pn.(—h — 1) (34)

is the mass of the box that couples the mirror cell to
the c-rings,

3
m.=7 wR%p, (35)

is the mass of the c-rings, and m,, is the mass of the
counterweight; m,, m,, and m, are the same as for
Fig. 1. For h > —t, m, represents the region where
the mirror cell overlaps the c-rings, so modeling m, as
a simple rectangular box, R X 3R/2 X (¢ — h), causes
an error in Eq. (32) that increases with 2. Given
dimensions and space-frame filling factors for the
mirror cell and the c-ring assembly, and a stress
safety factor, inequality (28) and Eq. (32) can be
solved for a, and m,,.

B. Dynamics

The fundamental mode of the telescope is again a
rocking motion, roughly about the elevation axis. In
this case the telescope can be broken up into a simple
series-connected array of springs and masses, as in



Fig. 5. The azimuth and elevation drives, azimuth
platform, c-rings, and the box that connects the
c-rings to the mirror cell are all modeled as a single
beam, R X 3R/2 X D{/2 — h — t, with stiffness

— E_{_i '&_h_t3711 &_h_tz
"k, R'Em, \ 2 212 '
(36)

(The torque stiffness of a uniformly loaded beam of
length d is 7 = kd?/2, e.g., in units of N m rad ?,
where £ is the beam stiffness for uniform loading,
e.g.,inunitsof Nm ') The moment ofinertia of the
beam is

1

3R [R (1)1 SR)S R (Dl - 41!%)2

2 [3\2 2 2 \2 3w
D, h+t\’
R(h t)(2 2 ) PN,
D, 2
+mw?—R . 37

The stiffness of the mirror cell, or some similar struc-
ture that supports the quadrupod, can be estimated
from the stiffness of a uniformly loaded circular plate
supported mainly near the center. This is roughly
equivalent to a simply supported plate, for which the
axial stiffness is?®

Y[ 16mE 38)
<13/ 31 -v)5+v)(D/2)%

where v is Poisson’s ratio for the plate material. The
stiffness of a plate scales as the inverse square of a
mode feature size, so the tilt stiffness is roughly a
factor 4 smaller than the axial stiffness. Hence,

Ly Do (me)  BmEC g
T g T 331 -G+

For steel, v =~ 0.3, so
Ty~ (g) 2B, (40)

We can obtain a similar result by modeling the cell as
a pair of rectangular beams, each with section ¢ X
D,/2 and length D;/2. The moment of inertia of the
cell and the primary mirror is

D 2
Jy=(m, + mc)<41) . (41)

For the quadrupod, the stiffness for end loading is

- § wED 12aq2"ﬂq

kq 8 2d*

(42)

QUADRUPOD

MIRROR
CELL

AZ PLATFORM
& C-RINGS

Fig.5. Lumped-element, coupled-oscillator model of the telescope
in Fig. 5: x, angular displacement; 7, torque stiffness (e.g., in
units of N m rad'); J, moment of inertia (e.g., in units of kg m?).

(see Appendix A), so
8 d* _ wED*a,’n,

=k, —= 4
gl 4d (43)
The moment of inertia is
m,d* ,
Jy = 3 + m,d”. (44)
The equations of motion for Fig. 5 are
0 = Jl.’iél + T1X1 + Tz(xz - xl),
0 = Joky + (22 — 1) — T5(x5 — x),
0 = J35i5 + T5(x3 — x5), (45)
and, for a solution of the form x; = g, cos wt,
T1 + Tg — (.02J1 —To O
0= — Ty To + Ty — (1)2J2 —T3 q
0 —T3 k3 - (02J3
= Aq. (46)

The fundamental frequency is again the smallest pos-
itive root of det(A).

C. Blockage and Decenter
The blockage for the telescope in Fig. 4 is
2

- D—2+8aq (D, - D,) 47
C_ D1 1TD12 1 2/

and the decenter of the secondary that is due to uni-
form wind loading is

q

1 3 1
6 ~ — pairvz(Aq + As)
where

A, = 4a,l (49)

is the cross section of the quadrupod legs and A, is the
cross section of the secondary [Eq. (21)].
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(a) Fundamental frequency, (b) blockage, (c) mass contributions, and (d) secondary decenter in a 5-m s~ ! wind; (e) quadrupod

stiffness for uniform loading and (f) quadrupod tube diameter for a 30-m telescope as in Fig. 5, with c-rings of diameter D;; k, distance

of the elevation axis in front of the primary.

In all the figures except (c) the curves represent different primary mirror focal ratios: f/1

(solid curves), f/1.5 (dashed curves), and f/2 (dotted curves). The mass contributions in (c) are m,, + m, + m, (thinner solid curve), m,
(dashed curve), m, + m,, (dotted curve), and total mass (thicker solid curve), all for an /1.5 primary. Blockages in (b) are for the secondary

mirror (lower curves) and the quadrupod legs (upper curves).

D. Results

Figure 6 shows the fundamental frequency, blockage,
and wind-induced secondary decenter for a 30-m
quadrupod-style telescope with the parameters listed
in Table 1. High fundamental frequency is again
associated with low secondary support mass, which
in this case means moving the elevation axis further
behind the primary, consistent with most existing
radio telescope designs. If & is made too negative,
the dynamics of the telescope are dominated by the
secondary oscillating on a floppy quadrupod, and the
fundamental frequency curves turn over. The fun-

1104 APPLIED OPTICS / Vol. 43, No. 5 / 10 February 2004

Telescope parameters are given in Table 1.

damental frequencies in Fig. 6(a) [and also in Fig.
3(a)] are too high by a factor of ~\/2 because the
simple space-frame models tend to overestimate stiff-
nesses by a factor of ~2 (see Appendix A). A real
30-m f/1 telescope might achieve a fundamental fre-
quency of ~4.8 Hz.

The blockage in Fig. 6(b) is dominated by the qua-
drupod legs and decreases with quadrupod mass, so
blockage and fundamental frequency both work to
push the elevation axis away from the secondary.
This situation is quite different from that for a tube-
style telescope, in which the blockage is dominated by



h (m)

Fig. 7. Same as Fig. 4(a) but with R = D,/4 and m,, = 245 X 103
kg.

the secondary mirror [see Fig. 3(b)]. We could re-
duce the quadrupod blockage by changing to a two-
tier support with a lower space-frame tube and an
upper multipod with fairly thin legs.8

If the elevation axis is behind the primary, we can
reduce the size of the c-rings without limiting the
elevation range of the telescope, which will leave
more space for instruments. Figure 7 shows the ef-
fect of reducing the c-ring diameter by a factor of 2
and adding a counterweight to balance the telescope.
The fundamental frequency is lower than in Fig. 6(a)
because the counterweight adds mass, which in-
creases the moment of inertia of the c-rings, but it
contributes nothing to the stiffness of the structure.
We can at least partly recover the performance by
increasing the filling factor of the c-ring space frames
and reducing the mass of the counterweight. This
configuration is quite attractive because a high space-
frame filling factor has the important practical ad-
vantage of high stiffness on small spatial scales.

With a fast primary, and with the elevation axis
positioned for high fundamental frequency, the qua-
drupod and tube-style telescope designs have similar
fundamental frequency, blockage, wind-induced sec-
ondary decenter, and total mass.

4. Wind Buffeting

The analysis of Sections 2 and 3 allows us to compare
the effect of wind buffeting on quadrupod and tube
structures with the same total mass. From Eqs. (26)
and (33) and relation (42), the stiffness of a quadru-
pod of height d > D,/2 and mass m is

, - 3EDSm (50)
e 16pd* ’

so the ratio of leg cross section [Eq. (49)] to stiffness
is

64a,pd’

A~ 5.
7 3EDm

(61)

The wind-induced decenter of the secondary is pro-
portional to A. From Egs. (2) and (6), the stiffness of
a tube of length d and mass m is

b ED/*m 52)
a 8pd* ’

which is smaller than &, by a factor of 3/2. For a

hexagonal tube, the cross section of the axial mem-

bers is ~12a,d [see Eq. (20)], so the ratio of cross

section to stiffness is

A M (53)
" ED*m’
Hence,
A, 9a 54)
A, 2a,

The stress constraint of inequality (28) gives a lower
limit for the diameter of the quadrupod legs, and this
also applies to members that run the full length of a
tube. Thus a quadrupod with the minimum leg di-
ameter (i.e., minimum blockage) will have at least a
9/2 times lower decenter than a tube of the same
total mass. If we include the cross sections of the
spider and the top tube ring, the advantage of the
quadrupod is even greater. The better performance
of the quadrupod is not obvious from Figs. 3(d) and
6(d) because the design constraints for the two tele-
scopes are different. The quadrupod was designed
for minimum blockage, i.e., minimum mass, but the
tube was designed to maintain alignment of the op-
tics. The resultisin a fairly massive top tube, which
has roughly the same decenter as the quadrupod.

5. Conclusions
The new results from this study are that

1. For a fast 30-m telescope with a c-ring mount
and a quadrupod, the optimum location for the ele-
vation axis is behind the primary. Wind-induced de-
center of the secondary increases rapidly with
primary focal ratio, and with an f/2 primary the de-
center is large enough to favor an elevation axis just
in front of the primary.

2. The penalty for moving the elevation axis in
front of the primary in a c-ring mount is a 20% (for
f/2) to 40% (for f/1) decrease in the fundamental
frequency of the telescope. This decrease will re-
duce the control bandwidth for pointing and optical
alignment, but the fundamental frequency will still
be above most of the power in wind disturbances.
The result is important because it shows that we can
move the elevation axis, e.g., to provide access to
multiple Nasmyth instruments, without seriously
compromising the telescope control.

Appendix A: Stiffness Models

Here, simple beam and finite-element models of the
stiffness of space-frame structures are compared. In
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Fig. 8. Space-frame beam made from layers of tetrahedrons and
sheets of hexagons. Filled triangles, fixed points for FEA.

a space frame, roughly one third of the members run
across the structure in each of three orthogonal di-
rections. The stiffness should therefore be ~v/3
times the stiffness of the corresponding solid, where n
is the space-frame filling factor. For the space-
frame beam in Fig. 8 the expected stiffness for end
loading is

p=130 (A1)
3 d*’

where I = WH?/12 is the moment of inertia.’* Fig-
ure 9 shows finite-element analysis (FEA) results for
beams made from steel tubes of several sizes. As
expected, £ = m, but the simple beam model tends to
overestimate the stiffness by a factor of ~3/2. For
gravitational (i.e., uniform) loading, the stiffness of
the finite-element model increases by 2.44, which is
close to the expected value of 8/3.

The hollow core of a space-frame tube restricts the
location of frame members, so we might expect a
stiffness penalty. For an ideal tube, with dimen-
sions as in Fig. 10, the expected stiffness for end
loading is

n 37ED%
k=_——35—, A2
3 8d° (A2)
1.5 T
X O *
S
5145t .
-~
1.4 L
0 0.005 0.01
n

Fig. 9. Stiffness of the space-frame beam in Fig. 8 from FEA,
divided by the stiffness predicted by Eq. (A1). The beam dimen-
sions are W = 5m, H = 4.6 m, and d = 8.2 m, with 1-m tetrahe-
drons; frame members are steel tubes 10 mm in diameter X 1 mm
wall (cross), 20 mm X 2 mm (circle), and 40 mm X 5 mm (asterisk).
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Fig. 10. Space-frame tube.

where a << D is the tube-wall thickness. A hexag-
onal tube with D = 30 m and d = 40 m, made from
10-mm-wall steel tubes with ¢ = 1 m, has 1 = 5.2 X
103, so the expected stiffness is 1.7 X 108 N m ! for
end loading or 4.6 X 108 N m ™! for uniform loading.
The corresponding FEA results are 1.0 X 108 Nm ™!
for end loading and 1.9 X 10® N m ™! for gravitational
loading; the latter value slightly underestimates the
uniform loading stiffness because the gravitational
deflection is increased by the weight of the ring at the
top of the tube. Equation (A2) overestimates the
tube stiffness by a factor of ~2, so the model is a little
worse than that for the dense space-frame beam of
Fig. 8.

For a quadrupod as in Fig. 11 we can estimate the
deflection, and hence the stiffness, by integrating
stress along a beam that has the same moment of
inertia as the quadrupod legs.'® This approach
tends to overestimate the stiffness because it does not

account for the bending of individual legs. The mo-
ment of inertia of the quadrupod is
ma’n z\ D1?
I(z) =2 1-—— A
(2) 1 al 2| (A3)
where m is the filling factor of the tubes. With uni-
form pressure @, the bending moment is
d2 2
Muyra4—@+2» (Ad)
2 2
SECTION XX
\+ X
T (1-z/d)D/2

S 4 > O—+ 6

l/‘”x 2 /é/

A !

d
Quadrupod.

Fig. 11.



and the deflection gradient along the quadrupod is

M(z) 4Qd® z
3'(2) = dz ~ -
(=) f El(z) ~  wED’an\  d
(A5)
The deflection at the apex is
S = ds/( )dz"’ﬁ (A6)
a . = wED%ax’
so the stiffness for end loading is
3 3 wED’a”
=29 3 TEDam (A7)

88 8 2d°
A quadrupod with D = 30 m and d = 40 m, made
from 10-mm-wall steel tubes with @ = 1 m, has q =
4.0 X 1072, so the expected stiffness is 6.6 X 10’ N
m ! for end loading or 1.8 X 10 N m ™! for uniform
loadin% FEA results for this structure are 3.8 X 10”
N m ! for end loading and 7.5 X 10" N m ! for
gravitational loading. Expression (A7) overesti-
mates the quadrupod stiffness by a factor of ~2 for
end loads and is a little worse for uniform loads be-
cause these are coupled only between the legs as end
loads at the apex. Adding thin members in tension
between the legs would distribute the coupling and
improve the stiffness.

The author thanks Doug MacMartin and Larry
Stepp for helpful comments. This study was sup-
ported by the Caltech Discovery Fund.

References
1. J. E. Nelson, T. S. Mast, and S. M. Faber, eds., “The design of
the Keck Observatory and Telescope,” Keck Observatory Rep.
90 (Keck Observatory, Kamuela, Hawaii, 1985).
2. M. Quattri, F. Dimichino, G. Marchiori, and E. Piccinini, “VLT
8m unit telescope main structure: design solutions and per-

10.
11.

12.

13.
14.
15.

16.

10 February 2004 / Vol. 43, No. 5 / APPLIED OPTICS

formance calculations,” in Advanced Technology Optical Tele-
scopes V, L. M. Stepp, ed., Proc. SPIE 2199, 986-996 (1994).

. K. Miyawaki, N. Itoh, R. Sugiyama, and M. Sawa, “Mechanical

structure for the Subaru Telescope,” in Advanced Technology
Optical Telescopes V, L. M. Stepp, ed., Proc. SPIE 2199, 754 —
761 (1994).

. S. M. Gunnels, “Design of the Magellan Project 6.5 meter

Telescope: telescope structure and mechanical systems,” in
Advanced Technology Optical Telescopes V, L. M. Stepp, ed.,
Proc. SPIE 2199, 414-427 (1994).

. K. Raybould, P. Gillett, P. Hatton, G. Pentland, M. Sheehan,

and M. Warner, “Gemini Telescope structure design,” in Ad-
vanced Technology Optical Telescopes V, L. M. Stepp, ed., Proc.
SPIE 2199, 376-393 (1994).

. S. Strom, L. M. Stepp, M. Mountain, and B. Gregory, “Giant

Segmented Mirror Telescope: a point design based on science
drivers,” in Future Giant Telescopes, J. R. P. Angel and R.
Gilmozzi, eds., Proc. SPIE 4840, 116-128 (2003).

. T. Andersen, A. L. Ardeberg, J. Beckers, A. Goncharov, M.

Owner-Petersen, H. Riewaldt, R. Snel, and D. Walker, “The
Euro50 Extremely Large Telescope,” in Future Giant Tele-
scopes, J. R. P. Angel and R. Gilmozzi, eds., Proc. SPIE 4840,
214-225 (2003).

. J. E. Nelson and T. S. Mast, eds., “Conceptual design for a

thirty-meter telescope,” CELT Rep. 34 (University of Califor-
nia, Santa Cruz, Santa Cruz, Calif., 2002).

. J. Nelson, T. Mast, and G. Chanan, “Aberration correction in a

telescope with a segmented primary,” in Active Telescope Sys-
tems, F. J. Roddier, ed., Proc. SPIE 1114, 241-257 (1989).

D. J. Schroeder, Astronomical Optics (Academic, San Diego,
Calif., 2000), p. 132.

P. K. Kundu and I. M. Cohen, Fluid Mechanics (Academic, San
Diego, Calif., 2002), p. 344.

W. B. Davison, N. J. Woolf, and J. R. P. Angel, “Design and
analysis of 20m track mounted and 30m telescopes,” in Future
Giant Telescopes, J. R. P. Angel and R. Gilmozzi, eds., Proc.
SPIE 4840, 533-540 (2003).

R. H. Brown and A. C. B. Lovell, The Exploration of Space by
Radio (Chapman & Hall, London, 1957), p. 194.

R. J. Roark and W. C. Young, Formulas for Stress and Strain
(McGraw-Hill, New York, 1975), pp. 96, 534.

S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates
and Shells (McGraw-Hill, New York, 1959), p. 57.

R. Richards, Solid Mechanics (CRC Press, Boca Raton, Fla.,
2001), p. 150.

1107



