Spatial spectrum analysis of wave-front correction

with a segmented mirror

Stephen Padin

An expression is derived for the spatial power spectrum of wave-front errors after correction with a

segmented mirror.
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1. Introduction

The simplest model of a segmented mirror is a high-
pass filter in the spatial-frequency domain, with a
sharp cutoff at 1/2d, where d is the segment diame-
ter. This type of model is common in adaptive optics
(AO) system analysis.’-¢ A real segmented mirror
has a fairly gentle spatial-frequency cutoff, and wave-
front fitting is a nonlinear process; both of these ef-
fects must be included to improve the fidelity of the
mirror model. Segment adjustments can be based
on wave-front measurements or on mechanical mea-
surements of structural deformations in the tele-
scope; but in both cases the segment array samples
the measurements, and this causes aliasing. Large-
amplitude, low-spatial-frequency errors, e.g., due to
atmospheric phase fluctuations and gravitational
and wind-induced deformations of the telescope, are
aliased to high spatial frequencies and may inject
significant power above the spatial bandpass of the
telescope AO system. This increases the number of
actuators required to achieve a particular minimum
wave-front error. Aliasing of high-spatial-frequency
noise down into the AO correction band also increases
the error in the delivered wave front. This again
increases the required number of actuators because
atmospheric phase fluctuations and telescope defor-
mations have lower power at high spatial frequen-
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This includes estimates of the spectral contributions of segment piston and tilt
corrections and spatial aliasing by a regular array of segments.
of wave-front error spectra in systems with highly segmented mirrors.

The approach allows rapid computation
© 2003 Optical Society of

cies, so increasing the spatial bandwidth of the AO
system decreases the aliased noise.

The focus of this paper is an estimate of the spatial
spectrum of residual wave-front errors, and hence
imaging performance, for a segmented mirror. This
is an extension of research by Rigaut et al.2 to include
models of the spectral contributions of segment pis-
ton and tilt corrections, based on both wave-front and
segment edge sensor measurements. The analysis
is entirely in the spatial-frequency domain, which
reduces the computation time for highly segmented
mirrors because the calculations are independent of
the number of segments. The approach also fits well
with models of the spatial spectra of wind-induced
deformations and atmospheric phase fluctuations.

2. Wave-front Fitting in One Dimension

The minimum rms wave-front error is obtained when
segments are adjusted on the basis of a least-squares
fit to measurements of the wave-front or mirror sur-
face error. In alarge, active, segmented mirror, two
height sensors per segment edge are typical;> the
sensors sample scales smaller than a segment, and
the mirror surface control can approach least-squares
fitting. For AO, the number of measurements and
computations makes least-squares fitting impracti-
cal, so direct measurements are made of the average
wave-front tilt across each segment (e.g., with a
Shack—Hartmann sensor). In this section, I calcu-
late one-dimensional (1-D) spatial spectra corre-
sponding to wave-front corrections based on both
least-squares fitting and average tilt measurements.
The 1-D case is presented in some detail as an intro-
duction to the more useful two-dimensional (2-D)
analysis in Section 3. In the following, a subscript
LS indicates least-squares fitting, and SH refers to a
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Shack—Hartmann (or similar average tilt) measure-
ment.
In aleast-squares fit to N samples of the wave-front

error, wq, Wy . . . Wy, taken at positions x4, x5 . . . X

across a segment, the piston is 8, = 1/N Ej]\il w;;

and for Ej]\il x; = 0, the tilt is 6y g = Ejz\il wjxj/Einl xj2

(Ref. 6). The piston measurement is equivalent to
1 fx+d/2 1
drs(x) = dJ. w(s)ds = d [w(x) = II(x/d)], (1)
x—d/2

where x is the position on the mirror surface, w(x) is
the wave-front error, I1(x/d) = 1 for |x| = d/2 but 0

otherwise, and * indicates convolution. The corre-
sponding spatial spectrum is
Ars(u) = W(u)sine(mwdu), (2)
where u is the spatial frequency, and sinc(x) = (sin
x)/x. For tilt,
x+d/2
f (s —x)w(s)ds
_ Yx-d/2
Ops(x) = 22
j s’ds
—d/2
192 fx+d/2
= Z '[ (s —x)w(s)ds
x—d/2
12
= - @ @/l ©)

and the spatial spectrum is

sin(wdu) 3 cos(mdu)

(mdu)®

(4)

6i
Ous(u) = Wlu) [ du

A Shack—Hartmann sensor measures the average
of w'(x) across a segment, hence

1
Bsu(x) = d [w'(x) * I(x/d)]. (5)

Applying the Fourier-transform derivative theorem?
then yields

Ogu(u) = i2muW(u)sine(wdu) = W(u) %sin(ﬂn’du).
(6)

If we transform back to the x domain, 6gy(x) = (1/
dw(x) = [I(x + d/2) — I(x — d/2)], where I(x) is the
impulse symbol, so the average tilt across a segment
is just the gradient between two samples of the wave
front taken on opposite edges of the segment. In the
Shack—Hartmann case, the piston for a segment
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must be computed by integrating tilt across the mir-
ror. This yields

dsu(x) = J'" Bsu(s)ds, (7)
0
hence
ASH,(u) = SH(u)y (8)
An(te) = 259 _ ) sine(mdu), 9)
12Tu

which is the same as for a least-squares fit to the wave
front. In general, we can write A(u) = p(u)W(u), and
Ou) = t(u)W(u), where p(u) and #(u) are the measure-
ment functions for segment piston and tilt.

To correct wave-front errors, we adjust the seg-
ments based on the values of d(x) and 0(x) at the
segment centers. This is equivalent to sampling
d(x) and 6(x) with III(x/d) (an infinite array of im-
pulse symbols with spacing d) and then convolving
with —II(x/d) and —xII(x/d) to generate the piston
and tilt components §,,(x) and 6,,(x) corresponding to
the mirror surface (see Fig. 1). For piston,

du(x) = —[8(x)I(x/d)] * H(x/d),  (10)
hence
Ay(w) = —[A(w) * III(ud)]sinc(wdu);  (11)
and for tilt,
0y(x) = —[0(x)III(x/d)] * xT1(x/d), (12)

S[¢]

Oulu) = % [O(w) * I(ud)]

sin(mdu)
(wdu)?

In general, Ay (w) = [pw)W(u) * Il(ud)]P(u), and
0,,(w) = [tw)W(u) * II(ud)]T(w), where P(u) and T(u)
are the correction functions for segment piston and tilt.

The corrected wave front is the sum of w(x) and the
piston and tilt components corresponding to the mir-
ror surface. Ifw(x)is a realization of a random sta-
tionary process, components aliased from different
spatial frequencies are uncorrelated. The statistical
spatial power spectrum of residual wave-front errors,
after correction for segment pistons and tilts, is then

D(u) = |Ww)|1 + p(uw)P(u) + t(w)T(w)
+ % W(u + Zi)

) (14)

3 cos(wdu) (13)

wdu

p(u + é)P(u)

+ t(u + ;) T(u)

where the measurement and correction functions are
given in Table 1. The first term in Eq. (14) is the
square of the corrected wave-front amplitude in the
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Fig. 1. Mirror surface profile calculation for wave-front error cor-
rection in one dimension, with segment tilts from a least-squares
fit to the wave front. The operations run from top to bottom; X
and * represent multiplication and convolution, and 1 is an im-
pulse symbol. Applying the measurement and sampling func-
tions yields the wave-front piston and tilt at each segment, and the
correction functions generate the corresponding mirror surface.
The residual wave-front error is w(x) + 3,,(x) + 0;,(x).

unaliased (j = 0) component; the jth term in the
summation is the power aliased from spatial fre-
quency u + j/d. A similar analysis applies to an AO
system with a continuous face-sheet deformable mir-
ror, but in this case d is the actuator spacing.2 If
extending a single actuator a distance z causes adja-
cent actuators to move a distance cz, the actuator

spacing in the correction functions can be increased
by a factor of 1 + ¢ to roughly model the interactuator
coupling.

3. Wave-Front Fitting in Two Dimensions

For a 2-D wave-front error, w(x) = w(x, y), we must
include x and y components of the tilt, so Eq. (14)
becomes

®(u) = W1 + p(u)P(u) + ¢ (a) T (u)
+ t,(w)T,(u)|?
+ E |W(u + gj,k)|2|p(u + &) P(u)
i

J»
£40
+t(u+ )T (w) +t(u+ g7, (), (15)

where u = (u, v) is the 2-D spatial frequency, and §; ,
is a point (e.g., at column j, row k) in the segment
sampling function. The power spectrum of wave-
front errors as a function of radius in the (u, v) plane
is a more useful parameter for plots, and the normal-
ized form of this is

V(lul) = f O(|ul, d)ddp,  (16)

27|W(0)? .
where ¢ = arg(u).

For square segments, the measurement and cor-
rection functions are separable products (see Table
2), and the segment sampling function is simply
III(ud)III(vd), so Eq. (15) can be evaluated easily.
Figure 2 shows predicted wave-front error spectra,
along with results from a computer simulation, for
an array of square segments. In this case, the un-
corrected wave-front error spectrum is flat, with a
spatial bandwidth 1/d, and all the power at [u| >
1/d was aliased from lower spatial frequencies.
Least-squares and average tilt corrections give sim-
ilar total aliased power, but the spectra differ in
detail. For the simulation, I started with a test
wave front consisting of random numbers on a
square grid with 21° X 210 points, assigned to 27 X
27 segments, with 23 X 23 points per segment.
This gives a wide enough range of spatial frequen-
cies for a reasonable test of Eq. (15), but the com-
putation time is not excessive (~10 min on an 800-
MHz personal computer). The spatial spectrum of
the test wave front, calculated by means of a fast
Fourier transform, was truncated to limit the spa-
tial bandwidth and transformed back to the wave-
front domain. Then I removed wave-front pistons

Table 1. Measurement and Correction Functions in One Dimension
Error Measurement Function Correction Function
Piston p(u) = sinc(wdu) P(u) = —sinc(ndu)
. 6¢ | sin(wdu) cos(wdu) id | sin(mdu) cos(mdu)
Tilt t = - T(w) = — _
1) =g [ (ndu)*  wdu @W=% | wdw? ~ wdu

o
te(u) = El sin(wdu)
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Table 2. Measurement and Correction Functions for Square Segments

Error Measurement Function Correction Function
Piston p(a) = sinc(mdu)sine(mdv) P(u) = —sinc(ndu)sine(ndv)
. 6i | sin(wdu) cos(mdu) | . id | sin(wdu) cos(mdu) | .
x tilt = — -z _
tas(a) p [ (wdu)? —du ]smc(wdv) T.(a) 2 { (wdw)? —du ]smc('rrdv)
9
) = é sin(wdu)sinc(wdv)
. 6i | sin(wdv) cos(wdv) | . id | sin(wdv) cos(wdv) | .
tilt = — == _
y tys(u) d [ (mdv)? wdv ]smc(wdu) T,(a) 2 { (wdv)? do ]smc(wdu)

9
tysa(u) = “ sin(mdv)sine(wdu)

d

and tilts to simulate the segment control and cal-
culated the spatial spectrum of the corrected wave
front. Gridding the test wave front causes alias-
ing, which has little effect at low spatial frequen-
cies, but roughly doubles the power at [u| = a/(2d),
where a is the number of points across a segment.
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A crude, but easy to compute, estimate of the alias-
ing is included in Fig. 2 where the predicted spectra
are scaled for [u| > 1/d by a factor of (2d|u| + a —
4)/(a — 2). Errors in this estimate are responsible
for the slightly higher power for the simulated ver-
sus predicted results at high spatial frequencies.

log[¥(jul)]

log['¥'(Ju])]

|uld

Fig. 2. Normalized wave-front error spectra for an array of square segments, after correction for (a) segment pistons, (b) tilts calculated
by least-squares wave-front fitting, (c) pistons and least-squares tilts together, and (d) tilts measured by a Shack—Hartmann sensor. In
each plot, the bold solid curve is a simulation of 27 X 27 segments, with 23 X 23 wave-front samples per segment. The thin solid curve
(which is mostly hidden by the bold curve) is the spectrum predicted by Egs. (15) and (16), with measurement and correction functions from
Table 2 and §;, = (j/d, k/d). The dashed curve is the 1-D spectrum predicted by Eq. (14), and the dotted curve in (a) is the normalized

uncorrected wave-front error spectrum.
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Fig. 3. Normalized wave-front error spectra for an array of hex-
agonal segments. The bold solid curve is a simulation of piston
and least-squares tilt correction for 27 X 27 segments, with 56
wave-front samples per segment. The thin solid curve is the spec-
trum predicted by Egs. (15) and (16), with piston functions p(u) =
—P(u) = 2[J,(s)]/s, where s = wd|u| 1.22 cos(w/6)], tilt functions
from Table 2, and §;, = ({j — [(—1)* — 1]/4}/d cos(w/6), k/d).
The dashed curve is the 1-D spectrum predicted by Eq. (14), and
the dotted curve is the normalized uncorrected wave-front error
spectrum. Predicted spectra include an estimate of the aliasing
that is due to the gridding of the wave front in the simulation.

Real segmented mirrors are made of hexagons, and
the measurement and correction functions are compli-
cated.® However, a useful estimate of the wave-front
error can be obtained with circular-segment piston
functions and square-segment tilt functions, as in Fig.
3. In this case, the segment sampling function is a
hexagonal lattice of impulse symbols, with spacing
1/[d cos(w/6)], where d is the distance across the seg-
ment flats. The circular-segment piston functions are
scaled so that the first zero is at the lattice spacing,

log[¥(|u[)]

-1 -0.5 0 0.5
log(|uld)

Fig. 4. Same as Fig. 3, but for an uncorrected wave-front error
spectrum W(ju| = 1/Ly) = 1 and ¥(ju| > 1/L,) = (ju|L,) '3, with
L, = 5d. This represents atmospheric phase fluctuations for Kol-
mogorov turbulence® with an outer scale of five segment diameters.

which is roughly equivalent to matching the areas of
the circular and hexagonal segments. The simple
model gives a reasonable estimate of the aliased
power, but it does not accurately predict spectral fea-
tures. Figure 4 shows a similar calculation, but for an
uncorrected wave-front error spectrum corresponding
to atmospheric phase fluctuations. The excess noise
in the corrected spectrum at [u| > 1/d was aliased from
low spatial frequencies. Aliasing also occurred from
high to low spatial frequencies, but this is masked by
the decrease in power for [u| < 1/d. In Figs. 3 and 4,
differences between the 2-D models and simulations
are due to the choice of only approximate piston and
tilt functions, except at low spatial frequencies where
the simulations have excess power as a result of trun-
cating the segment array.

4. Conclusion

The 2-D wave-front correction model of Eq. (15) allows
rapid computation of the spatial spectrum of wave-
front errors in a system with a segmented deformable
mirror. This spatial-frequency approach is particu-
larly attractive for mirrors with many segments be-
cause the computations are much simpler than a full
simulation of the wave front. Hexagonal segments
are difficult to model because the Fourier transform of
a hexagon cannot be expressed as a single function, but
a useful estimate of the wave-front error can be ob-
tained with circular-segment piston functions and
square-segment tilt functions; even a simple 1-D model
can predict the wave-front error within a factor of a few
over a wide range of spatial frequencies.

This research was supported by the Caltech Dis-
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