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Abstract

In this paper we prove the separation of source-networknepdind channel coding in wireline networks. For the
purposes of this work, a wireline network is any network afégpendent, memoryless, point-to-point, finite-alphabet
channels used to transmit dependent sources either Islystassubject to a distortion constraint. In deriving this
result, we also prove that in a general memoryless netwoth dépendent sources, lossless and zero-distortion
reconstruction are equivalent provided that the condifi@ntropy of each source given the other sources is non-
zero. Furthermore, we extend the separation result to tee ehcontinuous-alphabet, point-to-point channels such
as additive white Gaussian noise (AWGN) channels.

|. INTRODUCTION

In his seminal work [1], Shannon separates the problem ofnconicating a memoryless source across a single
noisy, memoryless channel into separate lossless soudirgcand channel coding problems. The corresponding
result for lossy coding in point-to-point channels is alsoven in the same work. For a single point-to-point channel,
separation holds under a wide variety of source and chansigibditions (see, for example, [2] and the references
therein). Unfortunately, separation does not necessholg in network systems. Even in very small networks like
the multiple access channel [3], separation can fail whatis§ital dependencies between the sources at different
network locations are useful for increasing the rate actbsschannel. Since source codes tend to destroy such
dependencies, joint source-channel codes can achiewr Ipettformance than separate source and channel codes
in these scenarios.

This paper proves the separation between source-netwdikgand channel coding in networks of independent
noisy, discrete, memoryless channels (DMC); these netsvark calledwireline networksin this work. Roughly,
we show that the vector of achievable distortions in deiliga family of dependent sources across such a network
N equals the vector of achievable distortions for delivetimgsame sources across a distinct netwditkNetwork
N is built by replacing each channely|z) in N by a noiseless, point-to-point bit-pipe of the correspagdi
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capacityC' = max,,y I(X;Y). Thus a code that applies source-network coding across tit are made almost
lossless through the application of independent chanréhgaacross each link asymptotically achieves the optimal
performance across the network as a whole.

Note that the operations of network source coding and néteoding are not separable, as shown in [4] and [5]
for lossless source coding in non-multicast and multicasivarks, respectively. As a result, a joint network-source
code is required, and only the channel code can be sepak&ftatt the achievability of a separated strategy is
straightforward, the converse is more difficult since preisg statistical dependence between codewords traresmitt
across distinct edges of a network of noisy links improvesghd-to-end network performance in some networks [6],
(7], [8].

The results derived here are consistent with those of [®]], [[B], which prove the separation between network
coding and channel coding for multicast [9], [10] and gehdeamands [6], [8], respectively, under the assumption
that messages transmitted to different subsets of useia@@pendent. The shift here is from independent sources
to dependent sources and from reliable information defiverboth lossy and lossless data descriptions.

After hearing about our work, the author of [11] pointed ushis unpublished work from the 90s, which
proves the separation of lossy network source coding andnghecoding in three specific network structures,
namely, the Slepian-Wolf configuration, the multiple dgstoon configuration, and Yamamoto’s cascade network.
In these cases, [11] proves separation without requiriegsthgle-letter characterizations of the distortion regio
Our result generalizes this result to any network configomathat consists of point-to-point noisy channels. The
strategy underlying our proof follows that of [6], [8], bute details differ significantly, both due to the inclusion
of dependent sources and lossy reconstruction and in thes foe discrete-alphabet channels.

The organization of this paper is as follows. Sections Il dhddescribe the notation and problem set-up,
respectively. Section IV describes a tool from [8] calledtacked network that allows us to employ, in later
arguments, typicality across copies of a network rathem tigpicality across time. Section V proves the separation
of lossy source-network coding and channel coding. Sestlgroves the equivalence of zero-distortion and lossless
reconstruction in general memoryless channels. SectidrsMws that the separation of source-network coding
and channel coding continues to hold for well-behaved oootiis channels such as AWGN channels under input
power constraints. Section VIII concludes the paper.

The first part of the results presented in this paper, showirgseparation of lossy source-network coding and
channel coding in a wireline network was first presented & E®10 [12]. A similar result by other authors was
presented at the same ISIT [13], where they prove that, irsédmee setup and under the finite source and channel
alphabet assumption, if each source is required only at timer mode, or at multiple other nodes but at the same
distortion level, then separation of source-network cgdamd channel coding is optimal. For the general case,

under a restricted set of distortion measures, they propeoapnate optimality of separation strategy.
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II. NOTATION AND DEFINITIONS

Finite sets are denoted by script letters suclitaand ). The size of a finite setl is denoted by.4|. Random
variables are denoted by upper case letters suck and Y. Bold face letters represent vectors. The alphabet
of a random variableX is denoted byX. Random vectors are represented by upper case bold leiter|
and Y. The length of a vector is implied in the context. TH& element of a vectoX is denoted byX,. A
vectorx = (z1,...,z,) ofr X = (Xy,...,X,,) is sometimes represented a8 or X". For1 < i < j < n,

Z = (s, Tit1,...,x5). Forasetd C {1,2,...,n}, x4 = (x;)ic.4, Where the elements are sorted in ascending

"
order of their indices.

For two vectorsx,y € R", x < y iff 2; < y; forall 1 < i < r. The /¢, distance between two vectoxsand
y of the same length is denoted byllx — y|l1 = >;_, |#; — y;|. If x andy represent pmfs, i.e} |, z; =

>, yi=1andz;,y; >0 foralli e {1,...,r}, then the total variation distance betweerandy is defined as

[x = yllrv = 0.5]]x =yl
Definition 1: The empirical distribution of a sequengé € X" is defined as

s [{i:x; =}

F(x|$n) #7

for all x € X. Similarly, the joint empirical distribution of a sequengé®, y™) € X" x Y™ is defined as

W(Iay|5€",y") £ |{z : (xiayi")l: («T,y)}l’

for all (z,y) € X x ).
Definition 2: For a random variabl& ~ p(x) and a constart > 0, the set7™) (X) of e-typical sequencésof

lengthn is defined as
T(X) £ {a™ : |n(afa™) — p(2)| < ep(x) for all z € X}
For (X,Y) ~ p(z,y), the setﬁ(”)(X, Y") of jointly e-typical sequences is defined as
TX,Y) & {(2",y") : |n(z,yla",y") — p(e,y)| < ep(w,y), for all (z,y) € X x V}.

We shall use7:™ instead of7™ (X) or 7. (X,Y) when the random variable(s) are clear from the context.

Forz” e T\, let
T |2m) & {y™ : (2",y") € TV}

IIl. THE PROBLEM SETUP

Consider a multiterminal network/ consisting ofm nodes interconnected via a collection of point-to-point,

independent DMCs. The network structure is represented lojrexted graphG with node setV and edge

1in this paper we only consider strong typicality, and usedbgnition introduced in [14].
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Fig. 1. Noisy wired network model

set £. Each directed edge = (a,b) € & represents an independent point-to-point DNIE,, p(ye|ze), Ve)
between nodeg (input) andb (output). For the channel represented by the eelgthe transition probabilities
are{p(ye|re)}(z..y.)ex. xy.- The channels are independent by assumption, togetheggivimultiterminal channel
(IToce Xes IToce P(Welze), IT.ce Ve). The channel input at each nodes V is 2(®) = (2(,.,) : (a,v) € ). The
channel output at node is y'® = (y(,.q) : (v,a) € &).

Each node: observes some source procdss) — {U,ga)}zozl and is interested in reconstructing the processes
observed by a subset of the other nodes. The alpti#fetof sourceU(®) can be either scalar- or vector-valued.
A vector-valued sourc&J(®) denotes a collection of sources available at nedén a block coding framework,
source output symbols are divided into non-overlappinghksgoof lengthZ. Each block is described separately.

At the beginning of thejt" coding period, each node observes a lengtli- block of the procesdJ(®), i.e.,

U((;’) f)LL+1 (U((;ZI)LH, . Ufz)) The bIocks{U(“) 1)L+1}aev observed at the nodese V are described over
n uses of the network. The rate
A L
K= —
n
is a parameter of the code. At each time {1,...,n}, each node generates its next channel inputs as a function
of its source observatlobf((‘l)’f)LL+1 and its observed channel outpf§: ¢~ = (Yl(“), . Y(“)) up to timet — 1
using encoder
X (Y= @)Ly ypla), (1)

Note that each node might have more than one incoming chamttlmore than one outgoing channel. Thus,
Xt(“) and Yt(“) are vectors with dimensions equal to the outdegree and iadegf nodea, respectively. The
reconstruction at nodé of the source vector observed at nodds denoted by(/(“—").L_ This reconstruction
is determined using a decoder with inputs equal to the soanckchannel outputs observed at nddeThus,

[ (@=L = {7(a=b) (y 0)m 7 (b).L) \where

ﬁ(a%b) . y(b),n ~ u(a),L N a(aﬂb),L' (2)

December 19, 2012 DRAFT



The performance of a given code is the vector of expectedageedistortions between the sourdds$(® },cy

and reconstruction§U(*~"},, ,\,. For eacha,b € V),

L
a J 1 a ~ra
E[d(L %b)(U(a),L’U(a%b),L)] AR ZE :d(a%b)(Ulg )’Ulg *)b)) ’
k=1

whered(@=?) . 1f(@) x y(a=b) 5 R+ is a per-letter distortion measure. As mentioned betét€ andz{(*—")
may be either scalar or vector-valued. This allows the caserevnode: observes multiple sources and nddes
interested in reconstructing a subset of them. Let
A—— max d(a—b) (o, B) < 0.
(a,b)eV?

acu® gey(a—v

The |V| x |V] distortion matrixD is said to be achievable at rate if for any ¢ > 0, and anyL large enough,

there exists a blocklengtf, n) coding scheme such that

L
—_ 2 R — €,
n
and
E[dy P (U@L @) < D(a,b) + ¢, €)

for every (a,b) € V2. Let D(x,N)) denote the set of achievable distortion matrices at #aite network /.

Remark 1:While here we are assuming that all sources have a fixedstate general, the rate can vary for
different sources. Our results continue to hold in that asevell. However, for notational simplicity, we assume
that « is fixed among all sources.

Throughout the paper, for any netwak of noisy point-to-point channels described by directedopré&, let
the network\, denote a network of noiseless point-to-point channelsrieest by the same directed gragh
Precisely, network\, replaces each noisy DMCX,, p(y.|z.), V), e € &, by a noiseless bit pipe of the same
finite capacityC., = max,,,) I(X.; Y:). A bit pipe of capacityC. is an error-free, point-to-point communication
channel that delivers, in channel useg,nC. | bits from the transmitter to the receiver, for amy> 1. The timing
of the delivery of these bits has no impact on the set of aahievdistortion matrices. This result is shown for the
network capacity problem in [6]; the same argument goeautfihoammediately for the case of lossy reconstruction.

Example 1:Fig. 2 demonstrates a simple example of the kind of networkstudy in this paper. The graph of
the network, shown in Fig. 2(a), consists of two edges aneetmodes. Each edge models a point-to-point DMC.
Fig. 2(b) shows a specific realization of such a network wihrses available at nodes 1 and 2. It also shows
how the encoding and decoding operations are performed tworleof Fig. 2(a). The decoder reconstructs both
sourcesU; andUs. Fori € {1,2}, let C; denote the noisy capacity of channelFig. 2(c) shows the equivalent
noiseless model. At coding ratg choosingn = |k~ 'L|, W; € {1,...,2*%J} For this special example, [11]

proves that akk = 1 separation is optimal and the set of achievable distortmnboth networks are equal. In this
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Fig. 2. Example 1

paper, we extend this result to general networks of poifgeimt noisy channels, at arbitrary coding rate

IV. STACKED NETWORK

The stacked network is a tool introduced in [6] for provingaetion results. The key underlying observation
is that by taking multiple copies of the same network and ypplthe same code to that network in each copy,
we create i.i.d. copies of the input and output of a given oehat each time. This allows us to later employ
typicality arguments to our channel inputs and outputsssompies of the network and not across time. Applying
typicality arguments across time is problematic since tipaifs to the channel at different timeseed not be i.i.d.

For a given network\/, the correspondingv-fold stacked networlk\ is defined asV copies of the original
network [6]. That is, for each nodec V and each edge € £ in A/, there areV copies of node: and N copies
of edgee in \V. At each time instance, each node has access to the databédeait all copies of node, and each
may use this extra information in generating the channaltsfor future time instances. Likewise, in decoding, all
N copies of a node can collaborate in reconstructing the sowgctors. This is made more precise in the following

two definitions. The encodexga) for nodea at timet in N-fold stacked networkV is a mapping

Xga)  YP@NE=1) o (@, NL _, yp(a),N (4)
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and the nodé-decoderl/(“~®):NL for signal U(®):N of nodea is a mapping

[7(a=b).NL . y(®).nN o 1/(b).NL _y gy(a=b).NL )

These definitions correspond to (1) and (2) in netwatkin (4), network inputXE“) is a vector withV components
denoted byX(* = (X" (1),..., X! (n)).
In the N-fold stacked network, the distortion between the sourdgirating at node: and its reconstruction at

nodebd is defined as
Dn(a,b) =E [dg\‘;;w((](a),m’ [la-n.NEy]

for any (a,b) € V x V.

A distortion matrix D is said to be achievable at ratein the stacked version of network’, if for any given
e > 0, there existn, L, and N such that distortiorD and ratex are achievable in thé/-fold stacked network; that
is, L/n >k — e andDy(a,b) < D(a,b) + ¢ for all a,b € V on N-fold stacked networkV. Let D,(x, /') denote
the set of achievable distortion matrices at ratim the stacked networR/. Note that the deptiV of the stacked
network A\ on which each distortion matri € D,(x, ) is achievable may vary witlb.

Note that the dimension of the distortion matrices in botigk layer and multi-layer networks ia x m. The
following theorem establishes the relationship betweentio sets.

Theorem 1:At any ratex,

D(k,N) = Dy(r, N). (6)

Proof of Theorem 1:

i. D(k,N)C Ds(r,N): This is obvious, because the stacked network is a genatializof the original network.
In fact, choosingV = 1, any distortion matrixD that is achievable on\V is also achievable on its stacked
version too.

i. Ds(k,N)C D(x,N): The proof is very similar to the proof of the analogous pdrtemma 1 in [8], but,

for completeness, we present the proof in Appendix A.

V. REPLACING A NOISY CHANNEL WITH A BIT PIPE

We assume that the sources are independent and identigsiifiputed (i.i.d.) according to some distribution
p(u®, u® . u™), Thatis, for anyk > 1,

P ((UUM, LUy = Dk ,u(m)’k))

k
= Hp(ugl), e ,ugm)).
i=1
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For the given i.i.d. source assumption, Theorem 2 provesthieaspace of achievable distortions for netwatks
and .\, are identical. The proof follows the proof strategy of [6,6bnem 3], showing that any code for network
N, can be applied across netwafk with the aid of a channel code and any code fércan be applied across
network AV, with the aid of an “emulation code”. Just as a channel codéleraus to emulate a noiseless bit
pipe across a noisy channel, an emulation code enables usulate a noisy channel across a noiseless bit pipe.
The result proves the optimality of separate source-nétwodes and channel codes on networks of point-to-point
DMCs. Notice, however, that separate codes are here appligtte manner described in the proof of Theorem 1
rather than the more conventional direct application actvse.

Theorem 2:For a network\ of independent point-to-point DMCs with memoryless sosyce
D(k,N) = D(k, Np), (7

for any x > 0.

Proof of Theorem 2:By Theorem 1, the achievable region of a netwdrkis equal to the achievable region
of its stacked networld. Hence,D(x,N) = D;(x,N) and D(x,Np) = Ds(r,N,), and therefore, it suffices to
prove thatD,(k,N) = D,(k, Ny).

i. Ds(k,N,) C Ds(k,N): Note thatN andN, are identical except that for eaehe £, DMC (X, p(ye|ze), Ve)

in V' is replaced by a bit pipe of capacity = max,, ) I(X.;Ye) in NV,. We next show that any code for

network A/, can be operated ol with a similar expected distortion. Fix any code of souraacklengthL IV,

channel blocklengtm N and expected distortion matrik for N-fold stacked networld/,. Now consider a

pN-fold stacked networlﬂb. By partitioning thep N layers intop stacks, each consisting @f layers, and

then applying the code independently to these stacks, weceastruct a code for network/,, which has
the same expected distortion matiix Consider apM-fold stacked network\, with M > N. Using the
mentioned strategy to construct a code for phé-fold stacked network from the code given for thefold

network, at each time stef each bit pipee in Mb sends a message of at mes$tVC. | bits across the N

copies of edge in Mb. To operate the same code on netwafkwe need to send the same information across

the pM copies of DMC(X., p(ye|xe), Ve) in A. To achieve this goal, we use a channel code of blocklength
pM operating at raték. < C.. By choosingM = [NC./R.], we guarantee that\M R. > pNC.. Hence the

M copies of DMC(X,, p(ye|ze), Ve) in N carry the same information as tié copies of bit pipec in AV/,.

Since the capacity of DMCX,, p(y.|z.), V.) equalsC,, R. can be made arbitrarily close t@.. The rate of

the code for\ is
pNL  NL

pMn  [NC./R.|n’

which can be made arbitrary close to= L/n.
Let PE(M) denote the maximal probability of error for the channel coflelocklengthpM used over the M
copies of DMC (X., p(ye|ze), Ve) in N. Let Pé}f,ﬂ = maXeeg Pe(M). The code for each channelis used

n times — once for eacht € {1,...,n}. Errors in the channel code ferincrease the distortion achieved
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by applying the code fol, across\. We can bound this increase in the expected average distarsing
the union bound. More precisely, I& denote the event that there is a decoding error in at leasobite

channels € £ at some time step € {1,2,...,n}. Since the sources and channel codes are independent,

E[deL(U(a)"pNL, U(a%b),pNL)] _ E[deL(U(a)"pNL, U(a%b),pNL”Rc] P(Rc)
+ E[deL(U(a)’pNL, U(a_ﬂ))’pNLHR] P(R)

< D(a,b) + n|E| P d o,

max

for each(a, b) € V2. Therefore, for fixedh and NV, lettingp — oo, | E[d,n 1, (U(@PNE 7(@=0)2NLY_D(qa, b)|
can be made arbitrarily small for ea¢h, b) € V2.

ii. Ds(k,N) C Dy(k,N,): Let D € D(k,N). We prove thatD € D,(x,/N,). Consider a code defined o\
with source blocklengtil, channel blocklengtiu, and an expected distortion matrix that is component-wise
upper-bounded by + ¢ - 1. Applying this code independently in each layer ¥ffold stacked network\’
gives a code fot\V' with Dy(a,b) < D(a,b) + ¢, for all (a,b) € V2. Throughout the rest of the proof,
and L, corresponding to the source and channel blocklengthseofrténtioned code, are fixed. To simulate
the performance of this code on the stacked versiongfwe let the number of layerd go to infinity. As
shown in [8] any code for aiV-fold stacked network can be unraveled across time to givegeslayer code
with the same performance. The blocklength for that codes goenfinity as/N grows without bound.

We first show that for identically distributed memorylessuses, the performance of the code given the
realization of(X. 1, Y. 1) depends only on the empirical distributi§n (e, ye|Xe 1, Ye1)} o1,y )ex. xv.

of (X¢1,Ye.,1). Here the subscript refers to timet = 1. After establishing this, we use the result proved in
[15] and show that at timé = 1 we can emulate the behavior of the noisy link across a bit pifptae same
capacity. For the rest of the proof, [&t = {U;} denote an i.i.d. source observed at some nodedn) and

U = {U,} denote its reconstruction at some other nédeV\{a}.

In network \, the expected distortion between source veétérand its reconstructio’” is

Eld, (UL, U")] =

S B[dUF 07 |(Xen, Yer) = (e, o)
(Te,1,Ye,1) EXe X Ve

X P((Xe1,Ye1) = (Te,1,Ye,1)) - (8)

In the N-fold stacked network\/, the reconstruction of the correspondingindependent copies df “ by
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10
reproduction/ N’ satisfies
E {dNL(UNL7 UNL)}
1 N
=E [N ZdL (U(ZeL—1)L+1a U(ZzL—1)L+1) x
=1

> ]l(Xe,l<f>,xe,1<é>>:<me,1,ye,1>}
(we,lﬁue,l)eXe X Ve

1 N
=¥ Z

(Te,1,Ye,1)EXe XY, €=1

E {dL (U(ézLA)LHv U(éz€1)L+1) ]l(xe,l(Z)-,Yc,l(E)):(Ic,lvyc,l)} : 9)

For any random variabled and B, E[Alp=y] = }_, , aly—=pp(a,b) = 3, ap(a,b) = p(b) E[A|B = b].
Using this equality, and since the code usedMrapplies the solution fo independently in each layer of

stacked networld/, it follows that

E {dL (U(ZZL—I)L-H’ U(ZKL—I)L+1) L(X.1(0),Ye 1 (0)=(2e.1,ye1)
= E[dL(U(ééL—l)L-rlv U(ZZL—l)L-H)l(Xe,l(Z)vYe,l(f)) = (Te,1,Ye, )] P((Xe1 (0), Ye1(0) = (2e,1,Ye,1))
= E[dr(U" U")[(Xe1(0), Ye(£) = (we,1,ye,) ]| P(Xea (£), Ye1(0) = (e, Ye,1)) (10)

where each conditional expectation &f (U~, UL) in (10) equals the corresponding conditional expectation

in (8). Combining (9) and (10) yields

B [dyo(UNE, 0] = > B [dUF 0P (Xen, Yer) = (e, ) | %

(1e,l7ye,1)eXe><ye
1 N
N ZP((XEJ([)?YEJ([)) = (*Te,laye,l))
(=1

= > E {dL(ULaUL)KXe,hYe,l): (we,l,ye,l)} x
(Te,1,Ye,1)EXe X Ve

E[ﬂ-(xe,laye,1|Xe,17Ye,l)]- (11)

Equations (8) and (11) differ only in their distributions &f x ).. Since each conditional expectation is finite
(in particular, all are bounded ,..), we can replace channék., p(y.|x.),Y.) by a bit pipe of capacity

C. at timet = 1, if we can find a coding scheme across the layers of the stackHih,
|P ((Xe,luyve,l) = (xe,la ye,l)) - E[W($6,17y6,1|Xe,17 Ye,l)]' 5 (12)

can be made arbitrary small, for gtk 1,9..1) € Xe X Ve.
To prove that this is possible, consider a channel with irgratvn i.i.d. from some distributiop(x. ;). We

wish to build an emulation code with an encoder that mapsource symbolsX. ; € XV, to a message
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11

of NR bits and a decoder that converts the§é? bits into a reconstruction block ., € YN, We aim

to use this code to emulate the DMC with transition prob&®di{p(yc 1|7c1)}(z. 1.y, )ex.xy. When the
channel input is an i.i.d. process drawn accordingto. ). The codebookZ ™), of this emulation code
consists of2V® codewords{Y. 1[1],Yc1[2],...,Y1[2V%]}, each drawn independently i.i.d. according to
P(e1) = >, ex, P(Te,1)P(Ye,1|Te,1). The encoder assigns messagec {1,.. .,2NVEY to input sequence
Xe, if (Xe1, Ye1[M]) € 7;(N) (Xe,1,Ye1). If there are multiple such messages in the codebook, thedenc
chooses the one with the smallest index. If there exist n@wodds inC(") that are jointly typical with
X1, then the encoder assigns messadge= 1 to X, ;. After receiving messagé/, the decoder outputs
Y1 [M]. Let {m(ze1,Ye11Xe1, Ye1) et ye1)ex. xy. D€ the the joint empirical distribution between the
channel input and channel output induced by running the &tionl code across th& copies of the bit pipe
at timet¢ = 1. In [15], it is shown that, the described code can emulatewebl( X, p(ye 1|xc1), Ve) DY

a bit pipe of rateR, provided thatR > I(X. 1;Y.1). The given emulation ensures that the total variation
betweenn (zc 1, e, 1|1Xe1, Ye,1) @andp(ze 1, Ye1) = p(xe1)p(Ye1]2e,1) can be made arbitrarily small as the
blocklength/N grows without bound. In other words, there exists a sequehcedes over the bit pipe such

that
N—o0
|7 = Pllpy =30, (13)

almost surely. (Herer and p are vectors describing distributions (¢e,1, ye1/Xe,1, Ye1) @ (Te1,Ye,1) €
XexVe) and O(ze 1, Ye,1) : (Te,1,Ye,1) € Xe X V) respectively.) Although Theorem 3 in [15] only guarantees
convergence ofr to p in probability, we can also prove almost sure convergeneetofp using Borel-Cantelli
Lemma. Lety = R—I(X,.1;Y.1). Let Y. (X, 1) denote the codeword i"Y) that is assigned t&X. ; by

the emulation encoder. Fer> 0, define the error event
EWN) = {(Xen, Yeu(Xen)) t |7 = pllpy > €}

Breaking the error event into two parts and then applyinguh®n bound, Hoeffding’s inequality, and the

joint typicality lemma from [16] gives

2NR

PEM) < P(Xen & TV (Xen)) + |P((Xea, Yeu[l]) ¢ 7;(N)(X671,Y671))}

_oN(v—=é(e))
< 3 P(m(@|Xen) = plao)| > plao)e) + e 20
T €Xe
< Z 26 2N (o) 4 —2NO72)
Te€Xe
< 2|Xe|6_2N€2 L P’ (ze) n eiQN(’Yfé(s))7 "
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whered(e) = e(H(Ye1) + H(Ye1|Xe,1)) — 0, ase — 0. Therefore,

oo

> PEW) < oo,

N=1
and hence (13) holds almost surely, by the Borel-Cantelinira.
We next combine the emulation code with the codefarThe code emulates channgly.|z.) at timet = 1
across theV layers of stacked network/; that replace®(y.|z.) by a link of capacityR > C, only at time

t = 1. The given code fo' can be run acros&/; with expected distortion bounded as

E {dNL(UNL’ UNL)}

= Z E [dL(UL,UL) |(Xe,17}/8,1) = (xevye)} X

(Te,ye) EXe X Ve

E[ﬂ'(xeaye|Xe.,1er,1)]

< Y B[RO (Xen, Yen) = (@) | (blre, ) +0)

(Te,ye)EXeX Ve

< Eldp (UL, U")] + edmax.

Thus we can replace the noisy link by a bit-pipe at titne 1. We use induction to extend this result to the

nextn — 1 time steps. Note that in the original network

Eld, (U",U")] =

S B[ U Y = ()|

(x2y2)eX =y

< P(XZ,YE) = (a2, ue) - (15)
On the other hand, using the same analysis used in derivitg i(l the N-fold stacked network,
E {dNL(UNL7 UNL)}

= Y B[awh oY = @]

(zp,yn)eXnxYr

x Blm(ae, yl X2, Y] (16)

(&)

HereX” = (Xc1,Xe2,. -, Xen) @andY? = (Ye1,Ye2,..., Y ,) referto the inputs and outputs of channel
e in the N layers of the stacked network, for times=1,2,...,n, while X7 (¢) andY? (¢) correspond to the

inputs and outputs of the emulated channel at ldyfar timest =1,2,...,n, and
w(az. gz, o) = L0 Ye () = (8w}
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Therefore, we need to show that by appropriate coding owebifpipes,
[P (X, YY) = (2, 92)) — m(ad, yl |XE, Y| (17)
can be made arbitrarily small. Note that

P (X YY) = (28,92) =

HP ((Xe,ta Yve,t) = (xe,taye,t) ‘(Xé_la Yvet_l) = (‘Tz_layé_l)) ) (18)

t=1
and

n

r(al e lXe Y =[]

t=1

m(xl, ye|XE, YY)
w(wé_l , yé_l|X’é_1, Yé_l) ’

(19)

where fort =1
m(al Ly XL Y =1

We have already proven that we can make the first term in thdugtdn (19) converge to the first term in

the product in (18) with probability one. We next prove by uetion that the same result is true for each

subsequent term in (18) and (19). Since all of the terms i) 8 positive and upper-bounded byso too

is their product. Thus, the Dominated Convergence Theossm®, (for example, [17]) shows that (17) can be

made arbitrarily small provided that each term converge®st surely.

To apply induction, assume that there exist 1 emulation codes whose application makes the first1

terms in (19) each converge to the corresponding term in &li8pst surely. Using this inductive hypothesis,

we prove that thet" term in (19) converges to thé" term in (18) as well.

Given the inductive hypothesis that

n(al gl X YY)

m(ae Tyl HXETL YE T

_)p(xe,t/vye,t’|xz _lvyé _1) (20)
almost surely, for al(z, y!') and all#’ <t — 1, it follows that
mre ye XL YY) = plae g (21)

almost surely, for al{z!~!,4*~1). Since the two networks apply precisely the same detertitrisde to the

channel outputs at time— 1 to create the channel inputs at timethis bound implies
m(re, ye H1Xe Y = plre,ye ) (22)

€

almost surely, for al(z?,3*~!) as well. We now show that if the emulation code used at tinegenerated
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independently of the codes used at times, ..., ¢t — 1, then for each(zt, y!),

m(x e,yeIXt Y?)
( aye 1|Xt Yé 1)

= P(Ye,t|Te t) (23)

almost surely, wherg(ye i|ze.:) = P(Ye = ye,i|Xe = xe,1). Note that

P(Yei(1) = ye | (XE(1), Y (1) = (22,9 ))

= Yo P(Yeu(l) = g Xen(2: N) = 3 [(XE(D), YN (1)) = (2, 9i7 1))

sNeXNisi=ze1

= ) PXeu2:N) = sy (XU, YD) = (i)

sNexXN:isi=ze 1
X P(Yer(1) = yeu|Xew = sV, (XeH(1), Y (1) = (2,90 )

= Y P(Xeu(2:N) =s|(XEQ), Y1) = (2hyi )

sNeXN:isi=ze1

X P(Yei(1) = yet|Xes = s7), (24)

where the last equality holds becau3€l~!, Yi~1) — X.; — Y. since the emulation code mapg. ; to
Y. independently of all prior channel inputs and outputs.

Since each network layer independently operates an idgiicle, and codewords in the emulation codebook

are generated according to an i.i.d. distribution, it fekothat
P(Ye,t(l) = ye,t|Xe,t = SN) = P(Ye,t(g) = ye,t|Xe,t = SN)
for any ¢ such thats, = z., under the operation of a random emulation code. Therefore,

P(Ye,t(l) = ye,t|Xe,t = SN)
1

B P(Yoi(0) = yoi|Xeoy = sV
N7(2e,|s™) .. Z (Yei(€) = yeu|Xep = 57)
Sp=Te,t
1
= Nl Ny E[1 o Xy =8N
NW(.CCe7t|SN)€ Z [ Yﬁ,t(g)—yc,t| ,t S ]
‘Se=Te,t

=E 1 X, =sN
N7T xet|sN Z Yet(é) Ye,t St §

l:sp=Te ¢

_ E |: 7T(':Ce,tfa ye,t|Xe,ta Ye,t)
(e, Xeyt)

Xt = SN] . (25)

By our inductive assumption and an argument similar to the wsed in Remark 1, " ¢ 7;(N) (Xe,), for
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N large enough

’E |: ﬂ-(xe,tu ye,t|Xe,tu Ye,t)
71'(':Ce,ifpce,if)

Xet = SN} = P(Ye,t|Te,t)

< €. (26)
Combining (24), (25) and (26), it follows that

P(Ye (1) = ye e (XEQL), YEH(1)) = (2,9t 1)

= > P(Xer(2: N) = s3'|(Xe(1), Y (1)) = (w2, 9 1))

SNETe(N)(Xe,t):Slzie,l

X P(Ye,t(l) = ye,t|Xe,t = SN)

+ > P(X,,(2: N) = sY|(XL(1), Y (1) = (af, 55 )
sN ¢71(N)(Xe,t):51:me,1

X P(Ye,t(l) = ye,t|Xe,t = SN)
< (Dledle) + )P (Xey € TV(X)I(XU(), Y (1) = (7))

+P(Xes ¢ T (X )I(XEQD), YT (1) = (ko pt ™)), 27)
Similarly,
P(Yer(1) = yel(XE), YETH(1) = (ol y!7)
> (plyelres) = O P (Xew € T () [(XL(L), YEH (D) = (akpt™)) (28)
But, if P((XL(1), YE!(1)) = (al 5 ")) # 0, then

P (Xe # T (X0l (XL, Y1) = (el )

P (Xeo ¢ TV (Xe), (XL YD) = (oLl )
P ((XE(D), YO (1) = (at,yi )
P (Xew ¢ TV (X))
<
~ P (XL, YT (W) = ekt )

—0 (29)

as N — oo, and hence®(X., € TV (Xo,)|(XE(1), YE-1(1)) = (at,y:~1)) = 1, asN — oco. Therefore,
combining (27), (28), and (29), it follows that, for each ,y?),

P(Ye,t(l) = ye,t|(Xz(1)aYi_1(1)) = (xfea yZ—l)) - p(ye,tlxe,t)7 (30)

almost surely, asv grows to infinity.
This concludes the proof, because it shows that, for éaet{1,2,..., N}, as the number of laye®d grows,

Y. :(¢) becomes independent ¢K!~1(¢), Y{~1(¢)) conditioned onX. :(¢), and its conditional distribution
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UL Xn Yn UL
— Encoder Channel > Decode——>

Y

Fig. 3. Simple point-to-point channel

converges t@(ye,:|ze,.) corresponding to the transition probability of channel

[ |
Remark 2: The first part of the proof of Theorem 2 is not specific to DMGg] ahows thaD(x, V) C D(k, N)

for all networks N of (discrete or continuous) point-to-point channels.

VI. CONTINUITY: ZERO-DISTORTION VERSUS LOSSLESS

The distortion criteria for lossless source coding andylossurce coding with a distortion constraint of zero
are different. In lossless coding, we require that the podiya of error in reconstructing a vector of source
symbols goes to zero as the blocklength of that vector growlsowt bound. In lossy coding, we require that
the per symbol distortion between the source vector andeitsrstruction approach zero for sufficiently long
blocklengths. As a result, even under the Hamming distortieasure, distortion 0 reconstructions do not necessarily
meet the lossless source reconstruction criterion. Beforestigating the relationship between these problems in
a generic networkV" of the form defined in Section I, we consider some speciaesavhere the relationship
is known. Consider the simple point-to-point network shawrfig. 3. Let the sourcé/ be i.i.d. and distributed
according top(u), and letC' = max,, I(X;Y’) denote the capacity of the point-to-point channel conngcti
the source and the destination. The minimal required ratedéscribing the sourc& at distortion D is [18]
R(D) = min,;» waw,oy<p L (U U). In such point-to-point networks separation of source cgdind channel
coding is known to be optimal [1]. Hence to describe the spatcdistortionD, we needC > kR(D). Evaluating
R(D) at D =0 gives

R(0) = min  I(U;U) =1(U;U) = HU),
p(alu)Eld(U,0)]=0

where H(U) is the entropy rate of the souréé. Since the minimal rate for lossless reconstruction of heree
U is also the entropy rate, the zero-distortion and losslessnstruction rate regions coincide in this simple
network. Explicit characterizations of the multi-dimemsal rate-distortion regions for general multiuser neksor
are unknown. Therefore, proving or disproving the equiveéeof zero-distortion and lossless reconstruction rate-
regions in such networks requires more elaborate analysisis Ph.D. thesis, W.H. Gu proved that in noiseless
networks consisting of point-to-point bit-pipes, zerstdition and lossless reconstruction rate regions coen(difl].

In this section, we prove the equivalence of zero-distartieconstruction and lossless reconstruction in general
networks described by multiuser discrete memoryless adafmDMCs) with statistically dependent sources. More
precisely, we prove that in any mDMC with independent or dejeat sources, lossless reconstruction is achievable

if and only if zero-distortion reconstruction is achievabl
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— Xx(a)

— Yy

Fig. 4. General multiuser discrete memoryless channel (r8pM

Consider network\" shown in Fig. 4, which consists of a general mDMC described by

LetV £ {1,...,m}. Nodea € V observes source proce&é® and is interested in reconstructing sources observed
by the other nodes. The coding operations are very simildheéocase of wired networks. Each node observes a
block of lengthL of its own source symbols and describes them to the othersniode channel uses. As before,
the coding rate: is defined asc = L/n. At each each time¢ =1,...,n, nodea generates channel inpmt(“) as
a function its own source block (*)-F and its received channel outputs up to titme 1, i.e., Y(@)-*=1 In other
words, X\* = X(* (U@L y()t-1) The set of achievable distortion matrices on netwbflat ratex is denoted
by D(k, N'). Throughout this section we assume that for &myb) € V2, d(* (u,a) = 0 if and only if u = 1.

Given anyD € D(x,N), let

L(D) £ {(a,b) : D(a,b) = 0}.

Theorem 3:Fix any non-negative matri¥o = (D(a,b) : (a,b) € V?) with |£(D)| > 0. For any(a,b) € £(D),
assume thatl (U@ |(U(9)).cy\,) > 0. ThenD € D(x, N) if and only if, for anye > 0 there exists integers and

n < L/(k — ¢€), for which we can design a code of source blocklengtand channel blocklength that satisfies
P(U(a)’L # U(a%b),L) <e,

for all (a,b) € £L(D) and
Eldp (U@-E 7= < D(a,b) + e,

for all (a,b) € V2\L(D).
Proof of Theorem 3:
For the forward result, fix a sequence of codes at Fde — r, distortionE[dy, (U(*)X, U(¢=¥):.L)] — D(a, b) for

all (a,b) ¢ L£(D) and error probabilityp (U ()L £ [7(@=b).Ly _ ( for all (a,b) € L(D). For each(a,b) € L(D),

December 19, 2012 DRAFT



18

the given sequence of codes satisfies

E[dL(U(ll),L7 U(a—>b),L)]

-E [dL(U(a),L’ {(a=b).L) ‘U(a),L ”] ﬁ(aﬂb),L} P(U@L £ {la=b).Ly

T E {dL(U(a),L’ [ (ab).L) ’U(a),L _ U(aﬂb),L} p(U@-L = (la=b).L)

< dmaxP(U(a),L # U(a%b),L).

Since the given bound approaches P48 (- = [7(a=).L) _ 0, the sequence of codes achieves zero-distortion
reconstruction of source at nodeb, which is the the desired result.
To prove the converse, fix any € D(x, N) with |£(D)| > 0 and anye > 0. By the definition ofD(x, \), for

any e > 0, there exists a code with source blocklengttand channel blocklength < L/(k — €) such that
Eldy (U@, 05 < D(a,b) + € (31)
for each(a,b) € V2. Specifically, for any(a,b) such thatD(a, b) = 0,
Eldy (U@F, e h)] <e.

We now prove that with an asymptotically negligible incree@s number of channel uses nodea can send node
b sufficient information to improve nodis reconstruction of node’s data from a zero-distortion reproduction to
a lossless reconstruction. We further show that this ch@nggerves the quality of all other reconstructions.

The following argument builds a code of source blocklenith and channel blocklength(N + N’), for some
integer N’ to be defined shortly, from the given code of source blocklerigand channel blocklength.

Each nodex € V breaks its incoming source block of lengtil, into N non-overlapping blocks of length,
given by

a),L (a),2L (a),NL
U@ Uiy o UnZhyaae

Each node then applies the blocklenditeode N times to independently code each of these blocks. In tdia, t
requiresNn channel uses. Independently decoding eadblock with the blocklengthz decoder achieves, for each

a,b €V, a reconstruction of lengtiv L such that

a),lL ~r(a—b) 4L
Bl (U1 0 U] < Dia,b) +e, (32)

foreach/ =1,2,..., N.

For (a,b) € L(D) and eacty € {1,..., N}, denote the input of node in sessiorn’ as

L 2 rr(a)lL
vk 2 U

December 19, 2012 DRAFT



19

Ul(1l) ——| Session I— UL(1)

UE(2) —— Session 2— U%L(2)

UF(N) — Session N— UL(N)

Fig. 5. SourceU and its reconstruction at parallel sessions.

and the corresponding output at nddas
UL(K) A U(a%b),lL

(6—1)L+1"

By assumption,

Thus

L
= 1 B0, T(0)
i=1
L
> 5 duin PUO) # D), (33)

whered,i, £ N, o e xiiuta d(u,@). Since all alphabets are assumed to be finite, &nada) = 0 if and only

if u=1, dnn > 0 by assumption. Therefore,

1

€

L
;P(Ui(é) #Ui(0) < 7

il

forall ¢ € {1,2,...,N}.
Recall that all sources and channels are memoryless by asismnand that the same code is used independently
on eachL-vector. Therefore{U"(¢),U"(¢)}N_, is an i.i.d. sequence. (See Fig. 5.) Our goal in the argument

that follows is to losslessly descriié”(1),...,U*(N) to a decoder that know&*(1),...,U%(N). We treat

this as a problem of lossless source coding with receivex sifbrmation, as shown in Fig. 6. From [20], rate
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Uk Ry Uk
—— Encoder » Decoder ———»
UL

Fig. 6. Slepian-Wolf coding for converting zero-distortioeconstruction into lossless reconstruction.

R = H(UL|UT) suffices for losslessly reconstructiig” at a receiver that know&~. Here lossless coding
means that the reconstructiéi™" at the receiver has an error probabili(U~" +# UXN) that can be made
arbitrarily small, which is precisely the criterion needed our proof. Therefore, for any < d,;i, /2, using Fano’s
inequality [18], Jensen’s inequality, and the concavitythad entropy function, we have

L
RY) = HUHUY) = HUU™, 0"
i=1

H(U|U;)

'M~

s
Il
-

-

s
Il
-

H(U;, 1

i)

[ (P(U; # Uy)) +log[U| P(U; # U;)]

Mm

.
Il

L

1 <& .
<Lh<zz (U; # U; )+1og|M|ZP(Ui7éUi)

i—1
( ( ) log |Z/{|e)

7

I /\

Hl>

(34)

where for any) < p <1, h(p) = —plogp — (1 —p)log(1 — p), and f(¢) = h(7=) + % Note thatf(e) — 0
ase — 0.

For each(a,b) € L(D), we send the ratﬂ-(()k) description of UL from nodea to nodeb by treating the
random mapping front/~ to U~ that results from applying the given code across the givewor& as a noisy
channel. Specifically, we order the source-receiver pairg) € £(D) lexicographically and send the description
for the k-th pair (a, b) using N, dummy source vector§ “ (N + S5 N/, +1),...,UX(N + Y52 Nj, + NJ),
thereby creatingV; uses of a channel(a’|u”) through which we can reliably transmit the lossless detiorip
of UL(1),...,UL(N) for (a,b) to the decoder. The decoder’s distortiomeconstructiond/~ (1), ..., U%(N) of
source vector§/L(1),..., UL (N) are treated as side information known only by the decoder.

The following discussion describes the approach precisely investigates its performance. The code used

to losslessly describ&(1),...,U%(N) from nodea to the nodeb employs fixed source valuds()->(N +
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FANL ) = = UWE(N N N+ N = ™)L for all nodesv € V\a in the network. The value
transmitted by each nodee V\{a} is chosen as follows.

Since distortion in non-negative by assumption,
e > EBldL(UF,UD)]
> Eld, (U, UMUCD* e T PO e 7).
where U(—o)-L & (U(»).Ly ., .. For anys > 0 and all L large enoughP(U~"):L ¢ TH*)) > 1 — 4, which
implies that

€

Bldp (", UMUC e TV < o

Hence, there existg(~?):F ¢ 7:5(“ such that

€

Bldp (U, PO = a0 < o

(35)

Fix any suchu(~%-L. To bound the capacity of the resulting channel, we first lotie conditional entropy
of UL given UL, when U(-®)-L = y(~2).L Here, following steps similar to those in (33) and (34), bere
conditioning onUU(—*)-L = y(=)-L we conclude that

€

1—5)'

H(UL|UL, U(—a),L _ u(—a),L) < Lf(

To finish our capacity calculation, we next bound the entrafply > givent/(~2)-£ = (=)L, Sinceu(~*)-L e T,
for any ul € 7,2 (Uu-)L),

p(uL|u(—a),L) < 2—(1—6)LH(U\U(’“))

by [16]. Hence, forL large enough,

H(UL|U(7G.).,L — u(fa).,L)
=Y —pu" ") log p(u”ul~F)
uL
> > —pwu ) log p(uu~**)
ul €T (Ulul-o-1)
> (1= 8 LHUUCNPUT e TP UCOL = -0k

> (1-0)2LHU|UY),

where the last line follows since, fdr large enoughP(UX € 5 |U(-a)L = y(-a):Ly 5 1 5,
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Hence, fixingU (~®):L = (=)L yields a channep(a”|ul, UL = (=21 with capacity

€

¢ = (1= 0P LHUIUT") — Lf(;—

)- (36)

Thus the rate required to losslessly descfifé” to a decoder with reproductidii“~ of U is at mostR" N,
and the capacity of the channel over which we wish to desdib¥ is at IeastCék) bits perL network uses. We
can therefore achieve the desired lossless descriptiornder thatN,gCék) > NR((J’“), giving Ny, > Nng)/Cék).
Thus the total number of sessions required to send first th&yldescription and then the lossless incremental

description is
|£(D)] [£(D)]

N+N =N+ Y No>N(1+ Y RP/el).
k=1 k=1

Here
Ry _ Lf(e)
c®) = (1 =98)2LHU|UCY))Lf(155)

1-9
_ f(e)
1= 0PHUIUCY) = f(15)

which approaches zero aspproaches zero ardapproaches zero. Repeating this process for eeeiy) € L£(D),

the resulting coding rate can be bounded as

K
£D)]
1+ > RP/cP
k

=1

<K <EK.

Since|L£(D)| < |V|? is a finite number, the resulting coding rate after adding these extra sessions, still approaches
to k, ase and¢ corresponding to eactu, b) € £(D) converge to zero.
[ |
Combining Theorem 3, Theorem 2 and the result proved by WnG19] proves the separation of source-network
coding and channel coding in a wireline network with depehdmurces with lossy or lossless reconstructions.
In particular, this result partially extends the separatiesult of [6] to the case where the sources are dependent.
The extension is partial since in [6] the channels can berelisor continuous, but here we have only considered

discrete channels. In the next section, we consider the afa8&/GN channels.

VIl. CONTINUOUS CHANNELS

While the capacity results of [8] are proven for general ddige or continuous) alphabets, the sources and
channels considered in Theorems 1 and 2 were all assumedédfiihde alphabets. In this section, we prove that
our results also hold for AWGN channels. In order to prove thie use the discretization method introduced in
[21].

Consider a wireline network/ with an AWGN channel from node to nodeb. Let the input and output of this

channel beX andY = X + Z, respectively. The coding oV is performed similar to the coding described in
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Section Ill. Assume input power constraiRtand noise poweN. To impose the power constraint, for a code with
channel blocklength, we require
E[X?] < P,

for t = 1,...,n. Similarly, in the N-fold stacked version al/, we require

1 N
¥ 2 BXHO < P

fort=1,...,n.

Let AV, be a wireline network that is identical to netwahk except that the channel fromto b is replaced by
a bit pipe of capacityC' = 0.5log(1 + P/N). Theorem 4 shows, as in the case of discrete-valued charhats
this change does not affect the set of achievable distatidereby generalizing Theorem 2.

Remark 3:Given a Gaussian channel with input power constranusually, a code of blocklength and rate

2nR

R is defined as a code witti'’* codewords(z™(m)) such thaty"}" | x7(m) < np, for everym = 1,...,2"%

m=11
[18], [16]. However, instead of an average power constraimteach codeword, we can put an average power
constraint on each transmitted symbol and require Ehag (M )] < P, for t = 1,...,n [22]. Note that for a given
code, the randomness z?(M)] < P is only due to the messag¥. This alternative definition does not affect
the capacity of the channel frofi = 0.5log(1 + P/N). In this paper, we consider the latter definition because of
some technical issues in the proof of the main result.

The equivalence of the capacities corresponding to the ®fmitons can be shown as follows. The converse
of the capacity theorem stated in [18] applies to the casebsAlny-symbol power constraint as well. For the
achievability, consider the code construction presemtefd 8] with the same encoding and decoding strategy. For
eacht = 1,...,n, P(B[z2(M)] > P) = P2 "R "2 22(m) > P) < 2-2""0() whered(e) — 0 ase — 0.
Hence, by the union bour(E[z2(M)] > P, for some t) < n2-2""9()_ This shows that there exist a sequence of
codes that both satisfy the power constraint on each caatelimnd also have arbitrary small probability of error.
(The analysis of the probability of error presented in [18plées here too.)

Theorem 4:For a wireline network consisting of discrete or AWGN pdiatpoint channels,
D(k,Np) = D(k, N).

Proof of Theorem 4: The second inclusion is immediate since the first part of treofpof Theorem 2
applies equally well for continuous channels case. To pthedirst inclusion, we employ the discretization method
used in [21]. Let network\'U:%)  with j = (j1,j2,...,jn) andk = (ki, ks, ..., k,), denote the network derived
from network A/ by replacing the AWGN channel from to b by the structure shown in Fig. 7. The given
channel relies on a pair of quantizefdj] and Q[k] parametrized by indiceg and k. We allow the quantizer
parameters to vary with, settingj = j; and k = k; for each timet € {1,2,...,n}. The quantizerQ[i] is
defined as follows. Foi € {1,2,...}, let A = 1/+/i, and define the quantizep[i] with quantization levels
Li={—iA—-(—-1)A,...,=A0,A,...,(i—1)A,iA}. For anyz € R, Q[i] mapsz to [z];, which is the closest
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number tox in £; such that[z];| < z. Note that by this definitionE[[X]?] < E[X?] for any random variabléx.
Lemma 1 in Appendix B shows that @sandk increase, the set of achievable distortions\df¥) approaches

the set of achievable distortions on the original networlor®lprecisely,

D, (k,N') C limsup D(r, NG:K)), (37)
jk

where

limsup Aj 2 () | A

Jk

Jo,ko j>jo
k>ko
and A denotes the closure of the sdt
We next show that
D(H,N(j’k)) C D(k, Np). (38)

This is sufficient to obtain the desired result since (37) é8) together implyD, (x,N') C D(x,N,) by the
closure in the definition oD (x, \}).

To prove thatD(k, NUK)) C D(k,N}), note that, at each timg the structure shown in Fig. 7 behaves like a
DMC with input [X],,, power constrainE[([X];,)?] < P and outputY},]x,. Hence, by straightforward extension
of the proof of Theorem 2,

D(k, NUK)) C D(R,Nb(j’k)),

where/\/b(j’k) is identical toA/d'¥) except that the channel fromto b is replaced by a bit pipe of capacity; k

equal to the maximum capacity of theDMCs. Here

A LY
C_],k - 11%1%}{71 [XI]I;;E;X I([X]Jt7 [Y?t]kt)
px:B[X?]<P
By the data processing inequality [18],
I([ X505 Yk ) < T(1X 155 Y5)
= n(Y;,) = h(2).

On the other hand, by the construction of the quantizers,

E[Yj?] = E[[X]}] + N

< E[X?] + N.
Hence,

h(Y;,) <0.5log(2me(P + N)),
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and as a result

11X Vi k) < C.

Therefore,D(k, NUK)) C D,

A
X; t Y; Yl
g( Qly] al + il

Fig. 7. Quantizing the input and output alphabets of an AWGN

VIII. CONCLUSIONS

In this paper we proved the separation of source-networkcimashnel coding in general wireline networks of
independent discrete point-to-point channels with depahdources and arbitrary lossy or lossless reconstruction

demands. We also proved that the result continues to holchwhe or more channels is an AWGN channel.

APPENDIXA: PROOF OF PART Il OFTHEOREM 1

Let D € int(Ds(k,N)). Then for anye > 0, there exist integerd’, n, and L such thatL/n > x — € and there

exists a blocklength- coding scheme fol. source symbols oiV-fold stacked network\ that achieves
B [d, " (@@NE 0 DN < D(a,b) +e

for all a,b € V. The same coding scheme can be used in a single-layer neasddtlows. Consider a single layer
network where each node observes a lengtiv L block of source symbol#/(®)-NZ and describes the block in
the nextNn time steps. Given source blocklengfth = NL and channel block length’ = Nn, the code has
ratex = L'/N’ = L/N. At each timet € {1,..., N}, each node: € V sends, over its outgoing edges, what it
would have sent at time 1 in layérof A, i.e.,Xg")(t), and collects, over its incoming edges, what it would have
collected in layert of A\, i.e.,Yg")(t). Attimest € {N+1,...,2N}, each node sendsXéa) (t—N) and collects
Yéa) (t — N). Here caIcuIatingXéa) is possible due to the prior collection Méa). The same strategy is used in
the nextn — 2 time intervals, in intervat transmittingXﬁ“) fort e {3,...,n} and coIIectinnga) for uses in
future time intervals. Using this strategy, at the ench®f channel uses, each node’s observation has exactly the
same distribution as the collection of observations of\Nit€opies in the stacked networks. Therefore, applying the

decoding rules results in the same distortion. Hetdees D(x, ).
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APPENDIXB: LEMMA 1

Lemma 1:For anyx > 0,

D(k,N) C limsup D(x, NE:K)), (B-1)
jk

where A denotes the closure of set.

Proof: Let D € D(x,N). For anye > 0, and for L sufficiently large, there exist a joint source-channel code

at ratex with source blocklengthl such that
Eld, (U®F, U@ L)] < D(a,b) + e, (B-2)

holds for eacha,b) € V2. Let UL = U@L andU* = U@L for some fixed(a, b) € V2.
Conditioning the expected average distortion betw&énand U~ on the input and output values of the AWGN

channel at timeg = 1, it follows that

D(a,b) + € > Eld (U, U")]
= Z pla1, 1) E[dL (U, U)|(X1, Y1) = (21,41)]
(z1,91)

=E[W (X1, 11)] (B-3)

wheres ™) (1, y1) £ E[dL (U", U)|(X1, Y1) = (z1,31)]-
Now assume that the same code is applied to netwiék-**), which is identical ta\" except that at time = 1,
the AWGN channel is replaced by the structure shown in Figitd parameterg = j; andk = k;. The expected

average distortion betwedii” andU'” in the modified networkD1-#1) (a, b), can be written as

DU (a,b) = BSO (X, T1)], (B4

whereY; 2 [[X];, + Zi]x, - Note that, conditioned on the input and output values of AGN channel at time

t = 1, the two networks have identical performance.
Further,Y; converges pointwise t&; almost everywhere agandk; grow without bound, i.e.,

lim lim Y; =Y, (B-5)

k1~>oo j1~>oo

almost everywhere, wherg, = X + 7.
While function 6" (z1,%;) might not be continuous everywhere, by the Lusin’s Theor@s,[since it is

measurable, for any; > 0, there exists a subsed; C R?, such thatP((X;,Y;) € A;) < ¢ and 5 s
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continuous on4;. By the law of iterated expectations,
DU (a,b) = B[V (X1, Y1) (X1, Y1) € A P((X1, Y1) € Ay)
+E[M (X1, Y1)[(X1, Y1) ¢ A1 P((X1, Y1) ¢ A1)
<E[BM (X1, Y1)|(X1,Y1) € Ai] + dimaxer, (B-6)

and, similarly,

DUYM)(a,b) > E[6™M (X1, Y1)|(X1, Y1) € A P((X1, Y1) € Ay)
> E[6W (X, V1)|(X1, Y1) € A)(1 — ). (B-7)

Sinced(z1,y1) is continuous ond; and is bounded, by the bounded convergence theorem, inv®limm (B-6)

and (B-7) that

lim lim DUYR)(q,p) < lim lim E[6M (X1, Y)|(X1,Y1) € A1] + dmaxer

k1—00 j1—00 k1—00 j1—00
=E[ lim lim 6W(Xy,V1)|(X1, Y1) € A1] + dmaxer
k1—00 j1—00
< E[6M (X1, Y1)|(X1,Y1) € Ai] + dmaxer, (B-8)

and

lim lim DYYR) (g b) > E[6M (X, Y1)|(X1, Y1) € A](1 — e). (B-9)
k1—00 j1—00

On the other hand,

E[6M (X1, Y1)] > E[6™W (X1, Y1)[(X1, Y1) € 4] P((X1,Y1) € Ay)

> B[0W (X1, Y)|(X1, Y1) € A1 —e), (B-10)
and
E[M (X1, Y1)] < E[6M (X1, Y1)|(X1, Y1) € A1] + dinaxer- (B-11)

SinceE[6(V)(X1,Y1)] = E[dL (UL, UL)], combining (B-8) and (B-9) with (B-10) and (B-11) yields

E[d, (U", U")]

Eldp (U, U")] = dypaxer < lim  lim DUV (g b) < + dimax€l- (B-12)
k1—00 j1—00 1— €1
Sincee; can be made arbitrary small, from (B-12), we have
lim lim DY) (g b) = Eld (UF, UD)]. (B-13)

k1—00 j1—00

The prior analysis captures the expected distortion wherctmtinuous channel is replaced by a finite alphabet

channel only at time 1. To finish the proof we use inductiorsukse that for timeg,2,...,¢ — 1, the continuous
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channel can be replaced a finite alphabet channel withogm@stically, changing the expected average distortion,

ie.,

. . ( ct—1 kr 1)
lim lim ... lim  lim DY (a,b)
k1—00 j1—00 kt_1—00 jt—1—>00

= B DXy ),

= Eld, (U, U")). (B-14)
where D(J'Hv’wl)(a,b) denotes the expected average distortion betwéénand " in the modified network
when the parameters of the channel input and output quasitizetimesr € {1,...,t— 1}, are(j'~1, k*~1), and

let
5(t_1)(l't_1,yt_ ) A E[dL(UL UL)|(Xt_1,Yt_1) _ (It_l,yt_l)].

Now we need to show that if we add the quantizers at ttnas well, the performance does not change.

In the original network
Eld (U",U")] = [V (X", Y")]
=B B[ (X,yI(x, v (B-15)
and in the modified network,

DU K (a,b) = B[ (X, V1)),

—E [E [5<t>(f(t,f/t)

(&)l (B-16)

where fort’ € {1,...,t}, X, is the channel input at tim& when the given code is applied and the Gaussian
channel replaced by its quantized approximation, Hnd= [[Xt/]jt, + Zy]x,,. Note thatX; = X;.
While X, and X, might have different distributions due to the quantizagiat timest’ = 1,...,t — 1, their

conditional distributions given the inputs and outputshef thannel up to timé— 1 are identical in both networks,

ie.,
( <xt‘ thl,?tfl)z(xtfl,ytfl))
=P (X, <o (XTLYN = (@ ytY). (B-17)
Let
Aty ) £ B (X Y0 YY) = @y )]
B[00ty YO dF Gl ) (B-18)
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and
0k (1L, 1) £ B0 (R (R, T) = (2L, )
=E |:/ 5(t) (Ita yt_la Y/t)dF(ItKIt_lvyt_l)) ) (B'lg)

where in the last line we are using (B-17).

Using the same argument as the one used to prove (B-13))awv®ithat

lim  lim §90R) (271 ) = gty ). (B-20)
kt—o00 jt—r00
Hence,
lim lim ... lim lim DY"%)(a,b)
k1—00 j1—00 kt—00 jt—00

= lim lim ... lim lim E[FUsk) (Xt~ yt=1y)

k1—o00 j1—00 ki—00 jg—00
= lim lim ... lim  lim E[hm lim W‘nkt)(}z“,?tl)]
k1—00 j1—00 k¢—1—00 jt—1—>00 k¢—00 ji—>00
@ i Jim ... lim  lim E[W(Xt_l,f/t_l)
k1—00 j1—00 k{—1—00 jt—1—00
Bl (UE, Gl (B-21)

where (a) follows from (B-20) plus the dominated convergence thegramd (b) follows from our inductive

hypothesis.
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