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Abstract

In this paper we prove the separation of source-network coding and channel coding in wireline networks. For the

purposes of this work, a wireline network is any network of independent, memoryless, point-to-point, finite-alphabet

channels used to transmit dependent sources either losslessly or subject to a distortion constraint. In deriving this

result, we also prove that in a general memoryless network with dependent sources, lossless and zero-distortion

reconstruction are equivalent provided that the conditional entropy of each source given the other sources is non-

zero. Furthermore, we extend the separation result to the case of continuous-alphabet, point-to-point channels such

as additive white Gaussian noise (AWGN) channels.

I. I NTRODUCTION

In his seminal work [1], Shannon separates the problem of communicating a memoryless source across a single

noisy, memoryless channel into separate lossless source coding and channel coding problems. The corresponding

result for lossy coding in point-to-point channels is also proven in the same work. For a single point-to-point channel,

separation holds under a wide variety of source and channel distributions (see, for example, [2] and the references

therein). Unfortunately, separation does not necessarilyhold in network systems. Even in very small networks like

the multiple access channel [3], separation can fail when statistical dependencies between the sources at different

network locations are useful for increasing the rate acrossthe channel. Since source codes tend to destroy such

dependencies, joint source-channel codes can achieve better performance than separate source and channel codes

in these scenarios.

This paper proves the separation between source-network coding and channel coding in networks of independent

noisy, discrete, memoryless channels (DMC); these networks are calledwireline networksin this work. Roughly,

we show that the vector of achievable distortions in delivering a family of dependent sources across such a network

N equals the vector of achievable distortions for deliveringthe same sources across a distinct networkN̂ . Network

N̂ is built by replacing each channelp(y|x) in N by a noiseless, point-to-point bit-pipe of the corresponding
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capacityC = maxp(x) I(X ;Y ). Thus a code that applies source-network coding across links that are made almost

lossless through the application of independent channel coding across each link asymptotically achieves the optimal

performance across the network as a whole.

Note that the operations of network source coding and network coding are not separable, as shown in [4] and [5]

for lossless source coding in non-multicast and multicast networks, respectively. As a result, a joint network-source

code is required, and only the channel code can be separated.While the achievability of a separated strategy is

straightforward, the converse is more difficult since preserving statistical dependence between codewords transmitted

across distinct edges of a network of noisy links improves the end-to-end network performance in some networks [6],

[7], [8].

The results derived here are consistent with those of [9], [10], [8], which prove the separation between network

coding and channel coding for multicast [9], [10] and general demands [6], [8], respectively, under the assumption

that messages transmitted to different subsets of users areindependent. The shift here is from independent sources

to dependent sources and from reliable information delivery to both lossy and lossless data descriptions.

After hearing about our work, the author of [11] pointed us tohis unpublished work from the 90s, which

proves the separation of lossy network source coding and channel coding in three specific network structures,

namely, the Slepian-Wolf configuration, the multiple description configuration, and Yamamoto’s cascade network.

In these cases, [11] proves separation without requiring the single-letter characterizations of the distortion regions.

Our result generalizes this result to any network configuration that consists of point-to-point noisy channels. The

strategy underlying our proof follows that of [6], [8], but the details differ significantly, both due to the inclusion

of dependent sources and lossy reconstruction and in the focus on discrete-alphabet channels.

The organization of this paper is as follows. Sections II andIII describe the notation and problem set-up,

respectively. Section IV describes a tool from [8] called a stacked network that allows us to employ, in later

arguments, typicality across copies of a network rather than typicality across time. Section V proves the separation

of lossy source-network coding and channel coding. SectionVI proves the equivalence of zero-distortion and lossless

reconstruction in general memoryless channels. Section VII shows that the separation of source-network coding

and channel coding continues to hold for well-behaved continuous channels such as AWGN channels under input

power constraints. Section VIII concludes the paper.

The first part of the results presented in this paper, showingthe separation of lossy source-network coding and

channel coding in a wireline network was first presented at ISIT 2010 [12]. A similar result by other authors was

presented at the same ISIT [13], where they prove that, in thesame setup and under the finite source and channel

alphabet assumption, if each source is required only at one other node, or at multiple other nodes but at the same

distortion level, then separation of source-network coding and channel coding is optimal. For the general case,

under a restricted set of distortion measures, they prove approximate optimality of separation strategy.
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II. N OTATION AND DEFINITIONS

Finite sets are denoted by script letters such asX andY. The size of a finite setA is denoted by|A|. Random

variables are denoted by upper case letters such asX and Y . Bold face letters represent vectors. The alphabet

of a random variableX is denoted byX . Random vectors are represented by upper case bold letters like X

and Y. The length of a vector is implied in the context. Theℓth element of a vectorX is denoted byXℓ. A

vector x = (x1, . . . , xn) or X = (X1, . . . , Xn) is sometimes represented asxn or Xn. For 1 ≤ i ≤ j ≤ n,

xj
i = (xi, xi+1, . . . , xj). For a setA ⊆ {1, 2, . . . , n}, xA = (xi)i∈A, where the elements are sorted in ascending

order of their indices.

For two vectorsx,y ∈ Rr, x ≤ y iff xi ≤ yi for all 1 ≤ i ≤ r. The ℓ1 distance between two vectorsx and

y of the same lengthr is denoted by‖x − y‖1 =
∑r

i=1 |xi − yi|. If x andy represent pmfs, i.e.,
∑r

i=1 xi =
∑r

i=1 yi = 1 andxi, yi ≥ 0 for all i ∈ {1, . . . , r}, then the total variation distance betweenx andy is defined as

‖x− y‖TV = 0.5‖x− y‖1.
Definition 1: The empirical distribution of a sequencexn ∈ Xn is defined as

π(x|xn) ,
|{i : xi = x}|

n
,

for all x ∈ X . Similarly, the joint empirical distribution of a sequence(xn, yn) ∈ Xn × Yn is defined as

π(x, y|xn, yn) ,
|{i : (xi, yi) = (x, y)}|

n
,

for all (x, y) ∈ X × Y.

Definition 2: For a random variableX ∼ p(x) and a constantǫ > 0, the setT (n)
ǫ (X) of ǫ-typical sequences1 of

lengthn is defined as

T (n)
ǫ (X) , {xn : |π(x|xn)− p(x)| ≤ ǫp(x) for all x ∈ X}.

For (X,Y ) ∼ p(x, y), the setT (n)
ǫ (X,Y ) of jointly ǫ-typical sequences is defined as

T (n)
ǫ (X,Y ) , {(xn, yn) : |π(x, y|xn, yn)− p(x, y)| ≤ ǫp(x, y), for all (x, y) ∈ X × Y}.

We shall useT (n)
ǫ instead ofT (n)

ǫ (X) or T (n)
ǫ (X,Y ) when the random variable(s) are clear from the context.

For xn ∈ T (n)
ǫ , let

T (n)
ǫ (Y |xn) , {yn : (xn, yn) ∈ T (n)

ǫ }.

III. T HE PROBLEM SETUP

Consider a multiterminal networkN consisting ofm nodes interconnected via a collection of point-to-point,

independent DMCs. The network structure is represented by adirected graphG with node setV and edge

1In this paper we only consider strong typicality, and use thedefinition introduced in [14].
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replacements
a

(a) Graph representation of a
wireline network

=
X Yp(y|x)

(b) Each arrow represents a DMC.

Y t−1
1

Y t−1
2

X1,t

X2,t

X3,t

U(a),L

(c) Coding operation at nodea at time t

Fig. 1. Noisy wired network model

set E . Each directed edgee = (a, b) ∈ E represents an independent point-to-point DMC(Xe, p(ye|xe),Ye)

between nodesa (input) andb (output). For the channel represented by the edgee, the transition probabilities

are{p(ye|xe)}(xe,ye)∈Xe×Ye
. The channels are independent by assumption, together giving a multiterminal channel

(
∏

e∈E Xe,
∏

e∈E p(ye|xe),
∏

e∈E Ye). The channel input at each nodea ∈ V is x(a) = (x(a,v) : (a, v) ∈ E). The

channel output at nodea is y(a) = (y(v,a) : (v, a) ∈ E).
Each nodea observes some source processU(a) = {U (a)

k }∞k=1 and is interested in reconstructing the processes

observed by a subset of the other nodes. The alphabetU (a) of sourceU(a) can be either scalar- or vector-valued.

A vector-valued sourceU(a) denotes a collection of sources available at nodea. In a block coding framework,

source output symbols are divided into non-overlapping blocks of lengthL. Each block is described separately.

At the beginning of thejth coding period, each nodea observes a length-L block of the processU(a), i.e.,

U
(a),jL
(j−1)L+1 = (U

(a)
(j−1)L+1, . . . , U

(a)
jL ). The blocks{U (a),jL

(j−1)L+1}a∈V observed at the nodesa ∈ V are described over

n uses of the network. The rate

κ ,
L

n

is a parameter of the code. At each timet ∈ {1, . . . , n}, each nodea generates its next channel inputs as a function

of its source observationU (a),jL
(j−1)L+1 and its observed channel outputsY (a),t−1 = (Y

(a)
1 , . . . , Y

(a)
t−1) up to timet− 1

using encoder

X
(a)
t : (Y(a))t−1 × U (a),L → X (a). (1)

Note that each node might have more than one incoming channeland more than one outgoing channel. Thus,

X
(a)
t and Y

(a)
t are vectors with dimensions equal to the outdegree and indegree of nodea, respectively. The

reconstruction at nodeb of the source vector observed at nodea is denoted byÛ (a→b),L. This reconstruction

is determined using a decoder with inputs equal to the sourceand channel outputs observed at nodeb. Thus,

Û (a→b),L = Û (a→b)(Y (b),n, U (b),L), where

Û (a→b) : Y(b),n × U (a),L → Û (a→b),L. (2)

December 19, 2012 DRAFT
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The performance of a given code is the vector of expected average distortions between the sources{U(a)}a∈V

and reconstructions{Û(a→b)}a,b∈V . For eacha, b ∈ V ,

E[d
(a→b)
L (U (a),L, Û (a→b),L)] , E

[

1

L

L
∑

k=1

d(a→b)(U
(a)
k , Û

(a→b)
k )

]

,

whered(a→b) : U (a) × Û (a→b) → R
+ is a per-letter distortion measure. As mentioned beforeU (a) and Û (a→b)

may be either scalar or vector-valued. This allows the case where nodea observes multiple sources and nodeb is

interested in reconstructing a subset of them. Let

dmax , max
(a,b)∈V2

α∈U(a),β∈Û(a→b)

d(a→b)(α, β) < ∞.

The |V| × |V| distortion matrixD is said to be achievable at rateκ, if for any ǫ > 0, and anyL large enough,

there exists a blocklength-(L, n) coding scheme such that

L

n
≥ κ− ǫ,

and

E[d
(a→b)
L (U (a),L, Û (a→b),L)] ≤ D(a, b) + ǫ, (3)

for every(a, b) ∈ V2. Let D(κ,N ) denote the set of achievable distortion matrices at rateκ in networkN .

Remark 1:While here we are assuming that all sources have a fixed rateκ, in general, the rateκ can vary for

different sources. Our results continue to hold in that caseas well. However, for notational simplicity, we assume

that κ is fixed among all sources.

Throughout the paper, for any networkN of noisy point-to-point channels described by directed graph G, let

the networkNb denote a network of noiseless point-to-point channels described by the same directed graphG.

Precisely, networkNb replaces each noisy DMC(Xe, p(ye|xe),Ye), e ∈ E , by a noiseless bit pipe of the same

finite capacityCe = maxp(xe) I(Xe;Ye). A bit pipe of capacityCe is an error-free, point-to-point communication

channel that delivers, inn channel uses,⌊nCe⌋ bits from the transmitter to the receiver, for anyn ≥ 1. The timing

of the delivery of these bits has no impact on the set of achievable distortion matrices. This result is shown for the

network capacity problem in [6]; the same argument goes through immediately for the case of lossy reconstruction.

Example 1:Fig. 2 demonstrates a simple example of the kind of networks we study in this paper. The graph of

the network, shown in Fig. 2(a), consists of two edges and three nodes. Each edge models a point-to-point DMC.

Fig. 2(b) shows a specific realization of such a network with sources available at nodes 1 and 2. It also shows

how the encoding and decoding operations are performed on network of Fig. 2(a). The decoder reconstructs both

sourcesU1 andU2. For i ∈ {1, 2}, let Ci denote the noisy capacity of channeli. Fig. 2(c) shows the equivalent

noiseless model. At coding rateκ, choosingn = ⌊κ−1L⌋, Wi ∈ {1, . . . , 2⌊nCi⌋}. For this special example, [11]

proves that atκ = 1 separation is optimal and the set of achievable distortionson both networks are equal. In this
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(a) Network model
graph

p(y1|x1)

p(y2|x2)

Y n

1

Y n

2

Xn

1

Xn

2

UL

1

UL

2

(ÛL

1 , ÛL

2 )

Encoder 1

Encoder 2

Decoder

(b) Noisy model

W1

W2

UL

1

UL

2

(ÛL

1 , ÛL

2 )

Encoder 1

Encoder 2

Decoder

(c) Noiseless equivalent model

Fig. 2. Example 1

paper, we extend this result to general networks of point-to-point noisy channels, at arbitrary coding rateκ.

IV. STACKED NETWORK

The stacked network is a tool introduced in [6] for proving separation results. The key underlying observation

is that by taking multiple copies of the same network and applying the same code to that network in each copy,

we create i.i.d. copies of the input and output of a given channel at each timet. This allows us to later employ

typicality arguments to our channel inputs and outputs across copies of the network and not across time. Applying

typicality arguments across time is problematic since the inputs to the channel at different timest need not be i.i.d.

For a given networkN , the correspondingN -fold stacked networkN is defined asN copies of the original

network [6]. That is, for each nodea ∈ V and each edgee ∈ E in N , there areN copies of nodea andN copies

of edgee in N . At each time instance, each node has access to the data available at all copies of nodea, and each

may use this extra information in generating the channel inputs for future time instances. Likewise, in decoding, all

N copies of a node can collaborate in reconstructing the source vectors. This is made more precise in the following

two definitions. The encoderX(a)
t for nodea at time t in N -fold stacked networkN is a mapping

X
(a)
t : Y(a),N(t−1) × U (a),NL → X (a),N , (4)

December 19, 2012 DRAFT
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and the node-b decoderÛ (a→b),NL for signalU (a),NL of nodea is a mapping

Û (a→b),NL : Y(b),nN × U (b),NL → Û (a→b),NL. (5)

These definitions correspond to (1) and (2) in networkN . In (4), network inputX(a)
t is a vector withN components

denoted byX(a)
t = (X

(a)
t (1), . . . ,X

(a)
t (N)).

In theN -fold stacked network, the distortion between the source originating at nodea and its reconstruction at

nodeb is defined as

DN (a, b) = E
[

d
(a→b)
NL (U (a),NL, Û (a→b),NL)

]

,

for any (a, b) ∈ V × V .

A distortion matrixD is said to be achievable at rateκ in the stacked version of networkN , if for any given

ǫ > 0, there existn, L, andN such that distortionD and rateκ are achievable in theN -fold stacked network; that

is, L/n ≥ κ− ǫ andDN (a, b) ≤ D(a, b) + ǫ for all a, b ∈ V on N -fold stacked networkN . Let Ds(κ,N ) denote

the set of achievable distortion matrices at rateκ in the stacked networkN . Note that the depthN of the stacked

networkN on which each distortion matrixD ∈ Ds(κ,N ) is achievable may vary withD.

Note that the dimension of the distortion matrices in both single layer and multi-layer networks ism×m. The

following theorem establishes the relationship between the two sets.

Theorem 1:At any rateκ,

D(κ,N ) = Ds(κ,N ). (6)

Proof of Theorem 1:

i. D(κ,N ) ⊆ Ds(κ,N ): This is obvious, because the stacked network is a generalization of the original network.

In fact, choosingN = 1, any distortion matrixD that is achievable onN is also achievable on its stacked

version too.

ii. Ds(κ,N ) ⊆ D(κ,N ): The proof is very similar to the proof of the analogous part of Lemma 1 in [8], but,

for completeness, we present the proof in Appendix A.

V. REPLACING A NOISY CHANNEL WITH A BIT PIPE

We assume that the sources are independent and identically distributed (i.i.d.) according to some distribution

p(u(1), u(2), . . . , u(m)). That is, for anyk ≥ 1,

P
(

(U (1),k, . . . , U (m),k) = (u(1),k, . . . , u(m),k)
)

=

k
∏

i=1

p(u
(1)
i , . . . , u

(m)
i ).

December 19, 2012 DRAFT
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For the given i.i.d. source assumption, Theorem 2 proves that the space of achievable distortions for networksN
andNb are identical. The proof follows the proof strategy of [6, Theorem 3], showing that any code for network

N b can be applied across networkN with the aid of a channel code and any code forN can be applied across

networkN b with the aid of an “emulation code”. Just as a channel code enables us to emulate a noiseless bit

pipe across a noisy channel, an emulation code enables us to emulate a noisy channel across a noiseless bit pipe.

The result proves the optimality of separate source-network codes and channel codes on networks of point-to-point

DMCs. Notice, however, that separate codes are here appliedin the manner described in the proof of Theorem 1

rather than the more conventional direct application across time.

Theorem 2:For a networkN of independent point-to-point DMCs with memoryless sources,

D(κ,N ) = D(κ,Nb), (7)

for any κ > 0.

Proof of Theorem 2:By Theorem 1, the achievable region of a networkN is equal to the achievable region

of its stacked networkN . Hence,D(κ,N ) = Ds(κ,N ) andD(κ,Nb) = Ds(κ,N b), and therefore, it suffices to

prove thatDs(κ,N ) = Ds(κ,Nb).

i. Ds(κ,N b) ⊆ Ds(κ,N ): Note thatN andNb are identical except that for eache ∈ E , DMC (Xe, p(ye|xe),Ye)

in N is replaced by a bit pipe of capacityC = maxp(xe) I(Xe;Ye) in Nb. We next show that any code for

networkN b can be operated onN with a similar expected distortion. Fix any code of source blocklengthLN ,

channel blocklengthnN and expected distortion matrixD for N -fold stacked networkN b. Now consider a

pN -fold stacked networkÑ b. By partitioning thepN layers intop stacks, each consisting ofN layers, and

then applying the code independently to these stacks, we canconstruct a code for network̃N b, which has

the same expected distortion matrixD. Consider apM -fold stacked networkN , with M > N . Using the

mentioned strategy to construct a code for thepN -fold stacked network from the code given for theN -fold

network, at each time stept, each bit pipee in Ñ b sends a message of at mostp⌊NCe⌋ bits across thepN

copies of edgee in Ñ b. To operate the same code on networkN , we need to send the same information across

the pM copies of DMC(Xe, p(ye|xe),Ye) in N . To achieve this goal, we use a channel code of blocklength

pM operating at rateRe < Ce. By choosingM = ⌈NCe/Re⌉, we guarantee thatpMRe ≥ pNCe. Hence the

M copies of DMC(Xe, p(ye|xe),Ye) in N carry the same information as theN copies of bit pipee in N b.

Since the capacity of DMC(Xe, p(ye|xe),Ye) equalsCe, Re can be made arbitrarily close toCe. The rate of

the code forN is
pNL

pMn
=

NL

⌈NCe/Re⌉n
,

which can be made arbitrary close toκ = L/n.

Let P (M)
e denote the maximal probability of error for the channel codeof blocklengthpM used over thepM

copies of DMC(Xe, p(ye|xe),Ye) in N . Let P (M)
max = maxe∈E P

(M)
e . The code for each channele is used

n times− once for eacht ∈ {1, . . . , n}. Errors in the channel code fore increase the distortion achieved

December 19, 2012 DRAFT
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by applying the code for̃N b acrossN . We can bound this increase in the expected average distortion using

the union bound. More precisely, letR denote the event that there is a decoding error in at least oneof the

channelse ∈ E at some time stept ∈ {1, 2, . . . , n}. Since the sources and channel codes are independent,

E[dpNL(U
(a),pNL, Û (a→b),pNL)] = E[dpNL(U

(a),pNL, Û (a→b),pNL)|Rc] P(Rc)

+ E[dpNL(U
(a),pNL, Û (a→b),pNL)|R] P(R)

≤ D(a, b) + n|E|P (M)
maxdmax,

for each(a, b) ∈ V2. Therefore, for fixedn andN , lettingp → ∞, |E[dpNL(U
(a),pNL, Û (a→b),pNL)]−D(a, b)|

can be made arbitrarily small for each(a, b) ∈ V2.

ii. Ds(κ,N ) ⊆ Ds(κ,N b): Let D ∈ D(κ,N ). We prove thatD ∈ Ds(κ,N b). Consider a code defined onN
with source blocklengthL, channel blocklengthn, and an expected distortion matrix that is component-wise

upper-bounded byD + ǫ · 1. Applying this code independently in each layer ofN -fold stacked networkN
gives a code forN with DN(a, b) ≤ D(a, b) + ǫ, for all (a, b) ∈ V2. Throughout the rest of the proof,n

andL, corresponding to the source and channel blocklengths of the mentioned code, are fixed. To simulate

the performance of this code on the stacked version ofNb, we let the number of layersN go to infinity. As

shown in [8] any code for anN -fold stacked network can be unraveled across time to give a single-layer code

with the same performance. The blocklength for that code goes to infinity asN grows without bound.

We first show that for identically distributed memoryless sources, the performance of the code given the

realization of(Xe,1,Ye,1) depends only on the empirical distribution{π(xe, ye|Xe,1,Ye,1)}(xe,1,ye,1)∈Xe×Ye

of (Xe,1,Ye,1). Here the subscript1 refers to timet = 1. After establishing this, we use the result proved in

[15] and show that at timet = 1 we can emulate the behavior of the noisy link across a bit pipeof the same

capacity. For the rest of the proof, letU = {Ut} denote an i.i.d. source observed at some node ina ∈ V and

Û = {Ût} denote its reconstruction at some other nodeb ∈ V\{a}.

In networkN , the expected distortion between source vectorUL and its reconstruction̂UL is

E[dL(U
L, ÛL)] =

∑

(xe,1,ye,1)∈Xe×Ye

E
[

dL(U
L, ÛL) |(Xe,1, Ye,1) = (xe,1, ye,1)

]

× P ((Xe,1, Ye,1) = (xe,1, ye,1)) . (8)

In the N -fold stacked networkN , the reconstruction of the correspondingN independent copies ofUL by
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reproductionÛNL satisfies

E
[

dNL(U
NL, ÛNL)

]

= E
[ 1

N

N
∑

ℓ=1

dL

(

U ℓL
(ℓ−1)L+1, Û

ℓL
(ℓ−1)L+1

)

×

∑

(xe,1,ye,1)∈Xe×Ye

1(Xe,1(ℓ),Xe,1(ℓ))=(xe,1,ye,1)

]

=
1

N

∑

(xe,1,ye,1)∈Xe×Ye

N
∑

ℓ=1

E
[

dL

(

U ℓL
(ℓ−1)L+1, Û

ℓL
(ℓ−1)L+1

)

1(Xe,1(ℓ),Ye,1(ℓ))=(xe,1,ye,1)

]

. (9)

For any random variablesA andB, E[A1B=b] =
∑

a,b′ a1b′=bp(a, b) =
∑

a ap(a, b) = p(b) E[A|B = b].

Using this equality, and since the code used onN applies the solution forN independently in each layer of

stacked networkN , it follows that

E
[

dL

(

U ℓL
(ℓ−1)L+1, Û

ℓL
(ℓ−1)L+1

)

1(Xe,1(ℓ),Ye,1(ℓ))=(xe,1,ye,1)

]

= E[dL(U
ℓL
(ℓ−1)L+1, Û

ℓL
(ℓ−1)L+1)|(Xe,1(ℓ),Ye,1(ℓ)) = (xe,1, ye,1)] P((Xe,1(ℓ),Ye,1(ℓ)) = (xe,1, ye,1))

= E[dL(U
L, ÛL)|(Xe,1(ℓ),Ye,1(ℓ)) = (xe,1, ye,1)]P ((Xe,1(ℓ),Ye,1(ℓ)) = (xe,1, ye,1)) (10)

where each conditional expectation ofdL(U
L, ÛL) in (10) equals the corresponding conditional expectation

in (8). Combining (9) and (10) yields

E
[

dNL(U
NL, ÛNL)

]

=
∑

(xe,1,ye,1)∈Xe×Ye

E
[

dL(U
L, ÛL) |(Xe,1, Ye,1) = (xe,1, ye,1)

]

×

1

N

N
∑

ℓ=1

P((Xe,1(ℓ),Ye,1(ℓ)) = (xe,1, ye,1))

=
∑

(xe,1,ye,1)∈Xe×Ye

E
[

dL(U
L, ÛL) |(Xe,1, Ye,1) = (xe,1, ye,1)

]

×

E[π(xe,1, ye,1|Xe,1,Ye,1)]. (11)

Equations (8) and (11) differ only in their distributions onXe×Ye. Since each conditional expectation is finite

(in particular, all are bounded bydmax), we can replace channel(Xe, p(ye|xe),Ye) by a bit pipe of capacity

Ce at time t = 1, if we can find a coding scheme across the layers of the stack for which,

|P ((Xe,1, Ye,1) = (xe,1, ye,1))− E[π(xe,1, ye,1|Xe,1,Ye,1)]| , (12)

can be made arbitrary small, for all(xe,1, ye,1) ∈ Xe × Ye.

To prove that this is possible, consider a channel with inputdrawn i.i.d. from some distributionp(xe,1). We

wish to build an emulation code with an encoder that mapsN source symbols,Xe,1 ∈ XN
e , to a message
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of NR bits and a decoder that converts theseNR bits into a reconstruction blockYe,1 ∈ YN
e . We aim

to use this code to emulate the DMC with transition probabilities {p(ye,1|xe,1)}(xe,1,ye,1)∈Xe×Ye
when the

channel input is an i.i.d. process drawn according top(xe,1). The codebook,C(N), of this emulation code

consists of2NR codewords,{Ye,1[1],Ye,1[2], . . . ,Ye,1[2
NR]}, each drawn independently i.i.d. according to

p(ye,1) =
∑

xe,1∈Xe
p(xe,1)p(ye,1|xe,1). The encoder assigns messageM ∈ {1, . . . , 2NR} to input sequence

Xe,1, if (Xe,1,Ye,1[M ]) ∈ T (N)
ǫ (Xe,1, Ye,1). If there are multiple such messages in the codebook, the encoder

chooses the one with the smallest index. If there exist no codewords inC(N) that are jointly typical with

Xe,1, then the encoder assigns messageM = 1 to Xe,1. After receiving messageM , the decoder outputs

Ye,1[M ]. Let {π(xe,1, ye,1|Xe,1,Ye,1)}(xe,1,ye,1)∈Xe×Ye
be the the joint empirical distribution between the

channel input and channel output induced by running the emulation code across theN copies of the bit pipe

at time t = 1. In [15], it is shown that, the described code can emulate channel (Xe, p(ye,1|xe,1),Ye) by

a bit pipe of rateR, provided thatR > I(Xe,1;Ye,1). The given emulation ensures that the total variation

betweenπ(xe,1, ye,1|Xe,1,Ye,1) andp(xe,1, ye,1) = p(xe,1)p(ye,1|xe,1) can be made arbitrarily small as the

blocklengthN grows without bound. In other words, there exists a sequenceof codes over the bit pipe such

that

‖π − p‖TV
N→∞−→ 0, (13)

almost surely. (Hereπ and p are vectors describing distributions (π(xe,1, ye,1|Xe,1,Ye,1) : (xe,1, ye,1) ∈
Xe×Ye) and (p(xe,1, ye,1) : (xe,1, ye,1) ∈ Xe×Ye) respectively.) Although Theorem 3 in [15] only guarantees

convergence ofπ to p in probability, we can also prove almost sure convergence ofπ to p using Borel-Cantelli

Lemma. Letγ = R− I(Xe,1;Ye,1). Let Ye,1(Xe,1) denote the codeword inC(N) that is assigned toXe,1 by

the emulation encoder. Forǫ > 0, define the error event

E(N) = {(Xe,1,Ye,1(Xe,1)) : ‖π − p‖TV > ǫ}.

Breaking the error event into two parts and then applying theunion bound, Hoeffding’s inequality, and the

joint typicality lemma from [16] gives

P(E(N)) ≤ P(Xe,1 /∈ T (N)
ǫ (Xe,1)) +

[

P((Xe,1,Ye,1[1]) /∈ T (N)
ǫ (Xe,1, Ye,1))

]2NR

≤
∑

xe∈Xe

P(|π(xe|Xe,1)− p(xe)| > p(xe)ǫ) + e−2N(γ−δ(ǫ))

≤
∑

xe∈Xe

2e−2Nǫ2p2(xe) + e−2N(γ−δ(ǫ))

≤ 2|Xe|e
−2Nǫ2 min

xe∈Xe
p2(xe)

+ e−2N(γ−δ(ǫ))

, (14)
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whereδ(ǫ) = ǫ(H(Ye,1) +H(Ye,1|Xe,1)) → 0, asǫ → 0. Therefore,

∞
∑

N=1

P(E(N)) < ∞,

and hence (13) holds almost surely, by the Borel-Cantelli Lemma.

We next combine the emulation code with the code forN . The code emulates channelp(ye|xe) at timet = 1

across theN layers of stacked networkN ′
b that replacesp(ye|xe) by a link of capacityR > C, only at time

t = 1. The given code forN can be run acrossN ′
b with expected distortion bounded as

E
[

dNL(U
NL, ÛNL)

]

=
∑

(xe,ye)∈Xe×Ye

E
[

dL(U
L, ÛL) |(Xe,1, Ye,1) = (xe, ye)

]

×

E[π(xe, ye|Xe,1,Ye,1)]

≤
∑

(xe,ye)∈Xe×Ye

E
[

dL(U
L, ÛL) |(Xe,1, Ye,1) = (xe, ye)

]

(p(xe, ye) + ǫ)

≤ E[dL(U
L, ÛL)] + ǫdmax.

Thus we can replace the noisy link by a bit-pipe at timet = 1. We use induction to extend this result to the

nextn− 1 time steps. Note that in the original network

E[dL(U
L, ÛL)] =

∑

(xn
e ,y

n
e )∈Xn

e ×Yn
e

E
[

dL(U
L, ÛL) |(Xn

e , Y
n
e ) = (xn

e , y
n
e )
]

× P ((Xn
e , Y

n
e ) = (xn

e , y
n
e )) . (15)

On the other hand, using the same analysis used in deriving (11), in theN -fold stacked network,

E
[

dNL(U
NL, ÛNL)

]

=
∑

(xn
e ,y

n
e )∈Xn

e ×Yn
e

E
[

dL(U
L, ÛL) |(Xn

e , Y
n
e ) = (xn

e , y
n
e )
]

× E [π(xn
e , y

n
e |Xn

e ,Y
n
e )] . (16)

HereXn
e = (Xe,1,Xe,2, . . . ,Xe,n) andYn

e = (Ye,1,Ye,2, . . . ,Ye,n) refer to the inputs and outputs of channel

e in theN layers of the stacked network, for timest = 1, 2, . . . , n, while Xn
e (ℓ) andYn

e (ℓ) correspond to the

inputs and outputs of the emulated channel at layerℓ for times t = 1, 2, . . . , n, and

π(xn
e , y

n
e |Xn

e ,Y
n
e ) =

|{ℓ : (Xn
e (ℓ),Y

n
e (ℓ)) = (xn

e , y
n
e )}|

N
.
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Therefore, we need to show that by appropriate coding over the bit-pipes,

|P ((Xn
e , Y

n
e ) = (xn

e , y
n
e ))− π(xn

e , y
n
e |Xn

e ,Y
n
e )| (17)

can be made arbitrarily small. Note that

P ((Xn
e , Y

n
e ) = (xn

e , y
n
e )) =

n
∏

t=1

P
(

(Xe,t, Ye,t) = (xe,t, ye,t)
∣

∣(Xt−1
e , Y t−1

e ) = (xt−1
e , yt−1

e )
)

, (18)

and

π(xn
e , y

n
e |Xn

e ,Y
n
e ) =

n
∏

t=1

π(xt
e, y

t
e|Xt

e,Y
t
e)

π(xt−1
e , yt−1

e |Xt−1
e ,Yt−1

e )
, (19)

where fort = 1

π(xt−1
e , yt−1

e |Xt−1
e ,Yt−1

e ) = 1.

We have already proven that we can make the first term in the product in (19) converge to the first term in

the product in (18) with probability one. We next prove by induction that the same result is true for each

subsequent term in (18) and (19). Since all of the terms in (19) are positive and upper-bounded by1, so too

is their product. Thus, the Dominated Convergence Theorem (see, for example, [17]) shows that (17) can be

made arbitrarily small provided that each term converges almost surely.

To apply induction, assume that there existt − 1 emulation codes whose application makes the firstt − 1

terms in (19) each converge to the corresponding term in (18)almost surely. Using this inductive hypothesis,

we prove that thetth term in (19) converges to thetth term in (18) as well.

Given the inductive hypothesis that

π(xt′

e , y
t′

e |Xt′

e ,Y
t′

e )

π(xt′−1
e , yt

′−1
e |Xt′−1

e ,Yt′−1
e )

→ p(xe,t′ , ye,t′ |xt′−1
e , yt

′−1
e ) (20)

almost surely, for all(xt′

e , y
t′

e ) and all t′ ≤ t− 1, it follows that

π(xt−1
e , yt−1

e |Xt−1
e ,Yt−1

e ) → p(xt−1
e , yt−1

e ) (21)

almost surely, for all(xt−1, yt−1). Since the two networks apply precisely the same deterministic code to the

channel outputs at timet− 1 to create the channel inputs at timet, this bound implies

π(xt
e, y

t−1
e |Xt

e,Y
t−1
e ) → p(xt

e, y
t−1
e ) (22)

almost surely, for all(xt, yt−1) as well. We now show that if the emulation code used at timet is generated
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independently of the codes used at times1, 2, . . . , t− 1, then for each(xt
e, y

t
e),

π(xt
e, y

t
e|Xt

e,Y
t
e)

π(xt
e, y

t−1
e |Xt

e,Y
t−1
e )

→ p(ye,t|xe,t) (23)

almost surely, wherep(ye,t|xe,t) = P(Ye = ye,t|Xe = xe,t). Note that

P(Ye,t(1) = ye,t|(Xt
e(1),Y

t−1
e (1)) = (xt

e, y
t−1
e ))

=
∑

sN∈XN
e :s1=xe,1

P(Ye,t(1) = ye,t,Xe,t(2 : N) = sN2 |(Xt
e(1),Y

t−1
e (1)) = (xt

e, y
t−1
e ))

=
∑

sN∈XN
e :s1=xe,1

P(Xe,t(2 : N) = sN2 |(Xt
e(1),Y

t−1
e (1)) = (xt

e, y
t−1
e ))

× P(Ye,t(1) = ye,t|Xe,t = sN , (Xt−1
e (1),Yt−1

e (1)) = (xt
e, y

t−1
e ))

=
∑

sN∈XN
e :s1=xe,1

P(Xe,t(2 : N) = sN2 |(Xt
e(1),Y

t−1
e (1)) = (xt

e, y
t−1
e ))

× P(Ye,t(1) = ye,t|Xe,t = sN ), (24)

where the last equality holds because(Xt−1
e ,Yt−1

e ) → Xe,t → Ye,t since the emulation code mapsXe,t to

Ye,t independently of all prior channel inputs and outputs.

Since each network layer independently operates an identical code, and codewords in the emulation codebook

are generated according to an i.i.d. distribution, it follows that

P(Ye,t(1) = ye,t|Xe,t = sN ) = P(Ye,t(ℓ) = ye,t|Xe,t = sN )

for any ℓ such thatsℓ = xe,t under the operation of a random emulation code. Therefore,

P(Ye,t(1) = ye,t|Xe,t = sN )

=
1

Nπ(xe,t|sN )

∑

ℓ:sℓ=xe,t

P(Ye,t(ℓ) = ye,t|Xe,t = sN )

=
1

Nπ(xe,t|sN )

∑

ℓ:sℓ=xe,t

E[1Ye,t(ℓ)=ye,t
|Xe,t = sN ]

= E





1

Nπ(xe,t|sN )

∑

ℓ:sℓ=xe,t

1Ye,t(ℓ)=ye,t

∣

∣

∣

∣

∣

∣

Xe,t = sN





= E

[

π(xe,t, ye,t|Xe,t,Ye,t)

π(xe,t|Xe,t)

∣

∣

∣

∣

Xe,t = sN
]

. (25)

By our inductive assumption and an argument similar to the one used in Remark 1, ifsN ∈ T (N)
ǫ (Xe,t), for
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N large enough
∣

∣

∣

∣

E

[

π(xe,t, ye,t|Xe,t,Ye,t)

π(xe,t|Xe,t)

∣

∣

∣

∣

Xe,t = sN
]

− p(ye,t|xe,t)

∣

∣

∣

∣

< ǫ. (26)

Combining (24), (25) and (26), it follows that

P(Ye,t(1) = ye,t|(Xt
e(1),Y

t−1
e (1)) = (xt

e, y
t−1
e ))

=
∑

sN∈T
(N)
ǫ (Xe,t):s1=xe,1

P(Xe,t(2 : N) = sN2 |(Xt
e(1),Y

t−1
e (1)) = (xt

e, y
t−1
e ))

× P(Ye,t(1) = ye,t|Xe,t = sN )

+
∑

sN /∈T
(N)
ǫ (Xe,t):s1=xe,1

P(Xe,t(2 : N) = sN2 |(Xt
e(1),Y

t−1
e (1)) = (xt

e, y
t−1
e ))

× P(Ye,t(1) = ye,t|Xe,t = sN )

≤ (p(ye,t|xe,t) + ǫ) P
(

Xe,t ∈ T (N)
ǫ (Xe,t)|(Xt

e(1),Y
t−1
e (1)) = (xt

e, y
t−1
e )

)

+ P(Xe,t /∈ T (N)
ǫ (Xe,t)|(Xt

e(1),Y
t−1
e (1)) = (xt

e, y
t−1
e )). (27)

Similarly,

P(Ye,t(1) = ye,t|(Xt
e(1),Y

t−1
e (1)) = (xt

e, y
t−1
e ))

≥ (p(ye,t|xe,t)− ǫ) P
(

Xe,t ∈ T (N)
ǫ (Xe,t)|(Xt

e(1),Y
t−1
e (1)) = (xt

e, y
t−1
e )

)

. (28)

But, if P((Xt
e(1),Y

t−1
e (1)) = (xt

e, y
t−1
e )) 6= 0, then

P
(

Xe,t /∈ T (N)
ǫ (Xe,t)|(Xt

e(1),Y
t−1
e (1)) = (xt

e, y
t−1
e )

)

=
P
(

Xe,t /∈ T (N)
ǫ (Xe,t), (X

t
e(1),Y

t−1
e (1)) = (xt

e, y
t−1
e )

)

P
(

(Xt
e(1),Y

t−1
e (1)) = (xt

e, y
t−1
e )

)

≤
P
(

Xe,t /∈ T (N)
ǫ (Xe,t)

)

P
(

(Xt
e(1),Y

t−1
e (1)) = (xt

e, y
t−1
e )

) → 0 (29)

asN → ∞, and henceP(Xe,t ∈ T (N)
ǫ (Xe,t)|(Xt

e(1),Y
t−1
e (1)) = (xt

e, y
t−1
e )) → 1, asN → ∞. Therefore,

combining (27), (28), and (29), it follows that, for each(xt
e, y

t
e),

P(Ye,t(1) = ye,t|(Xt
e(1),Y

t−1
e (1)) = (xt

e, y
t−1
e )) → p(ye,t|xe,t), (30)

almost surely, asN grows to infinity.

This concludes the proof, because it shows that, for eachℓ ∈ {1, 2, . . . , N}, as the number of layersN grows,

Ye,t(ℓ) becomes independent of(Xt−1
e (ℓ),Yt−1

e (ℓ)) conditioned onXe,t(ℓ), and its conditional distribution
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ChannelEncoder Decoder
UL ÛLXn Y n

Fig. 3. Simple point-to-point channel

converges top(ye,t|xe,t) corresponding to the transition probability of channele.

Remark 2:The first part of the proof of Theorem 2 is not specific to DMCs, and shows thatD(κ,Nb) ⊆ D(κ,N )

for all networksN of (discrete or continuous) point-to-point channels.

VI. CONTINUITY: ZERO-DISTORTION VERSUS LOSSLESS

The distortion criteria for lossless source coding and lossy source coding with a distortion constraint of zero

are different. In lossless coding, we require that the probability of error in reconstructing a vector of source

symbols goes to zero as the blocklength of that vector grows without bound. In lossy coding, we require that

the per symbol distortion between the source vector and its reconstruction approach zero for sufficiently long

blocklengths. As a result, even under the Hamming distortion measure, distortion 0 reconstructions do not necessarily

meet the lossless source reconstruction criterion. Beforeinvestigating the relationship between these problems in

a generic networkN of the form defined in Section III, we consider some special cases where the relationship

is known. Consider the simple point-to-point network shownin Fig. 3. Let the sourceU be i.i.d. and distributed

according top(u), and letC = maxp(x) I(X ;Y ) denote the capacity of the point-to-point channel connecting

the source and the destination. The minimal required rate for describing the sourceU at distortionD is [18]

R(D) = minp(û|u):E[d(U,Û)]≤D I(U ; Û). In such point-to-point networks separation of source coding and channel

coding is known to be optimal [1]. Hence to describe the source at distortionD, we needC ≥ κR(D). Evaluating

R(D) at D = 0 gives

R(0) = min
p(û|u):E[d(U,Û)]=0

I(U ; Û) = I(U ;U) = H(U),

whereH(U) is the entropy rate of the sourceU . Since the minimal rate for lossless reconstruction of the source

U is also the entropy rate, the zero-distortion and lossless reconstruction rate regions coincide in this simple

network. Explicit characterizations of the multi-dimensional rate-distortion regions for general multiuser networks

are unknown. Therefore, proving or disproving the equivalence of zero-distortion and lossless reconstruction rate-

regions in such networks requires more elaborate analysis.In his Ph.D. thesis, W.H. Gu proved that in noiseless

networks consisting of point-to-point bit-pipes, zero-distortion and lossless reconstruction rate regions coincide [19].

In this section, we prove the equivalence of zero-distortion reconstruction and lossless reconstruction in general

networks described by multiuser discrete memoryless channels (mDMCs) with statistically dependent sources. More

precisely, we prove that in any mDMC with independent or dependent sources, lossless reconstruction is achievable

if and only if zero-distortion reconstruction is achievable.
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p(y(1), . . . , y(m)|x(1), . . . , x(m))
→ X(a)

← Y (a)

Fig. 4. General multiuser discrete memoryless channel (mDMC)

Consider networkN shown in Fig. 4, which consists of a general mDMC described by

p(y(1), . . . , y(m)|x(1), . . . , x(m)).

Let V , {1, . . . ,m}. Nodea ∈ V observes source processU(a) and is interested in reconstructing sources observed

by the other nodes. The coding operations are very similar tothe case of wired networks. Each node observes a

block of lengthL of its own source symbols and describes them to the other nodes in n channel uses. As before,

the coding rateκ is defined asκ = L/n. At each each timet = 1, . . . , n, nodea generates channel inputX(a)
t as

a function its own source blockU (a),L and its received channel outputs up to timet − 1, i.e., Y (a),t−1. In other

words,X(a)
t = X

(a)
t (U (a),L, Y (a),t−1). The set of achievable distortion matrices on networkN at rateκ is denoted

by D(κ,N ). Throughout this section we assume that for any(a, b) ∈ V2, d(a→b)(u, û) = 0 if and only if u = û.

Given anyD ∈ D(κ,N ), let

L(D) , {(a, b) : D(a, b) = 0}.

Theorem 3:Fix any non-negative matrixD = (D(a, b) : (a, b) ∈ V2) with |L(D)| > 0. For any(a, b) ∈ L(D),

assume thatH(U (a)|(U (c))c∈V\a) > 0. ThenD ∈ D(κ,N ) if and only if, for anyǫ > 0 there exists integersL and

n ≤ L/(κ− ǫ), for which we can design a code of source blocklengthL and channel blocklengthn that satisfies

P(U (a),L 6= Û (a→b),L) ≤ ǫ,

for all (a, b) ∈ L(D) and

E[dL(U
(a),L, Û (a→b),L)] ≤ D(a, b) + ǫ,

for all (a, b) ∈ V2\L(D).

Proof of Theorem 3:

For the forward result, fix a sequence of codes at rateL/n → κ, distortionE[dL(U (a),L, Û (a→b),L)] → D(a, b) for

all (a, b) /∈ L(D) and error probabilityP(U (a),L 6= Û (a→b),L) → 0 for all (a, b) ∈ L(D). For each(a, b) ∈ L(D),
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the given sequence of codes satisfies

E[dL(U
(a),L, Û (a→b),L)]

= E
[

dL(U
(a),L, Û (a→b),L)

∣

∣

∣
U (a),L 6= Û (a→b),L

]

P(U (a),L 6= Û (a→b),L)

+ E
[

dL(U
(a),L, Û (a→b),L)

∣

∣

∣
U (a),L = Û (a→b),L

]

P(U (a),L = Û (a→b),L)

≤ dmax P(U
(a),L 6= Û (a→b),L).

Since the given bound approaches 0 asP(U (a),L 6= Û (a→b),L) → 0, the sequence of codes achieves zero-distortion

reconstruction of sourcea at nodeb, which is the the desired result.

To prove the converse, fix anyD ∈ D(κ,N ) with |L(D)| > 0 and anyǫ > 0. By the definition ofD(κ,N ), for

any ǫ > 0, there exists a code with source blocklengthL and channel blocklengthn ≤ L/(κ− ǫ) such that

E[dL(U
(a),L, Û (a→b),L)] ≤ D(a, b) + ǫ (31)

for each(a, b) ∈ V2. Specifically, for any(a, b) such thatD(a, b) = 0,

E[dL(U
(a),L, Û (a→b),L)] ≤ ǫ.

We now prove that with an asymptotically negligible increase in number of channel usesn, nodea can send node

b sufficient information to improve nodeb’s reconstruction of nodea’s data from a zero-distortion reproduction to

a lossless reconstruction. We further show that this changepreserves the quality of all other reconstructions.

The following argument builds a code of source blocklengthNL and channel blocklengthn(N +N ′), for some

integerN ′ to be defined shortly, from the given code of source blocklength L and channel blocklengthn.

Each nodea ∈ V breaks its incoming source block of lengthNL into N non-overlapping blocks of lengthL,

given by

U (a),L, U
(a),2L
L+1 , . . . , U

(a),NL
(N−1)L+1.

Each node then applies the blocklength-L codeN times to independently code each of these blocks. In total, this

requiresNn channel uses. Independently decoding eachL-block with the blocklength-L decoder achieves, for each

a, b ∈ V , a reconstruction of lengthNL such that

E[dL(U
(a),ℓL
(ℓ−1)L+1, Û

(a→b),ℓL
(ℓ−1)L+1)] ≤ D(a, b) + ǫ, (32)

for eachℓ = 1, 2, . . . , N .

For (a, b) ∈ L(D) and eachℓ ∈ {1, . . . , N}, denote the input of nodea in sessionℓ as

UL(ℓ) , U
(a),ℓL
(ℓ−1)L+1,
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UL(1)

UL(2)

UL(N)

ÛL(1)

ÛL(2)

ÛL(N)

Session 1

Session 2

Session N

Fig. 5. SourceU and its reconstruction atL parallel sessions.

and the corresponding output at nodeb as

ÛL(ℓ) , Û
(a→b),ℓL
(ℓ−1)L+1.

By assumption,

E[dL(U
L(ℓ), ÛL(ℓ))] ≤ ǫ.

Thus

ǫ ≥ E[dL(U
L(ℓ), ÛL(ℓ))]

=
1

L

L
∑

i=1

E[d(Ui(ℓ), Ûi(ℓ))]

≥ 1

L

L
∑

i=1

dmin P(Ui(ℓ) 6= Ûi(ℓ)), (33)

wheredmin , min(u,û)∈U×Û:u6=û d(u, û). Since all alphabets are assumed to be finite, andd(u, û) = 0 if and only

if u = û, dmin > 0 by assumption. Therefore,

1

L

L
∑

i=1

P(Ui(ℓ) 6= Ûi(ℓ)) ≤
ǫ

dmin

for all ℓ ∈ {1, 2, . . . , N}.

Recall that all sources and channels are memoryless by assumption and that the same code is used independently

on eachL-vector. Therefore,{UL(ℓ), ÛL(ℓ)}Nℓ=1 is an i.i.d. sequence. (See Fig. 5.) Our goal in the argument

that follows is to losslessly describeUL(1), . . . , UL(N) to a decoder that knowŝUL(1), . . . , ÛL(N). We treat

this as a problem of lossless source coding with receiver side information, as shown in Fig. 6. From [20], rate
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Encoder Decoder
UL

ÛL

ULR0

Fig. 6. Slepian-Wolf coding for converting zero-distortion reconstruction into lossless reconstruction.

R
(k)
0 = H(UL|ÛL) suffices for losslessly reconstructingUL at a receiver that knowŝUL. Here lossless coding

means that the reconstructioñULN at the receiver has an error probabilityP(ULN 6= ŨLN) that can be made

arbitrarily small, which is precisely the criterion neededfor our proof. Therefore, for anyǫ < dmin/2, using Fano’s

inequality [18], Jensen’s inequality, and the concavity ofthe entropy function, we have

R
(k)
0 = H(UL|ÛL) =

L
∑

i=1

H(Ui|U i−1, ÛL)

≤
L
∑

i=1

H(Ui|Ûi)

≤
L
∑

i=1

H(Ui,1Ui=Ûi
|Ûi)

≤
L
∑

i=1

[h(P(Ui 6= Ûi)) + log |U|P(Ui 6= Ûi)]

≤ Lh

(

1

L

L
∑

i=1

P(Ui 6= Ûi)

)

+ log |U|
L
∑

i=1

P(Ui 6= Ûi)

≤ L

(

h

(

ǫ

dmin

)

+
log |U|ǫ
dmin

)

, Lf(ǫ), (34)

where for any0 ≤ p ≤ 1, h(p) = −p log p− (1− p) log(1− p), andf(ǫ) , h( ǫ
dmin

) + log |U|ǫ
dmin

. Note thatf(ǫ) → 0

as ǫ → 0.

For each(a, b) ∈ L(D), we send the rate-R(k)
0 description ofUL from nodea to node b by treating the

random mapping fromUL to ÛL that results from applying the given code across the given network as a noisy

channel. Specifically, we order the source-receiver pairs(a, b) ∈ L(D) lexicographically and send the description

for thek-th pair (a, b) usingN ′
k dummy source vectorsUL(N +

∑k−1
k′=1 N

′
k′ +1), . . . , UL(N +

∑k−1
k′=1 N

′
k′ +N ′

k),

thereby creatingN ′
k uses of a channelp(ûL|uL) through which we can reliably transmit the lossless description

of UL(1), . . . , UL(N) for (a, b) to the decoder. The decoder’s distortion-ǫ reconstructionŝUL(1), . . . , ÛL(N) of

source vectorsUL(1), . . . , UL(N) are treated as side information known only by the decoder.

The following discussion describes the approach preciselyand investigates its performance. The code used

to losslessly describeUL(1), . . . , UL(N) from nodea to the nodeb employs fixed source valuesU (v),L(N +
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∑k−1
k′=1 N

′
k′ +1) = . . . = U (v),L(N +

∑k−1
k′=1 N

′
k′ +N ′

k) = u(v),L for all nodesv ∈ V\a in the network. The value

transmitted by each nodev ∈ V\{a} is chosen as follows.

Since distortion in non-negative by assumption,

ǫ ≥ E[dL(U
L, ÛL)]

≥ E[dL(U
L, ÛL)|U (−a),L ∈ T (L)

δ ] P(U (−a),L ∈ T (L)
δ ),

whereU (−a),L , (U (v),L)v∈V\a. For anyδ > 0 and all L large enough,P(U (−a),L ∈ T (L)
δ ) > 1 − δ, which

implies that

E[dL(U
L, ÛL)|U (−a),L ∈ T (L)

δ ] ≤ ǫ

1− δ
.

Hence, there existsu(−a),L ∈ T (L)
δ such that

E[dL(U
L, ÛL)|U (−a),L = u(−a),L] ≤ ǫ

1− δ
. (35)

Fix any suchu(−a),L. To bound the capacity of the resulting channel, we first bound the conditional entropy

of UL given ÛL, when U (−a),L = u(−a),L. Here, following steps similar to those in (33) and (34), buthere

conditioning onU (−a),L = u(−a),L, we conclude that

H(UL|ÛL, U (−a),L = u(−a),L) ≤ Lf(
ǫ

1− δ
).

To finish our capacity calculation, we next bound the entropyof UL givenU (−a),L = u(−a),L. Sinceu(−a),L ∈ T (L)
δ ,

for any uL ∈ T (L)
δ (U |u(−a),L),

p(uL|u(−a),L) ≤ 2−(1−δ)LH(U|U(−a))

by [16]. Hence, forL large enough,

H(UL|U (−a),L = u(−a),L)

=
∑

uL

−p(uL|u(−a),L) log p(uL|u(−a),L)

≥
∑

uL∈T
(L)
δ

(U|u(−a),L)

−p(uL|u(−a),L) log p(uL|u(−a),L)

≥ (1 − δ)LH(U |U (−a)) P(UL ∈ T (L)
δ |U (−a),L = u(−a),L)

≥ (1 − δ)2LH(U |U (−a)),

where the last line follows since, forL large enough,P(UL ∈ T (L)
δ |U (−a),L = u(−a),L) > 1− δ.
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Hence, fixingU (−a),L = u(−a),L yields a channelp(ûL|uL, U (−a),L = u(−a),L), with capacity

C
(k)
0 ≥ (1− δ)2LH(U |U (−a))− Lf(

ǫ

1− δ
). (36)

Thus the rate required to losslessly describeULN to a decoder with reproduction̂ULN of ULN is at mostR(k)
0 N ,

and the capacity of the channel over which we wish to describeULN is at leastC(k)
0 bits perL network uses. We

can therefore achieve the desired lossless description provided thatN ′
kC

(k)
0 > NR

(k)
0 , giving N ′

k > NR
(k)
0 /C

(k)
0 .

Thus the total number of sessions required to send first the lossy description and then the lossless incremental

description is

N +N ′ = N +

|L(D)|
∑

k=1

N ′
k > N

(

1 +

|L(D)|
∑

k=1

R
(k)
0 /C

(k)
0

)

.

Here

R
(k)
0

C
(k)
0

≤ Lf(ǫ)

(1− δ)2LH(U |U (−a))Lf( ǫ
1−δ )

=
f(ǫ)

(1− δ)2H(U |U (−a))− f( ǫ
1−δ )

,

which approaches zero asǫ approaches zero andδ approaches zero. Repeating this process for every(a, b) ∈ L(D),

the resulting coding rate can be bounded as

κ

1 +
|L(D)|
∑

k=1

R
(k)
0 /C

(k)
0

≤ κ′ ≤ κ.

Since|L(D)| < |V|2 is a finite number, the resulting coding rateκ′, after adding these extra sessions, still approaches

to κ, asǫ andδ corresponding to each(a, b) ∈ L(D) converge to zero.

Combining Theorem 3, Theorem 2 and the result proved by W. Gu in [19] proves the separation of source-network

coding and channel coding in a wireline network with dependent sources with lossy or lossless reconstructions.

In particular, this result partially extends the separation result of [6] to the case where the sources are dependent.

The extension is partial since in [6] the channels can be discrete or continuous, but here we have only considered

discrete channels. In the next section, we consider the caseof AWGN channels.

VII. C ONTINUOUS CHANNELS

While the capacity results of [8] are proven for general (discrete or continuous) alphabets, the sources and

channels considered in Theorems 1 and 2 were all assumed to have finite alphabets. In this section, we prove that

our results also hold for AWGN channels. In order to prove this we use the discretization method introduced in

[21].

Consider a wireline networkN with an AWGN channel from nodea to nodeb. Let the input and output of this

channel beX and Y = X + Z, respectively. The coding onN is performed similar to the coding described in
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Section III. Assume input power constraintP and noise powerN . To impose the power constraint, for a code with

channel blocklengthn, we require

E[X2
t ] ≤ P,

for t = 1, . . . , n. Similarly, in theN -fold stacked version ofN , we require

1

N

N
∑

ℓ=1

E[X2
t (ℓ)] ≤ P,

for t = 1, . . . , n.

Let Nb be a wireline network that is identical to networkN except that the channel froma to b is replaced by

a bit pipe of capacityC = 0.5 log(1 + P/N). Theorem 4 shows, as in the case of discrete-valued channels, that

this change does not affect the set of achievable distortions, thereby generalizing Theorem 2.

Remark 3:Given a Gaussian channel with input power constraintP , usually, a code of blocklengthn and rate

R is defined as a code with2nR codewords(xn(m))2
nR

m=1, such that
∑n

t=1 x
2
t (m) ≤ np, for everym = 1, . . . , 2nR

[18], [16]. However, instead of an average power constrainton each codeword, we can put an average power

constraint on each transmitted symbol and require thatE[x2
t (M)] ≤ P , for t = 1, . . . , n [22]. Note that for a given

code, the randomness inE[x2
t (M)] ≤ P is only due to the messageM . This alternative definition does not affect

the capacity of the channel fromC = 0.5 log(1 +P/N). In this paper, we consider the latter definition because of

some technical issues in the proof of the main result.

The equivalence of the capacities corresponding to the two definitions can be shown as follows. The converse

of the capacity theorem stated in [18] applies to the case symbol-by-symbol power constraint as well. For the

achievability, consider the code construction presented in [18] with the same encoding and decoding strategy. For

eacht = 1, . . . , n, P(E[x2
t (M)] > P ) = P(2−nR

∑2nR

m=1 x
2
t (m) > P ) ≤ 2−2nRδ(ǫ), whereδ(ǫ) → 0 as ǫ → 0.

Hence, by the union boundP(E[x2
t (M)] > P, for some t) ≤ n2−2nRδ(ǫ). This shows that there exist a sequence of

codes that both satisfy the power constraint on each coordinate and also have arbitrary small probability of error.

(The analysis of the probability of error presented in [18] applies here too.)

Theorem 4:For a wireline network consisting of discrete or AWGN point-to-point channels,

D(κ,Nb) = D(κ,N ).

Proof of Theorem 4: The second inclusion is immediate since the first part of the proof of Theorem 2

applies equally well for continuous channels case. To provethe first inclusion, we employ the discretization method

used in [21]. Let networkN (j,k), with j = (j1, j2, . . . , jn) andk = (k1, k2, . . . , kn), denote the network derived

from network N by replacing the AWGN channel froma to b by the structure shown in Fig. 7. The given

channel relies on a pair of quantizersQ[j] and Q[k] parametrized by indicesj and k. We allow the quantizer

parameters to vary witht, setting j = jt and k = kt for each timet ∈ {1, 2, . . . , n}. The quantizerQ[i] is

defined as follows. Fori ∈ {1, 2, . . .}, let ∆ = 1/
√
i, and define the quantizerQ[i] with quantization levels

Li = {−i∆,−(i− 1)∆, . . . ,−∆, 0,∆, . . . , (i− 1)∆, i∆}. For anyx ∈ R, Q[i] mapsx to [x]i, which is the closest
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number tox in Li such that|[x]i| ≤ x. Note that by this definition,E[[X ]2i ] ≤ E[X2] for any random variableX .

Lemma 1 in Appendix B shows that asj andk increase, the set of achievable distortions onN (j,k) approaches

the set of achievable distortions on the original network. More precisely,

Da(κ,N ) ⊆ lim sup
j,k

D(κ,N (j,k)), (37)

where

lim sup
j,k

Aj,k ,
⋂

j0,k0

⋃

j≥j0
k≥k0

Aj,k,

andA denotes the closure of the setA.

We next show that

D(κ,N (j,k)) ⊆ D(κ,Nb). (38)

This is sufficient to obtain the desired result since (37) and(38) together implyDa(κ,N ) ⊆ D(κ,Nb) by the

closure in the definition ofD(κ,Nb).

To prove thatD(κ,N (j,k)) ⊆ D(κ,Nb), note that, at each timet, the structure shown in Fig. 7 behaves like a

DMC with input [X ]jt , power constraintE[([X ]jt)
2] ≤ P and output[Yjt ]kt

. Hence, by straightforward extension

of the proof of Theorem 2,

D(κ,N (j,k)) ⊆ D(κ,N (j,k)
b ),

whereN (j,k)
b is identical toN (j,k) except that the channel froma to b is replaced by a bit pipe of capacityCj,k

equal to the maximum capacity of then DMCs. Here

Cj,k , max
1≤t≤n

max
[X]jt∼pX

pX :E[X2]≤P

I([X ]jt ; [Yjt ]kt
).

By the data processing inequality [18],

I([X ]jt ; [Yjt ]kt
) ≤ I([X ]jt ;Yjt)

= h(Yjt)− h(Z).

On the other hand, by the construction of the quantizers,

E[Y 2
jt ] = E[[X ]2jt ] +N

≤ E[X2] +N.

Hence,

h(Yjt) ≤ 0.5 log(2πe(P +N)),
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and as a result

I([X ]jt ; [Yjt ]kt
) ≤ C.

Therefore,D(κ,N (j,k)) ⊆ Db.

Q[j] Q[k]

Z

X Yj[X ]j [Yj ]k

Fig. 7. Quantizing the input and output alphabets of an AWGN

VIII. C ONCLUSIONS

In this paper we proved the separation of source-network andchannel coding in general wireline networks of

independent discrete point-to-point channels with dependent sources and arbitrary lossy or lossless reconstruction

demands. We also proved that the result continues to hold when one or more channels is an AWGN channel.

APPENDIX A: PROOF OF PART II OFTHEOREM 1

Let D ∈ int(Ds(κ,N )). Then for anyǫ > 0, there exist integersN , n, andL such thatL/n ≥ κ− ǫ and there

exists a blocklength-n coding scheme forL source symbols onN -fold stacked networkN that achieves

E
[

d
(a→b)
NL (U (a),NL, Û (a→b),NL)

]

≤ D(a, b) + ǫ,

for all a, b ∈ V . The same coding scheme can be used in a single-layer networkas follows. Consider a single layer

network where each nodea observes a length-NL block of source symbolsU (a),NL and describes the block in

the nextNn time steps. Given source blocklengthL′ = NL and channel block lengthn′ = Nn, the code has

rateκ = L′/N ′ = L/N . At each timet ∈ {1, . . . , N}, each nodea ∈ V sends, over its outgoing edges, what it

would have sent at time 1 in layert of N , i.e.,X(a)
1 (t), and collects, over its incoming edges, what it would have

collected in layert of N , i.e.,Y(a)
1 (t). At timest ∈ {N+1, . . . , 2N}, each nodea sendsX(a)

2 (t−N) and collects

Y
(a)
2 (t −N). Here calculatingX(a)

2 is possible due to the prior collection ofY(a)
2 . The same strategy is used in

the nextn − 2 time intervals, in intervalt transmittingX(a)
t for t ∈ {3, . . . , n} and collectingY(a)

t for uses in

future time intervals. Using this strategy, at the end ofnN channel uses, each node’s observation has exactly the

same distribution as the collection of observations of itsN copies in the stacked networks. Therefore, applying the

decoding rules results in the same distortion. Hence,D ∈ D(κ,N ).
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APPENDIX B: LEMMA 1

Lemma 1:For anyκ > 0,

D(κ,N ) ⊆ lim sup
j,k

D(κ,N (j,k)), (B-1)

whereA denotes the closure of setA.

Proof: Let D ∈ D(κ,N ). For anyǫ > 0, and forL sufficiently large, there exist a joint source-channel code

at rateκ with source blocklengthL such that

E[dL(U
(a),L, Û (a→b),L)] ≤ D(a, b) + ǫ, (B-2)

holds for each(a, b) ∈ V2. Let UL = U (a),L and ÛL = Û (a→b),L for some fixed(a, b) ∈ V2.

Conditioning the expected average distortion betweenUL andÛL on the input and output values of the AWGN

channel at timet = 1, it follows that

D(a, b) + ǫ ≥ E[dL(U
L, ÛL)]

=
∑

(x1,y1)

p(x1, y1) E[dL(U
L, ÛL)|(X1, Y1) = (x1, y1)]

= E[δ(1)(X1, Y1)] (B-3)

whereδ(1)(x1, y1) , E[dL(U
L, ÛL)|(X1, Y1) = (x1, y1)].

Now assume that the same code is applied to networkN (j1,k1), which is identical toN except that at timet = 1,

the AWGN channel is replaced by the structure shown in Fig. 7 with parametersj = j1 andk = k1. The expected

average distortion betweenUL and ÛL in the modified network,D(j1,k1)(a, b), can be written as

D(j1,k1)(a, b) = E[δ(1)(X1, Ỹ1)], (B-4)

whereỸ1 , [[X ]j1 + Z1]k1 . Note that, conditioned on the input and output values of theAWGN channel at time

t = 1, the two networks have identical performance.

Further,Ỹ1 converges pointwise toY1 almost everywhere asj andk1 grow without bound, i.e.,

lim
k1→∞

lim
j1→∞

Ỹ1 = Y1, (B-5)

almost everywhere, whereY1 = X + Z.

While function δ(1)(x1, y1) might not be continuous everywhere, by the Lusin’s Theorem [23], since it is

measurable, for anyǫ1 > 0, there exists a subsetA1 ⊂ R
2, such thatP((X1, Y1) ∈ A1) < ǫ1 and δ(1) is
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continuous onA1. By the law of iterated expectations,

D(j1,k1)(a, b) = E[δ(1)(X1, Ỹ1)|(X1, Y1) ∈ A1] P((X1, Y1) ∈ A1)

+ E[δ(1)(X1, Ỹ1)|(X1, Y1) /∈ A1] P((X1, Y1) /∈ A1)

≤ E[δ(1)(X1, Ỹ1)|(X1, Y1) ∈ A1] + dmaxǫ1, (B-6)

and, similarly,

D(j1,k1)(a, b) ≥ E[δ(1)(X1, Ỹ1)|(X1, Y1) ∈ A1] P((X1, Y1) ∈ A1)

≥ E[δ(1)(X1, Ỹ1)|(X1, Y1) ∈ A1](1 − ǫ1). (B-7)

Sinceδ(x1, y1) is continuous onA1 and is bounded, by the bounded convergence theorem, it follows from (B-6)

and (B-7) that

lim
k1→∞

lim
j1→∞

D(j1,k1)(a, b) ≤ lim
k1→∞

lim
j1→∞

E[δ(1)(X1, Ỹ1)|(X1, Y1) ∈ A1] + dmaxǫ1

= E[ lim
k1→∞

lim
j1→∞

δ(1)(X1, Ỹ1)|(X1, Y1) ∈ A1] + dmaxǫ1

≤ E[δ(1)(X1, Y1)|(X1, Y1) ∈ A1] + dmaxǫ1, (B-8)

and

lim
k1→∞

lim
j1→∞

D(j1,k1)(a, b) ≥ E[δ(1)(X1, Y1)|(X1, Y1) ∈ A1](1− ǫ1). (B-9)

On the other hand,

E[δ(1)(X1, Y1)] ≥ E[δ(1)(X1, Y1)|(X1, Y1) ∈ A1] P((X1, Y1) ∈ A1)

≥ E[δ(1)(X1, Y1)|(X1, Y1) ∈ A1](1− ǫ1), (B-10)

and

E[δ(1)(X1, Y1)] ≤ E[δ(1)(X1, Y1)|(X1, Y1) ∈ A1] + dmaxǫ1. (B-11)

SinceE[δ(1)(X1, Y1)] = E[dL(U
L, ÛL)], combining (B-8) and (B-9) with (B-10) and (B-11) yields

E[dL(U
L, ÛL)]− dmaxǫ1 ≤ lim

k1→∞
lim

j1→∞
D(j1,k1)(a, b) ≤ E[dL(U

L, ÛL)]

1− ǫ1
+ dmaxǫ1. (B-12)

Sinceǫ1 can be made arbitrary small, from (B-12), we have

lim
k1→∞

lim
j1→∞

D(j1,k1)(a, b) = E[dL(U
L, ÛL)]. (B-13)

The prior analysis captures the expected distortion when the continuous channel is replaced by a finite alphabet

channel only at time 1. To finish the proof we use induction. Assume that for times1, 2, . . . , t− 1, the continuous
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channel can be replaced a finite alphabet channel without, asymptotically, changing the expected average distortion,

i.e.,

lim
k1→∞

lim
j1→∞

. . . lim
kt−1→∞

lim
jt−1→∞

D(jt−1,kt−1)(a, b)

= E[δ(t−1)(Xt−1, Y t−1)],

= E[dL(U
L, ÛL)]. (B-14)

whereD(jt−1,kt−1)(a, b) denotes the expected average distortion betweenUL and ÛL in the modified network

when the parameters of the channel input and output quantizers, at timesτ ∈ {1, . . . , t− 1}, are(jt−1, kt−1), and

let

δ(t−1)(xt−1, yt−1) , E[dL(U
L, ÛL)|(Xt−1, Y t−1) = (xt−1, yt−1)].

Now we need to show that if we add the quantizers at timet as well, the performance does not change.

In the original network

E[dL(U
L, ÛL)] = E[δ(t)(Xt, Y t)]

= E
[

E[δ(t)(Xt, Y t)]|(Xt, Y t)]
]

, (B-15)

and in the modified network,

D(jt,kt)(a, b) = E[δ(t)(X̃t, Ỹ t)],

= E
[

E
[

δ(t)(X̃t, Ỹ t)
∣

∣

∣
(X̃t−1, Ỹ t−1)

]]

, (B-16)

where for t′ ∈ {1, . . . , t}, X̃t′ is the channel input at timet′ when the given code is applied and the Gaussian

channel replaced by its quantized approximation, andỸt′ = [[X̃t′ ]jt′ + Zt′ ]kt′
. Note thatX̃1 = X1.

While Xt and X̃t might have different distributions due to the quantizations at timest′ = 1, . . . , t − 1, their

conditional distributions given the inputs and outputs of the channel up to timet− 1 are identical in both networks,

i.e.,

P
(

X̃t < xt

∣

∣

∣
(X̃t−1, Ỹ t−1) = (xt−1, yt−1)

)

= P
(

Xt < xt| (Xt−1, Y t−1) = (xt−1, yt−1)
)

. (B-17)

Let

γ(xt−1, yt−1) , E[δ(t)(Xt, Y t)]|(Xt−1, Y t−1) = (xt−1, yt−1)]

E

[
∫

δ(t)(xt, yt−1, Yt)dF (xt|(xt−1, yt−1))

]

(B-18)
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and

γ̃(jt,kt)(xt−1, yt−1) , E[δ(t)(X̃t, Ỹ t)]|(X̃t−1, Ỹ t−1) = (xt−1, yt−1)]

= E

[
∫

δ(t)(xt, yt−1, Ỹt)dF (xt|(xt−1, yt−1))

]

, (B-19)

where in the last line we are using (B-17).

Using the same argument as the one used to prove (B-13), it follows that

lim
kt→∞

lim
jt→∞

γ̃(jt,kt)(xt−1, yt−1) = γ(xt−1, yt−1). (B-20)

Hence,

lim
k1→∞

lim
j1→∞

. . . lim
kt→∞

lim
jt→∞

D(jt,kt)(a, b)

= lim
k1→∞

lim
j1→∞

. . . lim
kt→∞

lim
jt→∞

E[γ̃(jt,kt)(X̃t−1, Ỹ t−1)]

= lim
k1→∞

lim
j1→∞

. . . lim
kt−1→∞

lim
jt−1→∞

E

[

lim
kt→∞

lim
jt→∞

γ̃(jt,kt)(X̃t−1, Ỹ t−1)

]

(a)
= lim

k1→∞
lim

j1→∞
. . . lim

kt−1→∞
lim

jt−1→∞
E
[

γ(X̃t−1, Ỹ t−1)
]

(b)
= E[dL(U

(a),L, Û (a→b),L)], (B-21)

where (a) follows from (B-20) plus the dominated convergence theorem, and (b) follows from our inductive

hypothesis.
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