Mantovan, Elena (2004) On certain unitary group Shimura varieties. Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales. Astérisque, 291 . pp. 201-331. ISSN 0303-1179. https://resolver.caltech.edu/CaltechAUTHORS:20150424-131722811
![]() |
PDF
- Submitted Version
See Usage Policy. 900kB |
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20150424-131722811
Abstract
In this paper, we study the local geometry at a prime p of a certain class of (PEL) type Shimura varieties. We begin by studying the Newton polygon stratification of the special fiber of a Shimura variety with good reduction at p. Each stratum can be described in terms of the products of the reduced fiber of the corresponding Rapoport-Zink space with some smooth varieties (we call the Igusa varieties), and of the action on them of a certain p-adic group T_α, which depends on the stratum. (The definition of the Igusa varieties in this context is based upon a result of Zink on the slope filtration of a Barsotti-Tate group and on the notion of Oort’s foliation.) In particular, we show that it is possible to compute the étale cohomology with compact supports of the Newton polygon strata, in terms of the étale cohomology with compact supports of the Igusa varieties and the Rapoport-Zink spaces, and of the group homology of T_α. Further more, we are able to extend Zariski locally the above constructions to characteristic zero and obtain an analoguous description for the étale cohomology of the Shimura varieties in both the cases of good and bad reduction at p. As a result of this analysis, we obtain a description of the l-adic cohomology of the Shimura varieties, in terms of the l-adic cohomology with compact supports of the Igusa varieties and of the Rapoport-Zink spaces.
Item Type: | Article | ||||
---|---|---|---|---|---|
Alternate Title: | On certain unitary group Shimura varieties | ||||
Additional Information: | © 2004 Société Mathématique de France. Partially supported under a I.N.d.A.M. Fellowship. The author will like to thank R. Taylor suggesting the topic of this paper, and for his inestimable help with all the phases of its realization. She is also very grateful to B. Conrad, J. de Jong, L. Fargues, T. Graber and F. Oort for many enlighting mathematical discussions and for carefully reading early drafts of this paper. | ||||
Funders: |
| ||||
Subject Keywords: | Shimura varieties, Barsotti-Tate groups, Rapoport-Zink spaces, Langlands correspondences | ||||
Classification Code: | 2000 Mathematics Subject Classification. — 11G18,14G35 | ||||
Record Number: | CaltechAUTHORS:20150424-131722811 | ||||
Persistent URL: | https://resolver.caltech.edu/CaltechAUTHORS:20150424-131722811 | ||||
Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||
ID Code: | 56963 | ||||
Collection: | CaltechAUTHORS | ||||
Deposited By: | George Porter | ||||
Deposited On: | 27 Apr 2015 21:22 | ||||
Last Modified: | 03 Oct 2019 08:19 |
Repository Staff Only: item control page