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Spontaneous breaking of translational symmetry, known as density-wave order, is common in nature.
However, such states are strongly sensitive to impurities or other forms of frozen disorder leading to
fascinating glassy phenomena. We analyze impurity effects on a particularly ubiquitous form of broken
translation symmetry in solids: a spin-density wave (SDW) with spatially modulated magnetic order.
Related phenomena occur in pair-density-wave (PDW) superconductors where the superconducting order
is spatially modulated. For weak disorder, we find that the SDWor PDWorder can generically give way to a
SDW or PDW glass—new phases of matter with a number of striking properties, which we introduce and
characterize here. In particular, they exhibit an interesting combination of conventional (symmetry-
breaking) and spin-glass (Edwards-Anderson) order. This is reflected in the dynamic response of such a
system, which—as expected for a glass—is extremely slow in certain variables, but, surprisingly, is fast in
others. Our results apply to all uniaxial metallic SDW systems where the ordering vector is incom-
mensurate with the crystalline lattice. In addition, the possibility of a PDW glass has important
consequences for some recent theoretical and experimental work on La2−xBaxCu2O4.
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I. INTRODUCTION

A variety of electronic solids settle into equilibrium
states that spontaneously break the translational symmetry
of the underlying crystal [1]. Well known examples are
charge density wave (CDW) and spin density wave (SDW)
orders where either the electron’s charge or its spin forms a
frozen periodically oscillating pattern. Density wave orders
have been found in conventional metals as well as in
strongly correlated systems like the underdoped cuprates,
iron pnictides and organic materials. They are intertwined
with many other fascinating phenomena such as high
temperature superconductivity.
It has long been recognized that density-wave orders of

various kinds are strongly sensitive to the presence of
impurities. There is a large amount of literature on the
fascinating effects of quenched disorder on charge-density-
wave systems. In contrast, despite the common occurrence
of spin-density-wave ordering, surprisingly little attention
has been devoted to impurity effects on SDW systems, and
this is the subject of this paper.

It is important to distinguish between collinear SDWs,
where the spin orientation oscillates in space along a fixed
common direction, and spiral SDWs, where the spin rotates
around an axis as a function of space while the magnitude

j~SðrÞj is constant. Both kinds of SDW order break both
spin-rotation and lattice-translation symmetries, but the
latter retains a combination of the two as a symmetry. As a
consequence, disorder effects on collinear SDWs are
stronger and are the focus of our study. We show that
weak nonmagnetic disorder transforms the SDW state into
a new glassy state of matter—distinct from the conven-
tional spin glass—which we dub the SDW glass (see
Fig. 1). In addition to the characteristics of a conventional
spin glass, i.e., the presence of locally frozen moments
but absence of long-range spin order, the SDW glass
spontaneously breaks spin-rotation symmetry and hosts
an associated Goldstone mode (see Fig. 2).
Questions closely related to the ones we study arise in

considering the effects of impurities on pair-density-wave
(PDW) superconductors of the kind proposed to be realized
in the high-temperature superconductor La2−xBaxCu2O4

(see Ref. [2] for a recent review). These are superconduct-
ing states where the pair amplitude is modulated in
space. Such states were originally conceived by Larkin
and Ovchinnikov [3] when considering the effects of a
Zeeman magnetic field on an s-wave superconductor
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(closely related states were considered by Fulde and Ferrell
[4]). Motivated by the phenomenology observed in
La2−xBaxCu2O4, Refs. [5,6] proposed that a PDW state
is realized at zero magnetic field in this system. Its
microscopic origin remains to be understood. Like the
analogous SDWorder, the PDW state is also expected to be
strongly sensitive to impurities. References [5,6] suggested
that disorder necessarily introduces half-quantum (hc=4e)
vortices leading to broken time-reversal symmetry. We
revisit this issue and find that in the phase analogous to the
SDW glass, such vortices will not be induced by weak
disorder and that time-reversal symmetry is preserved.

A fluctuating version of the PDW state also appears as a
“mother” state that controls the physics of the pseudogap
regime in the cuprates in a recently proposed theory [7].

II. SDW AND PDW: ORDER PARAMETERS
AND TOPOLOGICAL DEFECTS

For simplicity, we focus initially on a unidirectional
collinear SDW at wave vector Q in which the spin
oscillates as

~SðrÞ ¼ S0 cos ðQ · rÞ ~N; ð1Þ

where ~N is a real unit vector and S0 is the amplitude. We
further assume that Q is incommensurate with the crystal-
line lattice. Such SDW order is sometimes also referred to
as a “spin stripe.”A simple Landau argument shows [8] that
this pattern of spin ordering induces CDWorder [9] at wave
vector 2Q:

ρCDW ∼ ρ02Q cos ð2Q · rÞ: ð2Þ

To discuss situations in which the SDW order is
fluctuating (either due to quenched disorder or due to
thermal and/or quantum fluctuations), we write the spin as

~SðrÞ ≈ S0 cos½Q · rþ θðrÞ� ~N: ð3Þ

θ describes the phase of the SDW (or the stripe displace-

ment, in the stripe picture). We take both θ and ~N to be
space (and possibly time) dependent but varying on length
scales long compared to the SDW wavelength. The
fluctuating SDW order parameter near wave vector �Q
is thus

~S�QðxÞ ¼ S0e�iθðxÞ ~NðxÞ: ð4Þ

The corresponding fluctuating CDW order parameter is

ρ�2Q ¼ ρ02Qe
�2iθ: ð5Þ

It is useful to formulate discussions of fluctuations in terms

of the two separate fields b≡ eiθ and ~N. Both the SDW

order parameter ~SQ ∼ b ~N and the CDW order parameter

ρ2Q ∼ b2 are composites made out of b and ~N. Clearly,

the b; ~N representation has a Z2 gauge redundancy under

b → −b; ~N → − ~N so that neither of them are directly
physical [10–14]. The SDWand CDWorder parameters are
of course gauge invariant.
Let us now turn to the closely analogous PDW state

(sometimes called a striped superconductor or the Larkin-
Ovchinnikov phase). This is a superconductor (SC) in
which the pair wave function Δ is modulated in space:

FIG. 2. Goldstone mode in the SDW glass. The configuration
of the domain walls is identical to the ground state, but the
orientation of the moments slowly varies in space.

FIG. 1. Magnetic moments in the ground state of the SDW
glass. The disorder pins the domain walls into a random
configuration, but the structure of “antiphase” domain walls
persists. Upon crossing of each domain wall, the local magneti-
zation changes sign. Thus, the disordered state inherits the
collinear structure from the parent SDW, where the axis along
which the moments point is selected spontaneously, breaking the
spin-rotation symmetry.
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ΔðrÞ ¼ Δ0 cosðQ · rÞ: ð6Þ

This too will induce CDW order at wave vector 2Q. When
fluctuating, we may write

ΔðrÞ ≈ Δ0 cos½Q · rþ θðrÞ�eiϕðrÞ: ð7Þ

The Fourier components of ΔðrÞ near �Q are thus
∼eiðϕ�θÞ. There is again a Z2 gauge redundancy under
θ → θ þ π;ϕ → ϕþ π.
The PDW state is thus conceptually very similar to a

SDW state with just XY spin symmetry. However, there is
an important difference in the action of time-reversal
symmetry. The PDW state preserves time reversal while
the SDW breaks it. Formally this is because the Uð1Þ
charge conservation symmetry (broken in the SC) does not
commute with time reversal while spin rotations do.
Nevertheless, we consider both orders within the same
framework. Unless otherwise specified, we phrase our
discussion in terms of SDW order.
The structure of topological defects in these density-

wave states [10–14] plays a crucial role below. Of particular
importance are dislocations in the CDW pattern. These are
line defects in 3D and point defects in 2D around which θ
winds. The “elementary” strength-1 dislocation where the
CDW phase 2θ winds by 2π requires that ~N winds by π so
that the SDW order eiθ ~N is single valued. In contrast,
strength-2 dislocations have 2θ wind by 4π without any
winding of ~N.
Exactly the same considerations also apply in the

superconducting context as described in Refs. [5,15,16].
It is interesting to consider the physical interpretation of the
various topological defects in this case. The strength-1
CDW dislocation now requires that the superconducting
phase ϕ wind by π. This corresponds to a superconducting
vortex with magnetic flux hc=4e, i.e., half the usual flux
quantum. Strength-2 CDW dislocations, in contrast, do not
bind to superconducting vortices.

III. IMPURITIES: MODELS
AND PRELIMINARIES

We consider the fate of the SDW in the presence of weak
nonmagnetic impurities. Such impurities lead to a random
potential VðxÞ that couples linearly to the CDW order
parameter; i.e.,

Hdis ¼ FðxÞ · ∇θ þ V�
2QðxÞe2iθ þ V2QðxÞe−2iθ: ð8Þ

The first term couples to the long wavelength part of the
charge density (with F random) and the second to the
density near the ordering wave vector. Here, V2QðxÞ ¼R
q≈2Q eiq·xVðqÞ. There is, however, no linear coupling to the
primary SDW order parameter. The impurity coupling is
captured by a simple lattice model:

H ¼ −
J
2

X
hiji

~S�Qi · ~SQjeiηij − v
2

X
i

ρ2Qi
e−iαi þ c:c

¼ − J
X
hiji

~Ni · ~Nj cosðθi − θj þ ηijÞ

− v
X
i

cosð2θi − αiÞ: ð9Þ

Here, αi; ηij are random uncorrelated variables. Other
equivalent lattice models may be formulated and are
described in Appendix B.
As is well known [17,18], the “random-field” disorder

destroys long range order in the CDW for physical
dimensions d < 4. The elastic energy cost of adjusting
to disorder over a scale L scales as Ld−2 while the energy
gain due to the disorder potential scales as Ld=2; thus, the
latter dominates for d < 4. As a consequence, beyond a
length scale (known as the Larkin length)
ξL ∼ ðJ=vÞ2=ð4−dÞ, long-range CDW order is destroyed.
This immediately implies the absence of long-range
SDW order as well (as long-range SDW order if present
would have induced CDW order). At distances longer than
ξL, the disordered SDW enters a phase of matter that we
dub the SDW glass and whose physics we describe below.
In contrast, a spiral SDW where j~SðrÞj is constant does

not induce—and therefore also does not require the
existence of—CDW order. Thus, the only symmetry-
allowed coupling between the impurity potential and the
spiral order parameter is via the bond energy [analogous to
the first term in Eq. (8)], which is irrelevant for weak
disorder.

IV. SDW GLASSES IN 3D

We begin our analysis in d ¼ 3 dimensions by reviewing
the physics of pinned CDW systems. In pioneering work,
Ref. [19] proposed that at weak disorder the pinned CDW
enters an “elastic glass” phase where long dislocation loops
do not occur. This has been substantiated by numerical
calculations [20] and by general scaling arguments [21].
The resulting state is described by a random-field XY
model for the CDWorder parameter where dislocations are
suppressed. Many approximate treatments, notably a
sophisticated functional renormalization group (FRG)
calculation [19,22], show that the CDW order parameter
develops power-law correlations:

ρ�2QðxÞρ2Qðx0Þ ∼
1

jx − x0jdc : ð10Þ

The exponent dc is universal. To leading order in the ϵ
expansion, dc ¼ π2ϵ=9. Thus, for d ¼ 3, dc is estimated to
be approximately 1.1. The power-law decay of the spatial
CDW correlations implies power-law Bragg peaks in the
CDW structure factor
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SCDWð2Qþ δqÞ ∼ jδqjdc−3: ð11Þ

The elastic glass phase is therefore also known as the Bragg
glass phase.
We now consider the implications for the SDW order.

The impurities do not couple linearly to ~N but will lead to
random exchange energies (“random bond disorder”).
However, the absence of dislocations in θ means that there

is no frustration of the collinear ordering of ~N (See Fig. 3).

Thus, at weak disorder ~N will continue to have true long-
range order. The SDW order has power-law correlations
inherited from the correlations of eiθ:

~S�QðxÞ · ~SQðx0Þ ¼ eiθðxÞe−iθðx0Þ ~NðxÞ · ~Nðx0Þ
∼ eiθðxÞe−iθðx0Þ

∼
1

jx − x0jds :

The exponent ds can be estimated within the FRG in
d ¼ 4 − ϵ. At leading order in the ϵ expansion, we have
ds ¼ π2ϵ=36. This is 1

4
of the CDW exponent dc, as the

probability distribution for θ is Gaussian to this order (for a
recent discussion, see Ref. [23]). We thus get ds ≈ 0.27 in
d ¼ 3. However, beyond leading order the distribution will
not be Gaussian [23], and hence, in general, ds ≠ dc=4.
Note that the SDW correlations decay much slower than the
CDW correlations. This is expected since the CDWorder is
the one directly affected by the disorder.
Correspondingly, the spin structure factor exhibits

power-law Bragg peaks:

SSDWðQþ δqÞ ∼ jδqjds−3: ð12Þ

This power-law Bragg peak should be visible in neutron
diffraction measurements on weakly disordered SDW
materials.
But what does it mean for ~N to be ordered? ~N is not

gauge invariant and hence not directly observable.

However, ordering of ~N implies ordering of the spin
quadrupole moment:

Qαβ ¼ NαNβ − δαβ
3

~N2: ð13Þ

Thus, even though the SDWorder is destroyed, long-range
spin-quadrupole order (also known as spin-nematic order)
is preserved. The system develops spontaneous spin
anisotropy without long-range SDW ordering.
This SDW glass phase has a simple physical description.

The spins are frozen in time, but the phase of the SDW is
randomly disordered in space. The spin-nematic order
means that the spins retain a common axis along which
they randomly point up or down. The freezing of the spins
means that there is a nonzero Edwards-Anderson spin-glass
order parameter:

qEA ≡ lim
t→∞

h~Sðx; 0Þ · ~Sðx; tÞi ð14Þ

¼ lim
t→∞

hcos ðθðx; tÞ − θðx; 0ÞÞih ~Ni2 ≠ 0: ð15Þ

The disordered SDW is thus a uniaxial spin glass in a
Heisenberg spin system with the axis of spin orientation
determined spontaneously. It is clearly distinct from the
conventional Heisenberg spin glass.
The spin-nematic order in the SDW glass phase leads to

propagating Goldstone modes (nematic director waves).
The structure of magnetic moments characteristic for the
ground state and for a soft excitation are shown in Figs. 1
and 2. This should be contrasted with the Halperin-Saslow
[24] spin-wave modes in a Heisenberg spin glass (HSG),
which are typically damped.
The SDW glass exhibits striking differences from con-

ventional spin glasses when placed in a weak magnetic
field. Specifically, we contrast the SDW glass to a HSG
given by

HHSG ¼
X
xy

Jx;y~Sx · ~Sy; ð16Þ

where Jx;y are random exchange couplings. Recall that in
the absence of disorder, a collinear SDW aligns itself
perpendicular to the applied field, with a slight canting
of the moments, like an antiferromagnet. In the isotropic

SDW glass, the canting is achieved by a rotation of ~N. This
corresponds to a fast (Goldstone) mode and therefore does
not exhibit slow (glassy) dynamics. In the HSG, such a fast

FIG. 3. In the SDWBragg glass, the antiphase domain walls are
pinned in a configuration without dislocations.
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mode does not exist and the time scales for adjusting to the
field are necessarily long.
For an anisotropic SDW glass ~N remains pinned to a

specific direction in a weak enough magnetic field, and the
system can respond only via the slow dynamics of eiθ. The
crossover value of the magnetic field Bc between fast and
slow dynamics is thus given by the strength of the
anisotropy. In the HSG, a similar crossover occurs, but
at a much larger scale, determined by the typical exchange
coupling J.
The same analysis presented here for the SDW also

applies for a PDW. The analog of the spin-nematic order
parameter is a uniform charge-4e superconducting order
Δ4e. However, we are not aware of any system that is
proposed to host a PDW at zero magnetic field in d ¼ 3
dimensions. Our results should be pertinent though to
Larkin-Ovchinikov pairing induced by a magnetic field in
three-dimensional superconductors. The breaking of time
reversal allows additional terms in the Hamiltonian, in
particular, a linear coupling between the gradients of the
phases of CDW and the condensate, i.e., in the continuum
limit

HB ¼ λ

Z
x
∇ϕ · ∇θ: ð17Þ

However, the PDW glass phase is perturbatively stable
against such a term. Clearly, the ground state in the absence
of disorder is unaffected by HB for small λ. In the presence
of disorder, at long distances L ≫ ξL,HB contributes to the
random bond energy for the charge-4e superconducting
order parameter Δ4e, which is irrelevant in the PDW glass
where hΔ4ei ≠ 0. The same conclusion can be readily
obtained through a FRG analysis (see Appendix A).

V. SDW AND PDW GLASSES IN 2D

We now turn to d ¼ 2. Once again the random field will
destroy long-range CDWand hence long-range SDWorder.
The fate of dislocations is however more subtle. In the
simpler problem of the 2D random-field XY model (appro-
priate to describe unidirectional CDWordering not derived
from a more primary SDW or PDW order), topological
defects always proliferate at long scales, leading to expo-
nentially decaying correlations. These defects cost elastic
energy, which must be balanced against the energy gain due
to the random correlated potential induced by the random
field. References [25,26] show that at long enough scales
the optimized potential energy for introducing vortices
dominates so that it is always favorable to nucleate defects.
In the SDW system, single and doubled CDW disloca-

tions have different elastic cost—the energy of the former
depends on the stiffness associated with spin distortions
while the energy of the latter does not. Hence, they could
potentially behave very differently. While one expects that

doubled dislocations are always generated at long length
scales, the fate of isolated single dislocations is less clear.
Let us first describe a putative state where doubled

dislocations have proliferated but single ones have not. In
such a state the CDW correlations, and hence the SDW
correlations, decay exponentially. Despite that, there is
long-range spin-nematic order. Thus, this is a 2D SDW
glass phase with coexisting spin-nematic order.
It is particularly interesting to note the meaning of

these issues in the PDW context. The analog of the spin
nematic then is a uniform charge-4e superconductor.
Further (see Sec. II), a strength-1 CDW dislocation is
bound to a π winding of the SC phase. This corresponds to
a half-quantum vortex with hc=4e flux. Clearly, two
different dislocations of this kind are possible depending
on whether the flux is positive or negative. Any such single
dislocation necessarily breaks time-reversal symmetry.
Thus, if disorder nucleates these single dislocations, then
the PDW glass will break time-reversal spontaneously by
generating randomly placed �ðhc=4eÞ half-quantum vor-
tices of either sign. Such vortices can be imaged using local
probes of magnetism, such as a scanning SQUID micro-
scope, and can serve as a key experimental test of the
proposed PDW state in La2−xBaxCu2O4.
We therefore now pose the question of whether such

single dislocations are necessarily generated at weak
disorder in either the SDW or PDW system.
For simplicity and to provide a unified discussion of both

SDW and PDW systems, we specialize to XY spins. The
fate of dislocations may be discussed within an appropriate
elastic model which takes the form

H ¼
Z

d2x
Ks

2
ð∇ϕÞ2 þ Kc

2
ð∇θ − f Þ2 − v cos ð2θ − αÞ:

ð18Þ

Here, Kc; Ks are the stiffnesses of the CDW and SDW (or
PDW) order parameters, respectively. The phase of the
SDW (or PDW) order parameter is ϕ� θ, and that of the
CDW order parameter is 2θ. The disorder is taken to be
delta-correlated fiðxÞfjðyÞ¼DFδijδðx−yÞ, αðxÞαðyÞ¼
δðx−yÞ. Equation (18) is the basis for our analysis of
dislocations in the rest of this section.
The θ sector is again described by an XY model with

random anisotropy. However, unlike the 3D case, in two
dimensions there is no stable dislocation-free phase even
for weak disorder. We begin the discussion by reviewing
some basic facts on this model. In the case of random forces
(i.e., the f term), but without random fields, the relative
displacement θx − θx0 grows logarithmically with distance,
with a coefficient given by the variance DF of the random
force [21]. The energy cost of the cheapest dislocation is
[27] E ∼ Kcð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DF=Dc

F

p Þ logL, i.e., there is a critical
strength Dc

F of the random force, below which no isolated
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dislocations are present in the ground state. In the presence
of random fields but with dislocations excluded, DF is
renormalized without bound [28] asDF ¼ C logL (see also
Appendix C). The coefficient C is temperature dependent.
This implies [29]

hθx − θx0 i2 ∼ log2jx − x0j: ð19Þ

Thus, CnðrÞ ¼ heinθðxþrÞe−inθðxÞi decays faster than any
power law, and the associated Bragg peaks are indistin-
guishable from the case of short-range correlations. When
dislocations are allowed, they always become relevant
[21,26] for large enough L since DFðLÞ ∼ logL > Dc

F.
Beyond the scale where dislocations proliferate, CnðrÞ
decays exponentially.
The analysis in Appendix D shows that single disloca-

tions proliferate at a scale

ξð1ÞV ≈ ξLe
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπ=16CÞð1þKs=KcÞ2 log ξL=a

p
: ð20Þ

Doubled dislocations, on the other hand, proliferate at a
different length scale:

ξð2ÞV ≈ ξLe
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπ=4CÞ log ξL=a

p
: ð21Þ

It follows that for large Ks=Kc strength-2 dislocations
proliferate at a shorter length scale. In that case, the physics

for distances longer than ξð2ÞV is modified from that
described by the elastic model. The prevalence of doubled
dislocations renormalizes Kc to zero without affecting Ks.
The net energy cost of the spin distortion associated with a
strength-1 dislocation is then ðπ=4ÞKs lnðξL=aÞ, but now
the optimal potential energy gain of the dislocation will just
be a constant (see Appendix E). Thus, in this case strength-
1 dislocations are suppressed even at the longest length
scales. In the SDW glass, this implies that spin-nematic
long-range order survives at weak disorder in this regime.
In the PDW glass in this regime, time reversal is preserved
and the disorder does not introduce half-quantum vortices.
Rather, there is true long-range order in the charge-4e
superconducting order parameter.
In the opposite regime of large Kc=Ks, single

dislocations will proliferate first even at weak disorder.
In either regime at strong disorder single dislocations will
proliferate. The schematic phase diagram is shown in
Fig. 4.

A. Numerics

To support the arguments presented above, we perform
Monte Carlo simulations of the Hamiltonian

HMC ¼ − κc
X
hiji

cosð2θi − 2θj þ 2ηijÞ

− κs
X
hiji

cosðθi − θj þ ηijÞ cosðϕi − ϕjÞ

þ v
X
i

cos ð2θi þ αiÞ; ð22Þ

where hr; r0i denotes nearest neighbors on a square lattice,
αðrÞ is a uniform random variable for each site, and ηr;r0 is
a Gaussian random variable for each link with variance
DF. The parameters κc=s are related to the Kc=s of Eq. (18)
via Ks ∼ κs, Kc ∼ κs þ 4κc. In particular, to ensure
Kc=s > 0, one must take positive κ0 while κc may be
negative as long as κs > −4κc. Negative values of κc
correspond to Kc=Ks < 1 and favor the SDW glass, while
for positive values Kc=Ks > 1, favoring the fully disor-
dered phase.
We note that ηr;r0 is generated under renormalization and

does not need to be explicitly added to the Hamiltonian.
However, it is convenient for studying the case of weak
random field. There, the large difference between ξL and ξV
makes numerical simulations challenging. TakingDF≲Dc

F
significantly reduces ξV while otherwise retaining the same
physics as the DF ¼ 0 model.
Configurations are generated using the standard hybrid

Monte Carlo algorithm [30]. The correlations functions

CCDWði; jÞ ¼ hexp ð2iθi − 2iθjÞi; ð23Þ

Cnematicði; jÞ ¼ hexp ð2iϕi − 2iϕjÞi ð24Þ

are measured, as well as the nematic stiffness parameter ρN,
i.e., the response of the free energy F to a twist Φ in the
boundary conditions for ϕ:

ρN ¼ 1

κs þ 4κc

∂2

∂Φ2
FðΦÞjΦ¼0; ð25Þ

FIG. 4. Schematic phase diagram for a disordered SDW (or
PDW) in 2D as a function of disorder strength v and the ratio
Ks=Kc of the stiffnesses associated with spin waves and phonons
in the absence of disorder.
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where in the absence of disorder, limT→0ρs ¼ 1. ρN is
obtained directly as a nonlocal correlation function on
systems with periodic boundary conditions. The data are
summarized in Fig. 5.
As expected, equilibration becomes difficult to achieve

at low temperatures due to slow glassy dynamics, putting
severe constraints on the achievable system sizes. We
ensure that equilibration is indeed achieved by using three
different initializations and confirming that the measure-
ments are independent of this choice. We take (i) a
disordered configuration with ϕ; θ completely random,
(ii) an ordered configuration with heiθi ¼ heiϕi ≠ 0, (iii) an
“annealing” protocol where the temperature is successively
lowered towards the target value.

1. Correlation functions

Typical results for the two correlation functions CCDW
and Cnematic are shown in Fig. 5 (left) for βκs ¼ 10βv ¼ 5
and κc¼�κs=10 on a system of size 160×160. For
κc¼−κc=10, in these system sizes the spatial correlations
exhibit very little sample dependence, and the combined
error due to sampling and disorder averaging (on 15
realizations) is smaller than the symbols used to plot the
data. For κc¼þκs=10, the correlations vary somewhat
more strongly between different samples, and 36 realiza-
tions are used. In general, CCDW always exhibits rapid
exponential decay at low temperatures and moderately
weak disorder strength, while Cnematic decays much slower.
Depending on the parameters, Cnematic can either also be
exponential or follow a power law up to achievable
system sizes.

2. Temperature-dependent correlation length

At moderate temperatures, Cnematic always follows
an exponential decay with a temperature-dependent corre-
lation length ξN , shown in Fig. 5 (center) for both
κc ¼ −0.1κs (SDW glass) and for κc ¼ 0.1κs (fully dis-
ordered). At high temperatures, ξNðκc ¼ 0.1κsÞ >
ξNðκc ¼ −0.1κsÞ, as would be the case for v ¼ 0 (no
disorder). As temperature is lowered, disorder becomes
important and affects the relative size of the ξN . For
parameters corresponding to a SDW glass phase at lower
temperatures, ξN diverges. For parameters where single
dislocations eventually proliferate, the correlation length
shows no sign of divergence.

3. Helicity modulus

The stiffness parameter ρN as defined in Eq. (25)
provides a sharp distinction between the two low-
temperature phases. A nonzero value for ρN in the
thermodynamic limit is a characteristic feature of the
SDW glass phase, while in the fully disordered phase,
where all vortices have proliferated, limL→∞ρN ¼ 0.
Results for the stiffness are shown in Fig. 5 (right) for
βκs ¼ 10βv ¼ 5, κc ¼ �v. In the SDW phase, ρN exhibits
little variation between different samples and approaches a
finite value at the largest system size that we consider.
In the phase where single dislocations proliferate, ρN
fluctuates strongly from sample to sample, around an
average that rapidly decays with increasing system size.
Despite the limitations on sample size, the results of our

simulations are fully consistent with the analytical pre-
dictions. In particular, we find that depending on our choice

FIG. 5. Summary of numerical data. Left: Spatial decay of the correlation functions Cnematic and CCDW. The inset shows a log-log plot
of the same data. Combined error due to sampling and disorder averaging is shown where it exceeds the size of the shown data points.
The qualitative feature that nematic correlations decay much slower than CDW correlations is generic for low temperatures and weak
disorder. However, depending on parameters, Cnematic can either follow a power law or decay exponentially. Center: Temperature
dependence of the spin-nematic correlation length ξnematic shown for parameters corresponding to a SDW glass phase (green) or a fully
disorderd phase (purple) at low temperatures. For the first set of parameters, ξnematic grows rapidly as temperature is lowered, indicating a
phase transition into the SDW glass phase. For the second set of parameters, ξN shows no sign of divergence and is expected to saturate
at a finite value such that the low-temperature glassy phase is smoothly connected to the high-temperature phase. Solid lines are drawn as
a guide to the eye. Right: The stiffness ρN for spin-nematic fluctuations, as a function of system size, shown for both the SDW glass and
the fully disordered phase. In the SDW glass (κc ¼ −0.1κs), ρN depends only weakly on system size L and always takes a finite value,
while for κc ¼ 0.1κs it exhibits substantial sample dependence and rapidly decays with system size.
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of parameters, the system exhibits qualitatively different
behavior, corresponding to two different phases at low
temperatures—the SDW glass phase, which we introduce
here, and a more conventional glassy state where all
correlations decay exponentially. We expect that these
conclusions remain valid for L → ∞ and T → 0.

VI. DISCUSSION

Our results should be pertinent to a wide variety of
systems. Below, we highlight a few specific interesting
examples.
SDW ordering is very common in electronic solids,

and is often incommensurate with the underlying lattice.
The classic example [31] is elemental chromium Cr. There
have been several studies of the suppression of SDW order
in Cr when it is alloyed with other transition-metal elements
(see Refs. [32,33] and references therein), for instance,
vanadium V. At low V concentrations, where the disorder is
weak, we expect our results to apply directly and we predict
the occurrence of the 3D SDW glass phase. Consequently,
the static spin structure factor is a power law [Eq. (12)],
potentially visible in high-resolution neutron diffraction
studies.
The SDW glass offers an interesting experimental

opportunity to probe the physics of the 3D Bragg glass
in magnetic systems. The original theoretical proposal
[19,34] of the Bragg glass phase spurred a search for it
in a few experimental systems, notably in vortex matter
inside superconductors (for a review, see Ref. [35]).
Reference [36] provided evidence for the predicted
power-law Bragg peaks in a disordered vortex lattice
through small-angle neutron scattering. Experimental evi-
dence for Bragg glass physics in CDW systems seems
scarce—probably due to the strong coupling to disorder of
the CDW order parameter. Recently, however, scanning
tunneling microscopy images of the quasi-two-dimensional
CDW ordered system NbSe2 have been interpreted [37] in
terms of a Bragg glass picture which might describe
intermediate length scale physics. SDW systems of the
kind considered in this paper offer a different context for
Bragg glass physics which may be more directly amenable
to experimental studies.
We emphasize that the SDW glass is distinct from the

conventional Heisenberg spin glass. The SDW glass is also
distinct from the “cluster spin glass” which macroscopi-
cally is the same phase as the usual spin glass. It is
interesting that even some “classic” metallic spin glasses
[38,39] (for instance, CuMn) actually have substantial
short-range SDW order [38] (visible in neutron diffraction
as a well-defined finite wave vector peak). Physically these
are usefully understood as obtained from local pinning of
SDW fluctuations of elemental Cu around Mn impurities.
A fruitful theoretical approach to understanding these
systems may be to start with the SDW glass described

in this paper and then to disrupt it with topological defects
at long length scales.
Turning to 2D systems, it is interesting to consider the

very lightly doped cuprates within the framework of our
results. At low T, these have long been reported to have
spin glass order but also show substantial coexisting SDW
correlations [40]. As we argue, if the “parent" SDWorder is
uniaxial (i.e., not a spiral), then two distinct kinds of glassy
states are possible, in both of which the SDW correlations
decay exponentially on long scales. When only doubled
dislocations of the accompanying CDW are induced (the
2D SDW glass phase), spin-nematic order persists. If,
however, single dislocations are also induced, the resulting
phase is smoothly connected to the conventional spin glass.
What experiments can help distinguish between these

two phases? As we discuss, they will have rather similar
peaks in neutron diffraction. More telling will be local
probes of the spin dynamics, for instance, through NMR.
The local dynamic spin susceptibility in the SDW glass
phase should behave similarly to that in an ordered
antiferromagnet (as the θ field is frozen, the spin autocor-

relation is determined entirely by ~N), and will not show
very striking glassy effects. In contrast, there will be a wide
range of relaxation times in a conventional spin glass.
For PDWorder, the main proposed candidates to date are

the cuprates, notably, La2−xBaxCu2O4. Close to x ¼ 1
8
,

there is an interesting window of temperatures between
4 and 16 K, where the in-plane resistivity is immeasurably
small while there is a nonzero c-axis resistivity [2]. Further,
the Meissner effect itself onsets only below 4 K. It has been
suggested that this behavior may be explained by a PDW
order pinned by impurities, and with frustrated c-axis
Josephson coupling. Our results show that there are two
possible fates of the PDW at weak disorder. In the PDW
glass phase, there are no frozen disorder-induced super-
conducting vortices. Consequently, we expect a Meissner
effect in this phase, and a nonzero critical current. In the
fully disordered glass phase, there are frozen random-sign
hc=4e vortices. This phase is then likely to behave
similarly to a vortex glass. It will presumably have
vanishing linear resistivity but a zero critical current and
no Meissner effect. Thus, it has the potential [5] to explain
the experiments within the PDW framework. An immediate
consequence is the local breaking of time-reversal sym-
metry at zero field due to the frozen �ðhc=4eÞ vortices. It
will be most interesting to look for this through scanning
SQUID microscopy or other local probes of magnetism.
Modulated superconductivity in the Fulde-Ferrell-

Larkin-Ovchinnikov (FFLO) states has, of course, been
discussed theoretically for decades. In recent years, there
have been suggestions of experimental sightings of this
state in two different systems—first in the heavy fermion
superconductor [41,42] CeCoIn5, and very recently in an
organic superconductor [43]. Both of these are very clean
systems and hence our results on the effects of weak
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disorder may be directly applicable. CeCoIn5 is a 3D
superconductor and therefore may be in a superconducting
Bragg glass phase. The organic is quasi-two-dimensional
and thus will at best be in a phase with long-range charge-
4e superconducting order. In both materials it will be
interesting to look for hc=4e flux quantization.
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APPENDIX A: FUNCTIONAL
RENORMALIZATION GROUP FOR
THE 3D LARKIN-OVCHINNIKOV
SUPERCONDUCTING GLASS

The starting point for the FRG analysis is the long-
wavelength Hamiltonian

HFFLO ¼ HCDW þHSC þHB; ðA1Þ

HCDW ¼ Kc

Z
x

X
n

ð∇θnÞ2 þ β
X
n;n

Vðθn − θn0 Þ; ðA2Þ

HSC ¼ Ks

Z
x

X
n

ð∇ϕnÞ2; ðA3Þ

HB ¼ 2λ

Z
x

X
n

∇θn · ∇ϕn; ðA4Þ

where VðθÞ ¼ Vð−θÞ ¼ Vðθ þ πÞ is a symmetric, periodic
function and β is the inverse temperature. In the SDW glass,
λ ¼ 0 and ϕ; θ decouple. The renormalization group (RG)
equations for HCDW were derived in Ref. [22] as

d
dl

Kc ¼ 0; ðA5Þ

d
dl

VðθÞ ¼ ϵVðθÞ þ 2V 00ðθÞ2 − 4V 00ðθÞV 00ð0Þ
ð2πÞ4K2

c
; ðA6Þ

where ϵ ¼ 4 − d and the tree-level scaling of the elastic
term has been absorbed into β. In the present case of λ ≠ 0,
it is clear that Ks and λ cannot be renormalized by V. The
only modification to the RG equations is Kc → ~Kc ¼
Kc − λ2=Ks, which can be absorbed by a simple rescaling
so long as λ2 < KcKs. Thus, the 3D FFLO glass exhibits

the same universal properties as the 3D SDW glass
discussed in Sec. IV.

APPENDIX B: ALTERNATIVE
LATTICE MODEL

In the main text we introduce the Hamiltonian

H ¼− J
X
hiji

~Ni · ~Nj cosðθi − θj þ ηijÞ− v
X
i

cosð2θi − αiÞ

to capture the low-energy properties of the order param-
eters, in particular, the structure of topological defects and
the coupling to the disorder potential. A key feature of this
Hamiltonian is a large redundancy corresponding to local

gauge invariance under ~Ni → − ~Ni, θi → θi þ π. In some
cases it is more convenient to adopt an alternative,
equivalent formulation that makes this more explicit, and
at the same time highlights the special role played by single
dislocations. To this end, we introduce a model in terms of
~Ni and bi ¼ eiθi coupled to a Z2 gauge field σij with the
Hamiltonian

Halt ¼ −X
ij

σij½Js ~Ni · ~Nj þ Jc cosðθi − θj þ ηijÞ�

− v
X
i

cosð2θi − αiÞ: ðB1Þ

This has the same gauge invariance as H provided that
~Ni → − ~Ni, θi → θi þ π is accompanied by σij → −σij for
all sites j connected to i (the familiar “star” transformation
in Z2 gauge theory). In the ground state, one may choose
the gauge σij ¼ 1 to see that H and Halt yield the same

energy for smooth fluctuations of ~N and eiθ. Moreover,Halt

clearly allows 2π vortices in ~N and double dislocations.
In addition, there may be “visons,” i.e., π flux configu-

rations in the σij that cannot be removed by a gauge

transformation. This flux is seen by both ~N and eiθ, and
therefore induces a single dislocation tied to a half-vortex in
~N. Thus, the structure of topological defects in H and Halt
is identical. Since the divergent contribution to the energy
of any allowed defect is determined by the elastic terms in
the Hamiltonian, H and Halt describe the same physics at
long length scales.

APPENDIX C: DISORDERED SDW
WITH DISLOCATIONS EXCLUDED

When dislocations are excluded by hand, the fluctuations
in ϕ are fully decoupled from the ones in θ [see Eq. (18)].
In this case disorder affects only θ and the problem reduces
to the model
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H ¼
Z

d2x
Kc

2
ð∇θ − f Þ2 − v cos ð2θ − αÞ; ðC1Þ

which has been studied in Ref. [28]. It was subjected to a
replica analysis, where the Hamiltonian takes the form

Hreplica ¼
XN
n;n0¼1

Z
d2x

Kcðδn;n0 þDFÞ
2

∇θn∇θn0 ðC2Þ

−
~v
2
cos ð2θn − 2θn

0Þ: ðC3Þ

The renormalization group equations in the replica limit
N → 0 are [28]

d
dl

Kc ¼ 0; ðC4Þ

d
dl

DF ¼ a1
Kc

~v2; ðC5Þ

d
dl

~v ¼
�
2 − 2

πKc

�
~v − a2 ~v2; ðC6Þ

where a1;2 are cutoff-dependent constants. The crucial
features of this flow are (i) Kc does not renormalize, (ii) ~v
flows to a fixed point ~v�, and (iii)DF grows logarithmically
without bound. The behavior of correlation functions in this
model may be estimated [29] by calculating them at ~v ¼ 0,
but taking into account the renormalization of DF (justified
for small ~v� since DF grows while ~v remains small):

hθnð~rÞθn0 ð~r0Þi ∼
1

Kc

�
δn;n0 − DF

1þ NDF

�
log j~r − ~r0j:

ðC7Þ

In particular, the (connected) correlation function

hðθ~r − θ~r0 Þ2ic is independent of DF:

hðθ~r − θ~r0 Þ2ic ¼ lim
N→0

1

N

X
n;n0

hðθ~r;n − θ~r0;nÞðθ~r;n0 − θ~r0;n0 Þi

¼ log j~r − ~r0j
Kc

: ðC8Þ

On the other hand, the correlation function hθ~r − θ~r0 i2,
which vanishes for DF ¼ 0, becomes

hθ~r − θ~r0 i2 ðC9Þ

¼ lim
N→0

1

N2

XN
n¼1

X2N
n0¼Nþ1

hðθ~r;n − θ~r0;nÞðθ~r;n0 − θ~r0;n0 Þi

¼ DF

Kc
log j~r − ~r0j: ðC10Þ

Since DF grows logarithmically, one concludes that

hθ~r − θ~r0 i2 ∼ log2j~r − ~r0j.

APPENDIX D: ESTIMATES
OF LENGTH SCALES IN 2D

The presence or absence of isolated dislocations is
determined by the balance between elastic energy cost
and energy gain due to disorder. The elastic energy cost of a
defect where θ winds by 2πmc and ϕ winds by 2πms is

Emc;ms
¼ πðKcm2

c þ Ksm2
sÞ logL=a: ðD1Þ

The energy gain VdisðxÞ due to disorder depends on the
position x of the vortex and the particular disorder
realization. The distribution of Vdis for a constant variance
of the random force is given by [27]

Pmc
ðVdisÞ ¼

1

σmc

ffiffiffiffiffiffi
2π

p exp

�
− V2

dis

2σ2m2
c

�
; ðD2Þ

σ2 ¼ 2πDFK2
c log

L
a
: ðD3Þ

In the presence of random fields, the variance of the random
force is itself scale dependentDFðLÞ ≈ C logðL=ξLÞ, where
C is temperature dependent and ξL ≫ a is the Larkin
length. In this case, a reasonable approximation consists of
replacing the variance DF of the random force by its
average on a logarithmic scale:

DF → D̄FðLÞ≡ 1

log L
ξL

Z
L

ξL

DFðRÞ
R

dR ∼
C
2
log

L
ξL

:

ðD4Þ

The probability pðLÞ that a vortex exists in a volume L2 is
given by

pðLÞ ¼
�
L
ξL

�
2
Z −Emc;ms

−∞
PðVÞ ðD5Þ

≈
σ

Emc;ms

ffiffiffiffiffiffi
2π

p exp

�
2 log

L
ξL

− E2
mc;ms

2m2
cσ

2

�
: ðD6Þ

To estimate the scale where defects proliferate, we drop the
subleading factor and set pðξmc;ms

Þ ¼ 1, obtaining

ξmc;ms
¼ ξLe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπ=4Cm2

cÞðm2
cþKs=Kcm2

sÞ2 log ξL=a
p

: ðD7Þ

APPENDIX E: LONG DISTANCE PHYSICS
FOR LARGE Ks=Kc IN 2D

In this appendix, we sharpen the arguments justifying the
absence of single dislocations at long wavelengths for large
Ks=Kc in 2D. This is most conveniently done within the
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alternative formulation of the model introduced in
Appendix B. For the universal properties, the parameters
Jc=s in the lattice Hamiltonian Halt Eq. (B1) may be
identified with Kc=s in the continuum model. Halt can be
fruitfully used to discuss all length scales and parameter
regimes. We use it here as an effective model for the large
Js=Jc regime (corresponding to large Ks=Kc) at length

scales longer than ξð2ÞV (the scale of doubled dislocation
proliferation) discussed in the main text. Thus, we take the

lattice spacing to be of order ξð2ÞV . The long length scale
physics is then captured by this model with v → ∞. Note
that the core energy of a single dislocation must be taken to

be Ecore ∼ Jc lnðξð2ÞV =aÞ.
When v → ∞, we have

θi − αi
2
¼ π

1 − si
2

; ðE1Þ

with si ¼ �1. Then the Hamiltonian becomes

Heff ¼ −X
ij

σij

�
Js ~Ni · ~Nj þ Jcsisj cos

�
αi − αj

2
þ ηij

��
:

ðE2Þ

We define ~Jc;ij ¼ Jc cos½ðαi − αjÞ=ð2Þ þ ηij�. With ηij; αi
random uncorrelated variables, ~Jc;ij will have a probability
distribution symmetric about zero, and will be uncorrelated
between different sites. In the absence of the σij, the second
term describes a 2D Ising spin glass. In the configuration of
~Jc;ij there will, with some probability, be several frustrated
plaquettes (where the product around the plaquette of ~Jc;ij
will be negative). If the gauge field σij adjusts itself to
“unfrustrate” those frustrated plaquettes, the Ising subsys-
tem will gain energy, ΔEIsing ¼ λJc, for some constant λ.
However, such a π flux of σij nucleates a π disinclination in
~N, which costs energy Ecore∼Jc lnðξð2ÞV =aÞ in addition to

the elastic energy of distorting the ~N up to the typical
separation between two such frustrated plaquettes. Thus,

for weak microscopic disorder (corresponding to ξð2ÞV ≫ a),

the cost of nucleating a π disclination in ~N overwhelms any
energy gain from unfrustrating the Ising spin si. Single
dislocations are therefore suppressed in this regime.
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