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The macaque brain contains a set of regions that show stronger fMRI activation to faces than other classes of object. This “face

patch system” has provided a unique opportunity to gain insight into the organizing principles of IT cortex and to dissect the

neural mechanisms underlying form perception, because the system is specialized to process one class of complex forms, and

because its computational components are spatially segregated. Over the past 5 years, we have set out to exploit this system to

clarify the nature of object representation in the brain through a multilevel approach combining electrophysiology, anatomy,

and behavior. These experiments reveal (1) a remarkably precise connectivity of face patches to each other, (2) a functional

hierarchy for representation of view-invariant identity comprising at least three distinct stages along the face patch system, and

(3) the computational mechanisms used by cells in face patches to detect and recognize faces, including measurement of

diagnostic local contrast features for detection and measurement of face feature values for recognition.

How does the brain represent objects? This question

had its beginnings in philosophy. Our fundamental intu-

ition of the physical world consists of a space containing

objects, and philosophers starting from Plato wondered

about the basis for the percept of these “pure forms” (e.g.,

the tree) that were clearly different from any real instance.

Very early on, the mind could already sense something

mysterious about the problem of object perception. Ob-

ject representation constitutes the basic infrastructure on

which the brain operates. We speak in nouns; we remem-

ber people, places, and things; and we think in terms of

concepts, which can be construed as a generalization of

objects. Despite its clear importance, we still understand

very little about the neural basis for object perception. In

particular, to understand visual object perception, three

critical problems need to be solved: (1) How is an object

first generated (i.e., how are retinal pixels stitched togeth-

er into units)? (2) How are these stitched units identified?

(3) How are identified units relayed to higher-order brain

areas to enable flexible behavior? During the past decade,

work in my laboratory has focused largely on the second

question, addressing the mechanisms for face processing

in macaque inferotemporal (IT) cortex. Here, I describe

what we have learned about principles of object identifi-

cation in the brain from studying a set of regions in the

temporal lobe specialized for face processing, the ma-

caque face patch system.

The first stage of visual information processing in the

cortex occurs in area V1, where cells extract local stimulus

properties like edge orientation, motion, and color con-

trast. Then, visual information is transmitted through a

series of additional stages, V2, V3, V4, which each con-

tain a retinotopic map of space, and must be performing

local computations beyond edge detection. The precise

nature of these steps remains a mystery. One major trans-

formation appears to be segmentation (i.e., organizing

visual information into discrete pieces corresponding to

different objects) (Zhou et al. 2000; Bushnell et al. 2011),

a highly challenging task owing to partial occlusion and

the need to interpolate illusory contours (Fig. 1). Then,

visual information proceeds to a large brain region called

inferotemporal (IT) cortex, which has been strongly im-

plicated in high-level object recognition (e.g., recognizing

a rose, a bird, or a face). A lesion to this part of the brain

can create an inability to recognize specific classes of

objects such as faces, suggesting this is an important brain

area to study if we want to understand object perception.

How are objects represented in IT cortex? Charles

Gross and coworkers reported discovery of cells in the

temporal lobe that were selective for complex forms such

as hands, trees, and faces (Bruce et al. 1981), but the

difficulty of finding these cells precluded deeper under-

standing. In 1997, Nancy Kanwisher, using fMRI in hu-

mans, reported the discovery of a face-selective area in

the brain (Kanwisher et al. 1997). Remarkably, this area

seemed to be in the same place in every subject she

scanned, suggesting that face processing occurs in a dis-

crete chunk of cortex. Although this finding was provoc-

ative and exciting, it remained a mystery what the cells in

these regions might be doing, as the region was found

using fMRI, and the relationship between blood flow

measured by fMRI and underlying neural activity re-

mains an area of active research (Logothetis 2008;

Schummers et al. 2008). Most importantly, fMRI mea-

sures activity at a spatial scale of �1 mm3, whereas neu-

ral activity is organized at a much finer scale such that

even neighboring cells can have very different tuning

properties (Ohki et al. 2006).
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To clarify the link between face cells and fMRI-iden-

tified face areas, we performed fMRI experiments in alert

monkeys. We found not just one such area, but six of them

(Fig. 2A). Moreover, the fact that these six “face patches”

were located in the same place across the two hemi-

spheres, and in similar locations across animals, gave

the first hint that they constitute a system and not just

random islands of face-selective cortex. To study the

selectivity of single neurons in these patches, we targeted

electrodes to ML/MF, AL, and AM, and asked what the

responses of cells in these regions were to the same stim-

uli that we used in the fMRI localizer experiment. We

found that all three regions contained a very high percent-

age of face-selective cells, with 97% of visually respon-

sive cells in ML/MF giving a mean response to faces at

least twice as strong as to other objects (Tsao et al. 2006).

This finding was exciting because it meant we now had a

system where we could systematically dissect how one

visual form is represented.

The macaque face patch system has provided a unique

opportunity to gain insight into the organizing principles

of IT cortex and to dissect the neural mechanisms under-

lying form perception, because the system is specialized

to process one class of complex forms, and because its

computational components are spatially segregated. Over

T
T

V2, V4

Figure 1. Segmentation processes in extrastriate retinotopic cor-
tex. In area V4, a “boundary curvature” cell tuned for a right angle
at south would be suppressed, because the presence of the T
junction (red) would signal to the cell that the boundary continues
behind the wall instead of making a 90˚ turn (Bushnell et al.
2011). In area V2, cells tuned for border-ownership (gray) con-
figure their activity to signal the correct ownership of all the
contours in the image (Zhou et al. 2000). In this way, a map is
generated not just of the location of edges in the image, but which
figure owns them, and how they continue behind occluders.

Figure 2. Dissecting face processing in the monkey. (A) Six face patches shown on inflated right hemisphere of macaque brain (Tsao
et al. 2008a). (B) Two prefrontal face-selective patches, PO in the lateral orbital sulcus and PV in the infraprincipal dimple (Tsao et al.
2008b). (C ) Connectivity of temporal face patches revealed by microstimulation targeted to face patch ML combined with fMRI; areas
significantly activated by microstimulation overlaid on a flatmap (Moeller et al. 2008). (D) Population similarity matrices in the three
face patches. A 200 � 200 matrix of correlation coefficients was computed between responses of all visually responsive cells to a set of
200 stimuli (consisting of 25 different identities each at eight different head orientations) from ML/MF (N ¼ 121 cells), AL (N ¼ 189
cells), and AM (N ¼ 158 cells) (Freiwald and Tsao 2010). (E) Mean response time courses of an example sparse, view-invariant identity
selective cell from AM to the 200 stimuli. (Right) Mean response levels to the 25 individuals at each head orientation (Freiwald and Tsao
2010). (F) Decoding of view from fMRI responses in ML/MF, AL, and AM to four identities each at five views (Dubois et al. 2015).
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the past 5 years, my laboratory has set out to exploit this

system to clarify the nature of object representation in the

brain through a multilevel approach combining electro-

physiology, anatomy, and behavior, focusing on three

questions.

† Connectivity: What is the anatomical wiring diagram

of the face patches?

† Functional architecture: Are the six patches perform-

ing different functions?

† Computational mechanisms: What are the mechanisms

for detection and recognition of faces used by cells in

the face patches?

CONNECTIVITY

The existence of six face patches raised obvious ques-

tions about anatomical connectivity. Do the patches form

a unified system, or is each patch processing faces inde-

pendently of the others? Does the anatomy reveal any

hierarchical relationships? What are the downstream out-

puts of face patches? To image connectivity of the face

patches in vivo, we electrically microstimulated different

face patches while the monkey was inside the fMRI scan-

ner (Moeller et al. 2008). Whenever we stimulated one

patch, the other patches would light up, but not the sur-

rounding cortex, indicating the patches are strongly con-

nected to each other but not to the other parts of IT cortex

(Fig. 2C). In addition, stimulation of face patches activat-

ed specific subregions of three subcortical areas: the

amygdala, claustrum, and pulvinar. More recently, we

have confirmed these results with fMRI-guided anatom-

ical tracer injections (Grimaldi et al. 2012, 2013).

FUNCTIONAL ARCHITECTURE

Because the six face patches span the entire extent of the

temporal lobe, it seemed likely that each patch performs a

unique function. To discover functional differences be-

tween patches, we presented several large sets of face

stimuli to animals while recording from multiple patches.

In one of these experiments, we presented 25 different

identities each at eight different head orientations and

discovered that a major functional distinction between

the patches concerns how they represent identity across

different views (Freiwald and Tsao 2010). Neurons in ML

and MF are view-specific; neurons in AL are tuned to

identity mirror-symmetrically across views, thus achiev-

ing partial view invariance; and neurons in AM, the most

anterior face patch, achieve almost full view invariance

(Fig. 2D). We further discovered a remarkable cell type in

the most anterior face patch AM, which responds extreme-

ly sparsely to only a small subset of face identities, invar-

iantly across changes in view (Fig. 2E). Thus, it appears a

major goal of the face patches is to build, in stepwise

fashion, a representation of individual identity invariant

to view direction.

Is there any spatial organization to view and identity

tuning? To address this, we presented four identities each

at five head orientations in a block-design fMRI experi-

ment (a subset of the stimuli used in Freiwald and Tsao

2010) and found that multivoxel pattern analysis on the

fMRI responses from ML/MF, AL, and AM could suc-

cessfully decode view. Moreover, the view decoding

made mirror-symmetric mistakes in AL and AM, just as

we had found earlier in the units (Fig. 2F) (Dubois et al.

2015). This suggests that cells tuned to the same view are

spatially clustered in each face patch.

Comparison of stimulus selectivity across different

patches has revealed other significant differences. There

is aclearchange in species selectivity going from ML/MF,

where most cells respond vigorously to both monkey and

human faces, to AM, where many cells are selective for

either monkey or human faces (Moeller and Tsao 2011).

Experiments in which we presented random face frag-

ments revealed that the effective fragments of a face that

trigger firing increase in size and complexity going from

posterior to anterior face patches (Cheng et al. 2013). Un-

derscoring this progression in size and complexity, in the

most posterior patch PL, Issa and DiCarlo (2012) found

that the most effective fragment was the contralateral eye.

Overall, our experiments indicate a sparser, more holistic,

and more invariant representation as one proceeds anteri-

orly along the face patch system, consistent with the find-

ing of “Jennifer Aniston cells” one step further in the

medial temporal lobe (Quiroga et al. 2005). We do not

yet understand the fundamental principle governing why

each patch processes faces only up to a certain level of

complexity before handing the problem off to the next

patch; it seems clear that a deep answer to this question

would require not just documentation of phenomenologi-

cal differences between patches, but a grasp of the funda-

mental computational architecture.

COMPUTATIONAL MECHANISMS

As a first foray into understanding the computational

architecture of the face patches, we have delved into the

detailed mechanisms used by single cells to detect and

recognize faces, exploiting easily-to-parameterize car-

toon faces.

The first step in face processing is face detection (i.e.,

detecting a face is present somewhere regardless of whose

face it is). Faces are robustly detected by computer vision

algorithms that search for characteristic coarse contrast

features (Viola and Jones 2001; Sinha 2002) (e.g., eyes

darker than nose). If one examines the contrast between

pairs of regions when a face is illuminated under a large

varietyof conditions, one finds that for some features, such

as upper lip and cheek, there is no consistent contrast re-

lationship. The upper lip is sometimes darker and some-

times brighter than the cheek, depending on the lighting.

But for other features, there is a consistent contrast rela-

tionship (e.g., the nose is always brighter than the left eye).

Pawan Sinha (2002) suggested that for face detection,

the most important features should be ones that are in-

variant to changes in lighting. To test whether cells in the

face patches might be using these illumination-invariant
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contrast features to detect faces, we constructed an artifi-

cial face stimulus consisting of 11 different regions vary-

ing in brightness. Individual cells from the middle face

patch showed a wide range of responsiveness to these part

intensity stimuli, with some stimuli eliciting stronger re-

sponses than to a real face, and others eliciting no re-

sponse at all (Fig. 3A). To determine whether contrast

between pairs of parts might be driving this variation,

for each pair of parts, we computed the mean response

when part A was darker than part B and the mean re-

sponse when part A was brighter than part B for each of

the 55 pairs of parts. Figure 3B shows results for an ex-

ample unit, and Figure 3C shows the result for the whole

population. Remarkably, the cells were completely con-

sistent in their contrast preference (e.g., almost 100 cells

preferred the left eye to be darker than the nose, and not a

single cell preferred the opposite contrast relationship).

Moreover, the preferred features were completely consis-

tent with those predicted from the light-invariance exper-

iments, indicated by the purple arrows. One question

often asked about face cells is how do we know these

cells are really coding faces and not some other object

that we simply have not shown yet, because we obviously

cannot show every possible object to a single cell in IT

cortex. The consistency of contrast preferences of face

cells, with each other and with computational light-in-

variance experiments, is powerful evidence that these

cells are truly coding faces. At the same time, the result

shows that these cells are using more primitive mecha-

nisms to detect faces than human observers. Even though

both stimuli in Figure 3A appear “face-like” to human

observers, they could elicit very different responses in a

subset of face cells in ML/MF.

Indeed, the fact that we see both stimuli as faces sug-

gests that contrast cannot be the whole story to face detec-

tion. We can readily see faces in line drawings in which

there is no contrast. Thus, feature shape must also play an

important role. What is the contribution of feature shape

to face detection? To address this question, we recorded

responses of cells in ML/MF to a cartoon face defined by

seven different elementary parts. Responses to the 128

combinations of these seven face parts showed that indi-

vidual cells are selective for the presence of specific face

parts, such as eyes or hair. Figure 4A shows responses of

two example cells from the middle face patch to these 128

stimuli, illustrating selectivity for different parts. This

result is interesting because it challenges one of the long-

standing assumptions about IT cortex—namely, that it is

organized into feature columns, like V1, with each col-

umn processing various moderately complex shapes that

are visually similar (Tanaka 2003). A pair of disks and an

upside-down U have nothing visually similar about them.

Rather, what they have in common is that they are both

defining features of a face, an ethologically meaningful

unit. We found neighboring cells within the face patch

tuned to such visually dissimilar features, as well as sin-

gle cells tuned to multiple such features. Thus, the etho-

logical meaning of objects is clearly an important driving

Figure 3. Detecting faces through selectivity for characteristic contrast features (Ohayon et al. 2012). (A) Response of an example cell
from ML/MF to 16 pictures of real faces (bottom), 80 pictures of nonface objects (middle), and 432 part intensity stimuli constructed
by randomly varying the brightness of 12 face regions. An example ineffective (red outline) and effective (green outline) part intensity
stimulus are shown. (B) Responses of an example cell from ML/MF to a subset of the 55 feature pairs, showing mean response to both
contrast polarities of each pair. Asterisks mark feature pairs for which the cell showed significant contrast selectivity. (C ) Significant
contrast feature histogram. Blue (red) bars indicate the number of cells tuned for intensity in A greater (less) than intensity in B.
Triangles indicate predictions from computational light-invariance experiments.
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force in IT organization, above and beyond low-level

visual feature similarity.

It is critically important for primates to not only detect

other faces, but to recognize them individually. What is

the neural mechanism for distinguishing different faces?

In general terms, this could be accomplished based on

the overall shape of the face (e.g., narrow vs. round),

the shape of specific features (e.g., iris size), or the spatial

relationship between different features (e.g., inter-eye

distance). To distinguish these possibilities, we construct-

ed another set of cartoon faces, this time varied in iden-

tity. Each cartoon face was defined by 19 dimensions, and

the values of the dimensions were varied randomly and

independently; some dimensions described the overall

shape of the face, some described the shape of specific

features, and some described the spatial relationship be-

tween features. We found that individual cells are tuned to

subsets of face features. Figure 4B shows tuning curves of

an example cell to the 19 feature dimensions; this cell was

significantly tuned to four features, face aspect ratio, in-

ter-eye distance, eye aspect ratio, and iris size. Interest-

ingly, all four of the tuning curves are ramp shaped, with a

maximum at one extreme and a minimum at the opposite

extreme. This was true across the population, suggesting

that these cells are acting like rulers, which is consistent

with a “face space” representation (Valentine et al. 2015),

where cells are measuring deviation from the average face

along specific axes rather than encoding specific exem-

plars. This preference for extreme feature values may

explain the power of caricatures, which would be stimu-

lating the population to fire at its maximum dynamic

range.

Obviously, one limitation with these cartoon experi-

ments is that it is unclear how the principles we have

covered generalize to encoding real faces. For example,

if one constructs a realistic face space by performing

principle components analysis on a large set of real faces,

do cells in the face patches also show ramp-shaped tuning

to the realistic face dimensions? And how well can one

decode identity of real faces from face patch population

activity? If cells truly are encoding specific axes through

linear ramps, this suggests that a simple linear regres-

sion should be sufficient to decode facial identity. We

are currently addressing these questions through ongoing

experiments.

SUMMARY AND OUTLOOK

The macaque face patch system is a remarkable gift of

nature for understanding the steps of object representa-

tion. Even though we are only just beginning to under-

stand the principles underlying the organization of this

system, it is already clear that major computational trans-

formations are accomplished between each stage, to gen-

erate a code for facial identity in the most anterior face

patch AM invariant to transformations such as view, po-

sition, and size. Future work will need to clarify whether

and how the organization of this system generalizes to

other object categories; evidence suggests that systems

in IT cortex comprising multiple patches are also used

to represent scenes (Kornblith et al. 2013), bodies (Popi-

vanov et al. 2012, 2014), and colored objects (Lafer-Sou-

sa and Conway 2013).

Figure 4. Probing mechanisms for face detection and recognition with cartoon faces. (A) Responses of two examples cells from ML/
MF to 128 combinations of seven cartoon face parts. Cell 1 was selective for the presence of hair, cell 2 for the presence of irises. (B)
Tuning of an example cell from ML/MF to 19 cartoon face dimensions. Tuning curve significantly deviating from a shuffle control are
indicated by asterisk. This cell was tuned to four parameters: face aspect ratio, inter-eye distance, eye aspect ratio, and iris size.
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I believe the biggest questions about the face patch

system concern how the patches communicate with the

rest of the brain, including earlier retinotopic cortex and

higher-order brain areas that ultimately drive behavior.

The face patches are like a wonderfully lit house in the

middle of the woods. What is needed now is to follow the

trail of bread crumbs from them, both forward and back-

ward, to gain a deeper level of understanding into (1)

how an object first arises as a coherent unit and how

this coherent unit is transmitted as such from retinotopic

to IT cortex, and (2) how the code for object identity,

represented by a distributed population of neurons, is

routed to downstream areas to enable flexible, goal-di-

rected behavior. It is clear these processes must involve

globally organized interactions that we only have the

barest inkling of so far. For example, if two faces are

present, how does the brain keep track of the identity,

location, and actions of each separately? This “binding

problem” is one of the abiding mysteries of systems neu-

roscience. In his book Rhythms of the Brain, Buzsáki

(2006) vividly evokes the excitement that greeted the

prospect of an imminent solution to the binding problem.

It would be exciting if research on face processing, start-

ing from sure knowledge of where the label for facial

identity is located in the brain, could bring us closer to

that day.
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