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Cross-plane heat transport in thin films with thicknesses comparable to the phonon mean free paths

is of both fundamental and practical interest for applications such as light-emitting diodes and

quantum well lasers. However, physical insight is difficult to obtain for the cross-plane geometry

due to the challenge of solving the Boltzmann equation in a finite domain. Here, we present a

semi-analytical series expansion method to solve the transient, frequency-dependent Boltzmann

transport equation that is valid from the diffusive to ballistic transport regimes and rigorously

includes the frequency-dependence of phonon properties. Further, our method is more than

three orders of magnitude faster than prior numerical methods and provides a simple analytical

expression for the thermal conductivity as a function of film thickness. Our result enables

a straightforward physical understanding of cross-plane heat conduction in thin films. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4919432]

I. INTRODUCTION

In the past two decades, thermal transport in thin solid

films with thicknesses from tens of nanometers to micro-

meters has become a topic of considerable importance.1–4

Such films are used in applications ranging from quantum

well lasers to electronic devices.5–7 For example, boundary

scattering in these films leads to reduced thermal conductiv-

ity that results in the inefficient removal of heat in GaN

transistors and light emitting diodes (LEDs).8–10 To address

these and other problems, it is first necessary to understand

the fundamental physics of heat conduction in micro-scale

solid thin films.

Heat transport in thin films with thicknesses comparable

to the phonon mean free paths (MFPs) is governed by the

Boltzmann transport equation (BTE), which is an integro-

differential equation of time, real space, and phase space.

Due to its high dimensionality, it is in general very challeng-

ing to solve. For transport along the thin film, an analytical

solution can be easily derived by assuming that the charac-

teristic length scale of the thermal gradient is much longer

than the phonon MFPs. Analytical solutions were derived for

electron transport by Fuchs and Sondheimer with partially

specular and partially diffuse boundary scattering.11,12 Later,

the Fuchs-Sondheimer solutions were extended to phonon

thermal transport assuming an average phonon MFP, ena-

bling the calculation of thermal conductivity as a function of

the film thickness.13,14 Mazumder and Majumdar used a

Monte-Carlo method to study the phonon transport along a

silicon thin film including phonon dispersion and

polarizations.15

Heat conduction perpendicular to the thin film (cross-

plane direction) is much more challenging. In other fields

such as neutron transport and thermal radiation, solutions to

the BTE for a slab geometry have been obtained using an

invariant embedding method,16,17 an iterative method,18 and

an eigenfunction expansion approach.19 For heat conduction,

Majumdar numerically solved the gray phonon Boltzmann

transport using a discrete-ordinate method by assuming that

the two surfaces of the film were black phonon emitters.20

Later, Joshi and Majumdar developed an equation of phonon

radiative transfer for both steady-state and transient cases,

which showed the correct limiting behavior for both purely

ballistic and diffusive transport.21 Chen and Tien applied

solutions from radiative heat transfer to calculate the thermal

conductivity of a thin film attached to two thermal reser-

voirs.13 Chen obtained approximate analytical solutions of

the BTE to study ballistic phonon transport in the cross-plane

direction of superlattices and addressed the inconsistent use

of temperature definition at the interfaces.22 Cross-plane heat

conduction using a consistent temperature definition was then

re-investigated by Chen and Zeng.23,24

Despite these extensive efforts to study transport in thin

films based on the BTE, solutions for the cross-plane geome-

try are still only available with expensive numerical calcula-

tions. For example, no analogous Fuchs-Sondheimer formula

for the in-plane thermal conductivity exists for the cross-

plane direction. Furthermore, most of the previous

approaches assumed a single phonon MFP even though

recent work has demonstrated that the transport properties

of phonons in solids vary widely over the broad thermal

spectrum.25,26 Incorporating frequency-dependent phonon

properties with these prior numerical methods is extremely

computationally expensive.

In this work, we present a semi-analytical solution of

the frequency-dependent transient BTE using the method of

degenerate kernels, also known as a series expansion

method.27 Our approach is valid from the diffusive to ballis-

tic transport regimes, is capable of incorporating a variety of

boundary conditions, and is more than three orders ofa)aminnich@caltech.edu
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magnitude faster than prior numerical approaches. Further,

we obtain a simple closed-form expression for cross-plane

thermal conductivity, analogous to the Fuch-Sondheimer for-

mula for the in-plane thermal conductivity, which enables

the cross-plane thermal conductivity of a thin film to be eas-

ily calculated. Our results can be applied to efficiently solve

heat conduction problems in numerous practical geometries

such as superlattices and the thin films used in thermoreflec-

tance experiments while rigorously incorporating the full

phonon dispersion.

II. THEORY

A. Governing equation

The one-dimensional (1D) frequency-dependent BTE

for an isotropic crystal under the relaxation time approxima-

tion is given by

@gx

@t
þ vgl

@gx

@x
¼ � gx � g0 Tð Þ

sx
þ Qx

4p
; (1)

where gx ¼ �hxðfxðx; t; hÞ � f0ðT0ÞÞ is the desired devia-

tional energy distribution function, g0ðTÞ is the equilibrium

deviational distribution function defined below, Qx is the

spectral volumetric heat generation, vg is the phonon group

velocity, and sx is the phonon relaxation time. Here, x is the

spatial variable, t is the time, x is the phonon frequency, T is

the temperature, and l ¼ cosðhÞ is the directional cosine of

the polar angle.

Assuming a small temperature rise, DT ¼ T � T0, rela-

tive to a reference temperature, T0, the equilibrium devia-

tional distribution is proportional to DT

g0 Tð Þ ¼ 1

4p
�hxD xð Þ fBE Tð Þ � fBE T0ð Þ

� �
� 1

4p
CxDT: (2)

Here, �h is the reduced Planck constant, DðxÞ is the phonon

density of states, fBE is the Bose-Einstein distribution, and

Cx ¼ �hxDðxÞ @fBE

@T is the mode specific heat. The volumetric

heat capacity is then given by C ¼
Ðxm

0
Cxdx and the ther-

mal conductivity k ¼
Ðxm

0
kxdx, where kx ¼ 1

3
CxvxKx and

Kx ¼ sxvx is the phonon MFP.

Both gx and DT are unknown. Therefore, to close the

problem, energy conservation is used to relate gx to DT,

given byð ðxm

0

gx x; tð Þ
sx

� 1

4p
Cx

sx
DT x; tð Þ

� �
dxdX ¼ 0; (3)

where X is the solid angle in spherical coordinates and xm

is the cut-off frequency. Note that summation over phonon

branches is implied without an explicit summation sign

whenever an integration over phonon frequency is

performed.

To solve this equation, we first transform it into an inho-

mogeneous first-order differential equation by applying a

Fourier transform to the time variable, giving

ig~gx þ vgl
d~gx

dx
¼ � ~gx

sx
þ Cx

sx

D ~T

4p
þ

~Qx

4p
; (4)

where g is the temporal frequency. This equation has the

general solution

~gþx xð Þ ¼Pxe�
cx
l x þ

ðx

0

CxD ~T x0ð Þ þ ~Qx x0ð Þsx

4pKxl

� e
cx
l x0�xð Þ

dx0 l 2 0; 1ð �ð Þ; (5)

~g�x xð Þ ¼Bxe
cx
l L�xð Þ �

ðL

x

CxD ~T x0ð Þ þ ~Qx x0ð Þsx

4pKxl

� e
cx
l x0�xð Þ

dx0 l 2 �1; 0½ �ð Þ; (6)

where cx ¼ ð1þ igsxÞ=Kx, L is the distance between the

two walls, and Px and Bx are the unknown coefficients

determined by the boundary conditions. Here, ~gþðxÞ indi-

cates the forward-going phonons and ~g�ðxÞ the backward-

going phonons. In this work, ~gþðxÞ is specified at one of the

two walls and ~g�ðxÞ is specified at the other.

Let us assume that the two boundaries are nonblack but

diffuse with wall temperature DT1 and DT2, respectively.

The boundary conditions can be written as

~gþx x ¼ 0ð Þ ¼ Px ¼ �1

Cx

4p
DT1 þ 1� �1ð Þ

ð0

�1

~g�x x ¼ 0;lð Þdl;

(7)

~g�x x ¼ Lð Þ ¼ Bx ¼ �2

Cx

4p
DT2 þ 1� �2ð Þ

ð1

0

~gþx x ¼ L; lð Þdl;

(8)

where �1 and �2 are the emissivities of the hot and cold

walls, respectively. When �1 ¼ �2 ¼ 1, the walls are black

and we recover Dirichlet boundary conditions. Note that

while we assume a thermal spectral distribution for the

boundary condition, an arbitrary spectral profile can be

specified by replacing the thermal distribution with the

desired distribution. Equations (7) and (8) are specific for

diffuse boundary scattering; the specular case is presented

in Appendix A.

Applying the boundary conditions to Eqs. (5) and (6),

we have

~gþx xð Þ ¼A1x
Cx

4p
e�

cx
l x þ e�

cx
l x

ðL

0

CxD ~T x0ð Þ þ ~Qx x0ð Þsx

4pKx

� DxE1 cx L� x0ð Þ
� �

þ B1xE1 cxx0
� �h i

dx0

þ
ðx

0

CxD ~T x0ð Þ þ ~Qx x0ð Þsx

4pKxl
e

cx
l x0�xð Þ

dx0 l 2 0; 1½ �ð Þ;

(9)

~g�x xð Þ¼A2x
Cx

4p
e�

cx
l L�xð Þ þe�

cx
l L�xð Þ

ðL

0

CxD ~T x0ð Þþ ~Qx x0ð Þsx

4pKx

� DxE1 cxx0
� �

þB2xE1 cx L�x0ð Þ
� �h i

dx0

þ
ðL

x

CxD ~T x0ð Þþ ~Qx x0ð Þsx

4pKxl
e�

cx
l x0�xð Þ

dx0 l2 0;1½ �ð Þ;

(10)

where
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A1x ¼
�1DT1 þ 1� �1ð Þ�2DT2E2 cxLð Þ
1� 1� �1ð Þ 1� �2ð Þ E2 cxLð Þð Þ2

;

A2x ¼
�2DT2 þ 1� �2ð Þ�1DT1E2 cxLð Þ
1� 1� �1ð Þ 1� �2ð Þ E2 cxLð Þð Þ2

;

B1x ¼
1� �1

1� 1� �1ð Þ 1� �2ð Þ E2 cxLð Þð Þ2
;

B2x ¼
1� �2

1� 1� �1ð Þ 1� �2ð Þ E2 cxLð Þð Þ2
;

Dx ¼
1� �1ð Þ 1� �2ð ÞE2 cxLð Þ

1� 1� �1ð Þ 1� �2ð Þ E2 cxLð Þð Þ2
;

and EnðxÞ is the exponential integral given by28

En xð Þ ¼
ð1

0

ln�2e�
x
ldl: (11)

To close the problem, we plug Eqs. (9) and (10) into Eq.

(3) and obtain an integral equation for temperature as

2

ðxm

0

Cx

sx
dxD ~T x̂ð Þ

¼
ðxm

0

Cx

sx
A1xE2 ĉxx̂ð Þ þ A2xE2 ĉx 1� x̂ð Þ

� �� �
dx

þ
ð1

0

ðxm

0

~Qx x0ð ÞGx x̂; x̂0ð Þ
Knx

dxdx̂0

þ
ð1

0

D ~T x̂0ð Þ
ðxm

0

CxGx x̂; x̂0ð Þ
Knxsx

dxdx̂0; (12)

where x̂ ¼ x=L, Knx ¼ Kx=L is the Knudsen number,

ĉx ¼ 1þigsx
Knx

and

Gxðx̂; x̂0Þ ¼E2ðĉxx̂Þ½DxE1ðĉxð1� x̂0ÞÞ þ B1xE1ðĉxx̂0Þ�
þE2ðĉxð1� x̂ÞÞ½DxE1ðĉxx̂0Þ
þ B1xE1ðĉxð1� x̂0ÞÞ� þ E1ðĉxjx̂0 � x̂jÞ: (13)

Equation (12) can be written in the form

DTðx̂Þ ¼ f ðx̂Þ þ
ð1

0

Kðx̂; x̂0ÞDTðx̂0Þdx̂0; (14)

where the kernel function Kðx̂; x̂0Þ is given by

K x̂; x̂0ð Þ ¼ 1

2

ðxm

0

Cx

sx
dx

ðxm

0

CxGx x̂; x̂0ð Þ
Knxsx

dx (15)

and the inhomogeneous function f ðx̂Þ is given by

f x̂ð Þ ¼ 1

2

ðxm

0

Cx

sx
dx

ðxm

0

Cx

sx

� A1xE2 ĉxx̂ð Þ þ A2xE2 ĉx 1� x̂ð Þ
� �� �

dx

þ 1

2

ðxm

0

Cx

sx
dx

ð1

0

ðxm

0

~Qx x0ð ÞGx x̂; x̂0ð Þ
Knx

dxdx̂0: (16)

From Eq. (14), we see that the governing equation is a

Fredholm integral equation of the second kind. Previously,

the gray version of Eq. (12) that assumes average phonon

properties has been solved numerically using integral discre-

tization method.28 While this approach does yield the solu-

tion, it requires the filling and inversion of a large, dense

matrix, an expensive calculation even for the gray case.

Considering the full phonon dispersion adds additional inte-

grations to calculate each element of the matrix, dramatically

increasing the computational cost. Additionally, care must

be taken to account for a singularity point at x̂0 ¼ x̂ since

E1ð0Þ ! 1.

B. Method of degenerate kernels

Here, we solve this equation using the method of degen-

erate kernels,27 which is much more efficient than the inte-

gral discretization method and automatically accounts for the

singularity point at x̂0 ¼ x̂. This method is based on expand-

ing all the functions in Eq. (14) in a Fourier series, then solv-

ing for the coefficients of the temperature profile. From the

temperature D ~Tðx̂Þ, all other quantities such as the distribu-

tion and heat flux can be obtained.

To apply this method, we first need to expand the inho-

mogeneous function f ðx̂Þ and kernel Kðx̂; x̂0Þ with a Fourier

series. This expansion is possible because both f ðx̂Þ and

Kðx̂; x̂0Þ are continuous and continuously differentiable on

the relevant spatial domains of normalized length between

½0; 1� and ½0; 1� � ½0; 1�, respectively.27 All the necessary

functions can be expanded using a linear combination of

sines and cosines; however, a substantial simplification can

be obtained by solving a symmetric problem in which the

spatial domain is extended to include its mirror image by

extending both f ðx̂Þ and Kðx̂; x̂0Þ to [�1,1] and [�1,1]

� [�1,1]. Because of the symmetry of this domain, all the

coefficients for sine functions equal zero and the Fourier

series for both functions reduces to a cosine expansion. f ðx̂Þ
is then approximated as

f Nð Þ x̂ð Þ ¼ 1

2
f0 þ

XN

m¼1

fm cos mpx̂ð Þ; (17)

where fm ¼ 2
Ð 1

0
f ðx̂Þ cosðmpx̂Þdx̂. The kernel Kðx̂; x̂0Þ can be

represented by a degenerate double Fourier series, given by

K Nð Þ x̂; x̂0ð Þ ¼ 1

4
k00þ

1

2

XN

m¼1

km0 cos mpx̂ð Þþ 1

2

XN

n¼1

k0n cos npx̂0ð Þ

þ
XN

m¼1

XN

n¼1

kmn cos mpx̂ð Þcos npx̂0ð Þ; ð18Þ

where

kmn ¼ 4

ð1

0

ð1

0

Kðx̂; x̂0Þ cosðmpx̂Þ cosðnpx̂0Þdx̂dx̂0: (19)

Moreover, the convergence and completeness theorem of co-

sine functions guarantees that KðNÞðx̂; x̂0Þ and fðNÞðx̂Þ con-

verge to Kðx̂; x̂0Þ and f ðx̂Þ as N !1.29
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Inserting Eqs. (17) and (18) into Eq. (14), we then obtain

the following integral equation

XN

m¼0

xm cos mpx̂ð Þ

¼ 1

2
f0 þ

XN

m¼0

fm cos mpx̂ð Þ þ
ð1

0

XN

n¼0

xm cos npx̂0ð Þ

� 1

4
k00 þ

1

2

XN

m¼1

km0 cos mpx̂ð Þþ 1

2

XN

n¼1

k0n cos npx̂0ð Þ
"

þ
XN

m¼1

XN

n¼1

kmn cos mpx̂ð Þcos npx̂0ð Þ
#

dx̂0; (20)

where xm are the desired but unknown Fourier coefficients of

D ~Tðx̂Þ.
Using the orthogonality of cos ðnpx̂Þ on ½0; 1� gives a

simpler form of Eq. (20)

XN

m¼0

xm cos mpx̂ð Þ¼1

2
f0þ

XN

m¼0

fm cos mpx̂ð Þþ1

4

XN

m¼0

km0xm

þ1

2

XN

m¼1

XN

n¼1

kmnxn cos mpx̂ð Þ: (21)

Grouping the terms with the same index m in cosine, a

system of linear equations of xm can be obtained as

��A�x ¼ �f ; (22)

where �x is the vector of unknown coefficient xm and �f is the

vector of fm in Eq. (17). The matrix ��A contains elements

A00 ¼ 1� k00

4
; A0n ¼� 1

2
k0n; An0 ¼� kn0

4
; Ann ¼ 1� 1

2
knn; and

Anm ¼� 1
2
knm (m 6¼ n 6¼ 0). Expressions of the elements in ��A

can be obtained analytically for the specific kernel here and

are given in Appendix B for steady-state heat conduction

with diffuse walls. Since there is no row or column in ��A that

is all zeros or a constant multiple of another row or column,

it is always guaranteed that ��A is non-singular and its inverse

exists.

Solving the matrix system yields xm and thus the temper-

ature D ~Tðx̂Þ; ~gþxðxÞ, and ~g�xðxÞ can be obtained from D ~Tðx̂Þ
using Eqs. (9) and (10). Finally, the spectral heat is given by

qxðxÞ ¼
ð1

�1

gxvxldl ¼
ð1

0

gþxvxldl�
ð1

0

g�xvxldl; (23)

thereby closing the problem.

C. Summary of the method

We now summarize the key steps to implement our

method. The first step is to determine the appropriate bound-

ary conditions for the problem and compute the constants in

Eqs. (5) and (6). Subsequently, the kernel function Kðx̂; x̂0Þ
and the inhomogenous function f ðx̂Þ can be obtained from

Eq. (3), and their Fourier coefficients can be computed using

Eqs. (17) and (18). The elements in ��A correspond to the

Fourier coefficients of kernel function Kðx̂; x̂0Þ, and �f is a

vector of the Fourier coefficients of the inhomogeneous part

of Eq. (12). We emphasize that analytic expressions for all

of these elements exist and can be obtained; examples of

these coefficients for steady heat conduction with non-black,

diffuse boundaries are given in Appendix B. Once ��A and �f
are obtained, Eq. (22) is solved by standard matrix methods

to yield the coefficients xm. Finally, D ~Tðx̂Þ is given byPN
m¼0 xm cosðmpx̂Þ.

D. Efficiency of the method

The primary benefit of our method is the substantial

reduction in computational cost compared to the widely used

integral discretization approach. Since both KðNÞðx̂; x̂0Þ and

fðNÞðx̂Þ converge to Kðx̂; x̂0Þ and f ðx̂Þ as 1=N2, only a few

terms of expansion are required for accurate calculations. In

practice, we find that only 20 terms are necessary before the

calculation converges, meaning the required matrix is only

20� 20. Compared to the traditional integral discretization

method that requires a matrix on the order of 1000� 1000

before convergence is achieved, our approach is at least 3

orders of magnitude faster. Further, as we will show in

Sec. III, our semi-analytical approach enables a closed-form

solution for the cross-plane thermal conductivity of a thin

film that is not possible to derive from the integral discretiza-

tion method.

E. Demonstration of the method

As an example calculation, we consider steady-state

heat conduction between two walls that are either black or

non-black. In the former case, both wall emissivities �1 and

�2 equal 1 while in the latter case they are set to 0.5.

Assuming steady state and no heat generation inside the

domain, g¼ 0, and Qx ¼ 0. The Fourier coefficients of

Kðx̂; x̂0Þ and �f for these two specific cases are given in

Appendix B. We perform our calculations for crystalline sili-

con, using the experimental dispersion in the [100] direction

and assuming the crystals are isotropic. The numerical

details concerning the dispersion and relaxation times are

given in Ref. 30.

We calculate the deviational temperature distribution

DTðx̂Þ for different film thickness at different equilibrium

temperatures as shown in Fig. 1 while keeping jDT1j ¼
jDT2j ¼ 1 K. When the averaged Knudsen number is small

such that Knavg � 1, the temperature profile remains linear.

As thin film thickness decreases such that Knavg � 1 or� 1,

we observe a similar temperature slip as discussed in Ref.

25. These calculations take approximately one second to

compute on a standard laptop computer. In contrast, the inte-

gral discretization method is at least 1000 times slower,

requiring on the order of one hour to arrive at the same

result.

In addition to the finite-layer geometry we consider

above, the series expansion approach can be readily applied

to many other thin film geometries, such as superlattices and

the transducer film used in thermoreflectance experiments,

by imposing different boundary conditions. Similar large
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reductions in computational cost can be expected for these

cases.

III. ANALYTICAL FORMULA FOR CROSS-PLANE
THERMAL CONDUCTIVITY

Our semi-analytical approach also allows us to obtain a

simple closed form expression for the cross-plane thermal

conductivity as a function of film thickness, analogous to

the Fuchs-Sondheimer expression for in-plane thermal con-

ductivity. Such a formula allows the cross-plane thermal

conductivity to be easily evaluated because the full solution

of the BTE is no longer required. To derive this formula,

we assume black walls and calculate the spatially averaged

spectral heat flux that is integrated over the domain,

defined asð1

0

qx x̂ð Þdx̂ ¼ 1

L

ðL

0

qx xð Þdx

¼ DT1 � DT2

2

� 	
1

3
CxvxKnx

�

�CxvxKnxE4

1

Knx

� 	�

þCxvx

2Knx

ð1

0

ð x̂

0

DT x̂0ð ÞE2

jx̂0 � x̂j
Knx

� 	
dx̂0dx̂

"

�
ð1

0

ð1

x̂

DT x̂0ð ÞE2

jx̂0 � x̂j
Knx

� 	
dx̂0dx̂

�
: (24)

Once xm is solved from Eq. (20), we can insert the Fourier

series of DTðxÞ into Eq. (24), which leads toð1

0

qx x̂ð Þdx̂

¼ DT1 � DT2

2

� 	
1

3
CxvxKnx � CxvxKnxE4

1

Knx

� 	" #

þCxvx

2Knx

X1
m¼1

xm 1� �1ð Þm
� � ð1

0

Knxlð Þ2 1þ e�
1

Knxl

� �
1þ Knxlð Þ2 mpð Þ2

dl:

(25)

According to Fourier’s law, the integrated heat flux is given

by ð1

0

qf
x x̂ð Þdx̂ ¼ 1

3
CxvxKnx DT1 � DT2ð Þ: (26)

The heat suppression function is defined as the ratio of the

BTE and Fourier’s heat flux,31 given as

S Knx;Lð Þ ¼ 1

2
� 3

2
E4

1

Knx

� 	
þ 3

2

X1
m¼1

xm 1� �1ð Þm
� �

�
ð1

0

l2 1þ e�
1

Knxl

� �
1þ Knxlð Þ2 mpð Þ2

dl: (27)

Note that the suppression function in general not only

depends on Knx but also is a function of geometry through

xm. The reduced or apparent thermal conductivity at a given

domain thickness L is then given by

k Lð Þ ¼
ðxm

0

1

3
CxvxKxS Knx; Lð Þdx: (28)

This formula is analogous to the Fuch-Sondheimer equation

for transport along thin films and allows the evaluation of the

cross-plane thermal conductivity provided the expansion

coefficients xm are known. However, obtaining the expansion

coefficients still requires solving the BTE as described in

Sec. II B. A more useful result would be a suppression func-

tion that depends only on the Knudsen number as is available

for in-plane heat conduction with the Fuchs-Sondheimer

formula.11,12

To overcome this difficulty, we derive a simplified form

of Eq. (27) that is valid under the conditions of most

experiments. Note from Fig. 1(a) that for Kn avg � Oð10�2Þ,
the temperature distribution is still linear, allowing us to

simplify Eq. (27) by inserting the linear temperature

distribution. Doing so leads to a simplified suppression

function

Ssimplified Knxð Þ ¼ 1þ 3Knx E5

1

Knx

� 	
� 1

4

� �
: (29)

This equation depends only on the Knudsen number and

hence can be used to directly evaluate the cross-plane ther-

mal conductivity given the phonon dispersion. This equation

is valid provided that the ballistic modes are only low fre-

quency phonons that contribute little to heat capacity, a sit-

uation that occurs often in experiment because high

frequency phonons have short MFPs, on the order of tens of

nanometers, at temperatures exceeding 20 K.

One important observation from Fig. 2(a) is that the

exact and simplified suppression functions converge to the

same curve at large Knx. Also note that as the slab thickness

decreases, the Knudsen number of a phonon with a particular

MFP becomes larger. Therefore, in the limit of very small

distance between the boundaries, the only important portion

of the suppression function is at large values of Knudsen

number exceeding Knx ¼ 1 because phonons possess a finite

minimum MFP. This observation suggests that for practical

FIG. 1. Temperature distribution DTðx̂Þ
for a planar slab with black walls (solid

lines) and nonblack walls (dashed lines)

when (a) Knavg � Oð10�2Þ, (b) Knavg

� 1, and (c) Knavg � Oð102Þ. As Knavg

increases, temperature slip at the boun-

daries grows larger.
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purposes the simplified suppression can be used even outside

the range in which it is strictly valid with good accuracy.

This simplification is very desirable because the simplified

suppression function only depends on the Knudsen number

and thus can be applied without any knowledge of other ma-

terial properties.

To investigate the accuracy of this approximation, we

perform a reconstruction procedure developed by Minnich31

to recover the MFP spectrum from thermal conductivity data

as a function of slab thickness using both exact and simpli-

fied suppression functions. We follow the exact procedures

of the numerical method as described in Ref. 31. Briefly, we

synthesize effective thermal conductivities numerically using

Eq. (28). Using these effective thermal conductivities and

our knowledge of the suppression function, we use convex

optimization to solve for the MFP spectrum. In the exact

suppression function case, each slab thickness has its own

suppression function given by Eq. (27) while in the simpli-

fied case Eq. (29) is used for all slab thicknesses.

As shown in Fig. 2(b), both the simplified and exact sup-

pression functions yield satisfactory results. Even though the

smallest thickness we consider here is 50 nm, close to the bal-

listic regime, the simplified suppression function still gives a

decent prediction over the whole MFP spectrum, with a maxi-

mum of 15% deviation from the actual MFP spectrum. For

practical purposes, this deviation is comparable to uncertain-

ties in experimental measurements and therefore the simplified

suppression function can be used as an excellent approxima-

tion in the reconstruction procedure. This result demonstrates

that length-dependent thermal conductivity measurements like

those recently reported for SiGe nanowires32 and graphene rib-

bons33 can be used to reconstruct the full MFP spectrum rather

than only an average MFP. We perform an investigation of

our approach for this purpose in Ref. 34.

IV. SUMMARY

We have presented a series expansion method to solve

the one-dimensional, transient frequency-dependent BTE in

a finite domain and demonstrated its capability to describe

cross-plane heat conduction in thin films. Our solution is

valid from the diffusive to ballistic regimes with a variety of

boundary conditions, rigorously includes frequency depend-

ence, and is more than three orders of magnitude faster than

prior numerical approaches. We have also developed a sim-

ple analytical expression for thermal conductivity, analogous

to the Fuchs-Sondheimer equation for in-plane transport,

which enables the simple calculation of the cross-plane ther-

mal conductivity as a function of film thickness. Our work

provides an efficient method to solve cross-plane heat con-

duction problems that occurs in numerous situations such as

in superlattices and thermoreflectance experiments.
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APPENDIX A: SPECULAR BOUNDARIES

Here, we derive the governing equation for the problem

of nonblack, specular boundaries with wall temperatures DT1

and DT2, respectively. The boundary conditions can be writ-

ten as

~gþx x ¼ 0; lð Þ ¼ Px ¼ �1

Cx

4p
DT1 þ 1� �1ð Þ~g�x x ¼ 0;�lð Þ;

(A1)

~g�x x ¼ L; lð Þ ¼ Bx ¼ �2

Cx

4p
DT2 þ 1� �2ð Þ~gþx x ¼ L;�lð Þ:

(A2)

Applying the boundary conditions to Eqs. (5) and (6), we

have

~gþx xð Þ ¼F1DT1

Cx

4p
e�

cx
l x þ 1� �1ð ÞF2DT2

Cx

4p
e�

cx
l Lþxð Þ

þ 1� �1ð ÞF2

ðL

0

CxD ~T x0ð Þ þ ~Qx x0ð Þsx

4pKxl
e�

cx
l x0þxð Þ

dx0

þ
ðx

0

CxD ~T x0ð Þ þ ~Qx x0ð Þsx

4pKxl
e

cx
l x0�xð Þ

dx0 l 2 0; 1½ �ð Þ;

(A3)

FIG. 2. (a) Simplified (solid line) and exact (dashed line) suppression function versus Knudsen number. The exact and simplified suppression functions con-

verge to the same curve at large Knx. (b) Example MFP reconstructions for silicon at 300 K using numerically simulated data. Plotted are the analytical MFP

distribution (solid line), the numerical apparent thermal conductivities (squares), and the reconstructed MFP distribution by the exact suppression function

(circles) and by the simplified suppression function (stars). The x axis corresponds to the MFP for the distributions and to the slab thickness for the thermal

conductivity data. Both the exact and simplified suppression functions yield satisfactory MFP reconstruction results.
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~g�x xð Þ ¼F2DT2

Cx

4p
e�

cx
l L�xð Þ þ 1� �2ð ÞF1DT1

Cx

4p
e�

cx
l 2L�xð Þ þ 1� �2ð ÞF1

ðL

0

CxD ~T x0ð Þ þ ~Qx x0ð Þsx

4pKxl
e�

cx
l 2L�x0�xð Þ

dx0

þ
ðL

x

CxD ~T x0ð Þ þ ~Qx x0ð Þsx

4pKxl
e�

cx
l x0�xð Þ

dx0 l 2 0; 1½ �ð Þ; (A4)

where F1 ¼ �1

�1þ�2��1�2
and F2 ¼ �2

�1þ�2��1�2
.

To close the problem, we insert Eqs. (A3) and (A4) into Eq. (3) and nondimensionalize x by L. We then derive an integral

equation for temperature for the specular boundary conditions, given by

2

ðxm

0

Cx

sx
dxD ~T x̂ð Þ ¼

ðxm

0

Cx

sx
Hx x̂ð Þdxþ

ð1

0

ðxm

0

~Qx x0ð ÞGx x̂; x̂0ð Þ
Knx

dxdx̂0 þ
ð1

0

D ~T x̂0ð Þ
ðxm

0

CxGx x̂; x̂0ð Þ
Knxsx

dxdx̂0; (A5)

where x̂ ¼ x=L, Knx ¼ Kx=L is the Knudsen number, ĉx ¼ 1þigsx
Knx

and

Hxðx̂Þ ¼ F1DT1E2ðĉxx̂Þ þ F2DT2E2ðĉxð1� x̂ÞÞ þ ð1� �1ÞF2DT2E2ðĉxð1þ x̂ÞÞ þ ð1� �2ÞF1DT1E2ðĉxð2� x̂ÞÞ (A6)

and

Gxðx̂; x̂0Þ ¼ ð1� �1ÞF2E1ðĉxðx̂ þ x̂0ÞÞ þ ð1� �2ÞF1E1ðĉxð2� x̂ � x̂0ÞÞ þ E1ðĉxjx̂ � x̂0jÞ: (A7)

In this case, the inhomogeneous function becomes

f x̂ð Þ ¼ 1

2

ðxm

0

Cx

sx
dx

ðxm

0

Cx

sx
Hx x̂ð Þdxþ

ð1

0

ðxm

0

~Qx x0ð ÞGx x̂; x̂0ð Þ
Knx

dxdx̂0

" #
; (A8)

and the kernel function becomes

K x̂; x̂0ð Þ ¼ 1

2

ðxm

0

Cx

sx
dx

ðxm

0

CxGx x̂; x̂0ð Þ
Knxsx

dx: (A9)

With these results, the problem can be solved by following the same procedures described in Sec. II B are followed to for-

mulate a linear system of equations. The solution of this system then yields the temperature Fourier coefficients.

APPENDIX B: FOURIER COEFFICIENTS FOR NONBLACK DIFFUSE BOUNDARIES

In this section, we derive the expansion coefficients for a thin film with nonblack, diffuse boundaries. For steady-state

heat conduction between two non-black walls as studied in Sec. III, the inhomogeneous function becomes

f x̂ð Þ ¼ 1

2

ðxm

0

Cx

sx
dx

ðxm

0

Cx

sx
A1xE2

x̂

Knx

� 	
þ A2xE2

1� x̂

Knx

� 	� �
dx: (B1)

Its Fourier coefficients in Eq. (17) are then given by

f0 ¼
1

2

ðxm

0

Cx

sx
dx

ðxm

0

CxKnx

sx
A1x þ A2xð Þ 1� 2E3

1

Knx

� 	� �
dx; (B2)

and

fn ¼
1ðxm

0

Cx

sx
dx

ðxm

0

ð1

0

Cx

sx
Knxl

A1x þ �1ð ÞnA2x

� �
� e�

1
Knxl �1ð ÞnA1x þ A2x

� �
1þ Knxlð Þ2 npð Þ2

; (B3)

providing the right-hand side of Eq. (22). Under the same assumption of diffuse, non-black walls, the kernel function becomes

K x̂; x̂0ð Þ ¼ 1

2

ðxm

0

Cx

sx
dx

ðxm

0

CxGx x̂; x̂0ð Þ
Knxsx

dx; (B4)
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where

Gx x̂; x̂0ð Þ ¼ E2

x̂

Knx

� 	
DxE1

1� x̂0

Knx

� 	
þ B1xE1

x̂0

Knx

� 	� �
þ E2

1� x̂

Knx

� 	
DxE1

x̂0

Knx

� 	
þ B1xE1

1� x̂0

Knx

� 	� �
þ E1

jx̂ � x̂0j
Knx

� 	
:

(B5)

Its Fourier coefficients kmn are given by Eq. (18), and can be evaluated as

k00 ¼
2ðxm

0

Cx

sx
dx

ðxm

0

CxKnx

sx

2

Knx
� 1þ 2E3

1

Knx

� 	
þ 2Dx þ B1x þ B2xð Þ




� 1

2
� E3

1

Knx

� 	
� 1

2
E2

1

Knx

� 	
þ E3

1

Knx

� 	
E2

1

Knx

� 	� ��
dx; (B6)

and

km0 ¼
2ðxm

0

Cx

sx
dx

ðxm

0

Cx

sx

ð1

0

Knxl �1ð Þm þ 1
� �

e�
1

Knxl � 1
� �

1þ Knxlð Þ2 mpð Þ2
dldxþ 2ðxm

0

Cx

sx
dx

ðxm

0

Cx

sx
Dx þ B1xð Þ 1� E2

1

Knx

� 	� �

�
ð1

0

Knxl 1� �1ð Þme�
1

Knxl

h i
1þ Knxlð Þ2 mpð Þ2

dldxþ 2ðxm

0

Cx

sx
dx

ðxm

0

Cx

sx
Dx þ B2xð Þ 1� E2

1

Knx

� 	� �ð1

0

Knxl �1ð Þm � e�
1

Knxl

h i
1þ Knxlð Þ2 mpð Þ2

dldx;

(B7)

and

k0n ¼
2ðxm

0

Cx

sx
dx

ðxm

0

Cx

sx

ð1

0

Knxl �1ð Þn þ 1
� �

e�
1

Knxl � 1
� �

1þ Knxlð Þ2 npð Þ2
dldxþ 2ðxm

0

Cx

sx
dx

ðxm

0

CxKnx

sx
Dx þ B1xð Þ 1

2
� E3

1

Knx

� 	� �

�
ð1

0

1� �1ð Þne�
1

Knxl

h i
1þ Knxlð Þ2 npð Þ2

dldxþ 2ðxm

0

Cx

sx
dx

ðxm

0

CxKnx

sx
Dx þ B2xð Þ 1

2
� E3

1

Knx

� 	� � ð1

0

�1ð Þn � e�
1

Knxl

h i
1þ Knxlð Þ2 npð Þ2

dldx; (B8)

and for m 6¼ n

kmn ¼
2ðxm

0

Cx

sx
dx

ðxm

0

Cx

sx

ð1

0

Knxlfe� 1
Knxl �1ð Þm þ �1ð Þn
� �

� 1þ �1ð Þmþn
� �

1þ Knxlð Þ2 mpð Þ2
h i

1þ Knxlð Þ2 npð Þ2
h i dldx

þ 2ðxm

0

Cx

sx
dx

ðxm

0

CxDx

sx

ð1

0

Knxl 1� �1ð Þme�
1

Knxl

h i
1þ Knxlð Þ2 mpð Þ2

dl
ð1

0

�1ð Þn � e�
1

Knxl

h i
1þ Knxlð Þ2 npð Þ2

dldx

þ 2ðxm

0

Cx

sx
dx

ðxm

0

CxDx

sx

ð1

0

Knxl �1ð Þm � e�
1

Knxl

h i
1þ Knxlð Þ2 mpð Þ2

dl
ð1

0

1� �1ð Þne�
1

Knxl

h i
1þ Knxlð Þ2 npð Þ2

dldx

þ 2ðxm

0

Cx

sx
dx

ðxm

0

CxB1x

sx

ð1

0

Knxl 1� �1ð Þme�
1

Knxl

h i
1þ Knxlð Þ2 mpð Þ2

dl
ð1

0

1� �1ð Þne�
1

Knxl

h i
1þ Knxlð Þ2 npð Þ2

dldx

þ 2ðxm

0

Cx

sx
dx

ðxm

0

CxB2x

sx

ð1

0

Knxl �1ð Þm � e�
1

Knxl

h i
1þ Knxlð Þ2 mpð Þ2

dl
ð1

0

�1ð Þn � e�
1

Knxl

h i
1þ Knxlð Þ2 npð Þ2

dldx; (B9)

and for m 6¼ 0
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kmm ¼
2ðxm

0

Cx

sx
dx

ðxm

0

Cx

sx

tan�1 mpKnxð Þ
mpKnx

dxþ 2

ðxm

0

Cx

sx

ð1

0

Knxl e
� 1
�1ð ÞmKnxl � 1

� �
1þ Knxlð Þ2 mpð Þ2
h i2

dldx

8><
>:

9>=
>;

þ 2ðxm

0

Cx

sx
dx

ðxm

0

CxDx

sx

ð1

0

Knxl 1� �1ð Þme�
1

Knxl

h i
1þ Knxlð Þ2 mpð Þ2

dl
ð1

0

�1ð Þm � e�
1

Knxl

h i
1þ Knxlð Þ2 mpð Þ2

dldx

þ 2ðxm

0

Cx

sx
dx

ðxm

0

CxDx

sx

ð1

0

Knxl �1ð Þm � e�
1

Knxl

h i
1þ Knxlð Þ2 mpð Þ2

dl
ð1

0

1� �1ð Þme�
1

Knxl

h i
1þ Knxlð Þ2 mpð Þ2

dldx

þ 2ðxm

0

Cx

sx
dx

ðxm

0

CxB1x

sx

ð1

0

Knxl 1� �1ð Þme�
1

Knxl

h i
1þ Knxlð Þ2 mpð Þ2

dl
ð1

0

1� �1ð Þme�
1

Knxl

h i
1þ Knxlð Þ2 mpð Þ2

dldx

þ 2ðxm

0

Cx

sx
dx

ðxm

0

CxB2x

sx

ð1

0

Knxl �1ð Þm � e�
1

Knxl

h i
1þ Knxlð Þ2 mpð Þ2

dl
ð1

0

�1ð Þm � e�
1

Knxl

h i
1þ Knxlð Þ2 mpð Þ2

dldx: (B10)

These equations specify the matrix elements of ��A in Eq.

(22). With the linear system specified, the coefficients of the

temperature profile xm can be easily obtained by solving a

linear system.
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