
Reactive Synthesis from Signal Temporal Logic
Specifications

Vasumathi Raman
California Institute of

Technology
Pasadena, CA, USA

vasu@caltech.edu

Alexandre Donzé
UC Berkeley

Berkeley, CA, USA
donze@berkeley.edu

Dorsa Sadigh
UC Berkeley

Berkeley, CA, USA
dsadigh@berkeley.edu

Richard M. Murray
California Institute of

Technology
Pasadena, CA, USA

murray@cds.caltech.edu

Sanjit A. Seshia
UC Berkeley

Berkeley, CA, USA
sseshia@eecs.berkeley.edu

ABSTRACT
We present a counterexample-guided inductive synthesis ap-
proach to controller synthesis for cyber-physical systems sub-
ject to signal temporal logic (STL) specifications, operating
in potentially adversarial nondeterministic environments. We
encode STL specifications as mixed integer-linear constraints
on the variables of a discrete-time model of the system and
environment dynamics, and solve a series of optimization
problems to yield a satisfying control sequence. We demon-
strate how the scheme can be used in a receding horizon
fashion to fulfill properties over unbounded horizons, and
present experimental results for reactive controller synthesis
for case studies in building climate control and autonomous
driving.

1. INTRODUCTION
We are concerned with controlling hybrid systems to satisfy
desired properties despite a potentially adversarial environ-
ment; the provided solution must be robust to environment
actions with regards to which we are uncertain. Recently,
temporal logics have proven a valuable tool for controller
synthesis, because they provide a compact mathematical for-
malism for specifying desired behaviors of a system. There
is a rich body of literature containing algorithms for verifi-
cation and synthesis of systems obeying temporal logic spec-
ifications. Approaches can be broadly categorized based on
whether they utilize a discrete abstraction of the system, and
whether the environment is assumed to be deterministic.

Approaches that utilize a discrete abstraction enable con-
struction of discrete supervisory controllers, which have suc-
cessfully been used to construct hybrid controllers for do-
mains including robotics and aircraft power system design;

these include approaches that deal with deterministic [14,
20] as well as adversarial environments [7, 24]. In contrast,
approaches that eschew discrete abstractions include those
based on sampling-based methods [12], and mixed-integer
linear programming encodings of temporal logic specifica-
tions[13, 11, 15, 23, 21]. The latter have thus far been con-
fined to the realm of deterministic operating environments,
and it is this gap that we close with the current work.

We adopt a Counterexample-Guided Inductive Synthesis [22]
approach to synthesizing a controller satisfying reactive spec-
ifications. Inductive synthesis refers to the automated gen-
eration of a system from input-output examples, using each
new example to iteratively refine the hypothesis about the
system until convergence. In Counterexample-Guided In-
ductive Synthesis (CEGIS), the examples are mostly coun-
terexamples discovered while trying to verify correctness of
the current guess. CEGIS thus relies primarily on a valida-
tion engine to validate candidates produced at intermediate
iterations, which can produce counterexamples for use in
the next iteration. Automated synthesis of systems using
CEGIS and the closely related counterexample -guided ab-
straction refinement (CEGAR) paradigm has been widely
studied in various contexts [4, 1, 10].

The specification language adopted here is Signal Temporal
Logic (STL) [18], which allows the specification of temporal
properties of real-valued signals, and has been applied to
the analysis of hybrid dynamical systems from various ap-
plication domains such as analog and mixed signal circuits,
systems biology or Cyber-Physical Systems (CPS). STL has
the advantage of naturally admitting a quantitative seman-
tics which, in addition to the binary answer to the question
of satisfaction, provides a real number indicating the quality
of the satisfaction or violation. Such quantitative seman-
tics have been defined for timed logics like Metric Temporal
Logic (MTL) [8] and STL [6] to assess the robustness of the
systems to parameter or timing variations. We exploit this
ability to compute the robustness of satisfaction in the vali-
dation engine for our CEGIS approach to reactive synthesis.

A key advantage of temporal logic over, e.g. domain-specific
languages based on propositional logic, is that it allows the

expression of properties of infinite traces. We would there-
fore like to synthesize controllers that can run indefinitely,
and satisfy infinite-horizon properties. Receding Horizon
Control (Receding Horizon Control (RHC)) [19] is based
on iterative, finite horizon, discrete time optimization of a
model of the plant: at time t, the current plant state is ob-
served, and an optimal control strategy computed for a finite
time horizon in the future, [t, t + H]. The first step of the
computed strategy is implemented, the plant state is then
sampled again, and new calculations performed on a horizon
of size H starting from the new current state. This not only
reduces computational complexity, but improves robustness
with respect to exogenous disturbances and modeling uncer-
tainties by allowing new information to be incorporated as
it becomes available [19].

We have already made the connection between RHC and
control synthesis from STL specifications in previous work[21],
where we specify desired properties of the system using a
STL formula, and synthesize control such that the system
satisfies that specification, while using a receding horizon
approach. We presented automatically-generated Mixed In-
teger Linear Program (MILP) encodings for STL specifi-
cations, extending the Bounded Model Checking (BMC)
paradigm for finite discrete systems [3] to STL. These en-
codings can be used not only to generate open-loop control
signals that satisfy finite and infinite horizon STL properties,
but also to generate signals that maximize quantitative (ro-
bust) satisfaction. We now show how the robustness-based
encoding can be used to produce a validation engine that
synthesizes counterexamples to guide a CEGIS approach to
reactive synthesis.

Receding horizon control to satisfy temporal logic specifica-
tions in adversarial settings has been considered before in
the context of Linear Temporal Logic (LTL) [24], where the
authors propose a scheme that makes use of discrete abstrac-
tions to synthesize supervisory controllers for specifications
with GR(1) goals. In that work, feasibility of the global
specification is determined via symbolic checks on a series
of pre-defined smaller problems, and strategies extracted as
needed. In contrast, we do not require an a priori defined
finite set of sub-problems. Our approach also extends syn-
thesis capabilities to a wider class of temporal logic specifi-
cations and environments than [9, 2], and avoids potentially
expensive computations of a finite state abstraction of the
system as in [5] and [24].

Contributions: We present a CEGIS approach to con-
troller synthesis for cyber-physical systems subject to signal
temporal logic (STL) specifications, operating in potentially
adversarial nondeterministic environments.

• We encode STL specifications as mixed integer-linear
constraints on the variables of a discrete-time model
of the system and environment dynamics, and solve a
counterexample guided series of optimization problems
to yield a satisfying control sequence.

• Our scheme can be used in a receding horizon fashion
to fulfill properties over unbounded horizons.

• We present experimental results using a case study of
controller synthesis on a model of a Heating Ventila-

tion and Air Conditioning (HVAC) system with non-
deterministic elements in the environment, and an au-
tonomous driving scenario in the presence of adver-
sarial agents; simulation results in these two domains
illustrate the effectiveness of our methodology.

2. PRELIMINARIES
We consider discrete-time continuous systems of the form

xt+1 = f(xt, ut, wt) (1)

where t = 0, 1, . . . are the time indices, x ∈ X ⊆ (Rnc ×
{0, 1}nl) are the continuous and binary/logical states, u ∈
U ⊆ (Rmc × {0, 1}ml) are the (continuous and logical) con-
trol inputs, w ∈ W ⊆ (Rec × {0, 1}el) are the (possibly
adversarial) external inputs or disturbances, and x0 ∈ X
is the initial state. We will refer to w as the environment
input.

A run f = (x0u0w0)(x1u1w1)(x2u2w2)... is an infinite se-
quence where xt ∈ X is the state of the system at index t,
and for each t ∈ N, ut ∈ U , wt ∈W and xt+1 = f(xt, ut, wt).
Given x0 ∈ X, u ∈ Uω and w ∈ Wω, denote by f(x0,u,w)
the run generated following (1). The corresponding sequence
of states, which we also call signal in the rest of the pa-
per, is denoted by x = x0x1 We assume that given
an initial state x0 ∈ X, a control input sequence uN =
u0u1u2 . . . uN−1 ∈ UN and a sequence of environment in-
puts wN = w0w1w2 . . . wN−1 ∈ WN , the resulting horizon-
N run of a system modeled by (1), which we denote by
f(x0,u

N ,wN) = (x0u0w0)(x1u1w1)(x2u2w2)...(xNuNwN),
is unique. In addition, we introduce a generic cost function
J(f(x0,u,w)) that maps (infinite and finite) runs to R.

2.1 Signal Temporal Logic
We consider STL formulas defined recursively according to
the grammar

ϕ ::= µ | ¬µ | ϕ ∧ ψ | ϕ ∨ ψ | 2[a,b] ψ | ϕ U[a,b] ψ

where µ is a predicate whose value is determined by the sign
of a function of an underlying signal x, i.e., µ ≡ µ(x) > 0,
and ψ is an STL formula. The validity of a formula ϕ with
respect to signal x at time t is defined inductively as follows:

(x, t) |= µ ⇔ µ(xt) > 0
(x, t) |= ¬µ ⇔ ¬((x, t) |= µ)
(x, t) |= ϕ ∧ ψ ⇔ (x, t) |= ϕ ∧ (x, t) |= ψ
(x, t) |= ϕ ∨ ψ ⇔ (x, t) |= ϕ ∨ (x, t) |= ψ
(x, t) |= 2[a,b] ϕ ⇔ ∀t′ ∈ [t+ a, t+ b], (x, t′) |= ϕ
(x, t) |= ϕ U[a,b] ψ ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. (x, t′) |= ψ

∧∀t′′ ∈ [t, t′], (x, t′′) |= ϕ.

A signal x = x0x1x2... satisfies ϕ, denoted by x |= ϕ, if
(x, 0) |= ϕ. Informally, x |= 2[a,b] ϕ if ϕ holds at every time
step between a and b, and x |= ϕ U[a,b] ψ if ϕ holds at every
time step before ψ holds, and ψ holds at some time step be-
tween a and b. Additionally, we define 2[a,b] ϕ = > U[a,b] ϕ,

so that x |= 2[a,b] ϕ if ϕ holds at some time step between a
and b. Note that since we deal only with discrete-time sys-
tems, the STL formulas we consider refer only to intervals
over discrete time values. However one of the advantages of
the STL and its accompanying quantitative semantics is that

it enables assessment of robustness to imprecisions resulting
from the discretization of time [6].

An STL formula ϕ is bounded-time if it contains no un-
bounded operators; the bound of ϕ is the maximum over
the sums of all nested upper bounds on the temporal op-
erators, and provides a conservative maximum trajectory
length required to decide its satisfiability. For example, for
2[0,10] 2[1,6] ϕ, a trajectory of length N ≥ 10+6 = 16 is suf-
ficient to determine whether the formula is satisfiable. This
bound can be computed in time linear in the formula length.

2.2 Robust Satisfaction of STL formulas
Quantitative or robust semantics define a real-valued func-
tion ρϕ of signal x and t such that (x, t) |= ϕ ≡ ρϕ(x, t) > 0.
This is computed recursively from the above semantics in a
straightforward manner, by propagating the values of the
functions associated with each operand using min and max
operators corresponding to various STL operators. For ex-
ample, the robust satisfaction of µ1 ≡ x − 3 > 0 at time
0 is ρµ1(x, 0) = x0 − 3. The robust satisfaction of µ1 ∧ µ2

is the minimum of ρµ1 and ρµ2 . Temporal operators can
be treated as conjunctions and disjunctions along the time
axis, e.g., the robust satisfaction of ϕ = 2[0,2] µ1 is ρϕ(x, t) =
mint∈[0,2] ρ

µ1(x, t) = mint∈[0,2] xt − 3. The complete robust
semantics is defined as follows:

ρµ(x, t) = µ(xt)
ρ¬µ(x, t) = −µ(xt)
ρϕ∧ψ(x, t) = min(ρϕ(x, t), ρψ(x, t))
ρϕ∨ψ(x, t) = max(ρϕ(x, t), ρψ(x, t))
ρ2[a,b] ϕ(x, t) = mint′∈[t+a,t+b] ρ

ϕ(x, t′)
ρϕ U[a,b] ψ(x, t) = maxt′∈[t+a,t+b](min(ρψ(x, t′),

mint′′∈[t,t′] ρ
ϕ(x, t′′))

2.3 MILP Encoding for Controller Synthesis
In order to synthesize a run that satisfies an STL formula ϕ,
we add STL constraints to an MILP formulation of the con-
trol synthesis problem as in [21]. To do so, we first represent
the system trajectory as a finite sequence of states satisfy-
ing the model dynamics (1). Then we encode the formula ϕ
with a set of MILP constraints; our encoding produces an
MILP as long as the predicates µ in ϕ are linear or affine.

2.3.1 Constraints on system evolution
The system constraints encode valid finite (horizon-N) tra-
jectories for a system of the form (1) – these constraints hold
if and only if the trajectory f(x0,uN ,wN) satisfies (1) for
t = 0, 1, ..., N .

2.3.2 STL constraints
The robustness of satisfaction of the STL specification, as
defined in 2.2, provides a natural objective for the MILP
defined in section 2.3, either in the absence of, or as a com-
plement to domain-specific objectives on turns of the system.

As described in Section 2.2, the robustness of an STL spec-
ification ϕ can be computed recursively on the structure
of the formula. Moreover, since max and min operations
can be expressed in an MILP formulation using additional
binary variables, this does not add complexity to the en-
coding (although the additional variables do make it more
computationally expensive in practice). Given a formula ϕ,

we introduce a variable rϕt , and an associated set of MILP
constraints such that rϕt > 0 if and only if ϕ holds at position
t. We recursively generate the MILP constraints, such that
rϕ0 determines whether a formula ϕ holds in the initial state.
Additionally, we enforce that the value of rϕt = ρϕ(x, t). The
reader is referred to [21] for details of this encoding.

The advantage of this robustness-based encoding is that it
allows us to maximize or minimize the value of rϕ0 , obtaining
a trajectory that maximizes or minimizes the robustness of
satisfaction.

The union of the STL constraints and system constraints
yields an MILP, enabling us to check feasibility and finding
a solution when possible using an MILP solver; for further
details and examples see [21]. Given an objective function on
runs of the system, we can also find an optimal trajectory
that satisfies the STL specification. The robustness also
provides a natural objective for this MILP, either in the
absence of, or as a complement to domain-specific objectives
on runs of the system.

Mixed integer-linear programs are NP-hard, and hence im-
practical when the dimensions of the problem grow. We
present the computational costs of the above encoding in
terms of the number of variables and constraints in the re-
sulting MILP. If P is the set of predicates used in the formula
and |ϕ| is the length (i.e. the number of operators), then
O(N · |P |) + O(N · |ϕ|) continuous variables are introduced.
In addition, O(N) binary variables are introduced for ev-
ery instance of a Boolean operator, i.e. O(N · |ϕ|) Boolean
variables.

3. PROBLEM STATEMENT
We address the problem of synthesizing control inputs for a
system operating in the presence of potentially adversarial,
a priori uncertain external inputs or disturbances. The con-
trollers we produce will guarantee specifications of the form
ϕ

.
= ϕe ⇒ ϕs, where ϕe places assumptions on the exter-

nal environment, and ϕs specifies desired guarantees on the
plant behavior. In this work, ϕe refers exclusively to prop-
erties of signals w ∈Wω, whereas ϕs refers to properties of
x ∈ Xω and u ∈ Uω.

We now formally state the synthesis problem for reactive
controllers subject to STL specifications of the form above,
and its receding horizon formulation.

Problem 1 (STL Reactive Synthesis). Given a sys-
tem of the form (1), initial state x0, trajectory length N ,
STL formula ϕ and cost function J , compute

argmin
uN

max
wN∈{w∈WN |w|=ϕe}

J(f(x0,u
N ,wN))

s.t. ∀wN ∈WN , f(x0,u
N ,wN) |= ϕ

Problem 2 (Receding Horizon Reactive Synthesis).
Given a system of the form (1), initial state x0, STL formula

ϕ and cost function J , at each time step t, compute

argmin
uH,t

max
wH,t∈{w∈WH,t|w|=ϕe}

J(f(xt,u
H,t,wH,t))

s.t. ∀w ∈Wω, f(x0,u,w) |= ϕ,

where H is a finite horizon provided as a user input or se-
lected in some other fashion, uH,t is the horizon-H control
input computed at each time step and u = uH,00 uH,10 uH,20

In Sections 4 and 5, we present both a finite-trajectory so-
lution to Problem 1, and a solution to Problem 2 for a large
class of STL formulas. A key component of our solution
is to use the encoding of STL specifications as MILP con-
straints presented in [21], in combination with MILP con-
straints representing the system dynamics to efficiently solve
the resulting constrained optimization problem.

4. COUNTEREXAMPLE-GUIDED FINITE
HORIZON SYNTHESIS

We propose a solution to Problem 1 using a counterexam-
ple guided inductive synthesis (CEGIS) procedure. We first
consider bounded STL properties ϕ, bounded by N ∈ N.
Once we have this scheme for synthesizing control for finite
trajectories satisfying bounded specifications, we will use a
receding horizon scheme for infinite trajectories.

Algorithm 1 CEGIS Algorithm for Problem 1

1: procedure CEGIS(f, x0, N, ϕ, J)
2: Let w0 = (w0

1, w
0
2, ...w

0
N−1), s.t. wN |= ϕe

3: Wcand = {w0}
4: while True do
5:

u0 ← argmin
u∈UN

maxw0∈Wcand
(J(f(x0,u,w

0)))

s.t. ∀w0 ∈Wcand, f(x0,u,w
0) |= ϕs,

6: if u0 == null then
7: Return INFEASIBLE

8: end if
9:

w1 ← argminw∈WN ρϕ(f(x0,u
0,w), 0)

s.t. w1 |= ϕe

10: if ρϕ(f(x0,u
0,w1)) > 0 then

11: Return u0

12: else
13: Wcand ←Wcand ∪ {w1}
14: end if
15: end while
16: end procedure

We now describe the steps of Algorithm 1 in detail. In Step
2, we choose an initial instance w0 of an environment that
satisfies the specification ϕe. We do so using the open-loop
synthesis algorithm for bounded-time STL described in [21].
Our initial set of candidate environment inputs is a single-
ton, Wcand = {w0} (Step 3). Then, in Step 5, we com-
pute the optimal control input u0 with respect to this envi-
ronment, such that the system specification ϕs is satisfied;
this step also uses the solution in [21]. If the problem in

Step 5 is infeasible, we know that there is a control input
w0 ∈Wcand against which no control input can satisfy ϕ, so
we can stop and return (Step 7). Otherwise, in Step 9, we
find an environment w1 that satisfies ϕe, but also minimizes
the robustness of satisfaction of ϕ for the control input u0.
Essentially, this step tries to find an environment that fal-
sifies the specification ϕ when the control input u0 is used.
If the minimum robustness ρϕ(f(x0,u

0,w1)) thus computed
is positive, this implies f(x0,u

0,w) |= ϕ ∀w ∈ WN , so we
can return the control input u0 as our result in Step 11 .
Otherwise, we have generated a counterexample to u0 be-
ing the desired control input, i.e. an environment w1 that
falsifies ϕ when u0 is used. We use this counterexample to
guide our inductive synthesis in Step 13, by adding it to the
set of environments to be considered in the next iteration.
We then resume execution of the while loop.from Step 4.

Theorem 1. If Algorithm 1 returns uN ∈ UN , then ∀wN ∈
WN , f(x0,u

N ,wN) |= ϕ. If Algorithm 1 returns INFEASIBLE,
then Problem 1 is infeasible.

Note that Algorithm 1 does not fully solve Problem 1, be-
cause it does not always ensure cost-optimality of uN with
respect to all disturbances wN ∈WN — the returned uN is
optimal with respect to a specific set of disturbancesWcand ⊆
WN .

Since |Wcand| grows by 1 at every iteration of the while

loop, the MILP in Step 5 grows linearly with the number
of iterations, since we duplicate constraints for each new
counterexample. If W is finite, Wcand will converge, and
Algorithm 1 is sound and complete. Otherwise, we execute
a maximum number of iterations of the while loop before
declaring the problem infeasible.

In practice, solving the problem in Step 5 becomes expen-
sive as Wcand grows, in particular because the objective is
now non-linear. While state-of-the-art MILP solvers like
Gurobi1 handle nonlinear objective functions efficiently, we
can preserve the difficulty of the problem at each iteration
by setting Wcand = {w1} in Step 13 instead of growing the
set of candidates. This breaks completeness even for finite
sets W , since we may oscillate between two disturbances,
but preserves soundness with respect to the satisfaction of
ϕ, while allowing faster solutions at each iteration of the
loop.

In the case studies described in Section 6, we find that a cou-
ple of iterations through the while loop suffices to either find
a satisfying control input or render the problem infeasible.

5. RECEDING HORIZON SYNTHESIS
In this section, we will describe a solution to Problem 2 by
adding STL constraints to a receding horizon control frame-
work. At each step t of the computation, we will employ
the CEGIS approach in Section 4 to find a finite trajectory
of fixed horizon length H, such that the trajectory accumu-
lated over time satisfies ϕ.

Note that this problem is relatively simple for bounded-time

1http://www.gurobi.com/

STL formulas ϕ, as described in [21]. Here the length of
the horizon H is chosen to be at least the bound of for-
mula ϕ. Then at time step 0, we synthesize control uH,0

using the formulation in Section 4, and execute only the first
time step uH,00 ; we then observe wH,00 and x1. Then at the
next step, we solve for uH,1, while constraining the values
of uH,10 = uH,00 , wH,10 = wH,00 in the MILP, and retaining the
STL constraints on the trajectory up to time H. Keeping
track of the history in this manner ensures that the formula
is satisfied over the length-H prefix of the trajectory, while
solving for uH,t at every time step t.

Suppose now that we have a specification ψ = 2ϕ, where ϕ
is a bounded-time formula with bound H. In this case, we
can stitch together trajectories of length H using a receding
horizon approach to produce an infinite computation that
satisfies the STL formula. At each step of the receding hori-
zon computation, we search for a finite trajectory of horizon
length 2H, keeping track of the past values and robustness
constraints necessary to determine satisfaction of ψ at every
time step in the trajectory.

First we define a procedure

CEGIS
∗(f, x0, N, ψ = 2ϕ, J,PH ,utold)

that takes additional inputs P = {P0, P1, ..., PH−1} and
utold = u0, u1, ..., ut−1, and is identical to Algorithm 1, ex-
cept that the optimization problem in Step 5 is solved with
the added constraints:

ρϕ(f(x0,u,w
0), i) > Pi∀i ∈ [0, H − 1]

u[i...t] = utold

We then define a receding horizon control procedure as in
Algorithm 2. At each step, we are optimizing over a horizon
of 2H.

Algorithm 2 RHC Algorithm for Problem 2

1: procedure RHC(f, x0, ψ = 2ϕ, J)
2: Let M be a large positive constant.
3: Let H be the bound of ϕ.
4: Set P0 = 0 and Pi = −M ∀0 < i ≤ H.
5: Compute u0 = u0

0, u
0
1,, u

0
2H−1 as:

u0 ← CEGIS
∗(f, x0, 2H,2[0,H] ϕ, J,P

H , ∅)

6: for t=1; t<=H;t=t+1 do
7: Set utold = u0

0, u
1
1, u

2
2, ..., u

t−1
t−1.

8: Set Pi = 0 for 0 ≤ i ≤ t, Pi = −M ∀t < i ≤ H.
9: Compute ut = ut0, u

t
1,, u

t
2H−1 as:

ut ← CEGIS
∗(f, xt, 2H,G[0,H]ϕ, J,P

H ,utold)

10: end for
11: while True do
12: Set utold = ut−1

1 , ut−1
2 , ut−1

3 , ..., ut−1
t .

13: Set Pi = 0 for 0 ≤ i ≤ H.

ut ← CEGIS
∗(f, xt, 2H,G[0,H]ϕ, J,P

H ,utold)

14: end while
15: end procedure

Algorithm 2 has two phases, a transient phase (Lines 4-
10) and a stationary phase (Lines 11-14). The transient

phase applies until an initial control sequence of length H
has been computed, and the stationary phase follows. In
the transient phase, the number of stored previous inputs
(utold) as well as the number of time steps at which formula
ϕ is enforced (i.e. time steps for which Pi = 0) grows by
one at each iteration, until they both attain a maximum of
H at iteration H. Every following iteration uses a window
of size H for stored previous inputs, and sets all Pi = 0.
The size-H window of previously-computed inputs advances
forward one step in time at each iteration after step H. In
this manner, we keep a record of the previously computed
inputs required to ensure satisfaction of ϕ up to H time
steps in the past.

Theorem 2. Let u∗ be the infinite sequence of control in-
puts generated by setting u∗[t] = ut0, where ut = ut0u

t
1...u

t
2H−1

is the control input sequence of length 2H generated by Al-
gorithm 2 at time t. Then ∀w ∈Wω, f(x0,u

∗,w) |= ψ.

Proof. Since H is the bound of ϕ, the satisfaction of ϕ
at time t is established by the control inputs u∗[t : t+H−1].
At time t+H,

ut+Hold = ut+H0 , ut+H1 , ut+H2 , ..., ut+Ht+H−1

= ut+H−1
1 , ut+H−1

2 , ut+H−1
3 , ..., ut+H−1

H

= utt, u
t+1
t+1, u

t+2
t+2, ..., u

t+H−1
t+H−1

= u∗[t : t+H − 1],

and so all the inputs required to determine satisfaction of ϕ
at time t have been fixed. Moreover, if ut+H is successfully
computed, then by the correctness of Algorithm 1, ut+Hold has

the property that ∀wH ∈WH , f(xt,u
t+H
old ,wH) |= ϕ. Since

u∗[t : t+H−1] = ut+Hold , we see that ∀wH ∈WH , f(xt,u
∗[t :

t+ h],wH) |= ϕ.

It follows that ∀wω ∈Wω, f(x0,u
∗,w) |= ϕ.

We have therefore shown how a control input can be syn-
thesized for infinite sequences satisfying ψ, by repeatedly
synthesizing control for sequences of length 2H. A similar
approach applies for formulas 2ϕ and ϕ U ψ, where ϕ,ψ
are bounded-time.

6. CASE STUDIES
We now validate our approach in simulation, for case studies
in building climate control and autonomous driving.

6.1 Building Climate Control
We consider the problem of controlling building indoor cli-
mate in a commercial building equipped with a HVAC sys-
tem controlled by a receding horizon control scheme. We
adopt the model proposed by Maasoumy et al [17], and the
receding horizon control formulation proposed by Maasoumy
et al. [16], with the objective of minimizing the total energy
cost (in dollar value).

As shown in Figure 1, we model a building with 4 rooms;
we denote the temperature of room ri by Ti, and that of
the outside by T5. The temperature of a room is governed
by differential equations that depending on properties such
ad the heat capacity, heat absorption, thermal resistance

Figure 1: Building layout for HVAC control. We
show results for the temperature in Room 1.

and area of the walls between the room and its neighboring
rooms, the radiative heat flux density on external walls, heat
capacity and air mass flow into the room, transmissivity of
the glass of windows, and the total area of the windows on
walls surrounding the room, and the internal heat generation
in the room. Further details on this thermal model can be
found in [17].

The heat transfer equations for each wall and room yield the
following system dynamics:

ẋt = f(xt, ut, dt), yt = Cxt,

where xt ∈ Rn is the state vector representing the temper-
ature of the nodes in the thermal network (including rooms
and walls), and ut ∈ Rlm is the input vector representing
the air mass flow rate and discharge air temperature of con-
ditioned air into each thermal zone (with l being the number
of inputs to each thermal zone, e.g. air mass flow and supply
air temperature). The vector dt stores the estimated distur-
bance values, aggregating various unmodeled dynamics such
as the outside temperature, internal heat generation and ra-
diative heat flux density, and can be estimated using histor-
ical data [17]. In this work, we show results for controlling
the temperature of Room 1 only, and include the tempera-
ture of the neighboring rooms as part of these unmodeled
dynamics dt. yt ∈ Rm is the output vector, representing
the temperature of the thermal zones, and C is a constant
matrix of proper dimension.

Assume that the system dynamics are discretized with a
sampling time of τ , and let H be the prediction horizon (in
number of time steps). Here we consider τ = 0.5 hr and H =
12. At each time t, the receding horizon controller solves an
optimal control problem to compute ~ut = [ut, . . . , ut+H−1],

minimizing the cumulative norm of ut:
∑H−1
k=0 ‖ut+k‖. We

assume known an occupancy function occt, which is equal
to 1 when the room is occupied and to 0 otherwise. The
purpose of the controller is to maintain a comfort temper-
ature given by T comf whenever the room is occupied, while
minimizing the cost of heating. The assumption on the envi-

ronment is that the disturbances dt are in a range bounded
by ε around some reference dreft , obtained from historical
data. Formally,

Here

xt+1 = f(xt, ut, dt)
ϕe = 2[0,H](|dt − dreft | < ε)
ϕs = 2[0,H]((occt > 0)⇒ (Tt > T comf

t)

J(f(x0,u
H ,wH)) =

∑H−1
k=0 ‖ut+k‖

The STL formula ϕ was encoded using the robust MILP
encoding. Figure 6.1 presents results of executing the reced-
ing horizon controller synthesized using Algorithm 1, while
modeling the disturbance as bounded (more precisely, sat-
isfying ϕe) but non-deterministic; we used ε = 3. Compare
this with Figure 6.1, where the disturbance is modeled as
corresponding exactly to dreft (i.e. ε = 0). In both cases, the
actual disturbance (undepicted) was exactly dref.

We observe that the controller designed to operate in an ad-
versarial environment is more conservative, and starts heat-
ing the room earlier (e.g. time step 4 instead of 5) in re-
sponse to the same predicted occupancy signal, to account
for the possibility of a higher disturbance. Additionally,
when the occupancy signal is non-zero, the control input
applied to counter the worst case disturbance results in a
temperature that is higher than in the deterministic case;
the result is that the temperature plot rises further above
the minimum temperature of Tcomf in the nondeterministic
case.

As we previously observed in [21], most of the time is spent
initially creating the MILP, while solving it takes a fraction
of a second for each time step. In practice, the CEGIS loop
of Algorithm 1 was executed fewer than 2 times for most
time steps. As expected, the number of CEGIS iterations
was greater for the case where ε = 3 than ε = 0, reflecting
the greater nondeterminism.

The HVAC model used in this case study is 5-dimensional
[17]; this represents a significant improvement over reactive
synthesis techniques based on discrete abstraction, which
do not typically scale past 2 or 3 continuous variables. We
expect our techniques to scale well to higher dimensions.
The main culprit when it comes to problem size is the length
of the horizon required to ensure satisfiability. This increases
with the nesting of temporal operators.

6.2 Autonomous Driving in Nondeterministic
Environments

We now consider the problem of controlling an autonomous
vehicle operating in the presence of other, potentially adver-
sarial vehicles.

In this example, two moving vehicles approach an intersec-
tion, which they must cross. We let the red car in Figure 3
be the ego vehicle (the vehicle we control), and the black
car be part of the environment. We define the state space
using a simplified 6-dimensional model, with the position of
the two vehicles ((xego, yego), (xadv, yadv)) and the velocity
of the two (vego = ẏego, vadv = ẋadv) in ms−1 as state vari-

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
62

63

64

65

66

67

68

69

T1
T

comf

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
−1

0

1

Occupancy

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
−100

0

100

Air Flow

(a) Known Disturbances: ε = 0

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
62

63

64

65

66

67

68

69

T1
T

comf

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
−1

0

1

Occupancy

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
−100

0

100

Air Flow

(b) Uncertain Disturbances: ε = 3

Figure 2: Receding horizon control of Room 1 temperature under constraints based on occupancy, expressed
in STL. In both plots, the black line in the topmost subplots represent the actual value of Tcomf, and the red
line is the prediction of Tcomf for the current planning horizon. The blue line in the plot of the occupancy
signal represents the actual value, and the red dotted overlay is the prediction for the current horizon. The
green dotted lines in the temperature and air flow plots depict the control input and resulting state trajectory
computed during the current iteration of the receding horizon control computation. The blue lines in the
control and temperature plots represent the portion of the control input that was actually executed and the
resulting temperature T1, respectively.

Figure 3: Two vehicles crossing an intersection si-
multaneously. The red car is the ego vehicle, which
we control. The black car is part of the adversarial
environment.

ables, and the acceleration (aego = v̇ego) of the ego vehicle
as a single input. The disturbance is the acceleration of the
environment vehicle (aadv = v̇adv), which is allowed to take
values in a bounded range. Thus:

xt =
[
xegot yegot xadvt yadvt vegot vadvt

]>
(2)

u =aegot w = aadvt (3)

We assume each vehicle has the dynamics of a double inte-
grator:

ẋegoẏego

v̇ego

 =

0 0 0
0 0 1
0 0 0

xegoyego

vego

+

0
0
1

u (4)

ẋadvẏadv

v̇adv

 =

0 0 1
0 0 0
0 0 0

xadvyadv

vadv

+

0
0
1

w (5)

Our specification in this example is that there should be no
collision at the intersection for the two vehicles, and that
the ego vehicle’s speed should be close to 1ms−1. Here the
disturbance w is the acceleration of the adversary, whose
value is assumed to be close to a reference value, wref. We
use the following STL formulas:

ϕe = 2(|w −wref| < 0.1)
ϕs = 2(|yegot − xadvt | < 2) =⇒ 2[0,2](|vegot | < 0.1)

The formula ϕs specifies that whenever yegot is close to xadvt ,
i.e. within the range of 2m, the ego vehicle should come to a
stop (|vegot | < 0.1) for a short period of time (2s). Figure 3,
shows that the two vehicles will be close only when they are
in the vicinity of the intersection. We expect the ego vehicle
to stop at the intersection in order to allow the adversary
to cross. In addition, we optimize the following cost func-
tion, which encourages the ego vehicle’s speed to be close to
1ms−1.

J(f(x0,u
H ,wH)) =

H−1∑
k=0

||vegot+k − 1|| (6)

Figure 4 illustrates the result of applying Algorithm 2 to
synthesize control inputs for the ego vehicle. The first plot
shows the position of the two vehicles, xadvt and yegot (in
m). The ego vehicle starts with a negative value on its y-
axis yego0 < 0, and the adversary starts with a positive x-
value xadv0 > 0. Here the origin represents the middle of
the intersection: at any time t if yegot = xadvt = 0, the two
cars have collided. The synthesized control input should
therefore avoid such a collision, and the two vehicles should
not be at location 0 or its vicinity (|yegot − xadvt | < 2) at the
same time.

As seen in the first and second subplots in Figure 4, at time
t = 8s, the ego vehicle stops at its current position in or-
der to avoid collision with the adversary car. The vehicle
proceeds after a short stop to let the adversary pass. The
third subplot shows the velocity of the two vehicles, and the
fourth plot represents the acceleration. Notice that the ve-
locity of the ego vehicle stabilizes at 1ms−1 at most times as
long as it avoids any collisions. The accelerations shown in
the fourth plot include the control input synthesized using
Algorithm 2, and the disturbance, i.e., the acceleration of
the adversary.

7. DISCUSSION
The main contribution of this paper is a CEGIS proce-
dure for synthesis of reactive controllers for systems sat-
isfying STL specifications. We showed how our approach
can be used as part of a receding horizon control scheme,
to generate control for systems that must satisfy STL prop-
erties in the presence of adversarial environments, subject
to domain-specific cost functions. We presented experimen-
tal results for controller synthesis on simplified models of a
smart-building HVAC system and an autonomous car, and
showed in simulation that the synthesized controllers satisfy
the specified properties despite nondeterministic and adver-
sarial environments.

8. ACKNOWLEDGEMENTS
This work was supported in part by TerraSwarm, one of six
centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA.

0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

10

x−Position of Ego Vehicle
y−Position of Adversary Vehicle

0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

10

− Distance of Ego vehicle from intersection
+ Distance of Adversary vehicle from intersection

0 2 4 6 8 10 12 14 16 18 20
−2

−1

0

1

2

Velocity of Ego Vehicle
Velocity of Adversary Vehicle

0 2 4 6 8 10 12 14 16 18 20
−4

−2

0

2

Time (s)

Acceleration of Ego Vehicle
Acceleration of Adversary Vehicle

Figure 4: Plot of position, velocity and acceleration
of the ego and adversary vehicles. The second plot
from the top shows the distance (in m) of each vehi-
cle from the intersection. While the adversary vehi-
cle drives straight through the intersection at a con-
stant speed, the ego vehicle stops at t=8s, when it
is around 2.5m from the intersection, then resumes
moving around t=16s, thus avoiding collision.

9. REFERENCES
[1] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin,

M. Raghothaman, S. A. Seshia, R. Singh,
A. Solar-Lezama, E. Torlak, and A. Udupa.
Syntax-guided synthesis. In Proceedings of the IEEE
International Conference on Formal Methods in
Computer-Aided Design (FMCAD), October 2013.

[2] A. Bemporad and M. Morari. Control of systems
integrating logic, dynamics, and constraints.
Automatica, 35(3):407–427, 1999.

[3] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu.
Symbolic model checking without BDDs. In TACAS,
pages 193–207, 1999.

[4] K. Chatterjee, T. A. Henzinger, R. Jhala, and
R. Majumdar. Counterexample-guided planning. In
UAI ’05, Proceedings of the 21st Conference in
Uncertainty in Artificial Intelligence, Edinburgh,
Scotland, July 26-29, 2005, pages 104–111, 2005.

[5] X. C. Ding, M. Lazar, and C. Belta. LTL receding
horizon control for finite deterministic systems.
Automatica, 50(2):399–408, 2014.

[6] A. Donzé and O. Maler. Robust satisfaction of
temporal logic over real-valued signals. In FORMATS,
pages 92–106, 2010.

[7] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J.
Pappas. Temporal logic motion planning for dynamic
robots. Automatica, 45(2):343 – 352, 2009.

[8] G. E. Fainekos and G. J. Pappas. Robustness of
temporal logic specifications for continuous-time
signals. Theor. Comput. Sci., 410(42):4262–4291, 2009.

[9] E. A. Gol and M. Lazar. Temporal logic model
predictive control for discrete-time systems. In
Proceedings of the 16th international conference on

Hybrid systems: computation and control, HSCC
2013, April 8-11, 2013, Philadelphia, PA, USA, pages
343–352, 2013.

[10] X. Jin, A. Donzé, J. Deshmukh, and S. A. Seshia.
Mining requirements from closed-loop control models.
In HSCC’13, 2013.

[11] S. Karaman and E. Frazzoli. Vehicle routing problem
with metric temporal logic specifications. In
Proceedings of the 47th IEEE Conference on Decision
and Control, CDC 2008, December 9-11, 2008,
Cancún, México, pages 3953–3958, 2008.

[12] S. Karaman and E. Frazzoli. Sampling-based motion
planning with deterministic µ-calculus specifications.
In Proceedings of the 48th IEEE Conference on
Decision and Control, CDC 2009, combined withe the
28th Chinese Control Conference, December 16-18,
2009, Shanghai, China, pages 2222–2229, 2009.

[13] S. Karaman and E. Frazzoli. Linear temporal logic
vehicle routing with applications to multi-UAV
mission planning. International Journal of Robust and
Nonlinear Control, 21(12):1372–1395, 2011.

[14] M. Kloetzer and C. Belta. A fully automated
framework for control of linear systems from temporal
logic specifications. IEEE Transaction on Automatic
Control, 53(1):287–297, 2008.

[15] Y. Kwon and G. Agha. Ltlc: Linear temporal logic for
control. In M. Egerstedt and B. Mishra, editors,
HSCC, pages 316–329, 2008.

[16] M. Maasoumy, C. Rosenberg,
A. Sangiovanni-Vincentelli, and D. Callaway. Model
predictive control approach to online computation of
demand-side flexibility of commercial buildings hvac
systems for supply following. In IEEE American
Control Conference (ACC 2014), Portland, USA, June
2014.

[17] M. Maasoumy Haghighi. Controlling Energy-Efficient
Buildings in the Context of Smart Grid: A Cyber

Physical System Approach. PhD thesis, University of
California, Berkeley, Dec 2013.

[18] O. Maler and D. Nickovic. Monitoring temporal
properties of continuous signals. In
FORMATS/FTRTFT, pages 152–166, 2004.

[19] R. M. Murray, J. Hauser, A. Jadbabaie, M. B. Milam,
N. Petit, W. B. Dunbar, and R. Franz. Online control
customization via optimization-based control. In In
Software-Enabled Control: Information Technology for
Dynamical Systems, pages 149–174.
Wiley-Interscience, 2002.

[20] P. Nuzzo, H. Xu, N. Ozay, J. Finn,
A. Sangiovanni-Vincentelli, R. Murray, A. Donze, and
S. Seshia. A contract-based methodology for aircraft
electric power system design. Access, IEEE,
PP(99):1–1, 2013.

[21] V. Raman, M. Maasoumy, A. Donzé, R. M. Murray,
A. Sangiovanni-Vincentelli, and S. A. Seshia. Model
predictive control with signal temporal logic
specifications. In Proc. of the IEEE Conf. on Decision
and Control, 2014.

[22] A. Solar-Lezama, L. Tancau, R. Bod́ık, S. A. Seshia,
and V. A. Saraswat. Combinatorial sketching for finite
programs. In Proceedings of the 12th International
Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pages
404–415. ACM Press, October 2006.

[23] E. M. Wolff, U. Topcu, and R. M. Murray.
Optimization-based trajectory generation with linear
temporal logic specifications. In 2014 IEEE
International Conference on Robotics and Automation,
ICRA 2014, Hong Kong, China, May 31 - June 7,
2014, pages 5319–5325, 2014.

[24] T. Wongpiromsarn, U. Topcu, and R. M. Murray.
Receding horizon temporal logic planning. IEEE
Trans. Automat. Contr., 57(11):2817–2830, 2012.

	Introduction
	Preliminaries
	Signal Temporal Logic
	Robust Satisfaction of STL formulas
	MILP Encoding for Controller Synthesis
	Constraints on system evolution
	STL constraints

	Problem Statement
	Counterexample-Guided Finite Horizon Synthesis
	Receding Horizon Synthesis
	Case Studies
	Building Climate Control
	Autonomous Driving in Nondeterministic Environments

	Discussion
	Acknowledgements
	References

