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Paleoclimate records indicate a series of severe droughts was
associated with societal collapse of the Classic Maya during the
Terminal Classic period (~800-950 C.E.). Evidence for drought
largely derives from the drier, less populated northern Maya Low-
lands but does not explain more pronounced and earlier societal
disruption in the relatively humid southern Maya Lowlands. Here
we apply hydrogen and carbon isotope compositions of plant wax
lipids in two lake sediment cores to assess changes in water avail-
ability and land use in both the northern and southern Maya low-
lands. We show that relatively more intense drying occurred in the
southern lowlands than in the northern lowlands during the Ter-
minal Classic period, consistent with earlier and more persistent
societal decline in the south. Our results also indicate a period of
substantial drying in the southern Maya Lowlands from ~200 C.E.
to 500 C.E., during the Terminal Preclassic and Early Classic periods.
Plant wax carbon isotope records indicate a decline in C4 plants in
both lake catchments during the Early Classic period, interpreted
to reflect a shift from extensive agriculture to intensive, water-
conservative maize cultivation that was motivated by a drying
climate. Our results imply that agricultural adaptations developed
in response to earlier droughts were initially successful, but failed
under the more severe droughts of the Terminal Classic period.

Maya civilization | drought | societal collapse | climate adaptation |
compound-specific isotope analysis

he decline of the lowland Classic Maya during the Terminal

Classic period (800-900/1000 C.E.) is a preeminent example
of societal collapse (1), but its causes have been vigorously de-
bated (2-5). Paleoclimate inferences from lake sediment and
cave deposits (6-11) indicate that the Terminal Classic was
marked by a series of major droughts, suggesting that climate
change destabilized lowland Maya society. Most evidence for
drought during the Terminal Classic comes from the northern
Maya Lowlands (Fig. 1) (6-8, 10), where societal disruption was
less severe than in the southern Maya Lowlands (12, 13). There
are fewer paleoclimate records from the southern Maya Lowlands,
and they are equivocal with respect to the relative magnitude of
drought impacts during the Terminal Classic (9, 11, 14). Further,
the supposition that hydrological impacts were a primary cause for
societal change is often challenged by archaeologists, who stress
spatial variability in societal disruption across the region and the
complexity of human responses to environmental change (2, 3,
12). The available paleoclimate data, however, do not constrain
possible spatial variability in drought impacts (6-11). Arguments
for drought as a principal cause for societal collapse have also not
considered the potential resilience of the ancient Maya during
earlier intervals of climate change (15).

For this study, we analyzed coupled proxy records of climate
change and ancient land use derived from stable hydrogen and
carbon isotope analyses of higher-plant leaf wax lipids (long-chain
n-alkanoic acids) in sediment cores from Lakes Chichancanab and
Salpeten, in the northern and southern Maya Lowlands, respectively
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(Fig. 1). Hydrogen isotope compositions of r-alkanoic acids
(8Dy.x) are primarily influenced by the isotopic composition of
precipitation and isotopic fractionation associated with evapo-
transpiration (16). In the modern Maya Lowlands, 8Dy, is well
correlated with precipitation amount and varies by 60%o across an
annual precipitation gradient of 2,500 mm (Fig. 2). This modern
variability in 8Dy is strongly influenced by soil water evaporation
(17), and it is possible that changes in potential evapotranspiration
could also impact paleo records. Accordingly, we interpret 8Dy,
values as qualitative records of water availability influenced by
both precipitation amount and potential evapotranspiration.
These two effects are complementary, since less rainfall and in-
creased evapotranspiration would lead to both increased 8D,y
values and reduced water resources, and vice versa.

Plant wax carbon isotope signatures (8'°Cyqy) in sediments
from low-elevation tropical environments, including the Maya
lowlands, are primarily controlled by the relative abundance of
C; and C, plants (18-20). Ancient Maya land use was the domi-
nant influence on the relative abundance of C; and C, plants
during the late Holocene, because Maya farmers cleared C; plant-
dominated forests and promoted C, grasses, in particular, maize
(21-24). Thus, we apply 8'°Cqx records as an indicator of the
relative abundance of C4 and C; plants that reflects past land use
change (SI Text). Physiological differences between plant groups
also result in differing 8Dy.x values between C; trees and shrubs
and C, grasses (16), and we use §'3C,,ax records to correct for the
influence of vegetation change on 8Dy, values (25) (8Dyax.corr
SI Text and Fig. S1).

Significance

The Terminal Classic decline of the Maya civilization represents
a key example of ancient societal collapse that may have been
caused by climate change, but there are inconsistencies be-
tween paleoclimate and archaeological evidence regarding the
spatial distribution of droughts and sociopolitical disintegra-
tion. We conducted a new analysis of regional drought in-
tensity that shows drought was most severe in the region with
the strongest societal collapse. We also found that an earlier
drought interval coincided with agricultural intensification,
suggesting that the ancient Maya adapted to previous epi-
sodes of climate drying, but could not cope with the more
extreme droughts of the Terminal Classic.
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Fig. 1. Map of the Maya Lowlands indicating the distribution of annual
precipitation (64) and the location of paleoclimate archives discussed in the
text. The locations of modern lake sediment and soil samples (Fig. 2) are in-
dicated by diamonds.

Plant waxes have been shown to have long residence times in
soils in the Maya Lowlands (26). Therefore, age—depth models
for our plant wax isotope records are based on compound-spe-
cific radiocarbon ages (Fig. 3), which align our 8D,y records
temporally with nearby hydroclimate records derived from other
methodologies (26) (SI Text and Fig. S2). The mean 95% con-
fidence range for the compound-specific age—depth models is
230y at Lake Chichancanab and 250 y at Lake Salpeten. Given
these age uncertainties, we focus our interpretation on centen-
nial-scale variability (26). The temporal resolution of our plant
wax isotope records is lower than speleothem-derived climate
records (8, 9), but combining plant wax records from multiple
sites allows comparisons of climate change and land use in the
northern and southern Maya Lowlands, which would otherwise
not be possible. In addition, plant wax isotope records extend to
the Early Preclassic/Late Archaic period (1500-2000 B.C.E.),
providing a longer perspective on climate change in the Maya
Lowlands than most other regional records (6, 8-11).

Results and Discussion

Intersite Comparison of Dy ax.corr Hydroclimate Records. A key
strength of 8Dy, in the Maya Lowlands is the well-defined spatial
relationship between sedimentary 8Dy, and annual precipitation
amount in this region (Fig. 2). Evaporative enrichment of soil-
water D/H ratios—primarily associated with annual precipitation
amount—is thought to be the dominant mechanism for the spatial
range in 8Dy, in the Maya Lowlands (17), while other climate
variables explain much less of the variability in 8Dy, (Fig. S3). In
particular, potential evapotranspiration (PET), which can also
influence soil-water D/H ratios, varies much less than annual
precipitation and has a much lower correlation with 8Dy, values
(Fig. S3). Application of a vegetation correction to 8Dy, values in
modern lake sediments and soils (8Dyax.corrs SI Text) to account
for differences in the apparent D/H fractionation between envi-
ronmental water and plant waxes in different plant groups (25)
improves its correlation with annual precipitation. Residual vari-
ance in 8Dy,ax.corr Values from lake surface sediments and topsoils,
on the order of +10%o (Fig. 2), could result from site-specific
differences in edaphic properties or microclimates that influence
evapotranspiration. It is also possible that the incorporation
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of aged, soil-derived plant waxes into lake surface sediments
contributes to scatter in dDy.xcorr Values, although this process
would not influence topsoil samples (26), or that the applied
vegetation correction does not fully account for 8Dy, differences
between plant groups. Importantly, 8Dyax.corr Values in surface
sediments from Lakes Chichancanab and Salpeten are within er-
ror of the mean value for their respective regions, implying that
S8Dyaxcorr Values at these lakes are not strongly influenced by
nonclimatic factors. Accordingly, differences in 8Dy.x.corr Values
between these two lake sediment cores can be used as an indicator
of spatial differences in hydroclimate in the Maya Lowlands.

Past variability in 8Dyax.corr reflects the combined effects
of evaporative enrichment of soil and plant water D/H ratios
and temporal variability in the isotopic composition of pre-
cipitation, which, in this region, is primarily controlled by the
amount effect (8, 27). Past variability in the evaporative en-
richment of soil-water D/H ratios could be influenced by
changes in both precipitation amount and PET. Temperature
is the dominant influence on PET (28), however, and we as-
sume, based on paleotemperature estimates, that both tempera-
ture and PET remained relatively constant in this region during
the late Holocene (29). Regardless, if PET did vary, it would have
impacted ancient Maya water resources by altering the evapora-
tion of soil moisture and water storage reservoirs, and therefore
we interpret 8Dy axcorr Values as a qualitative indicator of past
water availability. It is also possible that the strength of the
amount effect varied between the northern and southern Maya
Lowlands, which would lead to differential changes in 8Dyax.corr i
these two regions for a given decrease in rainfall amount. How-
ever, the two Global Network of Isotopes in Precipitation stations
nearest to the Maya Lowlands (i.e., Veracruz, Mexico and San
Salvador, El Salvador) record nearly identical 'O precipitation
amount slopes (27) and thus suggest that the strength of the
amount effect is largely invariant across southern Mexico and
Central America.

In contrast t0 8Dyuycorr records, 880 values in carbonate
shells from lake sediments and in cave carbonate can be strongly
impacted by nonclimatic factors that influence local hydrology or
80/'%0 fractionation between water and carbonate (14, 30-32).
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Fig. 2. Scatter plot showing the negative relationship between annual
precipitation and 8Dyax.corr measured in modern lake sediment and soil
samples (Fig. 1). Results from Lake Chichancanab (CH) and Salpeten (SP) are
indicated. The black line indicates a linear regression fit to these data, with
regression statistics reported at the bottom of the plot. Large squares in-
dicate mean values for each sampling region, with error bars indicating SEM
in both 8Dyyax.corr and annual precipitation. The black error bar indicates the
1o error for 8Dyax.corr Values (SI Text). Original 8Dy.x data from ref. 17.
VSMOW, Vienna Standard Mean Ocean Water.
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Fig. 3. Plant wax (green; left) and terrigenous mac-
rofossil (red; right) age—depth models for (A) Lake
Chichancanab and (B) Lake Salpeten. The age
probability density of individual radiocarbon anal-
yses is shown. The black lines indicate the best age
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Thus, although carbonate 5'®0 values within an individual lake
sediment core or cave speleothem typically provide a robust in-
dicator of past climate change at a given site, these data cannot
be readily compared between lakes or caves to determine spatial
differences in climatic change. Notably, modern 880 values
for the Yok I speleothem in southern Belize (~—3.4%o) are
80-enriched relative to modern §'0 values for the Chaac
speleothem in the northern Yucatan (~—5.4%o) (Fig. 4B). This
isotopic difference is unexpected, given the much wetter climate
at Yok Balum Cave and relatively small differences in the iso-
topic composition of precipitation across the region (17). The
difference in 5'0 between the two sites is likely the result of
combined evaporative and kinetic isotope effects that influence
the Yok I record (9), although these isotopic offsets have not
been thoroughly examined. As a consequence, comparison of
speleothem isotope records does not provide a clear indication of
spatial variability in past climate change in the Maya Lowlands.
Similar site-specific hydrological influences confound spatial
comparisons between lake sediment 8'80 records (14, 33).
Therefore, comparative analysis of 8Dy corr records from Lake
Chichancanab and Lake Salpeten provide a unique and powerful
tool for understanding how hydrological variability across the
region impacted the ancient Maya.

Patterns of Hydroclimate Change in the Maya Lowlands. Our results
from Lakes Chichancanab and Salpeten confirm the occurrence
of severe and extended droughts throughout the Maya Lowlands
during the Terminal Classic (Fig. 44), with the magnitude of
8Dy ax-corr change (~50-60%o0) equivalent to the modern range in
S8Dyax-corr from northern Yucatan to southeastern Guatemala
(where annual precipitation ranges from 800 mm to 3,300 mm;
Fig. 2). Indeed, major droughts inferred from 8Dyax.corr during
the Terminal Classic represent the driest regional conditions of
the preceding ~1,200 y at Lake Chichancanab and of the preceding
~2,500 y at Lake Salpeten. Importantly, our 8Dyax.corr records
further imply that the large, modern precipitation gradient between
Lake Chichancanab and Lake Salpeten (~550 mm; Fig. 1) changed
significantly over time (Fig. 5) and that the hydrologic differences
between the northern and southern Maya Lowlands effectively
disappeared during the Terminal Classic (Fig. 5), with substantially
greater drying in the southern lowlands relative to the northern
lowlands (Fig. 4).

Differential patterns of paleohydroclimate change between
these two sites are consistent with analyses of 20th-century rainfall
variability that show poor correlation between the northern
Yucatan Peninsula and the southern lowlands south of 17°N (8).
Mechanistic explanations for these differences remain unresolved,
but two scenarios are plausible. Today, the relatively dry climate of
northern Yucatan (Fig. 1) results from atmospheric subsidence
related to the descending limb of the Hadley cell (34). A south-
ward shift of the Hadley cell during the Terminal Classic (9, 35)
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would have caused the region of subsidence to expand to the
south, and could have led to a stronger decrease in precipitation
in the southern lowlands relative to the northern lowlands.
Alternatively, different sensitivities to past ocean circulation
could have played a role. Interoceanic temperature gradients be-
tween the tropical Atlantic and the eastern tropical Pacific are an
important driver of summer rainfall variability in Central America
(36, 37), and paleoclimate studies have found evidence for a Pa-
cific influence on hydroclimate in northern Guatemala and other
regions of Mesoamerica (38-40). In contrast, recent variability in
precipitation across northern Yucatan does not appear to have a
consistent relationship with Pacific climate variability (36, 41, 42).
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Fig. 4. (A) The 8Dyax.corr records from Lakes Chichancanab and Salpeten,

fit with a smoothing spline (thicker lines) to highlight centennial-scale
trends. Colored envelopes indicate 16 error in 8Dyax-corr Values (+7%o) ap-
plied to the smoothing spline fits. Horizontal bands indicate the mean
8Dwax-corr Values for lake surface sediments and soils from three regions
within the Maya Lowlands with different mean annual precipitation
(Fig. 2); the width of the bands indicates the SEM of regional mean values.
(B) The 8'0 records from two speleothems from the northern (Chaac) and
southern (Yok 1) Maya Lowlands (8, 9) (Fig. 1), plotted on a common scale to
highlight differences in the range and amplitude of 8'80 variability for
these two records. E, Early; M, Middle; L, Late; T, Terminal; VPDB, Vienna
Pee Dee Belemnite.
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Fig. 5. Record of the difference in 5Dy ax (A8Dyax) between Lake Chichancanab
and Lake Salpeten, indicating changes in the precipitation gradient be-
tween the northern and southern Maya Lowlands. ASD,y.y is calculated as
the difference between smoothing spline curves fit to isotopic data
from each lake core (Fig. 3). The gray envelope indicates the propagated
1o error for A8Dayx (+10%0). Modern A8Dy,.x (Fig. 2) is indicated by the
dashed line.

Rather, past hydroclimate variability in northern Yucatan appears
to be primarily linked to the climate of the North Atlantic (10, 43)
and may be influenced by North Atlantic tropical cyclones (44).
Paleoclimate data indicate increased El Nifio event frequency
between ~250 C.E. and 1400 C.E. (45), coinciding with drier and
more variable hydroclimate at Lake Salpeten (Fig. 4). We suggest
that this change in Pacific climate could have increased drought
frequency in the southern Maya lowlands by reducing Atlantic—
Pacific temperature gradients, but had a lesser impact in the
northern Maya lowlands.

Climate Change and Sociopolitical Responses. Changes in hydro-
logical conditions and sociopolitical evolution appear to be
linked on centennial timescales in the southern Maya Lowlands.
Our Lake Salpeten 8Dyax.corr record suggests that the southern
Lowlands experienced relatively wet and stable conditions during
much of the Middle and Late Preclassic periods (~700 B.C.E. to
200 C.E.)—times marked by continuous demographic growth
and increasing sociopolitical complexity throughout the region.
The Middle Preclassic gave rise to the first cities with concen-
trated populations, writing, and public monuments (46, 47),
followed by the rise of hierarchical and centralized states during
the Late Preclassic period (48).

Lake Salpeten 8Dyax.corr Values indicate pronounced drying
from ~200 C.E. to 500 C.E., a pattern that is broadly consistent
with other hydroclimate records from the southern Maya Low-
lands (9, 11, 14). Drying during the Early Classic period is as-
sociated with the decline and abandonment of some of the largest
Late Preclassic political systems in the third century C.E. and
subsequent political fragmentation in the region (15, 46). During
that time, widespread political realignment developed gradually
under the strong influence of a foreign power, the central Mexican
city of Teotihuacan (49). We suggest that climatological stress
disrupted the largest Late Preclassic states, enabling smaller and
more resilient polities to grow by using adaptations to more var-
iable conditions, such as water conservation (50).

A negative 35%o 8D shift at the beginning of the Late Classic
period (~600 C.E.) indicates substantially wetter conditions
around Lake Salpeten for almost two centuries that coincided
with a period of intense architectural construction, political ex-
pansion, and resource consumption throughout the southern
lowlands, including the rise and expansion of large, centralized
political entities such as Calakmul and Tikal (51, 52). Dry condi-
tions returned to the southern lowlands around the beginning of

5610 | www.pnas.org/cgi/doi/10.1073/pnas.1419133112

the Terminal Classic period (~800 C.E.), intensified during the
early Postclassic period, and ended ca. 1300 C.E. During this time,
political complexity in the southern Maya Lowlands underwent a
fitful but inexorable regional decline (3). Monument building and
written inscriptions essentially ceased after 8§20 C.E., and the
institution of centralized kingship—the main organizing entity of
the southern lowlands throughout the first millennium C.E.—
disappeared forever (5, 53, 54). Importantly, political decline in
the southern lowlands during the Terminal Classic differed from
that at the end of the Preclassic period in that it was not followed
by the development of new, resilient political centers. We argue
that the absence of a significant Postclassic recovery in the
southern lowlands was related to the more intense and sustained
interval of drought in the region.

Ancient Maya Land Use Change and Climate Adaptation. Ancient
lowland Maya populations adapted to available water resources
and used a diverse set of land use practices (13, 55) that likely
preconditioned their vulnerability to hydrolo%ical change. Whereas
SDyax.corr reflects hydrological conditions, & 3Cyax records reflect
the relative proportion of C; and C, plants in the lake catchment,
and thus local agricultural practices (SI Text). During the Pre-
classic period, C, plant abundance in both the Lake Salpeten and
Lake Chichancanab catchments was relatively high, with large
variability on centennial timescales (Fig. 6 A and B). A long-term
shift toward fewer C4 plants occurred at the beginning of the
Classic period in both catchments. Relatively low C, plant
abundance persisted in both catchments into the Early Post-
classic, followed by an increase at the end of that period. The
inferred decrease in C, plant coverage at Lake Salpeten is
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Fig. 6. Coupled plant wax isotope records of hydroclimate and land use change
from (A) Lake Chichancanab and (B) Lake Salpeten, alongside (C) estimates of
population in the Lake Salpeten catchment (56) and population density in the
central portion of the southern Maya Lowlands (57). The 8Dwax<orr and 8">Ciyax
records in A and B are fit to a smoothing spline (thicker lines) to highlight
centennial-scale trends. Colored envelopes indicate 16 error applied to the
smoothing spline fits for 8Dyaxcor (27%0) and 8'3C,.y (+:0.5%0). Estimates of
percent C4 plants are discussed in S/ Text.
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consistent with pollen records that show decreased grass abun-
dance in the Early Classic period (21) (Fig. S4 and SI Text),
accompanied by an increase in C; plant disturbance taxa
(Fig. S4).

The Early Classic trend of decreasing C4 plant abundance in
these two catchments directly coincides with drying trends in
both the northern and southern Maya lowlands (Fig. 6 A and B),
as well evidence of population growth both locally at Lake Sal-
peten (56) and across the southern Maya Lowlands regionally
(57) (Fig. 6C) during the Classic period. Consequently, it is un-
likely that evidence for fewer C, plants reflects a regional re-
duction in maize agriculture. Instead, we argue that increasingly
negative 8'3Cyx trends mark adaptations of local land use in
response to drier conditions. In both lake catchments, the Pre-
classic period was likely characterized by widespread application
of rain-fed swidden (slash-and-burn) agriculture that promoted
maize and other C,4 plant growth. The drier conditions during the
Early Classic period would have inhibited swidden agriculture.
Geoarchaeological evidence suggests that intensive agricultural
strategies were adopted during the Classic period in many areas of
the Maya Lowlands (55, 58, 59), possibly in response to limited
rainfall (58). We suggest that the growth of population around
Lake Salpeten was associated with a reduction in swidden agri-
culture and its replacement by increased intensive maize cultiva-
tion outside the lake catchment in places with reliable water
resources, including seasonal and perennial wetlands (58, 59). If
local land use changes in our two studied sites were representative
of broader patterns, they imply a shift to spatially concentrated
and regionally integrated agricultural economies during the Early
Classic period that encouraged the growth of high-density
population centers.

Given the Classic period population growth surrounding Lake
Salpeten, it appears that such adaptations were an effective re-
sponse to the drier conditions of the Early Classic period. Fur-
ther, with the onset of wetter conditions in the Late Classic
period, these agricultural strategies would have promoted en-
hanced population growth and agricultural productivity, con-
tributing to increased sociopolitical centralization and expansion.
By increasing societal complexity, however, the organization of
lowland Classic Maya society into large, centralized states could
have reduced resilience to the more intense droughts of the
Terminal Classic (1).

Conclusions

Carbon and hydrogen isotope compositions of sedimentary
plant waxes from Lakes Chichancanab and Salpeten support
the hypothesis that drought was instrumental to the Terminal
Classic decline of the Classic Maya throughout the Maya Low-
lands. Drying was more intense in the southern lowlands, where
societal collapse occurred earliest and was most pronounced
and permanent. Our work further suggests that the Maya suc-
cessfully adapted land use practices during previous droughts
of the Early Classic period, but that more severe droughts
during the Terminal Classic, as well as the increased complexity
of Late Classic societies, made adaptation to climate change
less effective.

Materials and Methods

Sediment Cores and Sampling. Lake Chichancanab is an elongate, fault-
bounded karst lake located in the interior of the Yucatan Peninsula, Mexico
(Fig. 1). The sediment core we analyzed was collected with a piston corer in
145 m of water, in March 2004 (6). Lake Chichancanab sediments are
composed primarily of low-density organic-rich gyttja, but possess distinctive
intervals of high-density gypsum, deposited during periods of drought (6). The
8Dwax data from this core were reported in ref. 26; high-resolution 8"3Cpax
data from this core are presented here for the first time, to our knowledge.

Lake Salpeten is one of a series of east—west aligned lakes in central Petén,
northern Guatemala. The Lake Salpeten sediment core was collected with a
piston corer in 16 m of water, in August 1999 (14). Uppermost and lowermost
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sediments from Lake Salpeten are organic-rich gyttja, whereas the central
portion of the core is composed of dense clay, thought to be the result of
intense soil erosion caused by ancient Maya land clearance (14). This contrasts
with Lake Chichancanab, where there is no sedimentological evidence for
large-scale soil erosion.

Plant Wax Lipid Extraction and Preparation. Methods for plant wax lipid ex-
traction and preparation were previously described (26). Briefly, all sediment
core samples were freeze dried and solvent extracted. Between 0.5 g and
23 g of dry sediment were extracted per sample. The total lipid extract was
then hydrolyzed, and acid and neutral fractions were extracted.

The acid fraction of all samples was esterified using 14% boron trifluoride
in methanol. The resulting fatty acid methyl esters (FAMEs) were then pu-
rified using silica gel chromatography. Purified FAMEs were quantified rel-
ative to an external quantitative standard by gas chromatography.

Compound-Specific Stable Isotope Analyses. Methods for plant wax stable
isotope analyses were previously described (26). The 8D and §'3C values for
individual FAMEs were determined by gas chromatography isotope ratio
mass spectrometry (GC-IRMS) at the Yale University Earth System Center
for Stable Isotopic Studies. The Hs* factor for the GC-IRMS was measured
daily before 8D analysis. External and internal FAME isotope standards
were used to standardize and normalize sample isotope values. The pre-
cision of the standard analyses was <+5%o for 5D analyses and <+0.5%o for
5'3C analyses. Most samples were run in duplicate or triplicate for both
hydrogen and carbon isotope analysis, and the reported isotope ratio
value is the mean of replicate runs. For some samples, long-chain FAME
abundances were insufficient for replicate analyses. FAME 8'3C and 8D
values were corrected for the isotopic composition of the methyl group
added during esterification, by measuring a phthalic acid standard of
known isotopic composition esterified in the same manner as the samples.
The 8Dyax and 8'3C,ax values were calculated as the unweighted mean
isotopic composition of the n-Cy6, N-Cyg, and n-Czq alkanoic acid homologs
(S/ Text and Tables S1 and S2).

Compound-Specific Radiocarbon Analyses of Plant Wax Lipids. Methods for
plant wax radiocarbon analyses are described in ref. 26. Long-carbon-chain-
length FAMEs were isolated using a Preparative Capillary Gas Chromatog-
raphy system at either the Woods Hole Oceanographic Institution De-
partment of Marine Chemistry and Geochemistry or the National Ocean
Sciences Accelerator Mass Spectrometry (NOSAMS) facility (60). Individual
FAMES were not sufficiently abundant for A'*C analysis, so we combined
four long-chain n-alkanoic acid homologs (Cze, Cas, C30, and Csy). Isolated
FAME fractions were quantified and checked for purity using GC with flame
ionization detection. The samples were transferred to precombusted quartz
tubes, all solvent was evaporated under nitrogen, and the samples were
combusted in the presence of cupric oxide at 850 °C to yield CO,. The
resulting CO, was quantified and purified, then reduced to graphite and
analyzed for radiocarbon content at the NOSAMS facility. Compound-spe-
cific radiocarbon results were corrected for procedural blanks by accounting
for the blank contribution determined using the same analytical protocol
and equipment (61). A sample of the methanol used for esterification was
analyzed for A™C at NOSAMS, and FAME A'*C values were corrected for the
addition of methyl carbon. A'C,., results from Lake Chichancanab were
initially reported in ref. 26; A'C,., results from Lake Salpeten are reported
for the first time, to our knowledge, here (Table S3).

Age—Depth Models. The development of terrigenous macrofossil (TM) and
plant wax (PW) age—depth models for Lake Chichancanab are described
in ref. 26. We used a similar approach to define TM and PW age—depth
models for Lake Salpeten. Specifically, we developed a linear-interpolated
age—depth PW age model for Lake Salpeten using the Classical Age—depth
Modeling (CLAM v2.2) software in R (62). We also recalculated the fourth-
order polynomial TM age-depth model for Lake Salpeten (14) using
CLAM. All '“C ages were calibrated to calendar ages using the IntCal13
calibration (63).
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