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The variation of interatomic forces with interatomic
distances in crystals may be determined empirically from
compressibility data. The experimentally possible range
of variation in interatomic distance is, however, so small
that the form of the force function valid for extrapolation
to much greater distances cannot be adequately deter-
mined. From an analysis of Slater’s compressibility data
for the alkali halides it appears that for them the interionic
forces of repulsion may be derived from a common force
function. Because of the relatively large variation of
lattice constant between the different alkali halides it is

possible to determine a form for this common force
function which is valid for relatively large variations in
interatomic separation. The force function so found differs
but little from the inverse power or from the exponential
forms for small displacements from the equilibrium
position. It drops off more rapidly, however, for increasing
distances and increases more rapidly for decreasing
distances. The solution given has the interesting property
that of all possible force functions compatible with Slater’s
compressibility data it is the least favorable for the
formation of a secondary structure.

I. INTRODUCTION

HE interionic forces in heteropolar crystals
may be either derived quantum-theoretic-
ally, or established empirically, mainly from com-
pressibility data. By the former process an ex-
ceedingly complicated problem is involved, and it
is not strange that although a gratifying agree-
ment as to order of magnitude has been obtained
(for instance, in regard to the lattice constant)?!
the results have not been sufficiently precise to
be of any great value for practical purposes.

For most purposes it is necessary to employ an
empirical method? to calculate the interionic
forces. By this method the lattice constant, the
compressibility, and certain other quantities
which can be determined experimentally are
taken for granted, and a number of parameters
in a more or less arbitrarily assumed force func-
tion are adjusted to give an exact agreement with
the real force at least over the small region cov-
ered by the measurements. In many cases this
method is satisfactory, since usually we are

* National Research Fellow.

1See for instance, E. A. Hylleraas, Zeits. f. Physik 63,
771 (1930).

2 In this category must now be placed Born's original
theory (M. Born, Atomtheorie d. festen Zustandes, Leipzig,
Teubner (1923)), as well as recent attempts to make use
of an exponential repulsion. (See, for instance, Born and
Mayer, Zeits. f. Physik 75, 1 (1932).)

interested in the value of the force only over a
small region. When extrapolations beyond this
region do become necessary, however, the method
is open 'to legitimate objections, because of the
arbitrary manner in which the functional form of
the force has been chosen. Since such extrapola-
tions are sometimes of theoretical importance, it
is a matter of interest that in the present paper
some of the arbitrariness of the empirical method
of determining the force has been eliminated.

On account of certain relations between the
compressibility data for the alkali halides it is
possible to relegate a common force function to
all the members of this family. The great di-
versity in lattice constant among these members
thus greatly extends the region of validity of the
results. Although no attempt is made to justify
theoretically the relationship between the alkali
halides, the supposition is reasonable that the
forces for the different ions have a similar origin.
Since the foundations of the present analysis thus
are purely empirical, the results are subject to
the same limitations and uncertainties as the ex-
perimental data on which the analysis is based.
Its main advantages over previous analyses
are the greater generality in the results as well
as in the treatment, and the fact that insofar
as assumptions are involved they are physically
well defined and reasonable.
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II. InTERIONIC FORCES IN RELATION TO
COMPRESSIBILITY

The change in potential energy per pair of
ions, when a crystal is uniformly compressed,
may be represented in two different ways as
follows:

AU=S ([@U/da")ama(a—ag)®, (1)

where a is the central distance between neighbor-
ing atoms, @y being the value assumed by a in the
equilibrium configuration. Or

14

AU=— | p(V)dV, (2

Vo

arU
da™

The quantity dU/da, which represents the central
interionic force, therefore is defined as a Taylor
expansion around the point ¢ =a, when the com-
pressibility is known as a function of the pressure.

III. TRANSLATION OF SLATER'S EXPERIMENTAL
REsuLTs INTO TERMS OF INTER-
10NICc FORCES

By Slater’s measurements® the compressibility
and its first pressure derivative are known at
zero pressure for the alkali halides. Of immediate
interest are therefore the three first equations of
the general set (3). They are:

(@U/da)a=a,=0; (d2U/da?) a=a,=9cao/xo;
(d*U/da®)a=a,=27c(2k0®+ (dx/dD) po) [ Ko®.

Slater’s observations, in conjunction with a de-
termination of the lattice constant, therefore en-
able us to obtain the three first terms in a Taylor
expansion of the central interionic force.? For
many purposes this information is all that is re-
quired,® and since our results, so far, are purely

3 J. C. Slater, Phys. Rev. 23, 488 (1924).

4 For a somewhat more laborious method of arriving at
this same result, see G. A. Tomlinson, Phil. Mag. 11, 1009
(1931). There appears to be a slight discrepancy, however,
between Tomlinson’s third term in the expansion and ours.

5 An important application hereof is given in the paper
immediately following this.
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where the volume per pair of ions is V=ca?
where ¢ is a constant which depends on the
crystallographic arrangement of the atoms.

By Eq. (2) the coefficients in the Taylor ex-
pansion (1) may be expressed in terms of the
pressure, p, and its derivatives with respect to q,
since d"U/da»=d"(AU)/da*. The derivatives of
the pressure with respect to @, in turn, may be
represented in terms of the compressibility, «,
and its pressure derivatives by the definition
k=—dV/Vudp, where V, is the initial volume
per pair of ions.

Consequently we obtain, in general,

d» % dr 3k
uma, =fn((dp"“2) o (dpn—s) . * ot Kp—0, (Lo) . (3)

empirical and involve no hypothesis, a gratifying
degree of rigor is imparted to a group of calcula-
tions. When a knowledge of the interionic force
is required for a greater range in interionic
separation than implied by the three first terms
in a Taylor expansion, we must resort to extra-
polations. It is the purpose of the following
analysis to investigate the possibility of reducing
to a minimum the arbitrariness involved in such
extrapolations.

For this purpose it is convenient to separate
the potential energy of the crystal into two terms,
a negative energy of attraction, and a positive
energy of repulsion. It has been established by
Slater’s work?® that the energy of attraction for
the alkali halides is primarily a Coulomb term,
although higher order terms are not definitely
excluded. We shall, for the present, group these
higher order terms with the energy of repulsion,
®, and therefore bear in mind that ® may con-
tain negative as well as positive terms. Accord-
ingly the energy per pair of ionsis U=& — Me?/2a,
where M is the Madelung constant. If now, for
simplicity, we write, d®/da = 3 Me*F(a, a,), where
the force of repulsion F, for reasons which will
shortly become obvious, is considered as a func-
tion of two variables, Egs. (4) become:
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F(ag, ao) = —1/ae?,
(0F/0a)a=ay=2/ao3+18cas/ Me2k,,
(8%F/da?) a=a,= —6/a,*
+54¢(2k0% 4 (dx/dP) p=o) / Me?ko®.
We define the dimensionless quantities,
p=uao=0a¢*(dF/da)a=q,
Q%= —0a*(9%F/da?) a=aq,.

©)

(6)

Their meaning is as follows. If the law of repul-
sion were the inverse power postulated by Born,?

F= —(ao/a)”/aoz, (7)

p would be the value of the exponent in this
representation. In that case, moreover, we would

have,
Q*=p(p+1), (8)

- a relation which cannot be fulfilled, since, as we
shall see, Q? is as nearly as we can tell a constant
for the alkali halide group, and u, and not p, is
also approximately a constant for this group.®
On the other hand, if the law of repulsion were
the simple exponential also suggested in the
literature,”

’ F=—¢#lama0) /g2 9)

w would be the coefficient in the exponent of the
exponential function. In this case, moreover, we
would have,

=1’

a condition very similar to (8), and, as we shall
see, almost equally incompatible with Slater’s
observations.? In general, the distinction between
an inverse power and a simple exponential law of
repulsion, for practical purposes, is a rather fine
one. In other words, calculations based on the one
would, in most cases, lead to results not far re-
moved from those obtained from the other. Cer-
tainly, Slater’'s observations off hand do not
enable us to draw conclusions in favor of the one
or the other. Although the relation (10) is more
nearly fulfilled, on the average, than the relation

(10)

6 This discrepancy has already been pointed out by
Slater. See reference 3.

7 See reference 4, and also Born and Mayer, reference 2.

8 Whereas a consideration of more than the next neigh-
bors would slightly modify the function (13), this would
not materially affect the conclusions here drawn.
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(8), the difference between the two on the aver-
age, is only about one-third of the discrepancy
between Q? and 2 In this light it would be ab-
surd to draw definite conclusions in favor of the
exponential law of repulsion. Rather, the conclu-
sion must be drawn, that if the experimental
quantity dx/dp is accurate to within the limits
claimed, neither the exponential nor the inverse
power law represents correctly the real law of re-
pulsion, and neither can be reliable for extrapola-
tions.

TABLE 1. Compressibility data for the alkali halides at 30°C.

Salt ao P Q? © (p—3)/ao
LiF 2.07-1078 7.43 98.1 3.59-108 2.14-.108
LiCl 2.57 7.80 722 3.03 1.87
LiBr 2.74 7.89 710 2.88 1.79
NaCl 2.815 8.78 . 71.2 3.2 2.05
NaBr 2.97 891 686 3.00 1.98
KF 2.665 896 91.1 3.36 2.23
KCl 3.13 9.73 689 3.11 2.16
KBr 3.29 993 71.5 3.02 2.11

KI 3.525 10.23  69.7 2.90 2.05
RbBr 3.42 9.81 62.6 2.87 1.99
RbI 3.66 10.50 69.4 2.87 2.05
Average 74.0 3.06 2.04
r.m.s.d. 10.1 0.216 0.122
Percent r.m.s.d. 13.7 71 6.0

TABLE 11. Compressibility data for the alkali halides reduced
to absolute zero.

Salt ao 4 Q2 " (p—1)/ao
LiF 1.97-10°8 6.9 95.8 3.50-108 3.00-108
LiCl 2.54 9.0 117.2 3.55 3.16
LiBr 2.71 9.7 1355 3.58 3.22
NaCl 2.76 10.1  117.8 3.66 3.30
NaBr 2.91 10.5 120.8 3.61 3.26

KF 2.63 8.9 95.0 3.38 3.00
KCl 3.08 10.7 97.5 3.47 3.15
KBr 3.23 11.0 1059 3.41 3.10

KI 3.47 11.5 108.8 3.31 3.03
RbBr 3.36 11.0 97.8 3.27 2.98
RbI 3.58 120 1140 3.35 3.07
Average 110.0 3.46 3.12
r.m.s.d. 12.2 0.123 0.106
Percent r.m.s.d. 11.1 3.56 3.40

The facts to which we have called attention are
illustrated in Tables I and II. The former is
based on the data as observed at 30°C. The latter
is based on these data as reduced by Slater to the
absolute zero.® The tables illustrate the approx-

9 It would have been highly desirable if this discussion
had been preceded by a revision of Slater’s extrapolation
to the absolute zero. In the absence of such a revision,
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imate constancy of the quantity u, which we have
already mentioned, and to which attention pre-
viously has been called by Tomlinson.” It is seen,
however, that this constancy refers more nearly
to the quantity n= (p—k)/a,, where & is a small
numerical constant in the neighborhood of 3 for
the unreduced data, and in the neighborhood of
unity for the data reduced to the absolute zero.
Table I also shows that Q? is a constant to well
within the limits of experimental error, with the
exception of the fluorides which appear to form a
group by themselves. From Table 11, however, it
is seen that the trend is for this subgrouping to
disappear with decrease in temperature. From
Table II it also appears that the constancies here
suggested are tmproved by reducing the data to
absolute zero, as shown by the root-mean-square
deviations from the mean values given at the
bottom of the tables. In the case of the quantity
Q? this is mainly due to the disappearance of the
subgrouping of the fluorides. This quantity other-
wise behaves somewhat erratically after reduc-
tion which undoubtedly can be easily ascribed to
the uncertainties of Slater’s extrapolations. In the
case of the quantities x and 7, on the other hand,
the improvement is unmistakable. We are there-
fore justified in claiming at least an approximate
constancy for the quantities 7 and Q? for the
alkali halides. In the case of.the former the ap-
proximation is very good.

IV. ANaLyTiIC FORMULATION OF THE RESULTS
AND A GENERAL SOLUTION

Together with the exact equilibrium condition,
the definition (6) lead to the following set of
equations:

Fa=ao= - 1/a02, (3F/6(1) a=ay= (nao—{—k) /003,(

11
(0%F/0a%) a=a,= — Q?/ac*. )
Since Slater’s observations indicate that 7 and Q?
are constant for the alkali halides, it follows that
for them the force of repulsion may be derived
from a common force function F by assigning the
proper value to a certain parameter, the physical

however, the contents of the second table must be taken
to indicate only a trend, and too much significance should
not be assigned to the absolute numerical values of the
quantities tabulated.
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significance of which we do not know, but which
depends uniquely on the observed constant of the
lattice ao. In other words the difference between
the members of the alkali halide group, in regard
to the forces of repulsion, is sufficiently described
in terms of a single parameter.’® Thus, by making
F a function of two variables, ¢ and a,, we have
relegated all the members of the alkali halide
group to the same force function, the force in any
particular case being obtained by assigning the
proper value to ao.

The system of Eqgs. (11) admits of an infinite
number of solutions. A general solution is

F=—ao*2* exp [—fal‘(a, ao)da], (12)

ao

where

(@, 45) = 7 exp [ [ e ao)dﬁ] (13)

and

s
T(B, ao) =L(ao)n ' exp [f S(r, ao)dv] (14)

S(v, @) is an arbitrary function, and
L(ao) = (k+1a0)*/a®— (Q*—k) /as®

This general solution, involving ‘an arbitrary
function of two variables, represents the maxi-
mum information which can be derived from
Slater’s observations without resort to any
hypothesis or additional data. Any theoretical
representation of the force, must conform with
this general solution to within limits set by the
accuracy of Slater’s observations. We have al-
ready seen that this condition is not fulfilled by
either the inverse power or the simple exponential
law of repulsion. Similarly it may be shown that a
generalized inverse power law, containing reason-
able higher order terms of the Coulomb force as
well as of the repulsive force, does not withstand
this test. Since, however, the probability of such a
law is remote in view of recent theoretical de-
velopments, we shall not enter into this demon-
stration. Considerably more probable in this
light,"* is the exponential law or a modification
thereof. In the following we shall see that we do,

(15)

10 Although this applies rigorously only at the points
a=ay, it seems fair to assume that it applies generally.
However, no advantage is taken of this in the following.

11 See, for instance, reference 1.
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in fact, arrive at a law of this type by a func-
tional analysis, based on an assumption of a
reasonable and general nature.

V. DERIVATION OF A FIRST APPROXIMATION
SoLuTION

Tomlinson,” neglecting the discrepancy in Eq.
(10), considered the approximate validity of the
force function (9) as evidence that the force of
repulsion is a result of an interaction at the
“boundaries” of the atom, and therefore is es-
sentially a function of the separation of the
“atomic boundaries’” rather than of the central
separation. The validity of this conclusion, based
solely on Slater’s results, is doubtful. There are,
however, other reasons for believing that Tom-
linson’s conclusion is essentially correct, to some
of which we shall return later. For one thing, it is
known that the force of repulsion decreases
rapidly with increased separation, so that it is
reasonable to assume that only proximate parts of
the atoms are materially instrumental in the
creation and maintenance of this force. In the
limit, therefore, for the most rapidly decreasing
force of repulsion, this force would be a function
of the separation of the atomic boundaries only;
aside, perhaps, from a ‘“contact area” which
might depend on the atomic separation as well as
on the atomic dimensions. In mathematical
language:

F=%®(a,a)¥(a—7r), (16)

where (e@—7) represents the separation of the
atomic boundaries. It may be demonstrated, from
Egs. (11), that a “contact area,” ®, is required.
If ® is to be left as an arbitrary function of two
variables the problem is no more determinate
than the original one. It is reasonable to assume,
however, that if ® depends on the atomic separa-
tion (which, as we shall see, it does) the depend-
ency must be slight; i.e., it must be a slowly
changing function of a. In other words, it may be
expanded into a power series of @ where only the
first two terms need be retained. That is,

¢(d, ao) = @0((10) +d‘§1(do). (1 7)

For self-consistency, moreover, we must impose
the condition:

lao®1/®(a0) | 1. (18)
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We shall later demonstrate that this condition is
fulfilled. As we shall see later, moreover, it fol-
lows from the assumption (17) that ao—7(ao) is
also slowly changing, and therefore may be ex-
panded as follows:
ao—r(ao) =sao (19)
where s<1. By removing a factor (¢ —7)~* from
¥, we may write ’
F=(®y+ad,) (a—()—ksgb(a—r). (20)
Introducing F into Egs. (9) we obtain

®1(ao)/P(a0) = —¥'(@o—n/¥lao—r)—n, (21)

\l/”(ao—r)_ W(ao—r)_z(xp'(ag—r) 2
Y(ao—r) ,be(ao—f') Y(ao—r) I
(102

where H?2=(Q?—k(k+1/s)—2knao. We have al-
ready noted that Q?is a constant. We are equally
justified in claiming that H? is constant. In fact,
the root-mean-square deviation from the average
value of H? for the alkali halides is somewhat
smaller than that for Q% With this assumption
Eq. (22) may be reduced to the linear form by
the substitution:

Y(x) =y lxlem, (23)

where, for short, we have written, ao—7 =sao=x.
The differential equation resulting from this sub-
stitution is,

y'+1/x)y = (n*=(s:"— 1) /x*)y =0,

where s;=sH. This is the differential equation of
a Bessel function of imaginary argument. For
s1>% the order of the Bessel function is also
purely imaginary. The solution is,

(24)

y=Ziv(7:77x)’ (25)

where v=(s;2—%)% Replacing x by (a—7), we
obtain by Egs. (23) and (25) the following func-
tional form for the interaction at the boundaries:

Y(a—r)=(a—r)te 1« /7, (in(a—7r)). (26)
From Eq. (21), moreover, we obtain,
®,(ao) 1 Z:) (ins
1(ao L (215@0) 27

"] .
®(ag) 2sao Z i, (insao)
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The problem is now completely solved aside from
the constant s, and a constant of integration im-
plicitly involved in the symbol Z;,.

We shall first consider the constant s. Its value,
insofar as it determines the order of the Bessel
function, is of great importance for the interpre-
tation of the results. As noted, the order becomes
imaginary for s;>%. The Bessel function of
imaginary order as well as argument has the
property,'? that for 0<z<, Z;,(¢2) has an infin-
ity of zeros condensing toward the origin, whereas
to the right of the point z=v, it has at most one
zero. Thus ¢(z) would have an infinite number of
poles for 0<z<w, whereas by a suitable choice
of the constant of integration it can be made
analytic throughout the domain z>». In the
region where observations have been made, the
function ¥(2) is finite and continuous. Therefore
the region 0 <z <» must be outside the region of
observation. This imposes an upper limit to the
value of the constant s, which from the observed
range of variability of @, may be estimated as

si=1/2% or »=1/2. (28)

A lower limit to the value of s; can be set by the
largest observed lateral contraction by extension
of the crystal. Our force function (20) must yield
at least as great a lateral contraction as that ob-
served experimentally, say 8. Translated into
terms of the separation of the atomic boundaries,
this condition becomes, s =4. If we allow' a value
of about 6 percent for é the lower limit becomes,
$1=1 or » =0 which combined with the inequality
(28) gives,

0=v=1/2. (29)

Direct estimates of the value of s can be ob-
tained in three independent ways. First on the
basis of the data on hand: In zero approximation
the force of repulsion should be a function of the
separation of the atomic boundaries only. That is,

F=F(a—r). (30)

Accordingly we attempt to satisfy the first two
of the Egs. (11) by this force function. That is,

F((lo—?’)=-—1/ao2, F’(ao—r)=(na0—|—k)/a03.

12 M. Bocher, Annals of Math. 6, 137 (1892).

13 In this connection may be mentioned that the inverse
power law gives a lateral contraction of about 5 percent.
See F. Zwicky, Phys. Zeits. 24, 131 (1923).
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After differentiation of the first of these equations
with respect to ao, we obtain by division:

1—dr/dao=2/(nae+k).

The right-hand side is small of the order 2/Q
within the domain in which we are interested,
thus justifying our assumption that (ao—7r) is a
slowly changing function of a,. This estimate of s,
namely s=2/0Q, is still too large by a factor of
about 2% to comply with our requirement (28),
thus indicating that it may be necessary to insert
afactor a?in the zero approximation representa-
tion (30).

A second estimate may be obtained directly
from scattering experiments on liquids such as
mercury.'* 15 It is possible from these measure-
ments to calculate the distribution of atoms
around a given atom in the liquid. These calcula-
tions give a mean separation corresponding
roughly to the lattice constant of crystalline
mercury (aside from the difference in density of
liquid and solid Hg and certain other small fac-
tors). For smaller separations the distribution
drops rapidly to practically zero. Although this
cut-off point depends to some extent on the
temperature it must correspond roughly to the
point at which the boundaries are in contact.!®
The difference between the separation of two
neighboring atoms in the crystal and the cut-off
separation should correspond roughly to the
separation of the atomic boundaries in crystalline
Hg, and presumabiy, as to order of magnitude, to
that separation in any crystal. The separation
thus calculated!” is something less than 10 percent
of the lattice constant, and therefore agrees
roughly with our previous estimate.

The value of this agreement lies primarily in
the contact it establishes with an independent
domain of physical measurements. These esti-
mates otherwise are too inaccurate to delimit
satisfactorily the order of the Bessel function in
our solution (26). On the other hand, a knowledge

14 J, A, Prins, Naturwiss. 19, 435 (1931).

15 For an account of the theoretical features, see F.
Zwicky, Proc. Nat. Acad. Sci. 17, 524 (1931).

18 Jf a physical definition is to be given to the term
‘“‘atomic boundary’ it clearly must be in terms of the
gradient of the repulsive potential; that is, where this
gradient becomes very large.

17 Numerical values obtained from P. Debye; Lecture,
California Institute of Technology, October, 1932.
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of the quantity a¢*(3°F/8a%)a=q,, even though it
be to a rather rough approximation, enables us
to arrive at a closer estimate. From Slater’s com-
pressibility data and its temperature dependence
this quantity may be judged to have a value 73,
where # is in the neighborhood of unity although
it may be larger than this by at most a factor 5.
It can be shown that if # has a value approxi-
mately 5, the order of the Bessel function in the
solution (26) becomes zero. On the other hand, if
we let s; assume its maximum value given by the
inequality (28), the order of the Bessel function
becomes /2 which would make the factor # ap-
proximately 1.8. The compressibility data indi-
cate that the latter value is more nearly cor-
rect, since the best estimate of the quantity
@0°(8°F/3a%)a=a, leads to a value of # approxi-
mately 2. This is also in accordance with the trend
indicated by the other two estimates and is,
moreover, within the limits indicated in (29).

The fact that the Bessel function is probably
of a purely imaginary order is interesting, since,
as we have seen, this means that the force func-
tion has an infinity of distributed singularities in
the region of the boundary of the atom. This per-
haps indicates a certain obscurity in the outline
of the atom which would not be averse to present
ideas.

Although the value of » probably is nearer to %
than to 0, we shall for the purpose of illustration
employ the latter value. In this limiting case the
Bessel function reduces to one of real order and
imaginary argument; its properties are well
known, and numerous tabulations are available
in the literature facilitating numerical calcula-
tions.!®* By this choice the singularities of the
function ¥ (2) are all displaced to the point 2=0,
so that the boundary of the atom becomes clear
cut and well defined. The repulsive interaction in
that case becomes,

Y(2) =z7Ye~#/(Jo(i2) +3cinH oV (42)),

where J, is the ordinary Bessel function of zero
order, and H@ is the Hankel function of the first
kind of zero order. Only one constant of integra-
tion, ¢, appears in this solution since the other
constant may be included in ®, which as yet re-

(31)

18 See, for instance, E. Jahnke and F. Emde, Funk-
tionentafeln.
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mains to be determined. An estimate of ¢ can be
obtained as follows. The ratio (27), by the in-
equality (18), should be small throughout the
range of variation of ao. By suitably disposing of
¢ we can make this constant zero at one point at
least. For this point we may somewhat arbitrarily
choose the midpoint of the range of variation,
which is given approximately by na¢=H. To
demonstrate that our solution is self-consistent,
however, it will be necessary to show that this
ratio is small for the extreme range of variation
of the variable a,.

The condition that ®;(ao)/®(ae) shall be zero
for nao=H vyields by Eqgs. (27) and (31) the
result ¢=1.81. It turns out, moreover, that this
ratio is not only zero, but it also has a minimum
at this point, so that its greatest value in the
range of variability of @, is quite small. Calcula-
tion will show that the ratio is less than 0.3. Our
assumption that the function ®(a, ao) is a slowly
changing function of a is therefore borne out by
the results, and our solution insofar as can be
seen is free from contradictions.

In another important respect our solution ex-
hibits a gratifying self-consistency. Our assump-
tion, that the repulsive force was essentially an
interaction along the boundaries of the atoms,
implied, that it dropped off exceedingly rapidly
with increasing separation. That this is so can
best be seen by a comparison with the force func-
tions which have found a predominant applica-
tion in the literature;? i.e., the inverse power
force, Fp, (Eq. (7)), and the exponential force,
Fg, (Eq. (9)). In Figs. 1 and 2 we have plotted
the ratios Fg/Fp and Fs/Fg where Fg represents
the force resulting from the present theory. For
convenience the calculations were made for a
lattice constant, ag=H /7, corresponding roughly
to the middle of the scale of the alkali halides.

In Fig. 1 these ratios are plotted up to a separa-
tion corresponding to the position of the second
next neighbors in the crystal. It is seen that the
force Fgs drops off much more rapidly than the
others. In fact, whereas the exponential force,
e#, drops off more rapidly than the inverse
power, the function Fgs drops off essentially as
e~ for large values of a; such that for a separa-
tion corresponding to the second next neighbors
in the crystal the ratio Fg/Fg is only about one-
tenth. With the type of force Fg, it is consequently
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F1G. 1. Comparison of different force functions.

unnecessary to consider more than the next neigh-
bors in calculations involving summations over
the infinite lattice of the energy of repulsion or its
derivatives. Our solution (20), therefore, refers
not only to the crystal as a whole, but in first ap-
proximation it also gives the force between two
individual ions in the crystal (after division by
the number of next neighbors).

‘From the behavior of the ratio Fg/Fr we can
also estimate the integral of the force function Fg,
since the integral of Fg is known. In this way we
arrive at the result that the energy of repulsion,
from the present theory, is something less than
20 percent smaller. than the energy of repulsion
which would have been obtained from the simple
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Fi1c. 2. Comparison of different force functions in the
neighborhood of the equilibrium position. -
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exponential law. The latter, in turn, is smaller
numerically than the negative Coulomb energy
by a factor p=pa,. The total energy in the pres-
ent case thus would be approximately 2 percent
greater than that calculated on the basis of the
exponential law of repulsion (which, in turn, is
very nearly the same as that obtained from the

" inverse power law). This difference, however,

probably would be too small for experimental
verification.

In Fig. 2 the ratios Fs/Fp and Fgs/Fg are
plotted in the neighborhood of the equilibrium
position a=a,. It is seen that, over a region
amounting to about 6 percent of the lattice con-
stant around this point, the three functions Fp,
Fg, and Fg are within 5 percent of each other,
because of course, they have three terms of a
Taylor expansion in common. This illustrates our
contention that when we are interested primarily
in this region it makes very little difference what
type of functional form is assumed for the force.
The very considerable success of the theory of
the solid state, based on the inverse power law of
repulsion, might perhaps be explained in this
light. Attention is also called to the extremely
rapid increase in Fg for separations smaller than
the lattice constant, as illustrated by the rapid
rise in the ratios Fg/Fp and Fgs/Fg in this region.
This rapid increase is significant for the remarks
which we shall make in the final section, and is
moreover in accordance with the assumption on
which this analysis was based. '

The self-consistency of this first approximation
theory is gratifying, as is also the agreement with
the independent domains of physical measure-
ment which we have pointed out. The force, Fg,
however, remains a first approximation, or per-
haps not so much a first approximation as an
extreme possibility, in that we have assumed the
greatest possible decrease in the force of repulsion
with increased separation which is compatible
with the compressibility data. No attempt will
be made here to improve the order of approxima-
tion. In a qualitative way, however, we can off
hand point out certain modification possibilities.
As to the interaction, ¢(z), the main effect of
refinement in the treatment probably would be
to replace the distributed singularities in the
neighborhood of 2=0 (that is, near the boundary
of the atom), by some array of steep but finite
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potential walls. This again would lead to a less
steep and more smooth force function, particu-
larly for atomic separations less than the lattice
constant. For separations greater than this, the
effect of the modification should be less marked.
Probably, therefore, our result that only the next
neighbors need be taken into account in calculat-
ing the energy of repulsion of the crystal, would
remain valid. The exponential term in the inter-
action is present in quantum-theoretical deriva-
tions of the force,! and its retention is otherwise
strongly indicated by the experimental data, so
that this term is fairly well established.

The failure of the zero approximation (30) to
give correctly, except as to order of magnitude,
the numerical value of the constant s, indicated
that it might be necessary to insert a factor a—¢
in the right-hand side of Eq. (30), where ¢
probably would have a value k. This would imply
that in our final solution (20), the factor (@ —7)~*
would be replaced by a factor ¢=*. This is also
borne out by our interpretation of the function
®(a, ao) as essentially a ‘“‘contact area,”” not only
dimensionally, but also because, as such, it
should increase in a general way with @, Our
choice of the constant of integration, ¢, in some
measure was arbitrary, and might have to be
modified. The solution is not much affected, how-
ever, by small changes in the value of this
constant.

VI. RELATION OF THE RESULTS TO THE STABILITY
oF HETEROPOLAR CRYSTALS

We have shown in a previous paper' that, with
the inverse power law of repulsion, all crystals of
the NaCl- and particularly the CsCl-type are un-
stable against the so-called ¢-variation. Only in
the limit when the exponent of the repulsive force
becomes infinite are these types definitely stable
against this variation. Now of course, any theory
of the solid state must explain the stability of
crystals against all variations. The failure of the
old theory to explain the stability of such crystals
as CsCl therefore is a question of fundamental
importance. The failure might be ascribed to one
or both of the following sources. The forces which
we have postulated may be inadequate. In that
case the force of repulsion, which is much less

19 H. M. Evjen, Phys. Rev. 39, 675 (1932).
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firmly established than the Coulomb force of
attraction, would come first in line for suspicion.
Secondly, our postulated forces may be adequate,
but we may have failed to take account of certain
“cooperative phenomena,”’? which arise as a
natural consequence of these forces and do not
require any new postulates for their explanation.
Here we shall consider briefly only the first
possibility. It is significant that the type of
crystals mentioned become stable for an infinite
exponent of repulsion. The infinite exponent is
characterized by the fact that the repulsive effect
of all but the next neighbors disappears. This fact
is responsible for the discontinuity in the first
derivative of the stability curve at the angle, o,
corresponding to the CsCl-type of crystal where
the number of next neighbors changes from six to
two. This discontinuity again is responsible for
the sharp maximum in the stability curve at this
point. The repulsive force (20), in general, would
not give rise to quite as abrupt a change as this,
but it is clear that it would more nearly corre-
spond to this condition than either the exponen-
tial or the inverse power law of repulsion. There-
fore we can say that this repulsive force would be
more favorable to the removal of the ‘-
paradox’ than either of the other two, and it
might even be possible by the adoption of some
such law of force to save the situation without
calling into play Zwicky’s cooperative actions.
These cooperative forces are necessarily based
on and accompanied by certain departures from
ideal symmetry in the crystal. This slight asym-
metry, manifested as a secondary structure, may
in turn be produced from the ideal crystal by
imposing upon it certain finite but small varia-
tions. A necessary (but not sufficient) condition
for the thermodynamic stability of this secondary
structure is that the energy change by the varia-
tion shall be negative. We have shown, at least in
a particular case, that the adoption of a force of
repulsion, such as (20), may obviate in some
measure the necessity of calling into play the
cooperative forces to explain the stability of cer-
tain crystals. On the other hand, it is of interest
to find out what a repulsive force of the form (20)
would do to the energy change for variations
leading to a secondary structure. This type of

20 See reference 15, and also a more extensive paper by
the same author shortly to be published.
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force would make the gain in energy smaller, and
therefore would be unfavorable to the formation
of a secondary structure, the reason being that
almost invariably by any variation leading to a
secondary structure, there is an increase in the
positive energy of repulsion. It is seen from Fig. 2
that the force of repulsion (20) leads to a greater
increase in energy than either the exponential or
the inverse power law of repulsion, so that the
net gain in energy with a force of this type would
be smaller. This is illustrated perhaps most
clearly in the case of the variation in which ad-
vantage is taken of the gain in energy by the
contraction of a single plane from the lattice
constant of the crystal to that of the plane.?! It
is obvious from Fig. 2 that such a contraction
would be accompanied by a larger increase in
positive energy with the force function Fg than
with either Fz or Fp. What is more, the amount
of contraction would be smaller with the former
than with either of the latter, so that not only is
there a relative increase in the positive energy,
but there is also an absolute decrease in the
negative Coulomb energy gained.

1 F. Zwicky, Helv. Phys. Acta 3, 269 (1930); H. M.
Evien, Phys. Rev. 34, 1385 (1929).
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It is now pertinent to ask whether from the
general solution (12) we could not construct the
particular solution which would be ke least favor-
able to the formation of a secondary structure. If,
with this force function, we should still be able to
find variations from the ideal crystal by which
the energy would be decreased, the evidence
would be more convincing than heretofore that
the ideal crystal is not the thermodynamically
most stable state. Some of the most legitimate
arguments against the theory of the secondary
structure would thereby be practically refuted.
The evidence is that we have in the force func-
tion (20) the solution which is the least favorable
to the formation of a secondary structure. This
evidence is based on the fact that, of all the solu-
tions which are consistent with the wvarious
physical observations to which we have called
attention in this paper, the solution (20), by
hypothesis, -is the steepest in the region a <ay,
which is the main criterion as to whether or not
the force function is favorable to the formation of
a secondary structure. Regardless of whether
this solution represents a good approximation to
the real force or not, it therefore has considerable
theoretical interest on account of its extreme
character.



