Supporting Information

Cyclometalated Z-Selective Ruthenium Metathesis Catalysts with Modified N-Chelating Groups

Myles B. Herbert, ${ }^{\dagger, \S}$ Benjamin A. Suslick, ${ }^{\dagger, \S}$ Peng Liu, ${ }^{\dagger}$ Lufeng Zou, ${ }^{\dagger}$ Peter K. Dornan, ${ }^{\dagger}$ K.N. Houk, ${ }^{\ddagger, *}$ R. H. Grubbs ${ }^{\dagger}{ }^{\dagger} *$
\dagger Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
\ddagger Department of Chemistry and Biochemistry, University of California, Los Angeles, 90095-1569, United States.
Table of Contents
Synthesis of S1 S4
Synthesis of S2 S4
Synthesis of S3 S5
Synthesis of S4 S6
Comparison of $6-31 \mathrm{G}(\mathrm{d})$ and $\mathbf{6 - 3 1 G}(\mathrm{d}, \mathrm{p})$ basis sets in geometry optimizations S37
Conformers of TS-20 and 20 S38
Optimized geometries of the C-H activation transition states to form the cyclometalated complexes
16,18 , and 31 S39
SCF energies, enthalpies at 298K, and Gibbs free energies at 298K for the optimized structures S40
List of Figures
Figure S1. ${ }^{1} \mathrm{H}$ NMR (600 MHz) spectrum of $\mathbf{1 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ S7
Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of $\mathbf{1 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ S8
Figure S3. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ Coupled gCOSY spectrum of $\mathbf{1 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ S9
Figure S4. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ Coupled gHSQC spectrum of $\mathbf{1 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ S9
Figure S5. ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ Coupled gHMBC spectrum of $\mathbf{1 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ S10
Figure S6. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ Coupled NOESY spectrum of $\mathbf{1 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ S10
Figure S7. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $\mathbf{S} 1$ in CDCl_{3} S11
Figure S8. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz) spectrum of $\mathbf{S 1}$ in CDCl_{3} S12
Figure S9. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $\mathbf{1 5}$ in CDCl_{3} S13
Figure S10. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of $\mathbf{1 5}$ in CDCl_{3} S14
Figure S11. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 16 in $\mathrm{C}_{6} \mathrm{D}_{6}$ S15
Figure S12. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of $\mathbf{1 6}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. S16
Figure S13. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $\mathbf{S} \mathbf{2}$ in CDCl_{3} S17
Figure S14. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz) spectrum of $\mathbf{S} 2$ in CDCl_{3} S18
Figure S15. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of 17 in $\mathrm{C}_{6} \mathrm{D}_{6}$. S19
Figure S16. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of $\mathbf{1 7}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. S20
Figure S17. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $\mathbf{1 8}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ S21
Figure S18. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of $\mathbf{1 8}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. S22
Figure S19. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ Coupled gHSQC spectrum of 18 in $\mathrm{C}_{6} \mathrm{D}_{6}$. S23
Figure S20. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 20 in $\mathrm{C}_{6} \mathrm{D}_{6}$ S24
Figure S21. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of 20 in $\mathrm{C}_{6} \mathrm{D}_{6}$. S25
Figure S22. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ Coupled gHSQC spectrum of $\mathbf{2 0}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. S26
Figure S23. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of 28 in $\mathrm{C}_{6} \mathrm{D}_{6}$ S27
Figure S24. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of 28 in $\mathrm{C}_{6} \mathrm{D}_{6}$. S28
Figure S25. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $\mathbf{S 3}$ in CDCl_{3} S29
Figure S26. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of $\mathbf{S 3}$ in CDCl_{3} S30
Figure S27. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $\mathbf{S 4}$ in CDCl_{3} S31
Figure S28. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of $\mathbf{S 4}$ in CDCl_{3} S32
Figure S29. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 29 in $\mathrm{C}_{6} \mathrm{D}_{6}$. S33
Figure S30. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of 29 in $\mathrm{C}_{6} \mathrm{D}_{6}$. S34
Figure S31. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of $\mathbf{3 0}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. S35
Figure S32. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of $\mathbf{3 0}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. S36

Synthesis of S1.

N-mesitylethylenediamine ${ }^{1}(1.82 \mathrm{~g}, 10.2 \mathrm{mmol})$ and 2-adamantanone $(1.53 \mathrm{~g}, 10.2 \mathrm{mmol})$ were taken up in toluene (100 mL). p-Toluenesulfonic acid monohydrate ($20 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added and the mixture was headed to $130^{\circ} \mathrm{C}$ overnight using a Dean-Stark apparatus. Upon cooling to room temperature, the solvent was removed in vacuo. The crude mixture was taken up in $\mathrm{MeOH}(100 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(1.58 \mathrm{~g}, 41.8 \mathrm{mmol})$ was slowly added as a solid. After stirring at room temperature for 2 hours, the solvent was removed in vacuo and the crude mixture was taken up in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The mixture was then washed with water $(3 \times 25 \mathrm{~mL})$ and brine $(1 \mathrm{x}$ 50 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The $\mathrm{Et}_{2} \mathrm{O}$ mixture was used without further purification and treated with a solution of HCl in 1,4-dioxane $(4 \mathrm{M}, 5.1 \mathrm{~mL})$ causing precipitation of a white solid. This was isolated and added to a flask containing trimethylorthoformate (20 mL). The reaction was stirred for $120{ }^{\circ} \mathrm{C}$ for 2 hours. After warming to room temperature, $\mathrm{Et}_{2} \mathrm{O}$ was added, causing precipitation of the pure desired product as a white solid ($2.0 \mathrm{~g}, 5.6 \mathrm{mmol}, 55 \%$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.56(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 4.33-4.05(\mathrm{~m}, 4 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}$, $6 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 1 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 6 \mathrm{H}), 1.75(\mathrm{~s}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 158.3,140.3,135.6,131.1,130.1,62.9,50.9,48.3,37.1,36.4,31.4,29.9,27.1$, 21.1, 18.3; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2}, 323.2487$; found, 323.2475.

Synthesis of S2.

N-2,6-diisopropylphenylethylenediamine ${ }^{1}(865 \mathrm{mg}, 3.93 \mathrm{mmol})$ and 2-adamantanone (592 g , 3.93 mmol) were taken up in toluene (40 mL). p-Toluenesulfonic acid monohydrate ($8 \mathrm{mg}, 0.04$ mmol) was added and the mixture was headed to $130^{\circ} \mathrm{C}$ overnight using a Dean-Stark apparatus. Upon cooling to room temperature, the solvent was removed in vacuo. The crude mixture was taken up in $\mathrm{MeOH}(50 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(608 \mathrm{mg}, 16.1 \mathrm{mmol})$ was slowly added as a solid. After stirring at room temperature for 2 hours, the solvent was removed in vacuo and the crude mixture was taken up in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The mixture was then washed with water ($3 \times 15 \mathrm{~mL}$) and brine ($1 \times 25 \mathrm{~mL}$), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The $\mathrm{Et}_{2} \mathrm{O}$ mixture was used without further purification and treated with a solution of HCl in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{M}, 8.24 \mathrm{~mL})$ causing precipitation of a white solid. This was isolated and added to a flask containing trimethylorthoformate $(8 \mathrm{~mL})$. The reaction was stirred for $120{ }^{\circ} \mathrm{C}$ for 2 hours. After warming to room temperature, $\mathrm{Et}_{2} \mathrm{O}$ was added, causing precipitation of the pure desired product as a white solid ($843 \mathrm{mg}, 2.1 \mathrm{mmol}, 54 \%$ overall yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.74,1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.77,2 \mathrm{H}), 4.47(\mathrm{t}$, $J=9.69,2 \mathrm{H}), 4.29(\mathrm{t}, J=9.38,2 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 6 \mathrm{H}), 1.77-1.71(\mathrm{~m}, 6 \mathrm{H})$, $1.28 \quad(\mathrm{t}, \quad J \quad=\quad 6.13, \quad 12 \mathrm{H}) ; \quad{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR} \quad\left(125 \quad \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)$: $\delta 157.6,147.1,131.2,130.5,125.1,62.8,53.6,48.6,37.0,36.4,31.5,29.9,28.9,27.1,26.9,25.2$, 24.6; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{2}, 365.2957$; found, 365.2971.

Synthesis of S3.

To a flame dried 2-neck flask under argon was added 2-chloro-N-mesitylacetamide ($1.34 \mathrm{~g}, 6.34 \mathrm{mmol}$, 1.2 eq), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.69 \mathrm{~g}, 12.6 \mathrm{mmol}, 2.4 \mathrm{eq})$, acetonitrile (35 mL) and then (-)-cis-myrtanylamine (0.874 $\mathrm{mL}, 5.22 \mathrm{mmol}, 1.0 \mathrm{eq})$. A condenser was attached, and the reaction mixture was heated to reflux for 20 hr . The crude mixture was cooled to ambient temperature, filtered over Celite, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated in vacuo. The title compound was purified by column chromatography (7:3 ethyl acetate : hexanes) to give a clear viscous oil ($1.33 \mathrm{~g}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}$, $2 \mathrm{H}), 3.45(\mathrm{~d}, \mathrm{~J}=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=11.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=$ $11.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (dtd, $J=9.5,6.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 2.03-$
$1.84(\mathrm{~m}, 5 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.6,136.8,134.9,131.3,129.0,57.2,52.9,44.6,42.2,41.6,38.8,33.6,28.2,26.2$, 23.5, 21.0, 20.8, 18.6; HRMS-FAB $(m / z)[M+H]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{ON}_{2}, 329.2593$; found, 329.2589.

Synthesis of S4.

To a flame dried 2-neck flask under argon was added $\mathrm{LiAlH}_{4}(463 \mathrm{mg}, 12.2 \mathrm{mmol}, 3.9 \mathrm{eq})$ and THF (20 $\mathrm{mL})$. Amide $\mathbf{S 3}(1.03 \mathrm{~g}, 3.14 \mathrm{mmol}, 1 \mathrm{eq})$ was then added as a solution in THF (5 mL). A condenser was added and the reaction mixture was heated to reflux for 18 hr . The crude mixture was cooled to ambient temperature and quenched by dropwise addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and then $\mathrm{NaOH}(1 \mathrm{~mL})$ followed by brine $(5 \mathrm{~mL})$. The mixture was extracted with ethyl acetate $(20 \mathrm{~mL})$ and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The combined organics were dried with MgSO_{4} and concentrated in vacuo to yield a yellow oil (965 mg) which was used without further purification. The oil was dissolved in $\mathrm{CH}(\mathrm{OMe})_{3}(6.5 \mathrm{~mL})$ and $\mathrm{NH}_{4} \mathrm{BF}_{4}$ ($341 \mathrm{mg}, 3.25 \mathrm{mmol}$) was then added. A reflux condenser was added and the reaction mixture was heated to $100{ }^{\circ} \mathrm{C}$ for 3 hr . The crude mixture was cooled to ambient temperature and concentrated in vacuo to give an wet red solid. The solid was then triterated with hexanes, followed by ether, followed by $1: 1$ ether : ethyl acetate to give a tan powder ($622 \mathrm{mg}, 51 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.93(\mathrm{~d}, J=4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 2 \mathrm{H}), 4.24-4.11(\mathrm{~m}, 4 \mathrm{H}), 3.74-3.58(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}$, $3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.83(\mathrm{~m}, 5 \mathrm{H}), 1.53-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.1,140.3,135.6,130.6,130.0,54.2,51.0,48.9,43.6,41.2$, 38.7, 38.3, 33.2, 27.9, 25.8, 23.3, 21.2, 19.4, 17.6; HRMS-FAB $(\mathrm{m} / \mathrm{z})[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{2}, 325.2644$; found, 325.2642.

Figure S1. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz})$ spectrum of $\mathbf{1 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(126 \mathrm{MHz})$ spectrum of 11 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S3. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ Coupled gCOSY spectrum of $\mathbf{1 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S4. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ Coupled gHSQC spectrum of $\mathbf{1 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S5. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ Coupled gHMBC spectrum of $\mathbf{1 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S6. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ Coupled NOESY spectrum of $\mathbf{1 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure $\mathbf{S} 7 .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of $\mathbf{S} 1$ in CDCl_{3}.

Figure S8. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz) spectrum of $\mathbf{S} 1$ in CDCl_{3}.

Figure S9. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of $\mathbf{1 5}$ in CDCl_{3}.

Figure S10. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of $\mathbf{1 5}$ in CDCl_{3}.

Figure S11. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of 16 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S12. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of $\mathbf{1 6}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of $\mathbf{S} \mathbf{2}$ in CDCl_{3}.

Figure S14. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz) spectrum of $\mathbf{S} 2$ in CDCl_{3}.

Figure S15. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 17 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S16. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of $\mathbf{1 7}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S17. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of $\mathbf{1 8}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S18. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of $\mathbf{1 8}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S19. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ Coupled gHSQC spectrum of $\mathbf{1 8}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S20. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 20 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S21. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of 20 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S22. ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ Coupled gHSQC spectrum of 20 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S23. ${ }^{1}$ H NMR (500 MHz) spectrum of 28 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S24. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of 28 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S25. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $\mathbf{S 3}$ in CDCl_{3}.

Figure S26. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of $\mathbf{S 3}$ in CDCl_{3}.

Figure S27. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $\mathbf{S 4}$ in CDCl_{3}.

Figure S28. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of $\mathbf{S} 4$ in CDCl_{3}.

Figure S29. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of 29 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S30. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of 29 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S31. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of $\mathbf{3 0}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S32. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz) spectrum of $\mathbf{3 0}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Comparison of $\mathbf{6 - 3 1 G}(\mathrm{d})$ and $\mathbf{6 - 3 1 G}(\mathrm{d}, \mathrm{p})$ basis sets for hydrogen atoms in geometry optimizations

The B3LYP functional and the popular $6-31 \mathrm{G}(\mathrm{d})$ basis set were used in the geometry optimizations in this study ("method 1", LANL2DZ was used for Ru). To evaluate whether using polarization basis functions for hydrogen atoms is necessary in geometry optimizations, we performed test calculations for the reaction of complex 12 using B3LYP and the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set in the geometry optimizations ("method 2", LANL2DZ for Ru). Single point calculations were performed at the same level of theory (M06/6-311+G(d,p)-SDD(Ru), with the SMD solvation model in THF). The computed activation energies and reaction energies using both levels of theories are summarized below. The two different levels of theories provide almost identical activation energies and reaction energies in the test calculations.

14
method1: M06/6-311+G(d,p)-SDD(Ru)/SMD(THF)//B3LYP/6-31G(d)-LANL2DZ(Ru) method2: M06/6-311+G(d,p)-SDD(Ru)/SMD(THF)//B3LYP/6-31G(d,p)-LANL2DZ(Ru)

Conformers of TS-20 and 20

Two isomers for TS-20 and the cyclometalated complex $\mathbf{2 0}$ were located. The conformer observed in the X-ray structure of the cyclometalated complex (20), in which the two mesityl groups are adjacent to each other, is predicted to be $0.9 \mathrm{kcal} / \mathrm{mol}$ more stable. The C-H activation transition states leading to the two conformers have very close activation barriers.

Optimized geometries of the C-H activation transition states to form the cyclometalated complexes 16,18 , and 31.

$\Delta G^{\ddagger}=28.8 \mathrm{kcal} / \mathrm{mol}$
TS-16

$\Delta G^{\ddagger}=28.2 \mathrm{kcal} / \mathrm{mol}$
TS-18

SCF energies, enthalpies at 298K, and Gibbs free energies at 298K for the optimized structures.

complex	E(B3LYP) (a.u.)	H(B3LYP) (a.u.)	G(B3LYP) (a.u.)	$E(M 06)$ (a.u.)	H (M06) (a.u.)	$G(M 06)$ (a.u.)	imaginary frequency (cm-1)
11	-1988.25815	-1987.296008	-1987.427026	-1988.432532	-1987.470391	-1987.601409	
12	-2335.30295	-2334.18093	-2334.332764	-2335.366182	-2334.244162	-2334.395996	
13	-1988.25418	-1987.291689	-1987.420199	-1988.432842	-1987.470351	-1987.598861	
14	-1988.253865	-1987.291524	-1987.423867	-1988.427364	-1987.465022	-1987.597365	
15-OPiv2	-2216.204565	-2215.193133	-2215.335496	-2216.319604	-2215.308172	-2215.450535	
16	-1869.153068	-1868.301603	-1868.420516	-1869.38693	-1868.535464	-1868.654377	
17-OPiv2	-2334.128144	-2333.026574	-2333.173852	-2334.190165	-2333.088595	-2333.235873	
18	-1987.079818	-1986.137904	-1986.261896	-1987.255378	-1986.313464	-1986.437456	
20	-1829.821074	-1829.005904	-1829.136602	-1830.054711	-1829.23954	-1829.370238	
21	-2176.863586	-2175.888204	-2176.036776	-2176.993957	-2176.018575	-2176.167147	
22	-1829.815819	-1828.99959	-1829.127015	-1830.054711	-1829.238481	-1829.365906	
28	-2246.953231	-2246.154959	-2246.288188	-2247.229484	-2246.431212	-2246.564441	
31	-1899.894008	-1899.254982	-1899.366133	-1900.280931	-1899.641905	-1899.753056	
TS-11	-2335.253773	-2334.138228	-2334.291618	-2335.322373	-2334.206828	-2334.360218	-1342.3
TS-13	-2335.234333	-2334.119021	-2334.269804	-2335.309565	-2334.194253	-2334.345036	-1444.4
TS-14	-2335.249591	-2334.133865	-2334.286588	-2335.314862	-2334.199136	-2334.351859	-1374.3
TS-16	-2216.143881	-2215.139436	-2215.281312	-2216.267234	-2215.26279	-2215.404666	-1488.5
TS-18	-2334.070761	-2332.975957	-2333.123282	-2334.138365	-2333.043561	-2333.190886	-1484.5
TS-20	-2176.823418	-2175.85512	-2176.010736	-2176.94828	-2175.979982	-2176.135598	-1239.3
TS-22	-2176.814576	-2175.845209	-2175.995799	-2176.943285	-2175.973918	-2176.124508	-1386.4
TS-31	-2246.89135	-2246.099086	-2246.234015	-2247.166874	-2246.37461	-2246.509539	-1386.5
PivOH	-347.017538	-346.860885	-346.902513	-346.916158	-346.759505	-346.801133	

Cartesian coordinates of all optimized structures are provided in ".xyz" file format in the Supporting Information.

[^0]
[^0]: ${ }^{1}$ Bessel, M.; Rominger, F.; Straub, B. F. Synthesis 2010, 9, 1459

