Supporting Information

Cyclometalated Z-Selective Ruthenium Metathesis Catalysts with Modified N-Chelating Groups

Myles B. Herbert,^{†,§} Benjamin A. Suslick,^{†,§} Peng Liu,[‡] Lufeng Zou,[‡] Peter K. Dornan,[†] K.N. Houk,^{‡,*} R. H. Grubbs^{†,*}

[†] Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States

‡ Department of Chemistry and Biochemistry, University of California, Los Angeles, 90095-1569, United States.

Table of Contents	
Synthesis of S1	S4
Synthesis of S2	S4
Synthesis of S3	85
Synthesis of S4	S6
Comparison of 6-31G(d) and 6-31G(d,p) basis sets in geometry optimizations	837
Conformers of TS-20 and 20	S38
Optimized geometries of the C-H activation transition states to form the cyclometalated comp	exes
16, 18, and 31	S39
SCF energies, enthalpies at 298K, and Gibbs free energies at 298K for the optimized structure	s S40

List of Figures

Figure S1. ¹ H NMR (600 MHz) spectrum of 11 in C_6D_6	S7
Figure S2. ¹³ C{ ¹ H} NMR (126 MHz) spectrum of 11 in C_6D_6	S8
Figure S3. ¹ H- ¹ H Coupled gCOSY spectrum of 11 in C ₆ D ₆	S9
Figure S4. ${}^{1}H{}^{-13}C$ Coupled gHSQC spectrum of 11 in C_6D_6	S9
Figure S5. ¹ H- ¹³ C Coupled gHMBC spectrum of 11 in C ₆ D ₆	S10
Figure S6. ¹ H- ¹ H Coupled NOESY spectrum of 11 in C ₆ D ₆	S10
Figure S7. ¹ H NMR (500 MHz) spectrum of S1 in CDCl ₃	S11
Figure S8. ¹³ C{ ¹ H} NMR (125 MHz) spectrum of S1 in CDCl ₃	S12
Figure S9. ¹ H NMR (500 MHz) spectrum of 15 in CDCl ₃	S13
Figure S10. ${}^{13}C{}^{1}H$ NMR (126 MHz) spectrum of 15 in CDCl ₃	S14
Figure S11. ¹ H NMR (500 MHz) spectrum of 16 in C_6D_6	S15
Figure S12. ¹³ C{ ¹ H} NMR (126 MHz) spectrum of 16 in C_6D_6	S16
Figure S13. ¹ H NMR (500 MHz) spectrum of S2 in CDCl ₃	S17
Figure S14. ¹³ C{ ¹ H} NMR (125 MHz) spectrum of S2 in $CDCl_3$	S18
Figure S15. ¹ H NMR (500 MHz) spectrum of 17 in C_6D_6	S19
Figure S16. ¹³ C{ ¹ H} NMR (126 MHz) spectrum of 17 in C_6D_6	S20
Figure S17. ¹ H NMR (500 MHz) spectrum of 18 in C_6D_6	S21
Figure S18. ¹³ C{ ¹ H} NMR (126 MHz) spectrum of 18 in C_6D_6	S22
Figure S19. ¹ H- ¹³ C Coupled gHSQC spectrum of 18 in C ₆ D ₆	S23
Figure S20. ¹ H NMR (500 MHz) spectrum of 20 in C_6D_6	S24
Figure S21 . ¹³ C{ ¹ H} NMR (126 MHz) spectrum of 20 in C_6D_6	S25

Figure S22. 1 H- 13 C Coupled gHSQC spectrum of 20 in C ₆ D ₆	S26
Figure S23. ¹ H NMR (500 MHz) spectrum of 28 in C_6D_6	S27
Figure S24. ¹³ C{ ¹ H} NMR (126 MHz) spectrum of 28 in C_6D_6	S28
Figure S25. ¹ H NMR (500 MHz) spectrum of S3 in CDCl ₃	S29
Figure S26. ¹³ C{ ¹ H} NMR (126 MHz) spectrum of S3 in CDCl ₃	S30
Figure S27. ¹ H NMR (500 MHz) spectrum of S4 in CDCl ₃	S31
Figure S28. ¹³ C{ ¹ H} NMR (126 MHz) spectrum of S4 in CDCl ₃	S32
Figure S29. ¹ H NMR (500 MHz) spectrum of 29 in C_6D_6	S33
Figure S30. ${}^{13}C{}^{1}H$ NMR (126 MHz) spectrum of 29 in C_6D_6	S34
Figure S31. ¹ H NMR (500 MHz) spectrum of 30 in C_6D_6	S35
Figure S32. ${}^{13}C{}^{1}H$ NMR (126 MHz) spectrum of 30 in C ₆ D ₆	S36

Synthesis of S1.

N-mesitylethylenediamine¹ (1.82 g, 10.2 mmol) and 2-adamantanone (1.53 g, 10.2 mmol) were taken up in toluene (100 mL). p-Toluenesulfonic acid monohydrate (20 mg, 0.1 mmol) was added and the mixture was headed to 130°C overnight using a Dean-Stark apparatus. Upon cooling to room temperature, the solvent was removed in vacuo. The crude mixture was taken up in MeOH (100 mL) and NaBH₄ (1.58 g, 41.8 mmol) was slowly added as a solid. After stirring at room temperature for 2 hours, the solvent was removed in vacuo and the crude mixture was taken up in Et₂O (50 mL). The mixture was then washed with water (3 x 25 mL) and brine (1 x 50 mL), and dried over Na₂SO₄. The Et₂O mixture was used without further purification and treated with a solution of HCl in 1,4-dioxane (4M, 5.1 mL) causing precipitation of a white solid. This was isolated and added to a flask containing trimethylorthoformate (20 mL). The reaction was stirred for 120 °C for 2 hours. After warming to room temperature, Et₂O was added, causing precipitation of the pure desired product as a white solid (2.0 g, 5.6 mmol, 55%). ¹H NMR (500 MHz, CDCl₃): δ 8.56 (s, 1H), 6.90 (s, 2H), 4.33-4.05 (m, 4H), 4.05 (s, 1H), 2.45 (s, 2H), 2.34 (s, 6H), 2.25 (s, 3H), 2.19 (s, 1H), 1.92-1.86 (m, 6H), 1.75 (s, 2H), 1.71 (s, 3H). ¹³C{¹H} NMR (125 MHz,CDCl₃): \delta 158.3, 140.3, 135.6, 131.1, 130.1, 62.9, 50.9, 48.3, 37.1, 36.4, 31.4, 29.9, 27.1, 21.1, 18.3; HRMS-FAB (m/z) [M]⁺ calcd for C₂₂H₃₁N₂, 323.2487; found, 323.2475.

Synthesis of S2.

N-2,6-diisopropylphenylethylenediamine¹ (865 mg, 3.93 mmol) and 2-adamantanone (592 g, 3.93 mmol) were taken up in toluene (40 mL). p-Toluenesulfonic acid monohydrate (8 mg, 0.04 mmol) was added and the mixture was headed to 130 °C overnight using a Dean-Stark apparatus. Upon cooling to room temperature, the solvent was removed *in vacuo*. The crude mixture was taken up in MeOH (50 mL) and NaBH₄ (608 mg, 16.1 mmol) was slowly added as a solid. After stirring at room temperature for 2 hours, the solvent was removed *in vacuo* and the crude mixture was taken up in Et₂O (30 mL). The mixture was then washed with water (3 x 15 mL) and brine (1 x 25 mL), and dried over Na₂SO₄. The Et₂O mixture was used without further purification and treated with a solution of HCl in Et₂O (1M, 8.24 mL) causing precipitation of a white solid. This was isolated and added to a flask containing trimethylorthoformate (8 mL). The reaction was stirred for 120 °C for 2 hours. After warming to room temperature, Et₂O was added, causing precipitation of the pure desired product as a white solid (843 mg, 2.1 mmol, 54% overall yield). ¹H NMR (500 MHz, CDCl₃): δ 8.29 (s, 1H), 7.41 (t, J = 7.74, 1H), 7.23 (d, J = 7.77, 2H), 4.47 (t, J = 7.74, 1H), 7.41 (J = 9.69, 2H, 4.29 (t, J = 9.38, 2H), 4.18 (s, 1H), 2.44 (s, 2H), 1.93 (s, 6H), 1.77-1.71 (m, 6H), 6.13, 12H); $^{13}C{^{1}H}$ NMR 1.28 (125)J= MHz. (t. CDCl₃): δ 157.6, 147.1, 131.2, 130.5, 125.1, 62.8, 53.6, 48.6, 37.0, 36.4, 31.5, 29.9, 28.9, 27.1, 26.9, 25.2, 24.6; HRMS-FAB (m/z) [M]⁺ calcd for C₂₅H₃₇N₂, 365.2957; found, 365.2971.

Synthesis of S3.

To a flame dried 2-neck flask under argon was added 2-chloro-N-mesitylacetamide (1.34 g, 6.34 mmol, 1.2 eq), K₂CO₃ (1.69 g, 12.6 mmol, 2.4 eq), acetonitrile (35 mL) and then (-)-cis-myrtanylamine (0.874 mL, 5.22 mmol, 1.0 eq). A condenser was attached, and the reaction mixture was heated to reflux for 20 hr. The crude mixture was cooled to ambient temperature, filtered over Celite, washed with CH₂Cl₂, and concentrated *in vacuo*. The title compound was purified by column chromatography (7:3 ethyl acetate : hexanes) to give a clear viscous oil (1.33 g, 78%). ¹H NMR (500 MHz, CDCl₃): δ 8.75 (s, 1H), 6.90 (s, 2H), 3.45 (d, J = 17.1 Hz, 1H), 3.40 (d, J = 17.1 Hz, 1H), 2.75 (dd, J = 11.5, 7.0 Hz, 1H), 2.71 (dd, J = 11.4, 7.9 Hz, 1H), 2.38 (dtd, J = 9.5, 6.3, 2.0 Hz, 1H), 2.27 (s, 3H), 2.23-2.16 (m, 1H), 2.19 (s, 6H), 2.03-

1.84 (m, 5H), 1.55-1.47 (m, 1H), 1.18 (s, 3H), 0.99 (s, 3H), 0.93 (d, J = 9.6 Hz, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 170.6, 136.8, 134.9, 131.3, 129.0, 57.2, 52.9, 44.6, 42.2, 41.6, 38.8, 33.6, 28.2, 26.2, 23.5, 21.0, 20.8, 18.6; HRMS-FAB (m/z) [M + H]⁺ calcd for C₂₁H₃₄ON₂, 329.2593; found, 329.2589.

Synthesis of S4.

To a flame dried 2-neck flask under argon was added LiAlH₄ (463 mg, 12.2 mmol, 3.9 eq) and THF (20 mL). Amide S3 (1.03 g, 3.14 mmol, 1 eq) was then added as a solution in THF (5 mL). A condenser was added and the reaction mixture was heated to reflux for 18 hr. The crude mixture was cooled to ambient temperature and quenched by dropwise addition of H_2O (5 mL) and then NaOH (1 mL) followed by brine (5 mL). The mixture was extracted with ethyl acetate (20 mL) and then CH_2Cl_2 (2 x 15 mL). The combined organics were dried with MgSO₄ and concentrated *in vacuo* to yield a yellow oil (965 mg) which was used without further purification. The oil was dissolved in CH(OMe)₃ (6.5 mL) and NH₄BF₄ (341 mg, 3.25 mmol) was then added. A reflux condenser was added and the reaction mixture was heated to 100 °C for 3 hr. The crude mixture was cooled to ambient temperature and concentrated *in vacuo* to give an wet red solid. The solid was then triterated with hexanes, followed by ether, followed by 1:1 ether : ethyl acetate to give a tan powder (622 mg, 51%). ¹H NMR (500 MHz, CDCl₃): δ 7.93 (d, J = 4.5 Hz, 1H), 6.91 (s, 2H), 4.24-4.11 (m, 4H), 3.74-3.58 (m, 2H), 2.52-2.38 (m, 2H), 2.28 (s, 3H), 2.25 (s, 3H), 2.25 (s, 3H), 2.03-1.83 (m, 5H), 1.53-1.42 (m, 1H), 1.19 (s, 3H), 1.02 (s, 3H), 0.98 (d, J = 9.6 Hz, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 158.1, 140.3, 135.6, 130.6, 130.0, 54.2, 51.0, 48.9, 43.6, 41.2, 38.7, 38.3, 33.2, 27.9, 25.8, 23.3, 21.2, 19.4, 17.6; HRMS-FAB (m/z) [M]⁺ calcd for C₂₂H₃₃N₂, 325.2644; found, 325.2642.

Figure S1. ¹H NMR (600 MHz) spectrum of 11 in C_6D_6 .

Figure S2. ¹³C{¹H} NMR (126 MHz) spectrum of 11 in C_6D_6 .

Figure S3. ${}^{1}H{}^{-1}H$ Coupled gCOSY spectrum of 11 in $C_6D_{6.}$

Figure S4. ¹H-¹³C Coupled gHSQC spectrum of 11 in C₆D₆.

Figure S5. ¹H-¹³C Coupled gHMBC spectrum of 11 in C₆D₆.

Figure S6. ¹H-¹H Coupled NOESY spectrum of 11 in C₆D₆.

Figure S7. ¹H NMR (500 MHz) spectrum of S1 in CDCl₃.

Figure S8. $^{13}C{^{1}H}$ NMR (125 MHz) spectrum of S1 in CDCl₃.

Figure S9. ¹H NMR (500 MHz) spectrum of 15 in CDCl₃.

Figure S10. $^{13}C{^{1}H}$ NMR (126 MHz) spectrum of 15 in CDCl₃.

Figure S11. ¹H NMR (500 MHz) spectrum of 16 in C₆D₆.

Figure S12. ¹³C{¹H} NMR (126 MHz) spectrum of 16 in C_6D_6 .

Figure S13. ¹H NMR (500 MHz) spectrum of S2 in CDCl₃.

Figure S14. $^{13}C{^{1}H}$ NMR (125 MHz) spectrum of S2 in CDCl₃.

Figure S15. ¹H NMR (500 MHz) spectrum of 17 in C_6D_6 .

Figure S16. ${}^{13}C{}^{1}H$ NMR (126 MHz) spectrum of 17 in C₆D₆.

Figure S17. ¹H NMR (500 MHz) spectrum of 18 in C₆D₆.

Figure S18. ${}^{13}C{}^{1}H$ NMR (126 MHz) spectrum of 18 in C₆D₆.

Figure S19. 1 H- 13 C Coupled gHSQC spectrum of **18** in C₆D₆.

Figure S20. ¹H NMR (500 MHz) spectrum of 20 in C_6D_6 .

Figure S22. ¹H-¹³C Coupled gHSQC spectrum of **20** in $C_6D_{6.}$

Figure S24. ${}^{13}C{}^{1}H$ NMR (126 MHz) spectrum of 28 in C₆D₆.

Figure S25. ¹H NMR (500 MHz) spectrum of S3 in CDCl₃.

Figure S26. $^{13}C{^{1}H}$ NMR (126 MHz) spectrum of S3 in CDCl₃.

Figure S27. ¹H NMR (500 MHz) spectrum of **S4** in CDCl₃.

Figure S28. $^{13}C{^{1}H}$ NMR (126 MHz) spectrum of S4 in CDCl₃.

Figure S29. ¹H NMR (500 MHz) spectrum of 29 in C_6D_6 .

Figure S30. $^{13}C{^{1}H}$ NMR (126 MHz) spectrum of 29 in C₆D₆.

Figure S31. ¹H NMR (500 MHz) spectrum of 30 in C₆D₆.

Figure S32. ${}^{13}C{}^{1}H$ NMR (126 MHz) spectrum of 30 in C₆D₆.

Comparison of 6-31G(d) and 6-31G(d,p) basis sets for hydrogen atoms in geometry optimizations

The B3LYP functional and the popular 6-31G(d) basis set were used in the geometry optimizations in this study ("method 1", LANL2DZ was used for Ru). To evaluate whether using polarization basis functions for hydrogen atoms is necessary in geometry optimizations, we performed test calculations for the reaction of complex **12** using B3LYP and the 6-31G(d,p) basis set in the geometry optimizations ("method 2", LANL2DZ for Ru). Single point calculations were performed at the same level of theory (M06/6-311+G(d,p)-SDD(Ru), with the SMD solvation model in THF). The computed activation energies and reaction energies using both levels of theories are summarized below. The two different levels of theories provide almost identical activation energies and reaction energies in the test calculations.

Conformers of TS-20 and 20

Two isomers for **TS-20** and the cyclometalated complex **20** were located. The conformer observed in the X-ray structure of the cyclometalated complex (**20**), in which the two mesityl groups are adjacent to each other, is predicted to be 0.9 kcal/mol more stable. The C-H activation transition states leading to the two conformers have very close activation barriers.

Optimized geometries of the C-H activation transition states to form the cyclometalated complexes 16, 18, and 31.

SCF energies, enthalpies at 298K, and Gibbs free energies at 298K for the optimized structures.

complex	E(B3LYP) (a.u.)	H(B3LYP) (a.u.)	G(B3LYP) (a.u.)	E(M06) (a.u.)	H(M06) (a.u.)	G(M06) (a.u.)	imaginary frequency (cm ⁻¹)
11	-1988.25815	-1987.296008	-1987.427026	-1988.432532	-1987.470391	-1987.601409	
12	-2335.30295	-2334.18093	-2334.332764	-2335.366182	-2334.244162	-2334.395996	
13	-1988.25418	-1987.291689	-1987.420199	-1988.432842	-1987.470351	-1987.598861	
14	-1988.253865	-1987.291524	-1987.423867	-1988.427364	-1987.465022	-1987.597365	
15-OPiv2	-2216.204565	-2215.193133	-2215.335496	-2216.319604	-2215.308172	-2215.450535	
16	-1869.153068	-1868.301603	-1868.420516	-1869.38693	-1868.535464	-1868.654377	
17-0Piv2	-2334.128144	-2333.026574	-2333.173852	-2334.190165	-2333.088595	-2333.235873	
18	-1987.079818	-1986.137904	-1986.261896	-1987.255378	-1986.313464	-1986.437456	
20	-1829.821074	-1829.005904	-1829.136602	-1830.054711	-1829.23954	-1829.370238	
21	-2176.863586	-2175.888204	-2176.036776	-2176.993957	-2176.018575	-2176.167147	
22	-1829.815819	-1828.99959	-1829.127015	-1830.054711	-1829.238481	-1829.365906	
28	-2246.953231	-2246.154959	-2246.288188	-2247.229484	-2246.431212	-2246.564441	
31	-1899.894008	-1899.254982	-1899.366133	-1900.280931	-1899.641905	-1899.753056	
TS-11	-2335.253773	-2334.138228	-2334.291618	-2335.322373	-2334.206828	-2334.360218	-1342.3
TS-13	-2335.234333	-2334.119021	-2334.269804	-2335.309565	-2334.194253	-2334.345036	-1444.4
TS-14	-2335.249591	-2334.133865	-2334.286588	-2335.314862	-2334.199136	-2334.351859	-1374.3
TS-16	-2216.143881	-2215.139436	-2215.281312	-2216.267234	-2215.26279	-2215.404666	-1488.5
TS-18	-2334.070761	-2332.975957	-2333.123282	-2334.138365	-2333.043561	-2333.190886	-1484.5
TS-20	-2176.823418	-2175.85512	-2176.010736	-2176.94828	-2175.979982	-2176.135598	-1239.3
TS-22	-2176.814576	-2175.845209	-2175.995799	-2176.943285	-2175.973918	-2176.124508	-1386.4
TS-31	-2246.89135	-2246.099086	-2246.234015	-2247.166874	-2246.37461	-2246.509539	-1386.5
PivOH	-347.017538	-346.860885	-346.902513	-346.916158	-346.759505	-346.801133	

Cartesian coordinates of all optimized structures are provided in ".xyz" file format in the Supporting Information.

¹ Bessel, M.; Rominger, F.; Straub, B. F. Synthesis **2010**, *9*, 1459