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Synthesis of S1. 

N-mesitylethylenediamine
1
 (1.82 g, 10.2 mmol) and 2-adamantanone (1.53 g, 10.2 mmol) were 

taken up in toluene (100 mL). p-Toluenesulfonic acid monohydrate (20 mg, 0.1 mmol) was 

added and the mixture was headed to 130 ͦC overnight using a Dean-Stark apparatus.  Upon 

cooling to room temperature, the solvent was removed in vacuo. The crude mixture was taken up 

in MeOH (100 mL) and NaBH4 (1.58 g, 41.8 mmol) was slowly added as a solid. After stirring at 

room temperature for 2 hours, the solvent was removed in vacuo and the crude mixture was 

taken up in Et2O (50 mL). The mixture was then washed with water (3 x 25 mL) and brine (1 x 

50 mL), and dried over Na2SO4. The Et2O mixture was used without further purification and 

treated with a solution of HCl in 1,4-dioxane (4M, 5.1 mL) causing precipitation of a white solid. 

This was isolated and added to a flask containing trimethylorthoformate (20 mL). The reaction 

was stirred for 120  ͦC for 2 hours. After warming to room temperature, Et2O was added, causing 

precipitation of the pure desired product as a white solid (2.0 g, 5.6 mmol, 55%). 
1
H NMR (500 

MHz, CDCl3): δ 8.56 (s, 1H), 6.90 (s, 2H), 4.33-4.05 (m, 4H), 4.05 (s, 1H), 2.45 (s, 2H), 2.34 (s, 

6H), 2.25 (s, 3H), 2.19 (s, 1H), 1.92-1.86 (m, 6H), 1.75 (s, 2H), 1.71 (s, 3H). 
13

C{
1
H} NMR (125 

MHz,CDCl3):

HRMS-FAB (m/z) [M]
+
 calcd for C22H31N2, 323.2487; found, 323.2475. 

 

 

 

Synthesis of S2. 
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N-2,6-diisopropylphenylethylenediamine
1
 (865 mg, 3.93 mmol) and 2-adamantanone (592  g, 

3.93 mmol) were taken up in toluene (40 mL). p-Toluenesulfonic acid monohydrate (8 mg, 0.04 

mmol) was added and the mixture was headed to 130  ͦC overnight using a Dean-Stark apparatus.  

Upon cooling to room temperature, the solvent was removed in vacuo. The crude mixture was 

taken up in MeOH (50 mL) and NaBH4 (608 mg, 16.1 mmol) was slowly added as a solid. After 

stirring at room temperature for 2 hours, the solvent was removed in vacuo and the crude mixture 

was taken up in Et2O (30 mL). The mixture was then washed with water (3 x 15 mL) and brine 

(1 x 25 mL), and dried over Na2SO4. The Et2O mixture was used without further purification and 

treated with a solution of HCl in Et2O (1M, 8.24 mL) causing precipitation of a white solid. This 

was isolated and added to a flask containing trimethylorthoformate (8 mL). The reaction was 

stirred for 120  ͦC for 2 hours. After warming to room temperature, Et2O was added, causing 

precipitation of the pure desired product as a white solid (843 mg, 2.1 mmol, 54% overall yield). 

1
H NMR (500 MHz, CDCl3): δ 8.29 (s, 1H), 7.41 (t, J = 7.74, 1H), 7.23 (d, J = 7.77, 2H), 4.47 (t, 

J = 9.69, 2H), 4.29 (t, J = 9.38, 2H), 4.18 (s, 1H), 2.44 (s, 2H), 1.93 (s, 6H), 1.77-1.71 (m, 6H), 

1.28 (t, J = 6.13, 12H); 
13

C{
1
H} NMR (125 MHz, CDCl3): 



HRMS-FAB (m/z) [M]
+
 calcd for C25H37N2, 365.2957; found, 365.2971. 

 

 

 

Synthesis of S3. 

To a flame dried 2-neck flask under argon was added 2-chloro-N-mesitylacetamide (1.34 g, 6.34 mmol, 

1.2 eq), K2CO3 (1.69 g, 12.6 mmol, 2.4 eq), acetonitrile (35 mL) and then (-)-cis-myrtanylamine (0.874 

mL, 5.22 mmol, 1.0 eq). A condenser was attached, and the reaction mixture was heated to reflux for 20 

hr. The crude mixture was cooled to ambient temperature, filtered over Celite, washed with CH2Cl2, and 

concentrated in vacuo. The title compound was purified by column chromatography (7:3 ethyl acetate : 

hexanes) to give a clear viscous oil (1.33 g, 78%). 
1
H NMR (500 MHz, CDCl3): δ 8.75 (s, 1H), 6.90 (s, 

2H), 3.45 (d, J = 17.1 Hz, 1H), 3.40 (d, J = 17.1 Hz, 1H), 2.75 (dd, J = 11.5, 7.0 Hz, 1H), 2.71 (dd, J = 

11.4, 7.9 Hz, 1H),  2.38 (dtd, J = 9.5, 6.3, 2.0 Hz, 1H), 2.27 (s, 3H), 2.23-2.16 (m, 1H), 2.19 (s, 6H), 2.03-
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1.84 (m, 5H), 1.55-1.47 (m, 1H), 1.18 (s, 3H), 0.99 (s, 3H), 0.93 (d, J = 9.6 Hz, 1H); 
13

C{
1
H} NMR (126 

MHz, CDCl3): δ 170.6, 136.8, 134.9, 131.3, 129.0, 57.2, 52.9, 44.6, 42.2, 41.6, 38.8, 33.6, 28.2, 26.2, 

23.5, 21.0, 20.8, 18.6; HRMS-FAB (m/z) [M + H]
+ 

calcd for C21H34ON2, 329.2593; found, 329.2589. 

 

 

 

Synthesis of S4. 

To a flame dried 2-neck flask under argon was added LiAlH4 (463 mg, 12.2 mmol, 3.9 eq) and THF (20 

mL). Amide S3 (1.03 g, 3.14 mmol, 1 eq) was then added as a solution in THF (5 mL). A condenser was 

added and the reaction mixture was heated to reflux for 18 hr. The crude mixture was cooled to ambient 

temperature and quenched by dropwise addition of H2O (5 mL) and then NaOH (1 mL) followed by brine 

(5 mL). The mixture was extracted with ethyl acetate (20 mL) and then CH2Cl2 (2 x 15 mL). The 

combined organics were dried with MgSO4 and concentrated in vacuo to yield a yellow oil (965 mg) 

which was used without further purification. The oil was dissolved in CH(OMe)3 (6.5 mL) and NH4BF4 

(341 mg, 3.25 mmol) was then added. A reflux condenser was added and the reaction mixture was heated 

to 100 °C for 3 hr. The crude mixture was cooled to ambient temperature and concentrated in vacuo to 

give an wet red solid. The solid was then triterated with hexanes, followed by ether, followed by 1:1 

ether : ethyl acetate to give a tan powder (622 mg, 51%). 
1
H NMR (500 MHz, CDCl3): δ 7.93 (d, J = 4.5 

Hz, 1H), 6.91 (s, 2H), 4.24-4.11 (m, 4H), 3.74-3.58 (m, 2H), 2.52-2.38 (m, 2H), 2.28 (s, 3H), 2.25 (s, 

3H), 2.25 (s, 3H), 2.03-1.83 (m, 5H), 1.53-1.42 (m, 1H), 1.19 (s, 3H), 1.02 (s, 3H), 0.98 (d, J = 9.6 Hz, 

1H); 
13

C{
1
H} NMR (126 MHz, CDCl3): δ 158.1, 140.3, 135.6, 130.6, 130.0, 54.2, 51.0, 48.9, 43.6, 41.2, 

38.7, 38.3, 33.2, 27.9, 25.8, 23.3, 21.2, 19.4, 17.6; HRMS-FAB (m/z) [M]
+ 

calcd for C22H33N2, 325.2644; 

found, 325.2642. 
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Figure S1. 
1
H NMR (600 MHz) spectrum of 11 in C6D6.  
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Figure S2. 
13

C{
1
H} NMR (126 MHz) spectrum of 11 in C6D6. 
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Figure S3. 
1
H-

1
H Coupled gCOSY spectrum of 11 in C6D6. 

 

 

Figure S4. 
1
H-

13
C Coupled gHSQC spectrum of 11 in C6D6. 
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Figure S5. 
1
H-

13
C Coupled gHMBC spectrum of 11 in C6D6. 

 

 

Figure S6. 
1
H-

1
H Coupled NOESY spectrum of 11 in C6D6. 
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Figure S7. 
1
H NMR (500 MHz) spectrum of S1 in CDCl3.  
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Figure S8. 
13

C{
1
H} NMR (125 MHz) spectrum of S1 in CDCl3.  
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Figure S9. 
1
H NMR (500 MHz) spectrum of 15 in CDCl3.  
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Figure S10. 
13

C{
1
H} NMR (126 MHz) spectrum of 15 in CDCl3.  
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Figure S11. 
1
H NMR (500 MHz) spectrum of 16 in C6D6.  
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Figure S12. 
13

C{
1
H} NMR (126 MHz) spectrum of 16 in C6D6.  
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Figure S13. 
1
H NMR (500 MHz) spectrum of S2 in CDCl3.  
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Figure S14. 
13

C{
1
H} NMR (125 MHz) spectrum of S2 in CDCl3.  
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Figure S15. 
1
H NMR (500 MHz) spectrum of 17 in C6D6.  
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Figure S16. 
13

C{
1
H} NMR (126 MHz) spectrum of 17 in C6D6.  
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Figure S17. 
1
H NMR (500 MHz) spectrum of 18 in C6D6.  
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Figure S18. 
13

C{
1
H} NMR (126 MHz) spectrum of 18 in C6D6. 
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Figure S19. 
1
H-

13
C Coupled gHSQC spectrum of 18 in C6D6. 
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Figure S20. 
1
H NMR (500 MHz) spectrum of 20 in C6D6.  
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Figure S21. 
13

C{
1
H} NMR (126 MHz) spectrum of 20 in C6D6. 
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Figure S22. 
1
H-

13
C Coupled gHSQC spectrum of 20 in C6D6. 
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Figure S23. 
1
H NMR (500 MHz) spectrum of 28 in C6D6.  
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Figure S24. 
13

C{
1
H} NMR (126 MHz) spectrum of 28 in C6D6. 
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Figure S25. 
1
H NMR (500 MHz) spectrum of S3 in CDCl3. 
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Figure S26. 
13

C{
1
H} NMR (126 MHz) spectrum of S3 in CDCl3. 
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Figure S27. 
1
H NMR (500 MHz) spectrum of S4 in CDCl3.  
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Figure S28. 
13

C{
1
H} NMR (126 MHz) spectrum of S4 in CDCl3.  
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Figure S29. 
1
H NMR (500 MHz) spectrum of 29 in C6D6.  
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Figure S30. 
13

C{
1
H} NMR (126 MHz) spectrum of 29 in C6D6. 
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Figure S31. 
1
H NMR (500 MHz) spectrum of 30 in C6D6.  
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Figure S32. 
13

C{
1
H} NMR (126 MHz) spectrum of 30 in C6D6. 
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Comparison of 6-31G(d) and 6-31G(d,p) basis sets for hydrogen atoms in geometry optimizations 

 

The B3LYP functional and the popular 6-31G(d) basis set were used in the geometry optimizations in this 

study (“method 1”, LANL2DZ was used for Ru). To evaluate whether using polarization basis functions 

for hydrogen atoms is necessary in geometry optimizations, we performed test calculations for the 

reaction of complex 12 using B3LYP and the 6-31G(d,p) basis set in the geometry optimizations 

(“method 2”, LANL2DZ for Ru). Single point calculations were performed at the same level of theory 

(M06/6-311+G(d,p)-SDD(Ru), with the SMD solvation model in THF). The computed activation 

energies and reaction energies using both levels of theories are summarized below. The two different 

levels of theories provide almost identical activation energies and reaction energies in the test 

calculations.  

 

 
  

N N DIPP
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O
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6

6

DG(method1) = –4.1 kcal/mol
DG(method2) = –4.2 kcal/mol

DG(method1)‡  = 22.5 kcal/mol

DG(method2)‡  = 22.7 kcal/mol

DG(method1)‡  = 32.0 kcal/mol

DG(method2)‡  = 32.1 kcal/mol

N N
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O

O
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O
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O

t-Bu
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DIPP

N N

Ru
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O

OH

O
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O
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12 TS-11

11

TS-13

TS-14

13

14

DG(method1) = –2.5 kcal/mol
DG(method2) = –2.5 kcal/mol

DG(method1)‡  = 27.7 kcal/mol

DG(method2)‡  = 27.8 kcal/mol

DG(method1) = –1.6 kcal/mol
DG(method2) = –1.4 kcal/mol

method1: M06/6-311+G(d,p)-SDD(Ru)/SMD(THF)//B3LYP/6-31G(d)-LANL2DZ(Ru)
method2: M06/6-311+G(d,p)-SDD(Ru)/SMD(THF)//B3LYP/6-31G(d,p)-LANL2DZ(Ru)
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Conformers of TS-20 and 20 

 

Two isomers for TS-20 and the cyclometalated complex 20 were located. The conformer observed in the 

X-ray structure of the cyclometalated complex (20), in which the two mesityl groups are adjacent to each 

other, is predicted to be 0.9 kcal/mol more stable. The C-H activation transition states leading to the two 

conformers have very close activation barriers.  
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Optimized geometries of the C-H activation transition states to form the cyclometalated complexes 

16, 18, and 31.  
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SCF energies, enthalpies at 298K, and Gibbs free energies at 298K for the optimized structures.  

 

 

 

complex 
E(B3LYP) 

(a.u.) 

H(B3LYP)  

(a.u.) 

G(B3LYP)  

(a.u.) 

E(M06)  

(a.u.) 

H(M06)  

(a.u.) 

G(M06)  

(a.u.) 

imaginary  

frequency  

(cm-1) 

11 -1988.25815 -1987.296008 -1987.427026 -1988.432532 -1987.470391 -1987.601409 

 12 -2335.30295 -2334.18093 -2334.332764 -2335.366182 -2334.244162 -2334.395996 

 13 -1988.25418 -1987.291689 -1987.420199 -1988.432842 -1987.470351 -1987.598861 

 14 -1988.253865 -1987.291524 -1987.423867 -1988.427364 -1987.465022 -1987.597365 

 15-OPiv2 -2216.204565 -2215.193133 -2215.335496 -2216.319604 -2215.308172 -2215.450535 

 16 -1869.153068 -1868.301603 -1868.420516 -1869.38693 -1868.535464 -1868.654377 

 17-OPiv2 -2334.128144 -2333.026574 -2333.173852 -2334.190165 -2333.088595 -2333.235873 

 18 -1987.079818 -1986.137904 -1986.261896 -1987.255378 -1986.313464 -1986.437456 

 20 -1829.821074 -1829.005904 -1829.136602 -1830.054711 -1829.23954 -1829.370238 

 21 -2176.863586 -2175.888204 -2176.036776 -2176.993957 -2176.018575 -2176.167147 

 22 -1829.815819 -1828.99959 -1829.127015 -1830.054711 -1829.238481 -1829.365906 

 28 -2246.953231 -2246.154959 -2246.288188 -2247.229484 -2246.431212 -2246.564441 

 31 -1899.894008 -1899.254982 -1899.366133 -1900.280931 -1899.641905 -1899.753056 

 TS-11 -2335.253773 -2334.138228 -2334.291618 -2335.322373 -2334.206828 -2334.360218 -1342.3 

TS-13 -2335.234333 -2334.119021 -2334.269804 -2335.309565 -2334.194253 -2334.345036 -1444.4 

TS-14 -2335.249591 -2334.133865 -2334.286588 -2335.314862 -2334.199136 -2334.351859 -1374.3 

TS-16 -2216.143881 -2215.139436 -2215.281312 -2216.267234 -2215.26279 -2215.404666 -1488.5 

TS-18 -2334.070761 -2332.975957 -2333.123282 -2334.138365 -2333.043561 -2333.190886 -1484.5 

TS-20 -2176.823418 -2175.85512 -2176.010736 -2176.94828 -2175.979982 -2176.135598 -1239.3 

TS-22 -2176.814576 -2175.845209 -2175.995799 -2176.943285 -2175.973918 -2176.124508 -1386.4 

TS-31 -2246.89135 -2246.099086 -2246.234015 -2247.166874 -2246.37461 -2246.509539 -1386.5 

PivOH -347.017538 -346.860885 -346.902513 -346.916158 -346.759505 -346.801133 

  

 

 

Cartesian coordinates of all optimized structures are provided in “.xyz” file format in the Supporting 

Information.  
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