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The glass transition of mesoscopic charged particles in two-dimensional confinement is studied
by mode-coupling theory. We consider two types of effective interactions between the particles,
corresponding to two different models for the distribution of surrounding ions that are integrated
out in coarse-grained descriptions. In the first model, a planar monolayer of charged particles is
immersed in an unbounded isotropic bath of ions, giving rise to an isotropically screened Debye-
Hückel- (Yukawa-) type effective interaction. The second, experimentally more relevant system
is a monolayer of negatively charged particles that levitate atop a flat horizontal electrode, as
frequently encountered in laboratory experiments with complex (dusty) plasmas. A steady plasma
current towards the electrode gives rise to an anisotropic effective interaction potential between the
particles, with an algebraically long-ranged in-plane decay. In a comprehensive parameter scan that
covers the typical range of experimentally accessible plasma conditions, we calculate and compare
the mode-coupling predictions for the glass transition in both kinds of systems.

PACS numbers: 64.70.Q-, 66.30.jj, 64.70.ph, 64.70.pe

I. INTRODUCTION

Two-dimensional (2D) configurations of mesoscopic
charged particles can be observed in various kinds of ex-
periments [1], including colloidal suspensions confined to
interfaces or between plates [2, 3], or negatively charged
dust particles levitating in the weakly ionized plasma
sheath atop and parallel to a flat horizontal electrode
[4]. In coarse-grained descriptions one is interested in
the charged particle’s dynamics and phase behavior with-
out taking explicit account of the surrounding electrons
and ions that ensure overall charge-neutrality of the sys-
tem. In this article, we employ mode-coupling theory
(MCT) to study vitrification in two kinds of confined,
monodisperse charged-particle model systems. The first
is the traditional two-parametric model of confined par-
ticles that interact via screened Coulomb (Yukawa) pair-
potentials, and the second is a more realistic, three-
parametric model for a monolayer of negatively charged
particles embedded in a flowing plasma.

The simple Yukawa model has been widely used in the
description of dusty plasmas (see Refs. [1, 5, 6]). It is
capable of describing the effective pair-potential between
charged particles rather accurately around the most com-
mon (mean geometric) nearest neighbor distance [7, 8].
Nevertheless, the Yukawa model is not justified in many
of the common laboratory experiments with 2D confine-
ment, due to a highly anisotropic distribution of ions.
In the common case of dusty plasmas, levitating in a
collisional plasma sheath atop an electrode in a radio
frequency chamber [6], account has to be taken of the
plasma current of ions towards the electrode and the
corresponding anisotropic effective dust interaction po-

tentials. A kinetic theory of the ion distributions and ef-
fective dust grain interactions is appropriate in this case,
and has been studied by different groups of researchers,
under different assumptions on the plasma parameters
[8–16]. The theory is based on the solution of the ki-
netic equation for ions moving in the electrostatic field
of the sheath. Different approximations used for the ion
collision operator (describing the interaction with neu-
tral gas) merely reflect different experimental regimes (in
terms of the radio frequency discharge power and pres-
sure) when the particular model is applicable.

Among these kinetic models, the one published by
Kompaneets et al. [8] is based on a reasonable as-
sumption of a mobility-limited ion drift in the sheath
field (as opposed to rather unrealistic inertia-limited mo-
tion) and employs a velocity-independent ion-neutral col-
lisional cross-section which is logarithmically accurate for
the dominant charge-exchange collisions [5]. The result-
ing three-parametric potential is anisotropic in three di-
mensions (3D); for charged particles confined to 2D, it
exhibits an algebraically long-ranged r−3 decay. This
model is expected to provide a realistic description of in-
teractions in ground-based dusty plasma laboratory ex-
periments [17].

Our results, reported in the present paper, predict
qualitatively similar liquid-glass transition curves for
monolayers with Yukawa-like and Kompaneets-like pair
potentials. However, we find that a glass transition in a
dusty plasma monolayer may be qualitatively misinter-
preted if Yukawa-like interactions are assumed: An ap-
parently re-entrant liquid-glass-liquid state sequence is
found in the parameter space of the Yukawa potentials
that at distances close to the mean geometric distance
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best fit the potential derived from the kinetic theory.
This apparent re-entrant state sequence is merely an arti-
fact that arises when one attempts to describe the system
in terms of the inappropriate Yukawa potential param-
eters, and it disappears when the more realistic kinetic
potentials are assumed, and the corresponding dimen-
sionless parameters are used in plotting the transition
diagram.
The article is organized as follows: In Sec. II we dis-

cuss the two model systems of charged particle monolay-
ers with Yukawa and Kompaneets pair potentials. Sec-
tion III provides a brief summary of the MCT equa-
tions and their only input, the 2D static structure fac-
tors, which are computed in the approximate T/2-HNC
scheme. Our results are presented in Sec. IV, preceding
our finalizing conclusions in Sec. V.

II. THE TWO MODEL SYSTEMS

Both model systems that are described in the follow-
ing two subsections contain mesoscopic charged particles
confined to a 2D plane. The charged particles’ diam-
eter is in the order of microns. Surrounding ions are
only implicitly accounted for, through their influence on
the effective pair-potential between the confined, charged
particles. In the thermodynamic limit, both the number,
N , of particles and the area, L2, of the confining plane
diverge to infinity at a fixed value of the areal particle
number density n = N/L2.

A. Yukawa monolayer

FIG. 1. Edge-on schematic of a Yukawa monolayer. Charged
particles (filled circles) are confined to a plane, while op-
positely charged ions are free to move in the surrounding,
unbounded 3D space. The mean ion density is color-coded.
Typical in-plane nearest neighbor distances are similar to the
mean geometric distance n−1/2, and of the same order of mag-
nitude as the Yukawa screening length λY . Particle sepa-
rations greatly exceed the particle diameter. The effective
particle interactions are quantified by the two dimensionless
parameters ΓY and κY = 1/(λY

√
n).

The Yukawa monolayer model implicitly assumes ther-
modynamic equilibrium statistics of ions, as schemati-
cally depicted in Fig. 1. Unlike the two-dimensionally
confined, mesoscopic charged particles, ions are free to

move in 3D space in the absence of external forces. Under
these conditions the effective interaction potential UY (x)
between charged particles at sufficiently large mutual dis-
tance follows the screened Coulomb (Yukawa)-type form
[18]

UY (x)

kBT
= ΓY

exp(−κY x)

x
, (1)

where kB is Boltzmann’s constant, T is the absolute tem-
perature, and x = r

√
n is the particle center-to-center

distance in units of the mean geometric distance n−1/2.
The Yukawa potential in Eq. (1) is characterized by

the two dimensionless parameters ΓY and κY : The cou-
pling parameter ΓY = Q2

Y

√
n/(4πǫkBT ) quantifies the

interaction strength in terms of the charged particle’s ef-
fective Yukawa charge QY (which is typically less than
the bare electric charge of the particles [19, 20]), and the
dielectric permittivity ǫ of the embedding medium. In
case of dusty plasmas, ǫ is equal to the dielectric per-
mittivity of vacuum, ǫ0, for all purposes of the present
article in which we adhere to SI units. The screening
parameter, κY = 1/(λY

√
n), is the normalized inverse

of the Debye screening length λY , which depends on
the ion population. In an embedding plasma that con-
sists of neutral particles and univalent positive ions only,
λY =

√

ǫkBT/(e2ni) is the Debye length in terms of the
proton elementary charge e, and the unperturbed (3D)
ion number density ni of the ions far from the charged
particle’s confining plane.
The Yukawa model in two dimensions is best real-

ized experimentally for charged colloids which are con-
fined between two highly charged glass plates [3, 21, 22].
There, the screening is caused by the microions between
the plates [3] and it can be tuned by adding salt. The ex-
perimentally observed freezing phase sequence has been
found to agree with the theoretical predictions assuming
a 2D Yukawa interaction [22].

B. Kompaneets monolayer

The second class of systems studied in this article is
schematically depicted in Fig. 2. A radio frequency dis-
charge chamber contains a weakly ionized plasma (of neu-
tral gas particles, electrons, and ions), and negatively
charged dust particles are levitating atop an electrode
on the bottom of the chamber. Confinement of the dust
particles to a well-defined 2D layer is achieved by a force
balance between gravitation and electrostatic repulsion.
Unlike the particles in the spatially unbounded Yukawa
system, the ions in the radio frequency chamber exhibit
a highly non-equilibrium steady state with a non-zero
plasma current towards the electrode, where positive ions
are adsorbed. Attraction between dust particles and
ions causes downstream focusing of ions in the so-called
plasma wake region. As a consequence, every dust par-
ticle trails a positive space-charge in the downstream di-
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rection, which causes the effective pair-potential between
charged dust particles to be anisotropic in 3D.

FIG. 2. Edge-on schematic of a dusty plasma monolayer.
Negatively charged dust particles (filled circles) levitate in a
well-defined 2D layer above an electrode in a radio frequency
discharge plasma chamber, at a height where gravity is bal-
anced by the vertical electrostatic force. The mean distri-
bution of ions is color-coded. Three characteristic ion tra-
jectories are sketched by arrows signed with +. Subsequent
collisions between ions and neutral particles are separated on
average by the ion-neutral mean free path l. Ions are focused
in the downstream direction below the dust particles, giv-
ing rise to positive space-charges in the plasma wake region.
The effective dust particle interactions are quantified by the
three dimensionless parameters ΓK , κK = 1/(λK

√
n), and

ζ = λK/l.

Kompaneets et al. [8] have presented a self-consistent
steady-state solution for the effective pair potential be-
tween the dust particles, taking into account the exter-
nal electric field E towards the electrode, and the colli-
sions between ions and electrically neutral particles in the
plasma. The resulting effective particle pair-potential,
obtained under the assumptions of the mobility-limited
ion drift in the field E, velocity-independent ion-neutral
scattering cross section, and further assumptions that are
outlined in the original reference, has been derived and
described comprehensively in Ref. [8]. We will refer to
this kinetic pair-potential as the Kompaneets pair po-
tential. For particles that are perfectly confined to a
plane perpendicular to the plasma current, the in-plane
Kompaneets potential UK(x) is given by

UK(x)

kBT
= ΓK

2ζκK

π
Re

∫
∞

0

dt

1 + ζ−2Y (t)

×K0

(

xζκK

√

t2 + ζ−2X(t)

1 + ζ−2Y (t)

)

,

(2)

where K0 is the zeroth-order modified Bessel function of
the second kind [23], and the two auxiliary functionsX(t)

and Y (t) are defined as

X(t) = 1−
√
1 + it,

Y (t) =
2
√
1 + it

it

∫ 1

0

dα

[1 + it(1− α2)]2
− 1

it(1 + it)
.
(3)

In Eq. (2), the prefactor ΓK = Q2
K

√
n/(4πǫkBT ) quan-

tifies the interaction strength in terms of the effective
charge QK , and the screening parameter is defined as
κK = 1/(λK

√
n), where λK =

√

ǫEl/(e2ni) is a field-
induced screening length. In addition, the Kompaneets
potential depends on the collision parameter ζ = λK/l,
where l is the mean free path between two consecutive
collisions of an ion and neutral gas particles (“ion-neutral
mean free path”, for short).
For close-contact configurations (r ≪ ζsλK , where

1/3 ≤ s ≤ 1, depending on the magnitude of ζ [8]), the
Kompaneets potential tends to the bare Coulomb poten-
tial:

x ≪ ζs/κK :
UK(x)

kBT
→ ΓK

x
. (4)

Hence, the Coulomb potential is recovered at all distances
x in the limit ζ → ∞, corresponding to a very large
field E, or a very small ion mean free path l or/and ion
density ni. For large particle separations and finite values
of ζ, the Kompaneets potential reduces to its in-plane
asymptotic form

UK(x)

kBT

∣
∣
∣
∣
x→∞

=
ΓK

6
√
2κ2

Kx3

(
60ζ2 − 1

)
+O(x−4). (5)

The leading order asymptotic form of the anisotropic out-
of-plane electrostatic potential is proportional to x−2,
and is given in Eq. (8) of Ref. [8] (in Gaussian units).
In typical dusty plasma experiments the effective inter-

action potential can be measured for particle distances
x ≈ 1 (i.e., close to the mean geometric distance) by
particle video tracking [7]. It has been shown in Ref. [8],
that the pair-potential in the experimentally directly ac-
cessible narrow range of particle separations can be fitted
equally well by the Yukawa as well as the Kompaneets
form. However, one should expect that the qualitative
differences between the Yukawa and Kompaneets poten-
tials, most particularly in their long-ranged asymptotic
forms, can have a considerable influence on collective dy-
namics [17] and phase transitions.

III. MODE COUPLING THEORY

The glassy state is characterized by liquid-like static
pair correlations without long range order, and a
non-zero value of the non-ergodicity parameter fq =
limt→∞ φq(t), which is the long time limit of the
wavenumber- and time-dependent autocorrelation func-
tion φq(t) of the number density. The parameter fq is
also called the form factor or the Debye-Waller factor. In
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contrast to the glassy state, the liquid state is character-
ized by a vanishing non-ergodicity parameter, fq = 0, for
all wavenumbers q. In MCT, fq is calculated as [24, 25]

fq
1− fq

= Fq[f ], (6)

where in 2D [26]

Fq[f ] =
Sq

8π2q4

∫

d2k SkSp (q · k ck + q · p cp)
2
fkfp,

(7)
with p = q− k.
The static structure factor Sq and direct correlation

function cq = 1 − 1/Sq are the only input to the MCT
equations, conveying information about the particle in-
teractions. Note that the number density n does not
explicitly enter into Eq. (7), since all lengths and wave
vectors are expressed in units of 1/

√
n and

√
n, respec-

tively: In our notation the wave vector q is the dimen-
sionless Fourier conjugate variable to the dimensionless
distance vector x = r

√
n.

The Lamb-Mössbauer factor f s
q = limt→∞ φs

q(t), which
is the long-time limit of the wavenumber- and time-
dependent, Fourier transformed tagged particle position
autocorrelation function φs

q(t), is calculated in MCT ac-
cording to [27]

f s
q

1− f s
q

= Fs
q [f, f

s], (8)

where [26]

Fs
q [f, f

s] =
1

4π2q4

∫

d2k Sk(q · k)2c2kfkf s
p (9)

and, once again, p = q− k.
We evaluate the integrals in Eqs. (7) and (9) numer-

ically and solve Eqs. (6) and (8) iteratively with itera-
tion seeds fq

0 = f s
q
0 = 1 [28]. To evaluate the inte-

grals numerically we use N = 200 equidistant grid points
with spacing ∆q = 0.2, minimal wavenumber qmin = 0.1
and maximal wavenumber qmax = 39.9. Test calculations
with N = 500 grid points allow us to estimate the numer-
ical error due to integral discretization, which is around
5% in the glass transition temperatures. The static struc-
ture factor is obtained from the (Fourier transformed)
solution of the T/2-HNC integral equation [29]

γ(x) =

∫

d2x′ c(|x − x′|)
[

exp

{

γ(x′)− 2U(x′)

kBT

}

− 1

]

,

(10)
for an isotropic 2D fluid in terms of the indirect and
direct correlation functions γ(x) and c(x) [30]. Equa-
tion (10) is solved by means of a numerical spectral solver
for liquid integral equations in an arbitrary number of
spatial dimensions, which has been comprehensively de-
scribed in Ref. [31], and which is based on methods that
have been originally introduced in Refs. [32–36]. The
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FIG. 3. Static structure factors for a Yukawa monolayer with
ΓY = 100 and κY = 2.0 (lower three data sets) and a Kom-
paneets monolayer with ΓK = 300, κK = 2.0, and ζ = 0.25
(upper three datasets). Crosses and circles: Monte Carlo sim-
ulation results. Dashed curves: HNC integral equation solu-
tion. Solid curves: Solution of the T/2-HNC in Eq. (10).
The Kompaneets monolayer structure factors are shifted by 3
units along the vertical axis for clarity.

spectral solver operates on logarithmically spaced grids
of wavenumbers and radii, providing a high-resolution
structure factor that is mapped to the above mentioned
equidistant wavenumber grid by quadratic interpolation.

Note that Eq. (10) is a simple modification of the
well-known hypernetted chain (HNC) integral equation
[30, 37], which is recovered when the term 2U(x′) in the
integrand is replaced by U(x′). Thus, the solution of the
T/2-HNC equation coincides exactly with the solution
of the HNC integral equation for a system in which the
temperature has been scaled down by a factor of 1/2.
In Ref. [29], the MCT glass transition was studied for
two-dimensional binary mixtures of aligned point-dipoles
with a long-ranged repulsive pair potential that is pro-
portional to the inverse cube of the particle separation,
r−3. It was empirically found in Ref. [29] that the T/2-
HNC scheme predicts the static structure factors of the
strongly repulsive 2D binary dipole mixtures with a sig-
nificantly higher accuracy than the HNC scheme. In or-
der to test the accuracy of the T/2-HNC scheme for the
Yukawa- and Kompaneets monolayer systems, we have
simulated 2D equilibrium liquids with strong repulsive
pair potentials of both types, and compared the static
structure factor from the simulation to the HNC and the
T/2-HNC scheme solutions. Our results, shown in Fig. 3,
underpin the good accuracy of the T/2-HNC and its
supremacy over the HNC scheme. We have obtained the
datasets represented by crosses and circles in Fig. 3 from
Metropolis Monte Carlo (MC) simulations in the NLT -
ensemble of constant particle number N , constant system
area L2, and constant temperature T . A square sim-
ulation box with periodic boundary conditions in both
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Cartesian directions was used in our simulations, and we
haven chosen the parameters ΓY = 100 and κY = 2.0
for the Yukawa monolayer of N = 10.000 particles and
ΓK = 300, κK = 2.0, and ζ = 0.25 for the Kompa-
neets monolayer of N = 12.000 particles. Both simulated
systems are strongly coupled equilibrium liquids not far
from the crystal-liquid transition point. In our MC sim-
ulations, the direct particle interactions are truncated at
a dimensionless cutoff radius of xc = rc

√
n = 5 in case of

Yukawa interactions, and at xc = 12.5 in case of Kompa-
neets interactions. For pair separations x > xc, the pair-
potential is set equal to zero in the simulations. Varying
its numerical value, we have checked that the cutoff ra-
dius is large enough and does not have a significant effect
on the measured quantity Sq.
Note from Fig. 3 that despite its improved accuracy

in comparison to the standard HNC scheme, the T/2-
HNC scheme still tends to underestimate the principal
peak height in Sq. In addition note that we apply the
T/2-HNC scheme in the following sections to systems
at the liquid-glass transition, that is, beyond the equi-
librium fluid regime for which the accuracy of the in-
tegral equation scheme can be tested by comparison to
crystallization-free simulations. Moreover, the approxi-
mate T/2-HNC scheme is combined in the following with
the approximate MCT equations. The combined uncer-
tainty of the resulting glass transition lines cannot be
easily estimated and, thus, the numerical values of the
glass transition temperatures must be taken with some
caution. Nevertheless, the dominating qualitative fea-
tures of Sq are contained in the T/2-HNC solution, and
the features of the glass transition curves can be expected
to be at least qualitatively correct.
It is important to note also that the T/2-HNC scheme

is empirically justified only in case of strong enough par-
ticle interactions. In the limit of vanishing interactions,
ΓY → 0 or ΓK → 0, the T/2-HNC scheme predicts twice
the correct asymptote c(r) → exp {−U(r)/kBT } − 1 for
the direct correlation function (i.e., twice the Mayer func-
tion). A related issue is the wrong long-distance decay –
the T/2-HNC scheme yields twice the correct expression
limr→∞ c(r) = −U(r)/kBT . This wrong long-distance
decay is observed for all values of the potential prefactor.

IV. RESULTS

A. Glass transition diagrams

The glass transition curves for the Yukawa monolayer,
and for three different Kompaneets-monolayers with dif-
ferent values of the collision parameter ζ, are shown in
the transition diagram in Fig. 4. In the transition dia-
gram, the screening parameters κY and κK vary along
the horizontal axis, and the coupling parameters ΓY and
ΓK vary along the vertical axis. The data points in Fig. 4
represent the lowermost values of ΓY,K for which fq as-
sumes a non-zero value at given values of κY,K . Note

0 0.5 1 1.5 2 2.5 3

κ
Y

, κ
K

0

250

500

750

1000

1250

Γ Y
, Γ
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Kompaneets, ζ = 0.375

Kompaneets, ζ = 0.5

Yukawa
Yukawa freezing line (Ref. [38])

FIG. 4. Glass transition curves in the (κ,Γ)-plane, for the
Yukawa potential (black curve with triangles) and three dif-
ferent Kompaneets potentials with parameters ζ = 0.25 (solid
curves with diamonds), ζ = 0.375 (solid curve with squares)
and ζ = 0.5 (solid curve with circles). The dashed curve is
the 2D Yukawa freezing line from Ref. [38].

that at the glass transition, fq > 0 for all finite values
of q smaller than the q cutoff. In our implementation,
we have tested fq at q = 3.9 to identify the glass transi-
tion points. In the One-Component-Plasma (OCP) limit
κY,K → 0, both the Yukawa and the Kompaneets po-
tential reduce to the unscreened Coulomb potential [see
Eqs. (1) and (4)], and the glass transition curves close in
on the T/2-HNC-MCT approximation for the OCP glass
transition point, ΓY = ΓK = 138.5.

While the glass transition curves are qualitatively sim-
ilar for the Yukawa and the Kompaneets systems, the
transition occurs at higher values of the coupling param-
eter in case of the Kompaneets monolayer. For decreas-
ing values of the parameter ζ, the differences between
the Yukawa and Kompaneets glass transition curves are
increasing. Such trend is not surprising: As we discuss in
the next subsection (see also Fig. 5), the deviation of the
Kompaneets potential from the Yukawa-like form dras-
tically increases as ζ decreases. On the other hand, in
the limit ζ → ∞ the Kompaneets potential tends to the
Coulomb form, so the Kompaneets glass transition curve
in this case would be a horizontal line in the transition
diagram of height ΓK = 138.5.

For 3D Yukawa systems it has been found that the
glass transition and crystallization (freezing) lines are
approximately parallel in the (κY ,ΓY )-plane [39]. The
same similarity between the glass transition and crys-
tallization lines is found for the 2D Yukawa monolayer
in Fig. 4, where we plot the 2D Yukawa freezing line
reproduced from Ref. [38] (dashed curve), and the T/2-
HNC-MCT 2D Yukawa glass transition line (black curve
with triangles). In Ref. [38], the crystallization line was
obtained from simulations, and it was approximated by
the inverse polynomial Γ = Γ∗/(1 + f2κ

2 + f3κ
3 + f4κ

4),
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with Γ∗ = 73.9 = 131/
√
π, f2 = −0.1235, f3 = 0.0248

and f4 = −0.0014. Note that the 2D ion-sphere radius
a = 1/

√
πn (also called Wigner-Seitz radius) was used as

a unit of length in Ref [38], instead of the mean geometric
distance 1/

√
n utilized in the present paper. Therefore,

one has to take account of a 1/
√
π prefactor difference

in the definitions of the Yukawa coupling parameter and
the inverse Yukawa screening parameter.

B. Potentials and structure factors at the glass

transition

In Fig. 5 we plot the Yukawa potential and three dif-
ferent in-plane Kompaneets potentials for different val-
ues of ζ, all at the glass transition for κY = κK = 2.0.
The full set of parameters, including the glass transi-
tion values of ΓY and ΓK , is provided in the figure cap-
tion. Note that the potentials in Fig. 5 are multiplied
by their argument x = r

√
n, to expose the differences.

The curves corresponding to Kompaneets pair-potentials
(with r−3 asymptotics) therefore decay proportionally to
x−2 for large values of x. The inset of Fig. 5 features the
T/2-HNC static structure factors Sq, corresponding to
the four different potentials plotted in the figure’s main
panel. Despite the pronounced differences between the
four potentials (in particular around the most frequently
sampled mean geometric distance x = 1), all four func-
tions Sq at the glass transition are indistinguishable on
the scale of the figure inset. The principal peak heights
of the four structure factors differ only slightly in their
values.

C. A fallacious re-entrant state sequence

As pointed out in Sec. II, the 2D Yukawa model
with its many simplifying assumptions is merely a toy
model for experimentally observable monolayers of meso-
scopic charged particles. For the important class of
ground-based dusty plasma experiments the kinetic pair-
potentials are far more realistic, and among them the
Kompaneets pair potential stands out with its realistic
model assumptions. In this section, we allude to the
possible consequences of an over-simplified interpretation
of charged particle monolayers in terms of the Yukawa
model. We show that the liquid-glass transition of a
system with Kompaneets-like pair potential appears as
a non-monotonic curve (corresponding to liquid-glass-
liquid state re-entrance) when it is plotted in terms of the
inappropriate parameters of the Yukawa potentials that
represent a best fit to the actual (Kompaneets) potential
around the mean geometric distance x = r

√
n = 1.

In Fig. 6 we plot the Yukawa glass transition curve that
is also shown in Fig. 4 (black curves with triangles). The
2D Yukawa freezing line, reproduced from Ref. [38], is
also shown (dashed line) to allow a better comparison to
the glass transition line than on the scale of Fig. 4. The

10
-2

10
-1

10
0

10
1

10
2

x = r n
1/2

10
-2

10
-1

10
0

10
1

10
2

10
3

x 
U

(x
) 

/ k
B
T

ζ= 0.5

ζ= 0.375

ζ= 0.25

0 5 10 15 20
0

2

4

6 S
q

q 

x
-2

FIG. 5. Effective pair-potentials for κY = κK = 2.0, for
values of ΓY and ΓK at the liquid-glass transition point.
Solid curve: Yukawa potential for ΓY = 195.4. Dashed, dot-
dashed and dot-dot-dashed curves: Kompaneets potentials
for ζ = 0.25, 0.375 and 0.5, and ΓK = 539.4, 406.8 and 345.0,
respectively. All potentials are multiplied by their argument,
x = r

√
n, to expose the differences. The inset features the

corresponding static structure factors Sq in T/2-HNC approx-
imation. All four functions Sq are overlapping on the scale of
the inset. The principal peak heights of the structure factors
are Sq = 6.33 for the Yukawa system, and Sq = 6.26, 6.23
and 6.19 for the Kompaneets systems with ζ = 0.5, 0.375 and
0.25, respectively.

curve with open squares in Fig. 6 is generated as follows:
For given values of the two Yukawa parameters κY and
ΓY , we calculate the Kompaneets potential that fits best
to the Yukawa potential in the distance range 0.7 < x < 3
which is most frequently sampled by the particles [7].
The fit is conducted as follows: For given values of l and
n, which yields the combination ζκK ≡ (l

√
n)−1 (≃ 0.354

for the example shown in the figure), we tune the two re-
maining, independent Kompaneets parameters κK and
ΓK ; an optimal fit is achieved by minimizing the square

deviation
∫ 3

0.7 dx[UY (x) − UK(x)]
2
between the two po-

tentials. We then calculate Sq for the best-fitting Kom-
paneets potential in the T/2-HNC scheme, and use it as
the input to the MCT equations (6) and (7) for fq. If
fq = 0, the system is classified as liquid, and if fq > 0, it
is classified to be in the glassy state. We repeat the full
procedure for various Yukawa parameters κY and ΓY ,
which are tuned by interval bisection, until we find for
each κY the smallest (critical) value of ΓY at which the
best-fitting Kompaneets system vitrifies.

Thus, the curve with open squares in Fig. 6 is the
glass transition curve of a dusty plasma monolayer with
Kompaneets-like interactions, as it would appear when
plotted in terms of the dimensionless parameters κY and
ΓY of the Yukawa potentials that best fit the actual Kom-
paneets potential around the mean geometric distance,
where the potential is directly accessible [7]. Therefore,
if one observes vitrification in a dusty plasma monolayer
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and assumes Yukawa-like interactions in the experiment
analysis, the transition behavior may be misinterpreted
as a re-entrant liquid-glass-liquid state sequence, while
the transition diagram in terms of the three relevant
Kompaneets potential parameters does not exhibit any
re-entrance (see Fig. 4).

0 0.5 1 1.5 2 2.5 3

κ
Y

0

100

200

300

Γ
Y

Yukawa glass transition line 

Yukawa freezing line (Ref. [38])

Glass transition: Kompaneets fitted to Yukawa

FIG. 6. Kompaneets and Yukawa glass transitions in the
Yukawa parameter plane. The curve with triangles: Yukawa
glass transition curve in the Yukawa screening- and coupling-
parameter (κY ,ΓY )-plane. The curve with squares is the glass
transition curve for Kompaneets pair-potentials which have
been optimally fitted to the corresponding Yukawa potential
in the region 0.7 < x < 3, by pointwise tuning of the Kom-
paneets screening parameter κK and coupling parameter ΓK .
The parameters l = 2.3 mm and n = 1.5 mm−2 are held fixed
for the Kompaneets potential. The dashed curve is the 2D
Yukawa freezing line from Ref. [38].

D. Non-ergodicity parameters

We turn our attention now to the q-dependent Debye-
Waller and Lamb-Mössbauer factors at the glass transi-
tion, which are plotted in Fig. 7. It is observed that fq
approaches zero in the limit q → ∞. In the opposite limit
q → 0, the functions fq for Yukawa- and Kompaneets
potentials with a small value of the screening parameter
κY = κK = 0.05 assume very small but non-zero val-
ues, and for finite wavenumbers q, all plotted functions
fq deviate clearly from zero. Finite wavelength density
modulations, cannot relax in the glassy state since this
would require a collective rearrangement of particles on
the length scale of some nearest neighbor cage diameters.
Observing Fig. 7 and the inset of Fig. 5, one can see that
the most resilient density modulations (corresponding to
the principal maximum in fq) are for q ≈ 2π, that is, at
the wavenumber that corresponds to the static structure
factor principal maximum, and to the Fourier conjugate
of the nearest neighbor (mean geometric) distance. Very
long wavelength (q → 0) density modulations cannot re-
lax in the glassy state in general, as indicated by the finite
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q 
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: κ

K
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: κ
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= 345.0, ζ= 0.5
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: κ

K
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= 539.4, ζ= 0.25

f
q

s

f
q

FIG. 7. The Lamb-Mössbauer factors fs
q (monotonically

decaying as functions of q) and the form factors fq (non-
monotonic functions of q) for various Yukawa monolayers
(symbols) and Kompaneets monolayers (curves) at their re-
spective MCT glass transition points, with potential param-
eters as indicated in the legend.

values of fq→0 in Fig. 7. This is due to the finite isother-
mal compressibility, Sq→0, of the system. Note here in
particular that the Debye-Waller factor of hard-sphere
system remains finite as q approaches zero [28], which is
in line with the rather large compressibility of such hard-
sphere system. However, in the OCP limits κY → 0 and
κK → 0, in which both the Yukawa and the Kompaneets
potential reduce to the Coulomb potential, the isother-
mal osmotic compressibility coefficient vanishes [30, 40],
which corresponds to an infinite thermodynamic driving
force for the leveling of long-wavelength density modula-
tions. Therefore, fq→0 = 0 in the OCP limit.

The Yukawa- and Kompaneets system are indistin-
guishable in the OCP limit. This facilitates computa-
tion of the OCP-limiting behavior in terms of a small-q
asymptotic expansion of the Yukawa monolayer Debye-
Waller factor. As demonstrated in the Appendix, the
T/2-HNC solution for the direct correlation function of
a Yukawa monolayer can be approximated as

cq ≈ −2UY (q)

kBT
= − 4πΓY

√

κ2
Y + q2

for q + qt ≫ κ2
Y + q2,

(11)

that is, when both the wavenumber q and the screen-
ing parameter κY are small and within a certain ratio
of each other. In Eq. (11), qt is a dimensionless non-
negative threshold wavenumber with a typical value of
qt ∼ 0.1. The corresponding small-q, small-κY form of Fq

is obtained from a functional Taylor expansion [26, 39],
resulting in

Fq = (α+ βq2 . . .)Sq (12)
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where Sq = (1 − cq)
−1,

α =
1

4π

∫

dk kS2
k

(

c2k + kckc
′

k +
3

8
k2c′

2
k

)

f2
k (13)

and

β =
1

8π

∫

dk kS2
k

(

c′k
2
+

5

32
k2c′′k

2
+

3

2
kc′kc

′′

k

+ckc
′′

k +
1

4
kckc

′′′

k +
5

24
k2c′kc

′′′

k

)

f2
k .

(14)

Considering only the leading order of the approximation,
this translates into the small-q, small-κY limiting behav-
ior of the Yukawa monolayer Debye-Waller factor,

fq = α

[

1 + α+
4πΓY

√

κ2
Y + q2

]
−1

for q + qt ≫ κ2
Y + q2,

(15)
in T/2-HNC approximation. For finite κY , the function
fq in Eq. (15) assumes a positive value for q = 0, and
increases ∝ q2 when q → 0. Only in the OCP limit
κY = 0, the function fq in Eq. (15) vanishes for q = 0,
and increases initially as ∝ q. In a broad scale the fq
asymptotic for κY = 0.05 and ΓY = 138.7 is almost
linear.
Note here that the small-q limiting OCP Debye-Waller

factor is qualitatively different in two and three dimen-
sions. In 3D, the function fq vanishes in the OCP limit
κY = 0 as ∝ q2 [39]. In contrast to fq, the Lamb-
Mössbauer factor f s

q in MCT approximation does not
critically depend on the form of the pair potential, since
Fs

q in Eq. (9) and also the small-q limit of Fs
q [26] do not

depend on Sq.

V. CONCLUSIONS

We have calculated the liquid-glass transition bound-
aries in the state diagram spanned by the screening pa-
rameters and coupling parameters of 2D monolayers with
Yukawa- and Kompaneets-like pair potentials, in T/2-
HNC-MCT approximation. While both types of systems
exhibit qualitatively similar glass transition curves, there
is a quantitative difference in the vitrification tempera-
ture, which decreases as a function of the collision pa-
rameter ζ of the Kompaneets pair-potential. Both the
Kompaneets- and Yukawa-monolayer reduce to a two-
dimensionally confined OCP in the limit of infinite λY

and λK .
In contrast to the over-simplifying 2D Yukawa model,

the kinetic pair-potentials, including in particular the
Kompaneets pair-potential, provide far more accurate
descriptions of the interactions between dust grains in
typical ground-based complex plasma experiments. We
have demonstrated that a glass transition in a dusty
plasma monolayer is prone to a qualitative misinter-
pretation if the simple Yukawa model is invoked in its

analysis: While the glass transition line is a monotonic
function in terms of the three relevant, dimensionless
Kompaneets pair-potential parameters, it appears to be
non-monotonic corresponding to a fallacious liquid-glass-
liquid re-entrance when the pair interactions are misin-
terpreted as Yukawa-type interactions.
A promising task for future research would be the gen-

eralization of our results to binary systems, in order to
understand the different glass types in mixtures. Since
the crystalline states in such systems are pretty complex
[41], the glass transition scenarios are also expected to be
much more complex than in the monodisperse system.
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APPENDIX
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FIG. 8. Function |xc(s)(x)| for Yukawa monolayers and vari-
ous potential parameters, calculated in T/2-HNC approxima-
tion, is bound from above by 2ΓY exp {−x/2}.

Here we validate the small-q, small-κY result for the
T/2-HNC direct correlation function of a Yukawa mono-
layer in Eq. (11). We begin by noting that the function
c(x) can be split into the sum

c(x) = c(s)(x)− 2ΓY
exp(−κY x)

x
, (16)

of a short-ranged part, c(s)(x), and the asymptotic long-
ranged part, −2ΓY exp(−κY x)/x. In Eq. (16), the pecu-
liar long-ranged asymptotics c(x → ∞) = −2U(x)/kBT
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of the T/2-HNC scheme solution has been taken into ac-
count (c.f., our discussion at the end of Sec. III). The
direct correlation function in wavenumber-space is cal-
culated as the isotropic 2D Fourier transform (Hankel
transform)

cq= 2π

∞∫

0

dx xc(x)J0(qx) (17)

= 2π

∞∫

0

dx xc(s)(x)J0(qx)

︸ ︷︷ ︸

c1

− 4π

∞∫

0

dx e−κY xJ0(qx)

︸ ︷︷ ︸

c2

,

where J0 denotes the Bessel function of the first kind
with index 0. Note from Fig. 8 that the T/2-HNC scheme
solution for the function |xc(s)(x)| is bound from above
by the function 2ΓY exp{−x/2} for all reasonable com-

binations of ΓY and κY , and even in the OCP limit
κY = 0. This finding, combined with the upper bound
|J0(x)| < min{1,

√

2/(πx)} for the envelope of the Bessel
function, allows us to compute an upper bound

|c1| < min

{

12πΓy,
8πΓY√

q

}

. (18)

for the modulus of the function c1(q). Solutions for all
Hankel transforms occurring in such computation are
listed in Ref. [42]. Noting that c2 = 4πΓY /

√

κ2
Y + q2,

we conclude that c1 in Eq. (17) is negligible if the condi-
tion

q + qt ≫ κ2
Y + q2 (19)

is fulfilled, where qt ∼ 0.1 is a threshold wavenumber.
For all combinations of q and κY that fulfill Eq. (19),
the T/2-HNC solution for cq is well approximated by

cq ≈ −c2 = 4πΓY /
√

κ2
Y + q2.
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