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Discrete Version of Richard’s Theorem and 
Applications to Cascaded Lattice Realization 

of Digital Filter Transfer Matrices and 
Functions 
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Abstract -The well-known Richards’ Theorem of the continuous-time 
filter theory is reformulated in the digital domain in a convenient manner, 
leading to a simple derivation of cascaded lattice digital filter structures, 
realizing lossless bounded transfer functions. The theorem is also extended 
to the matrix case, leading to a derivation of m-input p-output cascaded 
lattice filter structures with lossless building blocks, that realize an arbi- 
trary p x M digital Lossless Bounded Real (LBR) transfer matrix. Exten- 
sions to the synthesis of arbitrary, stable p X m transfer matrices in the 
form of such cascaded lattices is also outlined. The derivation also places in 
evidence a means of testing the stability of an arbitrary p X m transfer 
matrix of a discrete-time linear system. 

I. INTRODUCTION 

A N IMPORTANT result in continuous-time filter the- 
ory is’ the theorem due to Richards [l], [2], which has 

found applications both in lumped-parameter and distrib- 
uted passive network synthesis. Basically, it relates a Posi- 
.tive Real (PR) function to another, and indicates a means 
of degree reduction of an impedance during the synthesis 
process. To be specific, let Z(s) be a real rational PR 
function. Define Z,(s) according to 

z(s) - sz(1) 
zl(s) = z(1) z(1) - &) . 0) 

Then the theorem asserts that Z,(s) is also a PR function, 
of degree no larger than that of Z(s). Moreover, if Z( - 1) 
= - Z(l), then the degree of Z,(s) is 1 lower than that of 
Z(s). One of the major applications of this theorem is in 
the synthesis of distributed networks based on the extrac- 
tion of unit elements. 

A well-known family of structures in digital filter theory 
is the cascaded-lattice structures [3], [4], studied extensively 
by Gray and Markel. While several interpretations and 
derivations of these structures are known (for example, 
those based on orthogonal polynomial theory [3], predic- 
tion theory [5], and digital two-pair extraction theory [6]), 
it is also known that these structures are related to the unit 
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elements of distributed network theory [7]. It, therefore, 
seems that, the synthesis of the Gray and Markel structures 
is related to the Richards’ theorem. In this paper, we 
obtain a new derivation of the cascaded lattice digital filter 
structures, based on a digital version of Richard’s theorem 
in terms of Bounded Real (BR) functions. In order to make 
the derivations self-contained, an independent derivation 
of this version of the Richards’ theorem in the discrete-time 
domain is first given in Section II, and this is followed by 
the derivation of the lattice structures. In this context, we 
also wish to draw the attention of the reader to an interest- 
ing paper by Delsarte et al. [23] which reveals the relation- 
ship of lattice structures and stability test procedures to the 
classical Nevanlinna-Pick interpolation problem. 

In Section III, we state and prove an extended version of 
the discrete-time counterpart of the Richard’s theorem for 
m-input p-output BR transfer matrices. This is then used to 
derive new cascaded lattice realizations for m-input p-out- 
put linear systems, characterized by p x m Lossless 
Bounded Real (LBR) or “all-pass” transfer matrices. A 
special case of these structures is reported in [26], based on 
a different approach for derivation. Such realizations have 
considerable importance in the synthesis of low-sensitivity 
digital filter structures. An example of such an application 
can be found in [22]. Moreover, the extreme suitability of 
such structures for the VLSI implementation of low-sensi- 
tivity digital filters has been recently established [8], [9]. 
The synthesis procedure simultaneously reveals how to 
realize an arbitrary stable p X m transfer matrix (not nec- 
essarily LBR) in the form of a cascaded lattice structure. 
The derivation also places in evidence a procedure for 
testing the stability of a p X m transfer matrix, which is 
described in Section IV. 

Even though the results of Section II are special cases of 
those in Section III, the derivation in Section II from the 
Richards’ theorem viewpoint reveals the simplicity of the 
scalar lattice synthesis. The results of Section III also 
reduce to the special case of certain pipelineable orthogo- 
nal digital filters, reported elsewhere [8], [9]. 

All results are stated and derived directly in the z-domain, 
in terms of dimensionless transfer functions and matrices. 
It should, however, be noted that, by employing PR (posi- 
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tive real) to BR transformations along with the bilinear 
transformation, one can obtain some of our results from 
well-established results of continuous time filter theory. 
Such an approach, and the concept of impedance functions 
and matrices are however, not used anywhere in the sequel. 
We feel that an independent z-domain approach leads to a 
simplified understanding of the lattice structures, at the 
same time explicitly showing the relation to continuous-time 
network theory. Another motivation for this is that, while 
the scattering matrices of continuous-time lossless multi- 
ports [lo], [18] do satisfy the LBR property, they are in 
general square matrices, rather than general p x m 
matrices. Thus a straightforward translation of known 
results of classical filter theory is not convenient for 
lattice-synthesis of rectangular transfer matrices. 

x’7--l+y2 

v-l l-2 

Fig. 1. A digital two-pair. 

in (3) for all w. Such a function is more commonly known 
as a stable all-pass function. These concepts can be ex- 
tended to the general m-input p-output linear discrete-ti.me 
systems in an obvious manner. Thus a p x m transfer 
matrix H(z) is said to be BR if it is stable, real-valued for 
real z and 

Ht( ej”)H( ej“) Q I, (5) 
for all w. For an LBR transfer matrix, equality holds in (5) 
for all w. For LBR transfer functions and matrices, the 
following paraunitary property [lo]: 

fi( z)H( z) = I, (6) 
holds for all z. We wish to note here that, for an LBR 
transfer matrix, p has to be at least as large as m. For, -if p 
were smaller than m, the rank of the matrix Ht( ej”)H( ej“) 
cannot exceed p, and the matrix cannot be equal to I,,,. 
Note also that, scattering matrices of continuous-time loss- 
less multiports satisfy the LBR property [lo], but are 
square matrices, i.e., p = m. 

Notations 

In this paper boldfaced letters indicate matrices and 
vectors, for example, H(z), v(n) etc. The tilde-accent stands 
for transposition followed by reciprocation of functional 
argument; for example: A(z) = H’(z-l). Superscript t 

stands for matrix transposition. Superscript dagger (t) 
stands for transposition followed by complex conjugation. 
The notation A Q B is abbreviation for “B-A is positive 
semi-definite”, and A < B is abbreviation for “B-A is 
positive definite”. I, stands for the identity matrix of 
dimension m x m. The symbol 0 stands for null vectors 
and null matrices of appropriate dimensions. For a (real 
symmetric) positive definite matrix P, we define its square 
root P1j2 according to the factorization: P = P1/2Pt/2 

where Pt12 stands for the transpose of P112. 

II. ALTERNATE DERIVATION OF THE SCALAR 
CASCADED LATTICE STRUCTURES 

Let us first review a few basic definitions. A digital filter 
transfer function H(z) given by 

f a,z-” 

H(z)= y” (2) 
c b”z-” 

n=O 

is said to be Bounded Real (BR) if it is stable,’ real-valued 
for real z, and satisfies the boundedness property 

IH(ej”) lgl. (3) 

In this paper, we have frequent occasion to deal with a 
digital two-pair [6]. Such a system (Fig. 1) is a two-input 
two-output system, described either by the chain parame- 
ters, A(z), B(z), C(z), D(z): 

or by the transfer parameters [qj]: Y,(z) [ I[ M4 7-12(z) Xl(Z) 

ydz) = T,,(z) T,,(z) I[ I X2@> . 
(8) 

The two descriptions are related as 

T,, = C/A, 
T12 = (AD - BC)/A , 

T21 = l/A > 

TZ2= - B/A. (9) 

Assuming b, # 0 and b, # 0, the integer N is called the A digital two-pair is said to be LBR if the transfer matrix 

degree of the BR function. By employing the maximum of (8) is LBR. 
modulus theorem of complex-variable theory, it ‘can be Given a scalar transfer function H(z), let us consider a 
shown that new transfer function G(z), defined according to 

If+) Id, I4 >l (4 
with equality holding in (4) for some z only if H(z) is a 

(10) 
_” \ I  

constant function. A Lossless Bounded Real (LBR) trans- Assume that H(z) is not a constant function. It is clear 
fer function H(z) is a BR function, with equality holding that (z - a) is a factor of the numerator of the quantity 

H(z) - H(a), so that the apparent “pole” at z = a in (10) 
cancels. In addition, if the constant a is chosen such that 

‘In this paper “stability” stands for bounded input bounded output 
stability [ll], i.e., all poles are strictly inside the unit circle. H(a)H(l/a) =l (11) 
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then factor (1- az) in (10) cancels with a corresponding 
factor in [l- H(z)H(a)]. This choice of a then ensures 
that the denominator of the function G(z) is of lower 
degree than that of H(z). 

Let us now assume that H(z) is BR and that Ial > 1. 
This ensures the following inequalities: 

IH(a) kl (12) 
and 

(H(z) Ia (ZI 21. (13) 
Consequently, all poles of G(z) are strictly inside the unit 
circle, and hence G(z) is stable. Furthermore, on the unit 
circle of the z-plane, where we have 

1 - az 1 1 - =l 
z-a 

the following inequality holds: 

(14) 

H(z) - H(a) 
l- H(z)H(a) “’ 

lzl =l. (15) 

This follows immediately from (12) and (13). In effect, we 
have proved the following discrete-time, BR-version of 
Richards’ Theorem: 

Theorem 2.1: Let H(z) be a BR function of degree N, 
and let a be any real number such that Ial > 1. Then the 
function G(z) defined as in (10) is BR. Moreover, if a is 
such that (11) holds, then the degree of G(z) is (at most) 
equal to N-l. 

Fig. 2 shows a circuit interpretation of (10). In (lo), the 
factor (1 - az)/(z - ) a cancels as explained in the text 
above. In the network of Fig. 2, however, the quantity 
(z - a)/(1 - at) (rather than (1 - az)/(z - a)) appears as 
a transfer function block. Thus even though (10) involves 
the cancellation of an unstable pole, the cancellation in- 
volved in Fig. 2 is that of a stable pole. We therefore do 
not have any imperfect cancellation problems due to quan- 
tization effects. Note that, in general the structure has a 
delay free loop. If however, a is chosen to be 60, then the 
circuit of Pig. 3 results, and has no delay-free loops. This is 
precisely the “two-multiplier lattice structure of Gray and 
Markel[12].” The structure of Fig. 3 can be looked upon as 
a digital’two-pair [6], terminated in a constraining transfer 
function z-‘G(z). The two-pair transfer parameters are 

TI1=k, T,,=(l-k2), 

T21=1, TZ2=-k 06) 
or equivalently, 

A=l, B=k, C=k, D=l (17) 
where 

k = H(co) (18) 
From (7) it is clear that scaling of the chain parameters 
does not affect H(z) for a given G(z) or vice versa. In 
particular, if they are scaled by a factor \/1-k2, it results 
in a two-pair with transfer parameters: 

TI1=k, T12=T21=dl-k2, T22=-k (19) 
and leads to an interpretation of (10) as shown in Fig. 4. 

H(z) 

H (2) 

, 

Fig. 2. Circuit representation of (10). 

Fig. 3. Special case, where a = co. 

Fig. 4. The normalized circuit. 

This is the normalized Gray and Markel lattice structure 
[4]. In fact, all the five lattice structures given in [12] can be 
obtained simply by scaling the chain parameters of (17). 
The structures shown in Figs. (2)-(4) can be interpreted as 
extracting a digital two-pair from a BR function H(z), 
leading to a reduced-degree remainder BR function. If this 
process is repeated, it leads to a complete cascaded lattice 
realization. The normalized two-pair, described by (19) is 
easily seen to be LBR. 

If the BR function H(z) is actually LBR, then the 
condition of (11) is always satisfied for all a, and a 
cascaded realization of the above form is always possible. 
In particular, if Ial > 1 then the remainder is reduced order 
BR. In fact the remainder is LBR because, as seen from 
(lo), ]G(e@‘)] is unity whenever ]H(ej”)] is unity. The 
choice a = cc actually leads to the familiar cascaded-lattice 
realization of allpass functions [6]. Even though there exist 
delay-free loops in the structure of Fig. 2 unless a = 00, 
choice of finite values for a has important applications in 
procedures for testing the stability of transfer functions, 
where delay-free loops do not matter. Further elaborations 
of this point, and an actual numerical example demonstrat- 
ing it are presented in Section IV. 

III. EXTENSION TO THE p x m TRANSFER MATRIX CASE 

Let H(z) represent a m-input p-output digital filter 
transfer function, given in the form of a right Matrix 
Fraction Description (MFD) [13], [20]: 

H(z) = N(z)D-‘(z) (20) 
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where N(z) and D(z) are matrix polynomials of dimensions 
p x m and m x m, respectively, as given by 

N(z) =A,,z~+A~z~-~+ ..* +A, (21) 

D(z) = BOzN+B,zN-l+ ... +B,. (22) 
N is the degree of the MFD. If the transfer matrix of (20) 
is BR, then (5) holds, by definition. In addition, an in- 
equality, analogous to (4) holds [26]. Specifically, 

H+( z)H( z) Q I, (23) 
for all z such that ]z] > 1. Moreover, [26] if there exists a 
vector v such that, for ]zJ > 1 equality holds in (23) i.e., if 
v+H+(z)H(z)v = vtv, then H(z)v is constant i.e., indepen- 
dent of z. This in turn implies that H(z) is memoryless in 
the direction v; in other words, if we apply an input 
sequence of the form 

x(n) =s(n)v (24) 
to the system H(z), then the output sequence y(n) does not 
depend upon x(n - k), for k > 0. Thus (23) holds with 
strict inequality, unless H(z) is memoryless in certain 
directions. 

Given a p X m transfer matrix H(z), let us now consider 
a new p X m transfer matrix G(z): 

G(z)= G (I,-MC’)-l’*[H(z)-K] 
i i 

. [I, - K’H(Z)] -‘(Im - K’K)~‘*. (25) 

Clearly this can be identified to be a right MFD form, 
similar to (20): i.e., 

G(z) =N,(z)D;‘(z). (26) 
The p X m matrix K is defined to be 

K=H(a) (27) 
where a in (25) is a real scalar. 

In the rest of the sequel, we assume that H(z) is proper, 
i.e., H(co) is finite. (If H(z) is causal and stable, this 
property is automatically satisfied). In addition, we assume 
(without any loss of generality) that the m x m matrix 
D(z) is column-reduced, i.e., the determinantal degree is 
equal to the sum of the column degrees [13]: 

deg(detD(z)) = f k, (28) Thus if z0 is such a zero, then there exists a non-null vector 
i=l v such that 

Because of the “properness” of H(z), the column degree ki 
of each column of D(z) is at least as large as the degree of 
the corresponding column of K’N(z) [13]. Thus the de- 
terminantal degree of the matrix in (30) is bounded above 
by (28). In other words, the determinantal degree of F(z) is 
less than (28) by at least m. But the right-hand side of (28) 
is precisely the determinantal degree of D(z). In conclu- 
sion, the choice of a according to (29) leads to a (de- 
terminantal) degree reduction by at least m: 

deg(detD,(z)) < deg(detD(z))- m. (31) 
Let us now assume that H(z) is BR, and that (al > 1. 

Then K given by (27) satisfies 

K’K < I,, KK’ < I,. (32) 
Thus the matrices (Ia - KK’) and (I, - K’K) are positive 
semi-definite (hence the matrix square-roots in (25) are 
meaningful). Moreover, if H(z) is not memoryless in any 
direction, then the inequality (23) is strict, hence the in- 
equalities in (32) are strict, hence (IP - KK’) and (I, - K*K) 

are strictly positive definite. This makes the inverses in (25) 
meaningful. Finally, with H(z) a BR function, we can 
show that G(z) is also a BR function (proof to follow). We 
can summarize these observations in the following theorem 
which is thus a generalization of the Richards’ theorem, for 
p x m discrete-time BR transfer matrices. 

Theorem 3.1: Let H(z) be a p X m BR transfer matrix, 
given by the right MFD of (20), with D(z) column-re- 
duced. Assume that H(z) is not memoryless in any direc- 
tion. Let a be a real scalar such that ]ul > 1. Then the 
p X m transfer matrix G(z), given by the right MFD of 
(25) is also BR. Furthermore, if a is such that (29) holds, 
then the (determinantal) degree of the denominator matrix 
Dl(z) of G(z) is lower than that of D(z) by at least m. 

Proof: It only remains to prove that G(z) is BR. To 
this end, we first show that G(z) is stable, and then 
establish that it satisfies the inequality: 

Gt( ej”)G( e“‘) < I, (33) 
for all w. Accordingly, first consider the determinantal 
zeros of D,(z) which are solutions of 

det[I,- K'H(z)] =O. (34) 

where ki is the degree of the ith column* of D(z). Equa- 
tion (28) is of course an upper bound on the determinantal 

[I, - K%( z,)]v = 0. (35) 

degree of a matrix D(z). In order to show that G(z) his stable, it is sufficient3 to 

Now from (25) it is clear that, the factor (z - a) cancels show that the solutions z,, are strictly inside the unit circle. 

with a corresponding factor in [H(z) - K]. Next assume Let us assume the contrary, i.e., lzOl >l, and obtain a 

that a is such that the following equality holds: conflict. Equation (35) implies 

[I, - K’H(l/a)] = 0. (29) 
v+v = v+H+( z,,)KK’H( z,,)v. (36) 

This implies that the quantity [D(z) - K’N( z)] can be writ- Now, if H(z,)v were to be null, it would imply, by (35) 

ten as 
that v itself is null. Assuming therefore that H(z,)v is 
non-null, by (32) we have 

[D(z)-K’N(z)] = (1-az)F(z) (30) v+H+( z~)KK%( zo)v < v+H+( zO)H( zO)v. (37) 
‘That is, degree of the highest degree polynomial in the i th column of 

the matrix D(r). 3This is also necessary if the MFD for G(z) is irreducible [13]. 
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Notice that the inequality in (37) is strict because, the 
inequalities of (32) are strict, which in turn is true because, 
by the theorem statement, H(z) is not memoryless in any 
direction. Equations (36) and (37) imply that 

v+v < v+H+( zo)H( z,,)v. (38) 
But by BR property, H(z) already satisfies the inequality 
(23) for IzI > 1. This leads to the impossible inequality: 

v+v < v+v. (39) 
This shows that all determinantal zeros of D,(z) are strictly 
inside the unit circle, hence G(z) is stable. 

In order to prove the inequality (33), it suffices to show 
that: 

Gj(ej”)G2(ej”) <I, (40) 
where 

G2 (4 = N2www 

= (I, - KK’)-I’*[H(z) - K] 

. [I, - K’H(z)] -‘(I~ - K’K)~‘* (41) 

with K satisfying (32). It is easily verified that N*(z) and 
D*(z) are related by 

N(z) =%D,(z)+ZSN,(z) (42) 
D(z) =&D*(z)+ .%?N2(z) (43) 

where the parameters &‘, %?‘, %‘, 9 are given by 

A? = (I, - K’K)-I’*, .%f = K’(I, - KK’) - t’2 

V? = ~(1~ - K’K)-~‘*, 53 = (I, - KK’)-“*. (44) 

It can further be verified that the parameters &, .G?, V, Q 
satisfy 

dts5? - V’%? = I,, 

529 - Lw@ = I,) 

.!YtL21 = %?9. (49 
By making use of (42), (43), ‘(45), and the fact that H(z) 
already satisfies (5), we can verify the following inequality: 

N$( ej”)N,( ej“) G Dj( ej”)D,( ej”) (46) 
which proves (40). This then completes the proof of the 
theorem. 

As a corollary, note that if H(z) is actually LBR, and if 
Ial ~1 then G( z is also LBR. This is because, (5) now ) 
becomes an equality, hence (46) becomes an equality, 
hence (40) becomes an equality. Consequently, (33) be- 
comes an equality, because equality (14) holds on the unit 
circle for any a. 

Network Interpretation of the Theorem 

Fig. -5 shows a circuit-interpretation of the above theo- 
rem. The parameters &‘, .G?, V, g, can be interpreted as the 
chain parameters of a matrix digital two-pair. Such. a 
two-pair is a generalization of the two-pair described by 
(7), except that the quantities involved are now matrices of 

Fig. 5. Circuit implementation of (30). 

appropriate dimensions. (Note that, the two-pair is con- 
stant i.e., not a function of z). The equivalent transfer- 
parameter des&iption is as in (8) and the two descriptions 
are related as 

T,, = %C1, 

T12=5&%z?-‘~, 

T21 = d-‘, 

T2* = - d-?%. (47) 

Now, with the chain parameters as in (44), it can be shown 
that the transfer matrix of the two-pair takes the following 
form 7 = [Tij] where 

7= 

(I, -:t)‘” 

It is easily verified that this matrix is orthogonal, i.e., 
7% = Im+p. In other words, the process of obtaining the 

(I, - KK’)l’* 

-(I, - ~c’K)“*K’(I~ - KK’)-1’2 
I 

’ 

(48) 

remainde; BR matrix G(z) from the BR matrix H(z) by 
using (25) can be looked upon as an LBR (matrix) two-pair 
extraction. The details of the circuit of Fig. 5 are as shown 
in Fig. 6, and the resemblance to the normalized scalar 
lattice (Fig. 4) is clear. Indeed if p = m = 1, then the results 
of this section reduce to those of Section II. 

Next, in order to avoid delay-free loops in the structure 
of Fig. 6, it becomes necessary to pick a to be co. Equation 
(25) then becomes, 

* [I, - K’H(z)] -‘(Im - K’K)l’*. (49) 

This results in the structure of Fig. 7, which is a generaliza- 
tion of Fig. 4. The structure of Fig. 7, which is a special 
case of that in Fig. 6, has glready been reported in [26], 
based on a different approach. Finally, if the BR function 
H(z) is actually LBR, then the condition of (29) automati- 
cally holds. In particular, with the choice a = co, we can 
synthesize a p X m LBR transfer matrix in the form of Fig. 
8, where each two-pair building block is as in Fig. 7, 
provided that (32) holds with strict inequality, at each stage 
of LBR two-pair extraction. Note that each building block 
is characterized by a (p + m) x(p + m) orthogonal trans- 
fer matrix. The termination matrix R in Fig. 8 is such that 
R’R = I,. A special case of these structures with p = 2, 
m = 1 has already been reported in the literature, even 
though their derivations followed a different approach [8], 
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Fig. 6. Details of the circuit of Fig. 5. Tij are as in (47). 

Fig. 1. Special case, where a = co. 

Fig. 8. The cascaded lattice structure for a p X m LBR transfer matrix 
H(z). Each two-pair has the form shown in Fig. 7. 

[9]. Note that, because of the delay-units separating succes- 
sive two-pairs in Fig. 8, the structures are pipelineable, 
which is a desirable property in an actual implementation. 
Finally note that, the only building blocks in Fig. 8 are 
orthogonal matrices, which can be implemented in terms of 
several planar rotations [14]. This can lead to a cordic- 
processor based implementation. 

Realization of Arbitrary Stable Transfer Matrices 

Now, given an arbitrary k x m transfer matrix H,(z) 
that is not necessarily all pass: 

H,(z) = A(z)D-l(z) (50) 
we can still apply the above procedure for synthesizing it in 
the form of a cascaded lattice. For this, let us assume that 
H,(z) is scaled so that the inequality analogous to (5) 
holds. Then we can embed H,(z) into an “all-pass” matrix 
H(z) of the form of (20), and then synthesize H(z) [26]. 

An important application of these structures is in the 
synthesis of low sensitivity digital filters. Indeed it can be 
shown, based on the “structural passivity” argument [21], 
that transfer functions synthesized in this manner have low 
passband sensitivity. For example, a scalar transfer func- 
tion can be synthesized as a cascaded lattice simply by 

embedding it into a 2X 1 LBR matrix, synthesizing the 
LBR matrix, and ignoring the unwanted output. The re- 
sulting structure has low sensitivity, and leads to pipeline- 
able, cordic-processor based implementations [9]. 

IV. APPLICATION TO STABILITY-TESTS 

It is well known that Jury’s method for testing the 
stability of discrete-time scalar linear systems [15], [16] is 
directly related to the synthesis of an all-pass function in 
the form of a cascaded lattice. Let us first briefly review 
this relation, so that we can extend these ideas for the case 
of p x m transfer matrices. Given a transfer function 
Hl( z) = A( z)/D( z) with no common factors between A(z) 
and D(z), an allpass function H(z) is first formed: 

H(z) = z-%(z-‘)/D(z) (51) 
where N is the degree of D(z). This all-pass function is 
LBR if and only if it is stable. (If there is a common factor 
between the numerator and denominator of H(z), it auto- 
matically gets detected during the test [26]. We therefore 
assume that there is no such factor. In other words, H(z) 
is assumed to be irreducible.) Therefore, checking for the 
stability of Hl( z) is equivalent to checking if H(z) is LBR. 
To avoid trivialities, assume that H(z) is not a constant 
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function. From the discussions in Section II we know that 
if H(z) is LBR then 

WI <l (54 
where k is given by (18): 

k = H(m). (18) 
Thus if (52) is not satisfied, H(z) is unstable, and the test 
terminates. If (52) is satisfied, then the following is true: 

G(z) isLBRifandon&ifH(z) isLBR (53) 
where G(z) is the reduced order remainder shown in Fig. 
3, and given by 

z-lG(z) = 
H(z)- k 

l- kH(z) . (54) 

From the arguments of Section II, it is clear that G(z) 
should be LBR if H(z) is. The converse in (53) can be seen 
by inverting (54) (i.e., writing H(z) in terms of z-‘G(z)) 
and repeating these arguments. As a result, it suffices to 
test for the stability of G(z). 

The general test procedure can now be described as 
follows: Given the Nth-order transfer function HI(z), we 
form the Nth-order all-pass function GN(z) = H(z) as in 
(51), and compute the coefficient k, = G,(a,) where aN 
is any point outside the unit circle. We then generate the 
lower order all-pass function G,-, according to 

Z-lG,-, = GA+) - k, 
1 - W,(z) 

(55) 

and repeat the same process with GN-i(z). Thus we have 
generated the sequence of all-pass functions of decreasing 
order 

Gj&),G,,r-l(z), . . . G,(z),Go(z) (56) 
and the series of lattice coefficients 

k,, kw1,. . . k,, k, (57) 
where . 

4, =G&m). (58) 
The original transfer function is stable if and only if 
] k,,,l < 1 for all m. Notice that it is not necessary to choose 
a, = co. Even though there are delay free loops in the 
structure of Fig. 2 for a, # co, this does not matter for the 
purposes of the test. Such flexibility of the choice of a, is 
sometimes useful, as demonstrated in the following exam- 
ple. 

A Numerical Example: Let us assume that the transfer 
function to be tested for stability has denominator 

D(z) =l+;z-i-~z-2+z-3. (59) 
The third-order all-pass function to be formed is, therefore, 

l--‘7z-‘+z -2+--3 

G3W” 1+;z-‘-;:-2+z-3. (60) 
6 

When a3 = co we get k, = G3(co) = 1. Clearly (52) is not 
satisfied, and hence the system is unstable. However, if we 
wish to proceed further with the generation of all the 

km-parameters, so that the lattice structure can be com- 
pletely generated, we encounter a difficulty. Thus referring 
to (54), if k = 1, the right hand side becomes identically 
equal to a constant, and the quantity G(z) is not meaning- 
ful anymore. Such a singularity situation can be avoided 
simply by taking a3 to be some other point outside the unit 
circle. (Since G3(z) is a nonconstant rational function, 
there exist an infinite number of points in the z-plane such 
that its magnitude is different from unity). For example, let 
a3 = 3 then k, = G,(3) =1/5. The remainder allpass func- 
tion G2(z) can now be computed as 

G,(z) = 

-3+ $z:l+ z-2 
1+:z-l-3z-2 * 

Let us now proceed to the next iteration. Thus let a2 = 00 
and compute k, = G2(co) = - 3. The remainder allpass 
function G, is now 

++z-l 
W) = l-“z-’ . 

4 

Proceeding further with the next iteration, let us pick 
a, = a so that k, = G,(co) = - 5/4. We thus have the set 
of lattice coefficients 

k,=1/5, k,=-3, k,=-5/4. 

Clearly, the system is not stable. It can further be shown 
that there is one unstable pole. 

It remains to explain why it is sometimes of interest to 
compute all the lattice coefficients and hence complete the 
lattice generation, euen if the system is unstable. This is 
necessary when we wish to compute the number of unstable 
poles of the system. In general, if. one wishes to enumerate 
the zeros of a polynomial outside a circle of a certain 
radius, the completion of the lattice-generation process is 
essential. Such counting procedures are based on judicious 
applications of Rouche’s theorem of complex variable the- 
ory, and some details can be found in [24], [25]. 

The generalized version of Richards’ theorem, given in 
Section III can now be employed to obtain similar develop- 
ments for the p x m transfer matrix case. Let us assume 
a = co, so that (49) is relevant. Let us consider a p X m 
all-pass transfer matrix H(z), i.e., a matrix of the form (20) 
satisfying 

H+( ej”)H( e’“) = I, (62) 
for all w. Once (62) is satisfied, the terms “stable” and 
“LBR” are equivalent. Assume, as in the scalar case, that 
H(z) is given as an irreducible4 right MFD, as in (20). 
Then H(z) is LBR if and only if all the determinantal zeros 
of D(z) are strictly inside the unit circle. We know that, if 
H(z) is indeed LBR, then K defined by (27): 

satisfies 
K = H(m) (63) 

K’K d I, (64 

4That is N(z) and D(r) are right coprime [13]. 
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Thus if (64) does not hold, the test terminates. If (64) holds 
but not with strict inequality, this implies that H(z) is 
memoryless in some direction [26], as explained in Section 
III. The memoryless direction can be decoupled and re- 
moved [26], and we can thus assume the inequality of (64) 
to be strict. Let us therefore assume that, if (64) holds, it 
actually holds with strict inequality. Then the following is 
true: 

(or orthogonal), just as in the scalar case. Third, the 
synthesis of a p x m all-pass matrix can be directly related 
to a generalized version of Jury’s stability test. 

G(z) isLBRifandonlyifH(z) isLBR. (65) 
The “if” part in (65) is clear, from Section III. In order to 
see the “only if” part, we have to show that H(z) is LBR 
(i.e., stable) if G(z) is LBR. Recall from (43) that the 
determinantal zeros of D(z) are precisely the solutions of 

det [ & + z-?%‘G( z)] = 0. (66) 
As .&’ (equation (44)) is nonsingular, we can rewrite (66) 
with the help of (47) as 

det [I, - z-‘T,,G( z)] = 0. (67) 
As 7 in (48) is orthogonal, it is easy to verify that T22 
satisfies 

In the statement of generalized Richards’ Theorem of 
Section III, we did not assume that the MFD for H(z) is 
irreducible. As a result, the cascaded lattice structure of 
Fig. 8 can be obtained even for non-minimal MFD’s. 
However, it can be shown that [26], any common right 
divisor R(z) between the matrices N(z) and D(z) is also a 
right divisor in the MFD for G(z). Consequently, the 
greatest common right divisor (GCRD) propagates “down 
the line” during the lattice synthesis. This is analogous to 
the situation of scalar allpass synthesis, where any common 
factor between the numerator and denominator gets de- 
tected by a prematured termination of the synthesis pro- 
cess. Indeed, the results of Section III can be related to a 
generalization of Euclid’s algorithm for extracting the 
GCRD. Finally, we feel that the results of Section III can 
be related to the theory of “matrix polynomials that are 
orthogonal on the unit circle [17],” but the details are 
beyond the scope of this paper. 

C2T22 < I,. (68) 

Moreover, G(z), being LBR, satisfies an inequality analo- 
gous to (23) for ]z] >, 1. By arguments similar to those 
following (34) it is immediately clear that H(z) is stable, 
and hence LBR. 

It should be pointed out that, the condition of (29) is not 
necessary for degree reduction. Indeed, if the matrix on the 
left-hand side of (29) is singular, this is sufficient to bring 
about a reduction in determinantal degree of the de- 
nominator. However, the reduction is then not as large 
as m. 

The stability-test procedure is therefore clear: compute K 

and check for the inequality (64). If this is not satisfied, 
this implies instability of H(z), and further testing is 
discontinued. If strict inequality holds, then repeat the 
prodess with the reduced-degree remainder G(z). If the 
inequality is not strict, decouple the appropriate memory- 
less direction [26], so that the inequality becomes strict, 
and then proceed further. Clearly, the procedure terminates 
after a finite number of steps. Checking for condition (64) 
is equivalent to checking for the positive semi-definiteness 
Of I,,, - K’K. 
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