Theoretical and Experimental Studies of the Dechlorination Mechanism of Carbon Tetrachloride on a Vivianite Ferrous Phosphate Surface: Supporting Information

Keonghee Jeon¹, Nara Lee², Sungjun Bae³, William A. Goddard III⁴, Hyungjun Kim¹, and Woojin Lee²

- ¹Graduate School of Energy, Environment, Water, and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Korea
- ²Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
- ³École Nationale Supérieure de Chimie de Rennes, UMR CNRS 6226, 11 Allée de Beaulieu, 35708 Rennes Cedex 7, France
- ⁴Materials and Process Simulation Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, U.S.A

Figure S1. The partial density of states for vivianite structure. The main character of the electronic structure near Fermi energy was detected from Fe 3d states with negligible contribution by phosphate groups.

Figure S2. The second dissociative electron transfer (diss-ET) step of chloroform (HCCl₃) to form dichloromethane (CH₂Cl₂). Unlike the diss-ET step of CCl₄, diss-ET of HCCl₃ is an endothermic process requiring 1.31 eV, which can be attributed to the lower reduction potential of HCCl₃ than that of CCl₄ (0.560 V vs. 0.675 V). Thus, HCCl₃ was observed as a major product from the experiment without the formation of CH₂Cl₂ or further reduced species such as methyl chloride (CH₃Cl) and methane (CH₄).

Figure S3. Cl-C-Cl angles of free \bullet CCl₂ (110.0°) and CCl₂⁺ (135.11°) computed using density functional theory (DFT). The Cl-C-Cl angle of the surface adsorbed dichlorocarbene (:CCl₂^{*}) is comparable to that of free \bullet CCl₂ (109.6° vs. 110.0°), indicating that :CCl₂^{*} is nearly neutral.

Table S1. The observed pseudo-first-order rate constants (k_{obs}), remaining amounts of CCl₄, and product recoveries (HCCl₃, formate, methane and chloride) at different pH values (pH 3, 5, 7, 9, and 11).

		CCl ₄	HCCl ₃	Formate	Methane	Cl
pH 3						
	$k_{obs}\left(d^{\text{-}1}\right)$	1.163×10 ⁻²	7.545×10 ⁻²	1.006×10 ⁻⁶	2.699×10 ⁻⁸	1.590×10 ⁻⁶
	R^2	0.836	0.931	0.682	1.000	0.594
	CCl ₄ remaining and product recovery (mM)	0.033	0.028	0.003	5.864×10 ⁻¹⁰	0.147
pH 5						
	$k_{obs} (d^{-1})$	4.055×10 ⁻²	6.939×10 ⁻²	2.148×10 ⁻²	3.168×10 ⁻⁷	1.543×10 ⁻²
	\mathbf{R}^2	0.874	0.954	0.915	1.000	0.948
	CCl ₄ remaining and product recovery (mM)	0.033	0.028	0.003	5.864×10 ⁻¹⁰	0.147
pH 7						
	$k_{obs} (d^{-1})$	6.511×10 ⁻²	3.537×10 ⁻²	1.403×10 ⁻⁶	4.827	1.099×10 ⁻¹
	R ²	0.972	0.978	0.819	0.006	0.849
	CCl ₄ remaining and product recovery (mM)	0.010	0.051	0.016	1.062×10 ⁻¹⁰	0.200
pH 9						
	$k_{obs} \left(d^{-1} \right)$	6.931×10 ⁻²	4.134×10 ⁻¹	1.410×10 ⁻⁶	5.098×10 ⁻⁶	1.420×10 ⁻¹
	R ²	0.986	0.843	0.821	1.000	0.940
	CCl ₄ remaining and product recovery (mM)	0.000	0.054	0.021	3.902×10 ⁻¹¹	0.217

pH 11

$k_{obs} (d^{-1})$	1.742×10^{-1}	5.449×10 ⁻¹	9.167×10 ⁻²	4.347×10 ⁻⁶	1.494×10^{-1}
R^2	0.980	0.807	0.942	1.000	0.967
CCl ₄ remaining and product recovery (mM)	0.000	0.056	0.026	3.178×10 ⁻¹¹	0.243

$$CI^{*} + OH^{-} (aq) \xrightarrow{\Delta E_{exch.}} OH^{*} + CI^{-} (aq)$$

$$\Delta E_{a(H_2O)} \uparrow^{+}H^{+} (aq) \xrightarrow{\Delta E_1} OH^{-*} + HCI (aq)$$

Scheme S1. To calculate the energy change required for the exchange of Cl^{-*} on the vivianite surface with OH^{-} in the solution phase (red), we considered the above thermodynamic cycle (black). Following the cycle, $\Delta E_{\text{exch.}} = \Delta E_1 - \Delta E_{a(\text{H2O})} + \Delta E_{a(\text{HCl})}$, where ΔE_1 is computed using density functional theory (DFT) calculations. ΔE_a is calculated using the experimental acid dissociation constant (K_a) obtained from the relation $\Delta E_a = -\text{RT} \ln K_a$, resulting in $\Delta E_{a(\text{H2O})} = 0.93 \text{ eV}$ and $\Delta E_{a(\text{HCl})} = -0.47 \text{ eV}$.