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Methods where an accurate wavefunction is embedded in a density-functional description of the
surrounding environment have recently been simplified through the use of a projection operator to
ensure orthogonality of orbital subspaces. Projector embedding already offers significant performance
gains over conventional post-Hartree–Fock methods by reducing the number of correlated occupied
orbitals. However, in our first applications of the method, we used the atomic-orbital basis for the
full system, even for the correlated wavefunction calculation in a small, active subsystem. Here,
we further develop our method for truncating the atomic-orbital basis to include only functions
within or close to the active subsystem. The number of atomic orbitals in a calculation on a fixed
active subsystem becomes asymptotically independent of the size of the environment, produc-
ing the required O(N0) scaling of cost of the calculation in the active subsystem, and accuracy
is controlled by a single parameter. The applicability of this approach is demonstrated for the
embedded many-body expansion of binding energies of water hexamers and calculation of reaction
barriers of SN2 substitution of fluorine by chlorine in α-fluoroalkanes. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4923367]

I. INTRODUCTION

Density functional theory (DFT)1,2 can be used as a flex-
ible framework to build multiscale electronic structure methods
in which an accurate wavefunction (WF) calculation on a
chemically important subsystem is embedded in a lower-
level model of the environment.3–9 The electronic density of
a system can be partitioned into active (A) and environment
(B) subsystems

ρ = ρA + ρB, (1)

and the energy

E[ρ] = E[ρA] + E[ρB] + δE[ρA, ρB] (2)

partitions along similar lines, with the last term accounting for
all sources of nonadditivity. Amongst these, the Coulomb term
is simple, and exchange-correlation is readily handled through
existing approximate functionals or other low-cost methods.10

The calculation of the remaining contribution to
δE[ρA, ρB], the nonadditive kinetic energy

δTs[ρA, ρB] = Ts[ρ] − Ts[ρA] − Ts[ρB], (3)

constitutes one of the central challenges. This component of
the energy accounts for exchange-repulsion effects between
subsystems. It has been treated approximately using a range
of kinetic energy density functionals6,8,11,12 or exactly through
Kohn-Sham (KS) potential reconstruction schemes.13–18

a)Electronic mail: simonbennie@gmail.com
b)Electronic mail: fred.manby@bristol.ac.uk

Neither approach is completely satisfactory: despite much
progress,19–22 currently available approximate kinetic energy
functionals lack the accuracy required to partition across cova-
lent bonds,16,23,24 and potential reconstruction schemes, like
the optimized effective potential,25,26 are fraught with numer-
ical difficulties when applied to problems in finite atomic-
orbital basis sets.27,28 It was recently shown, though, that
the complication of nonadditive kinetic energy terms can
be completely bypassed by use of a projection operator to
constrain subsystem densities to be formed from orthogonal
subsets of orbitals.29 This leads to a nonadditive kinetic energy
of exactly zero, so further approximations can be avoided.

The approach taken in our group is to first perform a
KS calculation on the entire system; then unitarily rotate the
occupied KS orbitals, for example, to localise them; and then to
pick a partition of orbitals, implying a partition of the electronic
density. The key point is that then the nonadditive kinetic
energy vanishes, and the energy can simply be expressed in
terms of the fragment density matrices γA and γB,

E[γA,γB] = tr(γA + γB)h + J[γA + γB] + Exc[γA + γB],
(4)

where h is the core Hamiltonian for the whole system.29

It would be perfectly reasonable to perform a wavefunc-
tion calculation on subsystem A by transforming the atomic-
orbital basis set to the orthogonal complement of the occupied
orbitals in subsystem B. But the lower part of the spectrum of
the operator (1 − P̂)Ĥ(1 − P̂) coincides with that of Ĥ + µP̂
for sufficiently large, positive µ,29 and we elected to use
the latter expression so that we could interface our embed-

0021-9606/2015/143(2)/024105/7/$30.00 143, 024105-1 © 2015 AIP Publishing LLC
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ding scheme to any wavefunction-based electronic structure
method implemented in Molpro30,31 without further modi-
fications.

The Fock matrix in the atomic-orbital basis for a mean-
field calculation on subsystem A, taking account of embedding
in the environment B, can be written as

f A
αβ =

∂

∂γA
αβ

E[γA,γB] + µPB
αβ, (5)

where

PB
αβ = ⟨α|


i∈B

|ψB
i ⟩⟨ψB

i |
 |β⟩ = [SγBS]αβ (6)

and where α and β label atomic orbitals, and i labels an
occupied molecular orbital. From the Fock matrix in Eq. (5),
it is possible to extract the embedded core Hamiltonian

hA in B = h + J[γA + γB] − J[γA]
+ vxc[γA + γB] − vxc[γA] + µPB. (7)

This modified matrix hA in B can easily be used with any
method that reads in an arbitrary core Hamiltonian. The level-
shift projector prevents the KS orbitals from the environment
from being occupied during any subsequent calculations and
accounts (at the DFT level) for the Pauli exclusion effect of
the state in subsystem B on the wavefunction in A. The energy
of subsystem B is added in the same way as the internuclear
repulsion, to give the total energy expression

E[ΨA;γB] = ⟨ΨA|ĤA in B|ΨA⟩
− trγA(vxc[γA + γB] − vxc[γA])
+ Exc[γA + γB] − Exc[γA] + E[0;γB]. (8)

The first term is the conventional wavefunction energy expec-
tation value using a Hamiltonian containing the embedding
terms in hA in B; the subsequent terms provide the standard
correction for the exchange-correlation energy and the energy
of subsystem B.

II. THEORY

In most applications of WF-in-DFT embedding, the
wavefunction calculation is performed in a localised region
of space, but in our original formulation of projector-based
embedding, the wavefunction calculation was performed using
the atomic-orbital basis set of the entire system. In previous
work, Barnes et al. introduced a method for truncating the
active-subsystem basis set.32 This approach obtained O(N0)
scaling but involved the specification of both a truncation
threshold parameter and a geometry-dependent set of atoms
that border the active subsystem. Here, we achieve the same
aim with only a single truncation threshold parameter, avoiding
the need to specify any geometry-dependent information.

When our embedding scheme is used with localised or-
bitals, subsystem A is specified by a list of atoms (and the list
of active local orbitals is generated from this, via Mulliken
population of the localised orbitals). In the basis truncation
scheme, we will always include atomic orbitals centred on
these atoms, so the truncation scheme that we will construct

will smoothly interpolate between the full atomic-orbital basis
set and the subset of functions centred on subsystem A atoms.

We determine the functions that make an important contri-
bution to the density matrix of the active subsystem through
their net Mulliken populations. The more commonly used
gross population,

qα = γA
ααSαα +


α,β

γA
αβSβα, (9)

is composed of two parts. The first term is the net population,33

while the second results from the nonorthogonality of the basis
and determines the way in which the contributions from off-
diagonal elements of the density matrix are shared between
atomic orbitals.

A disadvantage in using (gross) Mulliken populations to
determine the importance of the atomic orbital α is that the
charges are not always positive. We also investigated a scheme
using Löwdin populations but found it retained fewer ener-
getically important subsystem B functions, whilst retaining
functions that did not contribute strongly to the energy.

Of the methods we tried, we found net populations (qnet
α

= γA
ααSαα) to offer the most reliable truncation. A given func-

tion α is discarded if qnet
α < λ. The retained atomic orbitals

are then grouped so that complete shells of basis functions are
kept together (e.g., if a particular px function is retained, then
so too are the other two components, and if one component
of a generalized contraction is retained, so too are the other
components). With this definition of the basis-set truncation,
we find each particular value of λ to provide a similar level
of accuracy across a range of chemical problems, enabling us
to recommend a default value of around λ = 10−4 for typical
applications.

An important consideration for a practical implementa-
tion of embedding is the generation of an accurate orbital
guess for the post-embedding SCF. In the full basis, this is
straightforward, because the natural orbitals of γA constitute
an exact initial guess (to within numerical considerations). The
simplest estimate of the subsystem density matrix in the trun-
cated basis γ̃A is simply the corresponding submatrix of γA.
However, the molecular orbitals implied by this truncation are
no longer perfectly orthogonal to the subsystem B orbitals, so
the truncated projector contribution to the Fock matrix can be
very large. Furthermore, the idempotency of the full subsystem
density matrix γA is not preserved in γ̃A, or in other words,
the orthonormality of the localised molecular orbitals is broken
when atomic orbitals with small coefficients are eliminated.

To generate an accurate starting guess for the embedded
SCF calculation, the truncated subsystem density matrix is
subjected to canonical purification.34 We then construct an
effective Hamiltonian using this purified density matrix γ̃A

together with the truncated-basis environment density γ̃B. The
Hamiltonian contains the core one-electron terms and the level
shift projector, as in Equation (7), together with total Coulomb
and exchange-correlation contributions in the truncated basis:

h̃total = h̃ + J̃[γ̃A + γ̃B] + ṽxc[γ̃A + γ̃B] + µP̃B. (10)

Upon diagonalising this Hamiltonian, we obtain a set of
starting orbitals that are influenced by the retained portion of
the level shift projector. At the full supermolecular basis limit,
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the orbitals that are generated with this method are the same (to
within a unitary rotation) as those obtained by diagonalising
the active density. The number of post-embedding SCF cycles
required to converge is reduced as more functions are retained,
and we find that this method avoids convergence artifacts that
can arise due to the change in basis.

In summary, a typical calculation in which coupled-
cluster theory with singles, doubles and perturbative triples
(CCSD(T)) is embedded in DFT proceeds as follows:

1. Run a KS calculation on the entire system.
2. Form localised molecular orbitals and select a subset to

define subsystem A.
3. Use truncation parameter λ to determine an atomic-orbital

subset.
4. Perform Hartree-Fock (HF) and then CCSD(T) calculations

in subsystem A.

In practice, we also correct the results by adding the differ-
ence between truncated DFT-in-DFT and the full basis DFT
energy, so that the total energies presented below are computed
as

EWF-in-DFT = EWF-in-DFT
truncated + EDFT

full − EDFT-in-DFT
truncated . (11)

We note that in this work the only calculations to use this
correction are the SN2 reaction barriers.

III. RESULTS

A. Pentacene

Projector-based embedding without truncation is exact in
the sense that DFT-in-DFT is equivalent to DFT on the whole
system. The minute error introduced by the finiteness of the
parameter µwas discussed elsewhere29 and is negligible on the
scale of the data presented. In the extreme of truncation where
only a few environment functions are retained, µ dependence
can be observed, but for chemically reasonable values of λ that
are used in this work, this dependence is weak. We use the
same value of µ = 106 throughout. A simple test of basis-set
truncation is to assess the degree of error in such a DFT-in-DFT
calculation when truncation is used.

The accuracy of any truncated scheme is determined by
the degree of orbital locality. The delocalised electronic struc-
ture of polyaromatic molecules is therefore a challenging test
case. We present results for PBE-in-PBE36 calculations on

pentacene where the active region is spanned by the 22 local
bond orbitals that have significant contributions on a terminal
ring.

During our investigations, we found that the performance
of the truncation method depended quite strongly on the choice
of localisation scheme. For example, we compared standard
Pipek-Mezey (PM) localisation37 with the new intrinsic bond
orbital (IBO) localisation scheme of Knizia.38 From the left
panel of Figure 1, it can be seen that basis-set truncation leads
to much smaller errors using IBOs than PM orbitals. The
errors that arise in these PBE-in-PBE calculations highlight
the orbital tails that “leak” out of subsystem A and into the
environment.

Knizia’s IBO implementation in Molpro30,31 allows flex-
ibility in the power used for the locality criterion and op-
tions for the orbital orthogonaliser. It has been shown that
for conjugated systems, the 4th-moment localisation criterion
leads to reduced orbital tails;39 however for our purposes, we
find it to have a minimal effect on the PBE-in-PBE error (right
panel of Figure 1). Changing from symmetric orthogonalisa-
tion to the zero bond-dipole (ZBD) scheme,40 on the other
hand, does seem to offer a significant improvement. We found
similar trends for all the other molecules tested in this paper.
Overall we find that with high λ (many functions discarded),
IBOs always have a smaller DFT-in-DFT error than PM or-
bitals. For intermediate truncation, the IBOs were closer to the
PM errors and no real difference was found with low orbital
truncation thresholds. For the remainder of the results in this
paper, we use the IBO method with ZBD and 4th-moment
localisation.

As shown in the left panel of Figure 2, the error due to
truncation decreases systematically as the number of functions
retained increases. The truncation works better in large basis
sets; this is hardly surprising, but the rate at which the improve-
ment takes place is reassuring and this is demonstrated for the
pentacene example (right panel of Figure 2) using the STO-3G,
3-21G, 6-31G, SVP, cc-pVDZ, TZVP, cc-pVTZ, and cc-pVQZ
basis sets.35,41–43

B. Embedded many-body expansions

Embedded many-body expansions of energies of molec-
ular aggregates and materials provide a promising new avenue
for systematically improving accuracy, not by including

FIG. 1. Errors in the total energy of pentacene using PBE-in-PBE with subsystem A defined by 22 orbitals associated with a terminal ring. Left panel: comparison
of the errors using Pipek-Mezey and standard IBOs (using symmetric orthogonalisation and the fourth moment criterion). Right panel: the error in the total energy
using four variations of IBOs. All data are computed using PBE/cc-pVDZ. Note that although the absolute errors can be very large when many functions are
discarded, they can be brought under control by decreasing the value of λ, hence increasing the number of retained atomic orbitals.
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FIG. 2. Left: the error and log error in the total energy of pentacene using PBE-in-PBE with respect to the number of retained basis functions with the cc-pVQZ
basis for atoms in subsystem A (C6H4) and cc-pVTZ for the remaining atoms.35 Right: the error in the total energy versus the basis set used. All calculations
were performed with approximately the same fraction of functions retained (between 50% and 55%). The orange/green lines show the log error (right hand
axis). The blue/red lines show the absolute error (left hand axis). VQZ∗ denotes cc-pVQZ in subsystem A and cc-pVTZ in B.

3-body and higher-order effects explicitly (which is time con-
suming and in polar systems may not work at all44) but by
modelling their effect on monomer and dimer energetics with
increasingly sophisticated embedding methods.45,46

In our previous work,29 it was shown that the CCSD(T)-
in-HF embedded many-body expansion for a model water
trimer could accurately reproduce CCSD(T) calculations on
the whole system. Using our atom-centred basis-set truncation
scheme, we considered the energetics of water hexamers.32

Here, we do so again, but the advantage of the present work
is that the truncation is controlled by the single, geometry-
independent truncation threshold λ. The four structures we
study are shown in Figure 3. These geometries were optimised
at the MP2 level by Santra and co-workers, who report an
energetic ordering of prism < cage < book < cyclic.47

The counterpoise-corrected coupled-cluster binding en-
ergy of a molecular cluster

ECC
bind = ECC −


i

ECC(i) (12)

is the difference between the supermolecular energy (ECC)
and the sum of the monomer energies in the supermolecular
basis (ECC(i)). To approximate this binding energy without
calculating the full hexamer using CCSD(T), one can use
the many-body expansion truncated at second order (MBE2),

FIG. 3. The four water hexamer structures: (a) cyclic; (b) prism; (c) book;
(d) cage.

including only the pairwise binding energies

EMBE2
bind =


i< j

δECC(i, j) (13)

in which the two-body contributions are given by δECC(i, j)
= ECC(i, j) − ECC(i) − ECC( j).

Use of projector embedding for an embedded MBE im-
plies availability of a mean-field calculation on the whole
system, so here (as before29) we use the MBE only for the
correlation contribution to the binding energy and add this
quantity to the HF binding energy of the cluster.

In the simplest approximation, the correlation contribu-
tion could be treated at the one-body level, to give

EEMBE1
bind = EHF

bind +

i

Ecorr
emb(i) −


i

Ecorr(i), (14)

where Ecorr
emb(i) is the correlation energy from a CC calcula-

tion on monomer i computed in the supermolecular basis and
embedded in the environment produced by the other water
molecules. The second-order term gives the correlation contri-
bution of the embedded dimers

EEMBE2
bind = EEMBE1

bind +

i< j

δEcorr
emb(i, j). (15)

To reduce computational scaling with system size, each corre-
lation energy is calculated using the basis-set truncation
scheme.

The CCSD(T) binding energies for the four hexamer struc-
tures are shown in Table I together with MBE2 and EMBE2
approximations, without basis-set truncation. All approaches
reproduce the energy ordering found by Santra et al.;47 how-
ever, there is a ∼10 mhartree discrepancy between MBE2

TABLE I. Binding energies of four water hexamer structures using MBE2,
embedded EMBE2 (without basis-set truncation) and full CCSD(T) calcula-
tions, and the aug-cc-pVDZ basis set.

Ebind/mhartree

MBE2 EMBE2 Full

Prism −50.7 −65.6 −65.6
Cage −49.9 −65.1 −65.0
Book −46.1 −64.4 −64.6
Cyclic −41.1 −62.9 −63.1
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FIG. 4. Binding energies for water hexamer structures relative to those of the prism structure as a function of the average number of basis functions in the
correlated calculation on dimers for various choices of the truncation parameter λ. The top scale indicates the percentage of atomic orbitals retained in the
environment. Correlation energies were calculated at the CCSD(T) level with the aug-cc-pVDZ (left) and aug-cc-pVTZ (center) bases, and at the CCSD level
for the aug-cc-pVQZ basis (right).

and the full CCSD(T) binding energies, due to neglect of
three-body effects. The EMBE2 results essentially match full
CCSD(T).

Figure 4 shows the hexamer binding energies relative to
the prism structure for the aug-cc-pVDZ, aug-cc-pVTZ, and
aug-cc-pVQZ basis sets, as a function of number of atomic
orbitals retained in the truncation scheme. In all basis sets,
EMBE2 returns the correct energetic ordering for the structures
in the full basis set. The calculations using only the active-atom
subset of atomic orbitals (large λ) fail to model the energetics
of these clusters; however, as λ is reduced, and atomic orbitals
from neighbouring atoms are included, the results quickly
converge to the correct orderings and correct relative energies.
In particular, the convergence is stronger in more complete
atomic-orbital basis sets. For example, in aug-cc-pVDZ, at
least 80% of the functions in the environment are required to
converge the energy ordering, whereas in aug-cc-pVQZ, this
figure is ∼25%. The number of environment atomic orbitals
retained for a given degree of convergence is thus similar for
both the small and the large basis, and the relative computa-
tional savings for the larger basis set are considerably greater.

C. Reaction barriers

Truncated embedding makes it possible to perform wave-
function-in-DFT calculations where the cost of the wavefunc-
tion calculation does not scale with the size of the environment.

To demonstrate this, we consider an SN2 reaction of chlo-
ride with alkyl fluorides with increasing chain length. We
primarily use a truncation threshold of λ = 0.0005 which we
found to offer a reasonable compromise between accuracy and
number of functions retained. Subsystem A is spanned by the
localised orbitals on the terminal CH2CH2F moiety. Using the
TZVP basis, 117 atomic orbitals are centred on the atoms of
this subsystem and 154 for the corresponding atoms of the
transition state. Figure 5 shows that the number of functions

remains reasonably constant when the chain length increases
with a fixed truncation threshold (0.0005).

The two plots in Figure 6 give the errors of various
quantum chemical approaches, relative to the full CCSD(T)
reaction barrier. The DFT (or HF) calculations produce various
values for the reaction barrier, with PBE resulting in a bar-
rier much lower in energy than CCSD(T). The truncated
CCSD(T)-in-DFT calculations largely remove this variability,
with all barriers sitting close to that obtained with canonical
CCSD(T) on the whole system. The truncation threshold used
(0.0005) results in a maximum deviation from the full answer
of 3 kcal/mol (M06 on C8 chain length). Increasing the active
region to encompass an extra CH2 group reduces the error
compared to the full CCSD(T) answer to 0.5 kcal/mol for M06
with the same truncation threshold, showing that functional
variation can be eliminated through the selection of a suffi-
ciently large active subsystem.

Deeper examination of the errors of truncated embedding
is explored in Figure 7, where we compare energy barriers
computed using CCSD(T)-in-DFT with and without basis-set
truncation. The right-hand plot shows that reducing the trun-

FIG. 5. The number of functions used in the CCSD(T) part of WF-in-
DFT calculations on the transition state of SN2 reactions of chloride with
CH3(CH2)n−2CH2F with and without basis-set truncation. The horizontal axis
indicates the total number of carbon atoms in the system (n) and a truncation
threshold λ= 0.0005 was used.
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FIG. 6. Errors in barrier heights relative to canonical CCSD(T)/TZVP for
SN2 reactions of chloride with CH3(CH2)n−2CH2F, where the horizontal axis
indicates the total number of carbon atoms in the system (n). Left: errors
in four typical mean-field methods. Right: errors in CCSD(T)-in-DFT with
basis-set truncation (λ= 0.0005).

FIG. 7. Errors in reaction barriers arising only from basis-set truncation,
for two different truncation thresholds. Each line is the error in trun-
cated CCSD(T)-in-DFT relative to full-basis CCSD(T)-in-DFT. For the C8
molecule, 21% of environment functions are retained using λ= 0.0005 and
45% with λ= 0.000 025.

cation threshold to 0.000 025 dramatically reduces the error,
bringing it below 0.02 kcal/mol in all cases. By reducing λ,
the fraction of functions retained in the C8 chain is increased
from 21% for λ = 0.0005 to 45% of environment functions for
λ = 0.000 025, but this leads to a reduction of the truncation
error of two orders of magnitude.

D. Ketene dissociation

So far it has been demonstrated that truncated embedding
is accurate (for a reasonable λ) across a range of static molec-
ular structures. To show that truncation is robust for changes in

FIG. 8. Binding energy relative to isolated molecular fragments for CCSD-
in-B3LYP for the full basis projector embedding and for an atomic-orbital
truncation threshold of λ= 0.0001.

geometry, we present the dissociation of the alkene bond in 1-
penten-1-one. It was previously shown10 that projector-based
embedding accurately reproduces the full CCSD(T) curve and
avoids artifacts sometimes seen in local correlation methods
for such dissociations.48 Here, we present results for a 22-
electron active subsystem encompassing the —CH==C==O
moiety. The geometry was optimized using B3LYP/TZVP.
Figure 8 shows CCSD-in-B3LYP energies using both the full
TZVP basis and a truncated basis. We initially selected the
number of functions for the equilibrium geometry (181 out
of 234 for λ = 0.0001, 61% of environmental functions) and
lock this selection for all subsequent geometries. We find that
the truncated calculation at all points has an error of around 1
mhartree, shows no discontinuities, and is highly parallel to the
full-basis curve.

IV. CONCLUSIONS

Projector-based embedding allows for simple, general,
and robust embedding of wavefunction methods in DFT
models of the chemical environment. Truncation of the atomic-
orbital basis set used in the wavefunction calculation makes the
cost of what is typically the most expensive part of the calcu-
lation independent of the size of the environment, opening the
possibility of applications on much more complex systems.

Although this was achieved previously,32 here we have
introduced and tested a simpler basis-set truncation scheme
in which a single truncation parameter is used to select the
subset of atomic orbitals retained, allowing for smooth tuning
between the subset strictly localised on the atoms in subsystem
A and the full basis. The method automatically adjusts the
selection of retained functions depending on the type of bond-
ing that connects subsystems A and B by using net Mulliken
populations of the atomic orbitals to determine their impor-
tance. Truncation thresholds that give chemically acceptable
errors lead to vast reduction of computational time, and the
gains only increase as the size and complexity of the environ-
ment increase.
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