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Abstract

In this work we develop the Spectral Ewald Accelerated Stokesian Dynamics (SEASD), a novel computational method
for dynamic simulations of polydisperse colloidal suspensions with full hydrodynamic interactions. SEASD is based
on the framework of Stokesian Dynamics (SD) with extension to compressible solvents, and uses the Spectral Ewald
(SE) method [Lindbo & Tornberg,J. Comput. Phys.229(2010) 8994] for the wave-space mobility computation. To
meet the performance requirement of dynamic simulations, we use Graphic Processing Units (GPU) to evaluate the
suspension mobility, and achieve an order of magnitude speedup compared to a CPU implementation. For further
speedup, we develop a novel far-field block-diagonal preconditioner to reduce the far-field evaluations in the itera-
tive solver, and SEASD-nf, a polydisperse extension of the mean-field Brownian approximation of Banchio & Brady
[J. Chem. Phys.118 (2003) 10323]. We extensively discuss implementation and parameter selection strategies in
SEASD, and demonstrate the spectral accuracy in the mobility evaluation and the overallO(N logN) computation
scaling. We present three computational examples to further validate SEASD and SEASD-nf in monodisperse and
bidisperse suspensions: the short-time transport properties, the equilibrium osmotic pressure and viscoelastic mod-
uli, and the steady shear Brownian rheology. Our validationresults show that the agreement between SEASD and
SEASD-nf is satisfactory over a wide range of parameters, and also provide significant insight into the dynamics of
polydisperse colloidal suspensions.

Keywords: Stokes flow, Stokesian Dynamics, Brownian Dynamics, GPU computation, Ewald summation, spectral
accuracy, colloidal suspensions, polydispersity

1. Introduction

Colloidal suspensions are dispersions of small particles in a viscous solvent, and are found in almost every aspect
of our life, ranging from dairy milk to printer ink. They havetwo distinguishing features: (i) Brownian motion of
the particles due to thermal fluctuations, and (ii ) the long-range, non-pairwise-additive hydrodynamic interactions
(HIs) mediated by the solvent. As a result of these features,dispersions exhibit many surprising behaviors such as
non-Newtonian rheology, glass transitions, phase transitions,etc., and have attracted extensive scientific and engineer-
ing interests [1]. Using monodisperse colloidal suspensions as a model system, significant understanding has been
achieved through theoretical, simulation, and experimental studies.

However, naturally occurring colloidal suspensions are seldom monodisperse, and particle size differences are
often unavoidable. In addition, particle size disparity introduces phenomena otherwise not observed in monodisperse
suspensions. For example, size polydispersity reduces suspension viscosity [2–4], softens and even melts colloidal
glasses [5], and promotes particle segregation in pressure driven flows [6]. Apparently, these behaviors can only be
understood by studying dynamics of polydisperse colloidalsuspensions.

In this work we develop a computational method based on the framework of Stokesian Dynamics [7] (SD) for fast
and realistic dynamic simulations of dense, polydisperse colloidal suspensions, with a focus on suspension rheology.
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Presently, theoretical and computational studies on polydisperse colloidal suspensions, even for the simplest case
of neutrally buoyant hard-sphere particles, are scarce, and heavily focus on the dilute or the short-time limits [8–
12]: the former restricts HIs to the two- or three-body level, and the latter ignores suspension dynamic evolution,
particularly the influence of Brownian motion. Beyond theselimiting cases, we are only aware of the work of Ando
& Skolnick [13], who studied particle diffusion in dense polydisperse colloidal suspensions using conventional SD in
the context of biological molecular crowding. Their implementation limits HIs to the force-torque level, and therefore
is unsuitable for rheological investigations.

A difficulty in dynamic simulations of dense colloidal suspensions is the singular HIs due to the lubrication inter-
actions between close particle pairs. To directly resolve HIs, a computational method must capture the flow details
in the small gap between particles. For multipole expansionbased methods [7, 14, 15], a large number of expansion
terms are necessary to achieve convergence, and for methodsbased on surface or spatial discretization, such as the
boundary element method [16, 17] or direct numerical simulations [18–21], very fine meshing is needed in the gap.
Directly resolving lubrication interactions drasticallyincreases the computational cost and limits many studies tolow
volume fractions. For example, the force coupling method study of Abbaset al.[22] on the dynamics of non-Brownian
bidisperse suspensions is limited to particle volume fractions below 20%.

A solution to the above difficulty is the SD framework [7], which exploits the local and pairwise additive nature of
lubrication interactions. In SD, the long-range, non-pairwise-additive HIs are computed from the mobility perspective
using low-order multipole expansions, and for particles inclose contact, lubrication corrections are added pairwiseto
the corresponding resistance formalism. The corrections are based on the solutions of two-body problems with the far-
field contributions removed. In this way, SD avoids directlyresolving the singular lubrication interactions. The ideaof
lubrication correction in SD is general enough for incorporation to other computational methods. For example, similar
lubrication corrections has been developed for hydrodynamic multipole methods [14, 15, 23, 24], the force coupling
method [25], the lattice Boltzmann method [26], and the fictitious domain method [27]. Moreover, with an appropriate
fluid solver, the lubrication corrections can be improved beyond the pairwise level [28]. We feel that, by incorporating
the lubrication corrections, many recent computational techniques can significantly extend their accessible parameter
range without an increased computational burden. This point is demonstrated in the present work, which essentially
combines the lubrication corrections and the Spectral Ewald (SE) method of Lindbo & Tornberg [29, 30] for dynamic
simulations of dense polydisperse suspensions.

The Spectral Ewald (SE) method is a new particle mesh technique for computing long-range electrostatic [30]
or hydrodynamic [29] interactions, and has recently been incorporated into theboundary element method for soft
particles [31]. Particle mesh techniques including the Particle Mesh Ewald (PME) method [32] and the Smooth Par-
ticle Mesh Ewald (SPME) method [33] have been extensively used for calculating HIs withO(N logN) computation
scaling. Note that, although algorithms based on the fast multipole method [34] can achieve a better computation
scaling–down toO(N), they often have significant computation overheads, and require large system sizes to justify
the complexity [35]. Therefore, for many dynamic simulations, the particle mesh techniques remain the practical
choice. Notable examples are Accelerated Stokesian Dynamics (ASD) [36] which uses the PME method for the far-
field mobility evaluation, and the work of Saintillanet al. [37], where the SPME method is employed to study fiber
sedimentation. Compared to other particle mesh techniques, the SE method is spectrally accurate, and can separate er-
rors from mesh interpolation and the wave-space truncation. Both features are essential for capturing the complicated
HIs in polydisperse suspensions.

Another challenge in dynamic simulations of colloidal suspensions is Brownian motion, which is configuration
dependent due to the fluctuation-dissipation relation. When Euler-Maruyama time integration is used, the determin-
istic particle drift due to the Brownian motion must also be included [38]. As a result, computing Brownian related
quantities requires the gradient and the square root of the mobility tensor. Fortunately, these quantities can be evalu-
ated in a matrix-free manner under the framework of ASD, making dynamic studies on hundreds of colloidal particles
possible [39, 40]. Moreover, the mean-field Brownian approximation, which estimates the mobility tensor based on
the near-field HIs, is able to further speed up the computations [39, 41]. In this work, these developments are fully
incorporated for the dynamic simulation of Brownian polydisperse suspensions. Note that a different approach to treat
the Brownian motion is based on fluctuating hydrodynamics [42], where the thermal fluctuations are directly incor-
porated in the governing fluid equations. It has been appliedto the lattice Boltzmann method [43], the force coupling
method [44], and the immersed boundary method [45].

The emergence of the General Purpose Graphic Processing Unit (GPGPU) programming often brings significant,
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sometimes orders of magnitude, speed improvements for manyexisting algorithms. Recently, Kopp & Höfling [46]
implemented the conventional SD for infinite solvent using GPGPU with direct HI summation. Despite theO(N2)
scaling, they achieved impressive speedup over the CPU implementation. However, to study the dynamics of homo-
geneous suspensions, further extension to periodic systems are necessary. On the other hand, GPU acceleration of the
SPME method [47, 48] in molecular dynamics provides access to millisecond-scale dynamics on personal computers.
These acceleration techniques are applicable to particle mesh techniques in general, and inspired the present work. In
particular, we used GPGPU programming to compute the HIs with the SE method in homogeneous suspensions, and
realized almost an order of magnitude speedup in dynamic simulations.

Furthermore, our computation method extends SD to compressible suspensions, allowing dynamic simulations
of constant pressure rheology [49] without introducing geometric confinement. This is possible because the flow
disturbances due to rigid particles in a compressible solvent are incompressible and satisfy the Stokes equation [50].
Another benefit of such extension is that the suspension normal stress, which is essential for particle migration in
sheared suspensions [51–53], can be directly evaluated.

The remainder of the paper is arranged as follows: Sec.2 establishes the basic formalism for HIs in compressible
Stokes flow. In Sec.3, various aspects of mobility computations with the SE method are presented. Here, we also
discuss different approaches to incorporate particle size polydispersity and the GPGPU implementation. In Sec.4,
we present the Spectral Ewald Accelerated Stokesian Dynamics (SEASD) and its mean-field Brownian approxima-
tion, SEASD-nf, for dynamic simulations of Brownian polydisperse suspensions. In Sec.5 we carefully discuss the
accuracy and parameter selections for the SE method, and thecomputation scaling of various SEASD implementa-
tions. Sec.6 presents a series of validation calculations for monodisperse and bidisperse suspensions with SEASD and
SEASD-nf: Sec.6.1addresses the short-time transport properties, Sec.6.2evaluates the equilibrium osmotic pressure
and viscoelastic moduli, and Sec.6.3presents various aspects of the steady shear rheology of Brownian suspensions.
The results also reveal the role of particle sizes in the dynamics of bidisperse suspensions. Finally, we conclude this
work with a few comments in Sec.7.

2. Hydrodynamic interactions in (compressible) Stokes flow

2.1. The mobility and resistance formalism

We first consider a suspension ofN spherical rigid particles, each with radiusai and positionri , in anincompress-
ible solvent of viscosityη0 and densityρ0, occupying a volumeV. For the special case of bidisperse suspensions with
particle sizesa1 anda2, the suspension composition is fully characterized by three dimensionless parameters,

λ = a1/a2, φ = φ1 + φ2, andy2 = φ2/φ, (1)

whereλ is the size ratio,φ is the total volume fraction, andy2 is the volume ratio of species 2. The species volume
fraction isφα = 4

3πa
3
αnα, α ∈ {1, 2}, and the species number density isnα. The total number density satisfiesn = n1+n2,

and the species number fraction isxα = nα/n. Without loss of generality, we takea2 > a1.
If the particles are sufficiently small, the particle Reynolds number Rep,α = ρ0aαUα/η0 ≪ 1, whereUα is the

species characteristic velocity. In this limit, the velocity field v(r) and the pressure fieldp(r) of the solvent satisfy the
Stokes equation,

∇p = η0∇2v, ∇ · v = 0, (2)

supplemented by no-slip boundary conditions on particle surfaces. Due to the linearity of Eq. (2), there is a linear
relation between the velocity disturbance on the surface ofa particlei, u′i , and the surface force density of another
particle j, f j ,

u′i (r) = −
∫

dr′
∑

j

Mi j (r, r′; X) · f j(r′), (3)

whereM i j (r, r′; X) is a mobility operator depending on positionsr and r′ and the suspension configurationX =
{r1, r2, . . .}. The surface force density is localized on the particle surface,i.e., f j(r) = σ(r) · n jδ(‖r‖ − a j), where
σ is the stress tensor,n j is the surface normal of particlej, andδ(x) is the Dirac delta function. The stress tensor
σ = −pI + η0[∇v + (∇v)†], with † indicating transposition andI is the idem tensor. The velocity disturbanceu′i (r) =
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Ui + Ωi × (r − ri) − v∞(r), wherev∞(r) is the ambient flow satisfying∇ · v∞ = 0, andUi andΩi are respectively
the linear and angular velocities of particlei. By stacking the force density vectorsf = ( f1, f2, . . .)† and the velocity
disturbance vectorsu′ = (u′1, u

′
2, . . .)

† the grand mobility operatorM is constructed from elementsM i j in Eq. (3), such
that

u′(r) = −
∫

dr′M(r, r′; X) · f (r′), (4)

for theN particles in the suspension. Eqs. (3) and (4) are known as the mobility formalism, and the inverse relation is
the resistance formalism,

f (r) = −
∫

dr′R(r, r′; X) · u′(r′), (5)

whereR(r, r′; X) is the grand resistance operator.
The integral representations in Eqs. (4) and (5) can be equivalently expressed as multipole expansions off (r) and

u′(r), f andu′ respectively, around the particle centers,i.e.,

f (r) → f =



F H

SH

...


andu′(r)→ u′ =



U′
−E∞

...


, (6)

whereF H is the generalized hydrodynamic force,SH is the hydrodynamic stresslet,U′ is the generalized velocity
disturbance, andE∞ is the rate of strain tensor for the ambient flow. Note thatF H = (FH,TH)†, whereFH andTH

are respectively the particle hydrodynamic force and torque for all particles, andU′ = (U − U∞,Ω − Ω∞)†, where
U − U∞ andΩ − Ω∞ are respectively the linear and angular velocity disturbances. The hydrodynamic force, torque,
and stresslet for particlei are defined as integrals of the localized surface force density fi ,

FH
i = −

∫
dr fi(r), (7)

TH
i = −

∫
dr (r − ri) × fi(r), (8)

SH
i = −

∫
dr 1

2[(r − ri) fi + fi(r − ri)]. (9)

In Eq. (6) the ambient velocities are evaluated at particle centers,i.e., U∞i = v∞(ri), Ω∞i =
1
2∇ × v∞|ri , andE∞ =

1
2[∇v∞ + (∇v∞)†] ri . The expansions in Eqs. (4) and (5) lead to the following infinite dimension linear relation,

f = −M(X) · u′ andu′ = −R(X) · f (10)

whereM(X) andR(X) are the multipole grand mobility and resistance tensors ofoperatorsM(r, r′; X) andR(r, r′; X),
respectively. Evidently,M = R−1, and from the Lorentz reciprocal theorem [54], both are positive definite.

The infinite dimension vectorsf andu′ can be reduced to finite dimensions by projection. To the stresslet level
of f and the strain rate level ofu′, we introduce projection matricesP andQ, such thatP · f = (F H,SH)† and
Q · u′ = (U′,−E∞)†. Moreover,P · P† = Q · Q† = I, whereI is an identity matrix. The following linear relation
holds: [

U′
−E∞

]
= −M ·

[
F
S

]
, andR =M−1, (11)

whereM = QMP† is the (exact) grand mobility tensor andR = PRQ† is the (exact) grand resistance tensor. For
convenience, the grand resistance tensor is partitioned as

R =
[
RFU RFE

RSU RSE

]
, (12)

where, for example,RFU describes the coupling between the generalized force and the generalized velocity. The
linear relation in Eq. (11) can also be deduced from the linearity of Eq. (2) without appealing to the multipole ex-
pansion, but here we establish a connection with other works, particularly the multipole methods of Cichocki and
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coworkers [15, 55]. Note that for rigid spherical particles, external flows can only affect the first two moments off
andu′ due to symmetry and the no-slip boundary condition.

Elements ofM andR can be computed from, for example, the induced force multipole [56, 57], eigenfunction
expansions [15, 24, 58], and multipole expansions [7]. To the stresslet level,M can be conveniently evaluated by
combining the Faxén formulae and the multipole expansions. For a rigid particlei in an incompressible solvent, the
Faxén formulae are [7],

Ui − U∞ = −
FH

i

6πη0ai
+

(
1+ 1

6a2
i ∇2

)
v′
∣∣∣
ri

(13)

Ωi −Ω∞ = −
TH

i

8πη0a3
i

+ 1
2∇ × v′

∣∣∣
ri

(14)

−E∞ = −
SH

i
20
3 πη0a3

i

+
(
1+ 1

10a2
i ∇2

)
1
2[∇v′ + (∇v′)†]

∣∣∣
ri
, (15)

where the overline indicates the traceless part of the symmetric tensor, andv′(r) is the velocity field in the absence of
particlei. With the fundamental solution of Stokes equationJ(r) and the force densityf , the velocity fieldv′(r) can
be computed as [54],

v(r) = − 1
8πη0

∫
dr′J(r − r′) · f (r′). (16)

Expanding the force density around particle centers, we have

v′(r) =
1

8πη0

∑′

j

(
1+ 1

6a2
j∇2

)
J · FH

j + R · TH
j −

(
1+ 1

10a2
j

)
K : SH

j + · · · , (17)

where the prime on the summation excludes the casei = j, and the functionsJ, R, andK are evaluated atr− r j . In the
Cartesian tensor form,R = Rαβ = 1

4ǫδγβ(∇γJαδ − ∇δJαγ) andK = Kαβγ = 1
2 [∇γJαβ + ∇βJαγ], with ǫαβγ the Levi-Civita

symbol. With Eqs. (13)–(15) and (17), the grand mobility tensorM for incompressible solvents can be constructed in
a pairwise fashion.

2.2. The fundamental solutions

The formalism in Sec.2.1relies onJ(r), the fundamental solution of Stokes equation. Different boundary condi-
tions such as periodicity [59, 60], confinement [24, 61], or a combination of both [62], can be incorporated toJ(r).
For an infinite expanse of fluid, we have the well-known Oseen tensor,

J(r) =
1
r

(I + r̂r̂), (18)

wherer = ‖r‖ and r̂ = r/r.
To study dynamics of homogeneous suspensions, periodic boundary conditions are necessary to assess the HIs.

In this case, the proper fundamental solutionJ(r) describes the fluid velocity disturbance due to an array of periodic
forcesF

∑
p δ(r − Rp), whereRp =

∑3
d=1 pdad is the location of the periodic forcing. Here,p = (p1, p2, p3) ∈ Z

3,
δ(r) is the 3D Dirac delta function, anda1, a2, anda3 are the Bravais lattice vectors describing the spatial periodicity.
From Fourier expansion of Stokes equation [Eq. (2)], we have for the periodicJ(r):

J(r) = −8π
V

(I∇2 − ∇∇)
∑

k,0

1
k4

exp(−ık · r), (19)

whereı =
√
−1, the unit cell volumeV = a1 · (a2 × a3), the wave vectork =

∑3
d=1 jdbd is defined by the reciprocal

vectorsb1, b2, andb3, j = ( j1, j2, j3) ∈ Z3, andk2 = k · k. Writing the lattice and the reciprocal vectors as column
vectors and defining matricesA = [a1a2a3] and B = [b1b2b3], we haveB† = 2πA−1 and exp(ık · Rp) = 1. By
requiringk , 0 in Eq. (19), the external forces are balanced by the pressure gradient[59], a necessary condition for
convergent HIs [63].
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A difficulty associated with HIs is the long range nature ofJ(r), i.e., Eq. (18) decays asr−1 in the real space and
Eq. (19) ask−2 in the wave space. For periodic systems, however, the conditionally converging sum in Eq. (19) can
be split into two exponentially fast converging series,i.e.,

J(r) = JR(r) + JW(r), (20)

whereJR(r) is the real-space sum,JW(r) is the wave-space sum. Although the splitting in Eq. (20) is not unique [29],
a particularly efficient scheme by Hasimoto [59] utilizes the integral

1
k4
= π2

∫ ∞

0
βexp(−πk2β)dβ, (k , 0), (21)

and the Poisson summation formula. The result is

JR(r) =
∑

p,0

(I∇2−∇∇)

[
rErfc(rξ) − 1

ξ
√
π

e−r2ξ2
]
, (22)

JW(r) =
8π
V

∑

k,0

(I∇2−∇∇)

(
−1− k2

4ξ2

)
1
k4

e−
1
4k2ξ−2

e−ık·r, (23)

whereξ is the splitting parameter and Erfc(x) is the complementary error function. The real-space sumJR only covers
the neighboringperiodic cells. The parameterξ is consistent with the convention of Beenakker[60] and satisfies
4παξ2 = 1, whereα is the splitting parameter introduced by Hasimoto [59].

2.3. Extension to compressible fluid

The formalism in Sec.2.1is limited to an incompressible fluid,i.e., the imposed flow must satisfy∇ · v∞ = 0. This
requirement is relaxed by imposing auniformrate of expansion everywhere in the fluid, such that∇ · v∞ = E∞, and
the fluid is assumed compressible with a bulk viscosityκ0. The rigid particles, unable to expand with the compressible
fluid, generate a velocity disturbance that satisfies the incompressible Stokes equation [50]. From the linearity of
Stokes flow, this velocity disturbance can be superimposed with other flows in the suspension, extending the existing
formalism to compressible fluids.

For a rigid particle of radiusai located atri = 0, the velocity disturbancevs due to a compressible flow with an
expansion rateE∞ is

vs(r) = − 1
3a3

i E∞
r
r3
. (24)

This isotropic flow disturbance generates an isotropic stress contribution. Introducing the pressure moment as the
trace of the stresslet in Eq. (9), i.e.,

SH
i = −

∫
dr (r − ri) · fi(r), (25)

we haveSH
i = − 16

3 πη0a3
i E∞ from Eq. (24). Therefore, the velocity disturbance due to a pressure momentSH

i at the
origin is

vs(r) =
1

16πη0

r
r3

SH
i = Q(r)SH

i . (26)

Adding the compressible velocity disturbancesvs(r) from other particles to the incompressible velocity disturbance
v′(r) in Eq. (17), the general velocity disturbance in a compressible suspension is

v′c(r) = v′(r) +
∑′

j

Q(r − r j)SH
j . (27)

When applying the Faxén formulae [Eqs. (13)–(15)] in compressible suspensions, the velocity disturbancev′c, instead
of v′, is used.

In addition to Eqs. (13)–(15), the Faxén relation for the pressure moment in a compressible fluid is [64, 65]

SH
i = − 16

3 πη0a3
i E∞ + 4πa3

i p′(ri), (28)
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wherep′ is the pressure disturbance without the particle atri . The pressure disturbance can be obtained from the
pressure fundamental solution of Stokes equation,

P(r) =
r
r3
, (29)

such that the pressure distribution due to a force density is

p(r) = − 1
4π

∫
dr′P(r − r′) · f (r′). (30)

For the pressure disturbancep′ in Eq. (28), expanding the surface force densities leads to

p′(r) =
1
4π

∑′

j

P(r − r j) · FH
j − ∇P : SH

j |(r−r j) + · · · . (31)

Eq. (28) is different from the Faxén formulae in Eqs. (13)–(15) as it presents the pressure moment or trace of the
stresslet on the left hand side. This subtle difference highlights a distinct feature of the compressible flow disturbances:
in a compressible fluid, the pressure moment can cause particle movement satisfying the incompressible Stokes equa-
tion, but the incompressible force moments cannot generatecompressible disturbances. As a result, the interaction

part of the pressure moment can only be evaluated afterFH
i , TH

i , andSH
i are known. Otherwise, the resulting hydro-

dynamic interactions contain spurious contributions due to the unphysical coupling between the incompressible force
moments and the compressible flow disturbances.

To extend the above results forvs andSH
i to periodic boundary conditions, we note that the divergence of Q in

Eq. (26) satisfies

∇ · Q = 1
4η0
δ(r), (32)

since∇2r−1 = −4πδ(r). This means that, for uniform expansion in compressible suspensions, the particles act as
fluid sources, each with a strength proportional to its pressure moment. In a periodic system, the velocity disturbance
corresponds to an array of sources are obtained by replacingthe delta function in Eq. (32) with

∑
p δ(r − Rp). From

Fourier transform, the solution is

Q(r) =
1

4η0V

∑

k,0

∇
1
k2

e−ık·r. (33)

The above wave-space sum can be split to two exponentially converging series [30, 59]

∑

k,0

1
k2

e−ık·r =
V
4π

∑

p,0

1
r

Erfc(rξ) +
∑

k,0

1
k2

e−
1
4 k2ξ−2

e−ık·r. (34)

Similar toQ(r), the pressure fundamental solutionP(r) in Eq. (29) can also be extended to periodic systems.

3. The mobility computation

The mobility problem seeks the action of the grand mobility tensorM on the force moments such asF H andSH.
It can be constructed in a pairwise fashion using the formalism in Sec.2 for compressible suspensions. Naı̈vely, this is
anO(N2) operation for anN-particle system since the long-range HIs necessitate considerations of all particle pairs.
However, with the Ewald summation that splits the fundamental solutionsJ(r), Q(r), andP(r) into exponentially fast
converging wave-space and real-space series, the particlemesh techniques can improve the computation scaling to
O(N logN). In the following, our implementation of the mobility computation is discussed.
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3.1. Wave-space computation: the Spectral Ewald (SE) method

The wave-space computation concerns the part of grand mobility tensor associated withJW(r) of Eq. (23) and the
wave-space sum of Eq. (34) in P(r) andQ(r). Using the Fast Fourier Transform (FFT) algorithm, the computation cost
can be reduced toO(N logN). To illustrate this, let us consider the wave-space velocity disturbanceUW

i on particlei
at the Rotne-Prager level, obtained by combining Eqs. (13), (17), and (23), i.e.,

UW
i =

1
η0V

∑

k,0

e−ık·ri
(
1− 1

6a2
i k2

)
g1(k) ·

∑

j

(
1− 1

6a2
j k

2
)
eık·r j FH

j , (35)

and the wave-space kernel

g1(k) =
(
1+ 1

4k2ξ−2
)
k−4e−

1
4k2ξ−2

(Ik2 − kk). (36)

Different from Eq. (17), the summation over particlej in Eq. (35) is unrestricted and includes the case ofi = j.
Therefore, the self interaction term fori = j, which is

ξ(9− 10a2
i ξ

2 + 7a4
i ξ

4)

18η0π3/2
FH

i , (37)

should be removed later. Eq. (35) exposes the basic idea behind many particle mesh techniques including the PME
method and the SPME method. From an inverse Fourier transform, the real-space force distribution corresponding to
the summation overj in Eq. (35) is ∑

j

(1+ 1
6a2

j∇2)FH
j δ(r − r j). (38)

The force distribution in Eq. (38) is assigned to a regular spatial grid by approximating the delta functions by La-
grangian polynomials in the PME method [66] or Cardinal B-splines in the SPME method [33]. The interpolated
forces are then transformed to the wave space by FFT and the wave-space computation in Eq. (35) is performed. The
wave-space results is then brought back to the real space by inverse FFTs. Subsequently, the velocity on each particle,
UW

i , is interpolated back from the grid, preferably using the same interpolation scheme for the force assignment [67].
Here, the action of the mobility tensor on the forceFH, rather than the tensor itself, is computed. The kernelg1(k) in
Eq. (36) is effectively a low-pass filter that cuts off the spatial signals at highk. Computationally, forM3 grid points
the FFT scales asO(M3 log M3). To ensure reasonable accuracy,M3 ∝ N, and the wave-space computation scales as
O(N logN).

There are two sources of error affecting the accuracy of particle mesh techniques. The first isassociated with the
truncation of the wave-space sum (k-summation) in Eq. (35). This is only affected by the number of grid pointsM
in the simulation box. The second error is the interpolationerror, and arises from polynomial approximation of the
δ-functions in Eq. (38). For a simulation box of sizeL, this error scales as (L/M)p, wherep is the polynomial order
of the approximation scheme. Since both errors are associated with M, we cannot separate the two error sources.
Consequently, to maintain a satisfactory overall accuracy, a largeM is often used in the wave-space computations to
keep the interpolation error small, resulting in unnecessary FFT computations.

In addition, for polydisperse suspensions, different particle sizes introduce additional complications to traditional
particle mesh techniques. If the Laplacian in Eq. (38) is computed in the real space in the SPME method, the inter-
polation error increases to (L/M)p−2, which further increases theM requirement. For the PME method, real-space
differentiation is unsuitable due to the discontinuity of Lagrangian polynomials, and all the computations have to be
carried out in the wave space. This significantly increases the total number of FFTs. In addition, different particle
sizes increase the complexity in the algorithm implementation. Therefore, a simple method with flexible error control
is crucial for accurate and efficient wave-space computation in polydisperse systems.

To address these concerns, we use a new particle mesh technique, the Spectral Ewald (SE) method [29–31] for
the wave-space mobility computation. The SE method decouples thek-space truncation and interpolation errors,
and is accurate, efficient, and flexible for polydisperse systems. To show this, we use Eq. (35) again as an example
and consider the general case of non-orthogonal lattice vectors. We first introduce the fractional coordinatet =
(t1, t2, t3)† ∈ [0, 1)3. For each pointr in the simulation box,r = t1a1 + t2a2 + t3a3 = A · t. Accordingly, defining
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q = (q1, q2, q3)† such thatk = q1b1+ q2b2 + q3b3 = B · q, exp(ık · r) = exp(2πıq · t), andk2 = q† ·B† ·B · q. Eq. (35)
is rewritten int andq as

UW
i =

1
η0V

∑

q,0

e−2πıq·t i− 1
8 θq

2ξ−2 (
1− 1

6a2
i q† · B† · B · q

)
e

1
4 θq

2ξ−2
g1(B · q)

·
∑

j

(
1− 1

6a2
j q
† · B† · B · q

)
e2πıq·t j− 1

8 θq
2ξ−2

FH
j , (39)

with two e−
1
8 θq

2ξ−2
multiplied after particle positions and onee

1
4 θq

2ξ−2
beforeg1, andθ is a parameter. Introducing the

Fourier transform pair

f̂q =

∫
dt f (t)e2πıq·t and f (t) =

∫
dq f̂qe−2πıq·t , (40)

the basic idea of SE is to note that

h(t) =
∫

dqe−2πıq·t− 1
8 θq

2ξ−2
=

(
8πξ2

θ

) 3
2

exp

(
−8π2ξ2

θ
‖t‖2∗

)
, (41)

i.e., the the Fourier transform of a Gaussian remains a Gaussian,and the shape of the Gaussian is controlled byθ.
Here,‖ · ‖∗ indicates distance computation using the minimum image convention for periodic systems. The inverse
Fourier transform of the second line of Eq. (39) with respect toq is

H(t) =
∑

j

(
1+ 1

24a2
jπ
−2
∇
†
t · B† · B · ∇t

)
h
∣∣∣
(t−t j )

FH
j , (42)

where∇t = (∂/∂t1, ∂/∂t2, ∂/∂t3)†. Eq. (42) facilitates interpolation of a discrete force distribution onto a uniform
grid of coordinatet via the Gaussian shape functionh(t) in Eq. (41). The effect of particle size is automatically
incorporated in the grid assignment scheme in the real space. After converting the real-spaceH(t) to the wave-space
Ĥq using FFTs, the wave-space computation produces

Ĝq =


e

1
4 θq

2ξ−2
g1(B · q) · Ĥq, q , 0

0 otherwise.
(43)

From Parseval’s theorem, ∫

T
dt f (t)g∗(t) =

∑

q

f̂qĝ∗q, (44)

where T is a periodic lattice and (·)∗ indicates complex conjugation, Eq. (39) becomes a convolution integral with the
Gaussian shape function,

UW
i =

1
η0V

∫

T
dtG(t)

(
1+ 1

24a2
i π
−2
∇
†
t · B† · B · ∇t

)
h
∣∣∣
(t−t i )
, (45)

whereG(t) is the inverse Fourier transform ofĜq. Extending the SE method to couplings beyond Rotne-Prager level
is straightforward, with adjustedH(t) andG(t) based on the Faxén laws and multipole expansions in Sec.2. In this
work, we have implemented the mobility computation to the stresslet and the strain rate level.

Unlike other particle mesh techniques, the SE formulation in Eqs. (39)–(45) is exact and therefore the errors are
entirely from the numerical implementations. Since the FFTalgorithm is accurate to machine precision, the sources
of error include the discretization and truncation of the shape function [Eq. (41)], and the numerical integration in
Eq. (45). Practically, the evaluation of each shape function is limited to P3 points (P ≤ M) around the particle.
Due to the exponential decay ofh(t), the truncation error decreases exponentially with increasingP. Meanwhile, the
integral in Eq. (45) is evaluated using trapezoidal quadrature [29, 30], which also exhibits exponential error decay
with increasingP. Therefore, the interpolation error in SE method depends exclusively onP for sufficiently largeM,
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and can be separately controlled from thek-space truncation error. The rapid, exponential error decay is known as
spectral accuracy [29, 30], and this is the namesake of the SE method.

The computation cost of the SE method also becomes apparent with the truncation ofh(t). The grid assignment in
Eq. (42) and the convolution Eq. (45) areO(NP3) for anN-particle system, and the FFTs to and from the wave space
areO[M3 log(M3)]. With M3 ∝ N, the time limiting step is the FFT, and the SE method also scales asO(N logN) as
other particle mesh techniques.

The Gaussian shape inh(t) of Eq. (41) is controlled byθ, which is parameterized as

θ =

(
2πPξ
Mm

)2

, (46)

on a regular grid ofM3 points withP3 points for each shape function evaluation. The shape parameterm in Eq. (46)
ensures that at the edge ofh(t) evaluation,i.e., t2 = P2/(2M)2, h ∝ e−m2/2. Therefore, with fixedM and P, m
describes the truncation ofh(t) on the discretized grid and is consistent with the originalSE method of Lindbo &
Tornberg [29, 30].

The computation efficiency of the SE method relies on rapidly computing theO(NP3) different Gaussian shape
functionsh(t), which involves expensive exponential evaluations. To reduce these expensive operations, Lindbo &
Tornberg [29, 30] introduced the fast Gaussian gridding (FGG) technique [68] to the SE method. In essence, the FGG
technique evaluates the exponential function on a regular grid as

e−α(δt+i∆t)2
= e−α(δt)

2 ×
(
e−2αδt∆t

)i ×
[
e−α(∆t)2]i2

, (47)

whereα is a constant,δt is the off-grid value,∆t is the spacing of the regular grid, andi is an integer within the
range [−P/2,P/2]. It reduces theP exponential evaluations in each direction in the SE method to 3 exponential
computations and at most 2P multiplications. In addition, the last term of Eq. (47) is independent ofδt, and therefore
only needs to be computed once.

3.2. Wave-space computation: the particle size effect

In Sec.3.1 the terms associated with finite particle sizes in the Faxénlaws and the multipole expansions are
incorporated in the real-space derivatives of the shape functionh(t). For example, in a simple shear flow with lattice
vectorsa1 = (L, 0, 0), a2 = (γL, L, 0), anda3 = (0, 0, L), whereγ is the strain, the relevant term in Eqs. (42) and (45)
is

(
1
24a2

i π
−2
∇
†
t · B† · B · ∇t

)
h(t) =

8
3

(
πξai

θL

)2 {
−θ(3+ γ2) + 16π2ξ2[(1 + γ2)t21 + t22 + t23 − 2γt1t2]

}
h(t). (48)

The finite particle sizes introduce additional features to the shape function, and for non-orthogonal simulation boxes,
non-trivial anisotropy. As a result, compared to the case ofpoint forces, more pointsP are needed to resolve the
details in Eq. (48). On the other hand, the benefit of evaluating the particle size effects in the real space is that fewer
FFTs are involved. To compute the mobility problem of compressible suspensions to the stresslet and the strain rate
levels, only four pairs of FFTs are necessary: three are associated withJW in Eq. (23), and one associated with theQ
in Eq. (26).

Alternatively, the particle size effect can be completely accounted in the wave space. This requires, for each
particle j, FH

j , TH
j , andSH

j , as well asa2
j F

H
j anda2

j S
H
j , to be separately interpolated to the grid viah(t) and brought to

the wave space for computation. The derivatives associatedwith the Faxén laws and multipole expansions in Sec.2
are carried out in the wave space as multiplication of wave vectors. The final results are then combined from different
convolutions and weighted by the particle sizes. To demonstrate this, we again take the wave-space Rotne-Prager
velocity, Eq. (39), as an example. In this approach, the grid assignment is split into two parts,

H′(t) =
∑

j

h(t − t j)FH
j andH′′(t) =

∑

j

h(t − t j)a2
j F

H
j . (49)
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The wave-space computation forq , 0 is also split as

Ĝ′q =e
1
4 θq

2ξ−2
g1(B · q) ·

[
Ĥ′q − ( 1

6 q† · B† · B · q)Ĥ′′q
]
, (50)

Ĝ′′q =(− 1
6 q† · B† · B · q)e

1
4θq

2ξ−2
g1(B · q) ·

[
Ĥ′q − ( 1

6 q† · B† · B · q)Ĥ′′q
]
, (51)

andĜ′q = Ĝ′′q = 0 whenq = 0. The wave-space velocity disturbance is a sum of two convolutions,

UW
i =

1
η0V

∫

T
dtG′(t)h(t − t i) +

a2
i

η0V

∫

T
dtG′′(t)h(t − t i). (52)

Note that the convolution associated withG′′(t) is weighted by the particle sizeai. Compared to the other approach,
the wave-space computation is rather straightforward for the force interpolation and convolution. With the sameP, the
accuracy is expected to be higher as the derivatives are calculated in the wave space [67]. However, the computation
burden is shifted to the FFTs: for the mobility problem to theS andE level, a total of 20 pairs of FFTs are necessary:
12 for FH

j , TH
j , andSH

j , three fora2
j F

H
j , and five for the traceless part ofa2

j S
H
j .

A third approach, a hybridization between the wave- and the real-space approaches above, aims to reduce the errors
associated with the high order derivatives ofh(t) in the real space. It retains the real-space derivatives inthe force
interpolation step, but when evaluating the Faxén laws, the second order derivatives are computed in the wave space
for improved accuracy. The first order derivatives are computed in the real space to keep the total number of FFTs
low. As a result, this hybrid approach requires 12 FFTs: fourto the wave space and eight from the wave space. Taking
Eq. (39) again for example, the most significant error in Sec.3.1is due to applying the operator (∇†t ·B† ·B ·∇t) twice
to h(t), once during the force interpolation, and another time during the convolution. The hybrid approach retains the
real-space grid assignment usingH(t) in Eq. (42), but evaluates the convolution using Eq. (52) with modifiedĜ′(t)
andĜ′′(t): in the wave-space computations, the content in the squarebracket on the right hand side of Eqs. (50) and
(51) is replaced withĤq in Eq. (42). We adopted this hybrid approach in this work to compute theHIs, and discuss
the accuracy of various approaches in Sec.5.1.

3.3. Real-space computation

The real-space contributions to the grand mobility tensorM are computed pairwise using the formalism in Sec.2.
SinceJR(r) [Eq. (22)] decays exponentially fast with distance, when the parameterξ is sufficiently large, only particle
pairs within a cutoff distancerc need to be evaluated. Introducing the cutoff radiusrc for pair evaluation allows
fast neighbor searching algorithms such as the linked list [69] or the chaining mesh [70] method to be used. These
methods divide the simulation box into cells of size slightly larger thanrc, and sort the particles into the cells. To find
the neighbors of a particle, only particles in the residing cell and its 26 neighboring cells need to be searched. This
effectively improves the operation count toO(N logN) for the real-space computations.

To accommodate the iterative scheme for HI computations in Sec.4, the real-space grand mobility tensor is con-
structed as a sparse matrix at each time step. After the matrix construction, the action of the real-space contributions
to M is simply a matrix-vector multiplication. Otherwise, neighbor searching and pair HI evaluations need to be
carried out at every iteration. Note that we also include theself-contributions from the wave-space computations,e.g.,
Eq. (37), and the self-part of the pressure Faxén law [Eq. (28)], in the real-space grand mobility tensor.

3.4. GPGPU acceleration of the mobility computation

The mobility computation with the SE method was first implemented on CPU and the performance was unsat-
isfactory for dynamic simulations. The bottlenecks are theforce interpolation step and the convolution step. These
are common speed limiting steps in particle mesh techniquesdue to ineffective memory caching between the particle
and the grid data. For polydisperse systems in this work, thesituation is aggravated as more interpolation pointsP
are needed for satisfactory HI resolution. After a few optimization iterations on CPU, we realized that the key to the
performance is the memory bandwidths. Since modern GPUs typically have significantly higher memory bandwidths
compared to CPUs, in this work the entire mobility computation is carried out on GPU using CUDA C, a popular
GPGPU programming model with a relatively mature environment for scientific computations.

The GPU mobility computations are carried out in Single Precision (SP) for the highest GPU performance. The
cost of the performance in SP computation is the accuracy, asthe SP arithmetics can be severely limited by the number
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of significant digits compared to the Double Precision (DP).However, this is not a problem in this work for at least
three reasons: (i) For dynamic simulations with iterative solvers, the SP accuracy is often sufficient; (ii ) The SE
method is able to reach the round-off error of the SP arithmetics with proper parameter selectiondue to its spectral
accuracy; and (iii ) The far-field HIs captured by the mobility computations aresmooth compared to the lubrication
interactions, which are evaluated in DP on CPUs. The split ofthe near- and far-field HIs in SD allows a natural mixed
precision HI computation that captures the most significantcontributions from each part.

The GPGPU computations exploit the massively parallel structure of modern GPUs by simultaneously executing
a large number of similar tasks, or threads, on the data. To maintain performance, data dependencies and commu-
nications between threads should be minimized. This makes the GPU implementation of the SE method different
from its CPU counterpart. Inspired by earlier GPU implementations of particle mesh techniques, this work combines
the grid-based method of Ganesanet al. [47] for force interpolation and the particle-based approach of Harvey &
De Fabritiis [48] for convolution. The grid-based force interpolation keeps a list of contributing particles for each grid
point, and the list is updated when the particle configurations are changed. The grid values are computed in parallel
usingM3 threads: with the particle list, each thread sums the force,torque, and stresslet contributions independently
for each grid point. On the other hand, the particle-based convolution is a weighted summation onP3 grid points
for each particle. To maximize parallelization, the summation for each particle is performed by a group ofP threads
cooperatively. Each thread in the group first sumsP2 grid points on the transverse plane, and for the final result,the
first thread in the group adds up the values from other threadsusing the shared memory of the GPU. Moreover, on the
GPU we use thecufft package for the FFTs and thecusparse package for the sparse matrix-vector multiplication.

4. Dynamic simulation with Stokesian Dynamics

The framework of SD [7, 63] approximates the projected grand resistance tensorR in Eq. (12) as

R =M−1 + Rnf , (53)

whereM is the multipole grand mobility tensor, andRnf is the pairwise additive lubrication correction without the
far-field contributions. Recall that the inversion ofM captures the many-body aspect of HIs, and the short-range
correctionRnf captures the lubrication effects. The SD recovers the exact result for two-body problemsand agrees
well with the exact solutions of three-body problems [71]. It can provide significant insights to the HIs of dense
suspensions [72, 73].

4.1. Iterative computation of hydrodynamic interactions

We incorporate the SE mobility computation into the framework of SD using the iterative scheme of Swan &
Brady [62], and call the resulting method the Spectral Ewald Accelerated Stokesian Dynamics (SEASD). Here, a
matrix-free iterative scheme is necessary as the grand mobility tensorM is not explicitly constructed. The iterative
scheme splits the overall hydrodynamic force,

F H = −RFU · UH + RF E · E∞, (54)

whereUH is the velocity disturbances due to HIs, into a near-field part and a far-field part. The near-field part satisfies

0 = −Rnf
FU · UH + F H,ff + F̃ P, (55)

whereRnf
FU is theFU coupling inRnf and is stored as a sparse matrix,F̃ P = F P+Rnf

F E ·E
∞ contains the interparticle

forceF P and the near-field contributions fromE∞. The far-field hydrodynamic forceF H,ff satisfies
[
UH

−E∞

]
= −M ·

[
F H,ff

SH,ff

]
, (56)

whereSH,ff is the far-field stresslet from HIs. Solving Eqs. (55) and (56), the far-field hydrodynamic forces and
stresslets are [

F̃ H,ff

SH,ff

]
= M̃−1 ·

(
(λM − I) ·

[
(R̃nf
FU)−1 · F̃ P

0

]
+

[
0

E∞

])
, (57)
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where

M̃ =

(
(I − λM) ·

[
(R̃nf
FU)−1 0
0 0

]
+M

)
. (58)

To ensure invertibility, a diagonal matrixλI, with λ a parameter, is added toRnf
FU, i.e., R̃nf

FU = Rnf
FU + λI, and

accordinglyF̃ H,ff = F H,ff + λUH. A convenient choice forλ is 6πη0a, wherea is the reference particle radius [62].
Solving Eq. (57) requires nested iteration as each evaluation ofM̃ contains the solution of the near-field problem

with R̃nf
FU. The near-field problem is efficiently solved by the Generalized Minimum Residual (GMRES)method with

an Incomplete Cholesky preconditioner with zero fill-in (IC0) [74]. To reduce the IC0 breakdown, prior to applying
the preconditioner particles are reordered using the reverse Cuthill-McKee algorithm. For isotropic suspensions, the
near-field problem typically converges to an error of 10−4 within 10 iterations [36]. For suspensions with strong
structural anisotropy, however, the convergence becomes more difficult and the IC0 preconditioner breaks down even
with the reordering. This is resolved by increasingλ in R̃nf

FU, or introducing a threshold valueλIC in during the IC0

preconditioner computation [74]. Increasingλ in R̃nf
FU does not change the convergence of the near-field problem,

but increases the number of expensivẽM iterations. On the other hand, increasingλIC deteriorates the quality of the
IC0 preconditioner and increases the iterations required for the near-field problem, but has little effect on the far-field
evaluations. In dynamic simulations, bothλ andλIC are adjusted for optimal computation efficiency.

The pressure moment computation in SEASD also follows the near- and far-field splitting scheme in Eqs. (55)
and (56). Due to the special coupling between the pressure moments and other force moments in compressible
suspensions (Sec.2.3), the interaction contribution to the far-field pressure moment is evaluated afterFH,ff and the
traceless part ofSH,ff are solved in Eq. (57). On the other hand, the near-field part of the pressure moment is evaluated
along with other parts of the stresslets using the near-fieldresistance functions.

The near-field pairwise lubrication correctionsRnf are based on the exact solutions of two-body problems in series
form [64, 65, 75, 76] up to s−300, wheres= 2r/(ai+a j), with ai anda j the radii of the pair, is the scaled particle center-
center distance. In the simulations, the lubrication corrections are activated whens< 4: for s> 2.1 the interpolation of
tabulated data and fors≤ 2.1 the analytical expressions are used. Note thatRnf constructed from two-body problems
contains both the relative and the collective motions of theparticle pair and, as pointed out by Cichockiet al. [23],
the lubrication corrections corresponding to the collective motion can destroy the far-field asymptotics beyond the
pair level. However, for dense suspensions, this only leadsto a minor quantitative difference on the suspension static
properties [11] in conventional SD. Therefore, we retain the full lubrication correction here for consistency with the
existing SD framework. The SD implementations of Ando & Skolnick [13] removed the pair collective motion in the
lubrication corrections.

4.2. Far-field preconditioner

Here we introduce a preconditioner for̃M to reduce the number of expensive far-field mobility evaluations when
solving Eq. (57). SinceM̃ is not explicitly constructed, the preconditioner needs tobe built from a suitable approx-
imation. For mobility problems without the lubrication corrections, Saintillanet al. [37] and Keaveny [44] found
substantial iteration improvement even with the diagonal mobility approximation. Unfortunately, the approximation
of M̃ is more involved due to the presence of (R̃nf

FU)−1. In this work, a block diagonal approximation of̃M for the

far-field preconditioner is adopted. First, the near-field resistance tensor̃Rnf
FU is approximated byN blocks of 6× 6

submatrices along its diagonal. Using the direct sum notation, this is
⊕N

i=1(R̃nf
FU)ii , where

⊕
is the direct sum, and

(R̃nf
FU)i j is the block submatrix between particlesi and j in R̃nf

FU. To approximatẽM, we use

(R̃nf
FU)−1 ≈

N⊕

i=1

[( R̃nf
FU)ii ]−1, (59)

which only involvesN inversion of 6× 6 matrices. The mobility tensorM is approximated by its block-diagonal
components using direct Ewald summation,i.e., for each particle, the approximation only considers the interactions
with its periodic images. To obtain the preconditioner, we apply the Incomplete LU decomposition with zero fill-in
(ILU0) [74] on the approximated̃M, which is constructed following Eq. (58) with the approximated (̃Rnf

FU)−1 andM.
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Figure 1: The number of far-field iterations,i.e., the number of the grand mobility tensor̃M evaluations, as a function of the GMRES residual with
(solid line) and without (dashed line) the far-field preconditioner for a bidisperse suspension ofN = 200,λ = 2, x2 = 0.3, andφ = 0.2.

Unlike Saintillanet al. [37], including close pair interactions has an adverse effect on the preconditioner due to the
diagonal approximation of̃Rnf

FU.
The effectiveness of this preconditioner on the far-field iteration is demonstrated in Fig.1. In this case, the HIs

corresponding to random forces and strain rates are solved for a random bidisperse suspension of 200 particles with
λ = 2, x2 = 0.3, andφ = 0.2. The far-field preconditioner substantially reduces the number of GMRES iterations.
Evidently, its usage is justified when the required GMRES residual is small, since constructing the approximate
M̃ and the ILU0 decomposition also take time. In dynamic simulations, further time saving can be achieved by
updating the preconditioner every few time steps. In addition, the exact break-even time also depends on the far-field
mobility computation parameters, includingM, P, andrc that indirectly affect the iterative solver. Finally, since the
preconditioner construction is anO(N) operation and thẽM evaluation scales asO(N logN), preconditioning is almost
always justified for large systems.

4.3. Dynamics simulation of Brownian suspensions

Particle dynamics in a suspension are described by the generalizedN-body Langevin equation,

m · dU
dt
= F H + F P + F B (60)

wherem is the generalized mass/moment of inertial matrix,U is the generalized particle velocity andF H, F P, and
F B are the forces on particles. The hydrodynamic forceF H arises from the HIs and can be computed from Eq. (54).
The interparticle forceF P originates from the interparticle potentials. The Brownian forceF B is due to thermal
fluctuations in the solvent, and from the fluctuation-dissipation theorem [77], F B satisfies

F B(t) = 0 andF B(0)F B(t) = 2kBTδ(t)RFU , (61)

where the overline denotes an average over the solvent fluctuations andkBT is the thermal energy scale.
The configuration evolution is obtained by integrating Eq. (60) twice over an appropriate time scale∆t, and the

result is [38, 78]
∆X =

[
U∞ + R−1

FU ·
(
RFE · E∞ + F P

)]
∆t + kBT∇ · R−1

FU∆t + ∆XB, (62)

where∆X is the suspension configuration change over time∆t,U∞ is the generalized velocity from the imposed flow,
and∆XB is the Brownian displacement which satisfies

∆XB = 0 and∆XB∆XB = 2kBT∆tR−1
FU . (63)

14



The second term on the right hand side of Eq. (62) is the deterministic drift due to the configuration dependent
Brownian forceF B, and the divergence operator is acting on the last index ofR−1

FU. The divergence can be numerically
evaluated following Banchio & Brady [39].

The suspension bulk stress is obtained by spatially averaging the Cauchy stress [50, 51], i.e.,

〈Σ〉 = −〈p〉f I + 2η0〈E∞〉 + (κ0 − 2
3η0)E∞I − nkBTI + n(〈SE〉 + 〈SP〉 + 〈SB〉), (64)

where〈p〉f is the average solvent pressure,〈·〉 is the volume average over the entire suspension,κ0 is the fluid bulk
viscosity, andn is the particle number density. The particle stressletsSH are broken down asSH = SE + SP + SB,
whereSE is the contributions from the the imposed flow,SP from the interparticle potential, andSB from the Brownian
motion. Their suspension averages are expressed in resistance tensors

〈SE〉 = − 〈RSU · R−1
FU · RFE − RSE〉, (65)

〈SP〉 = − 〈(RSU · R−1
FU + rI) · FP〉, (66)

〈SB〉 = − kBT〈∇·(RSU · R−1
FU)〉, (67)

where the divergence in Eq. (67) is applied to the last index in the bracket. For hard-spheresuspensions,〈SP〉 = 0 as
the HI and the interparticle force contributions exactly cancel each other [51]. The Brownian stresslet〈SB〉 can also
be computed using the modified mid-point scheme [39].

In dynamic simulations, the Brownian displacement∆XB is evaluated from the Brownian forceF B in Eq. (61) as

∆XB = R−1
FU · F

B∆t. (68)

Following Banchio & Brady [39], the Brownian force can be split into a near-field part and a far-field part,

F B = F B,nf + F B,ff. (69)

BothF B,nf andF B,ff have zero mean and satisfy

F B,nfF B,nf =
2kBT
∆t

Rnf
FU, (70)

F B,ffF B,ff =
2kBT
∆t

(M−1)FU, (71)

F B,ffF B,nf =0, (72)

where (M−1)FU is theFU block of the inverted far-field grand mobility tensor. The pairwise-additive lubrication cor-
rections allow pairwise evaluation of the near-field Brownian forceF B,nf [39]. SinceM is not explicitly constructed,
to computeF B,ff , it is necessary to solve

[
F B,ff

∆SB

]
=

2kBT
∆t

(M−1/2) ·Ψ, (73)

whereΨ is a Gaussian noise of zero mean and unit variance, and∆SB is the fluctuation part of the Brownian stress in
Eq. (67). The inverse square root of the grand mobility tensorM−1/2 in Eq. (73) can be approximated using Chebychev
polynomials with eigenvalue estimations [39, 79], or solved as an Initial Value Problem (IVP) [40, 80], which was
first used by Swan & Brady [40] in ASD. The solution of the following IVP [81] with matrix A,

dx
dτ
= − 1

2 [τI + (1− τ)A]−1 · (A − I) · x, x(0) = c, (74)

atτ = 1 satisfiesx(1) = A−1/2 · c. Swan & Brady [40] devised a numerical scheme to solve Eq. (74) in ASD: at each
time step with step size∆τ, Eq. (74) is marched first with a Euler forward half-step then a Euler backward half-step,
i.e.,

xi+ 1
2
− xi

∆τ/2
= − 1

2 [τi I + (1− τi)A]−1 · (A − I) · xi , (75)
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xi+1 − xi+ 1
2

∆τ/2
= − 1

2 [τi+1I + (1− τi+1)A]−1 · (A − I) · xi+1. (76)

With A = M and c = (2kBT/∆t)Ψ, Eq. (73) is solved atτ = 1. In SEASD, both Eqs. (75) and (76) are solved
iteratively, usually with a smaller tolerance compared to∆τ. The results with∆τ = 0.1 are often satisfactory.

For dynamic simulation of Brownian suspensions under a simple shear flow with strain rate ˙γ, the ratio of the
convective transport rate ˙γ and the diffusive transport ratekBT/(6πη0a3

p) defines the Péclet number,

Pe=
6πη0a3

pγ̇

kBT
. (77)

Small Pe indicates Brownian motion dominance, and large values suggest negligible Brownian influences. For bidis-
perse suspensions, we define Pe based on the size of the small particles to capture the dynamics of the most rapid
changes,i.e., ap = a1. In dynamic simulations, the time in Eq. (62) is scaled according to the Péclet number: when
Pe≤ 1, it is scaled with the diffusive time scale of the small particles, 6πη0a3

1/(kBT), and when Pe> 1, the convective
time scale ˙γ−1.

4.4. The mean-field Brownian approximation

The most time-consuming step in dynamic simulations of Brownian suspensions is computingF B,ff from Eq. (73)
due to the large number ofM evaluations, although the IVP approach in Sec.4.3 is expected to be faster than the
Chebychev approximation [40]. Further speed improvement is possible by introducing a mean-field approximation
of the Brownian-related quantities [39]. In this approach, the far-field grand mobility tensorM is approximated as
a diagonal matrix for all Brownian related computations, and the full HI computations are retained for the flow-
related quantities such asSE. As a result, this method retains theO(N logN) scaling, but with an order of magnitude
smaller prefactor for monodisperse suspensions [39]. The diagonal approximation ofM uses the single particle result
for the ES coupling, and the far-field translational and rotational short-time self-diffusivities for theUF coupling.
These far-field values are from Monte-Carlo computations ofequilibrium configurations at the same volume fraction
withoutthe lubrication corrections. Extending this approach to polydisperse suspensions is trivial: the suspension far-
field diffusivities in the diagonal elements are replaced by the far-field diffusivities for each species. The mean-field
Brownian approximation is especially suitable for studying dense suspension rheology, where the HIs are dominated
by the near-field lubrication interactions. Following Brady & Banchio [39], we designate this approximation scheme
SEASD-nf.

5. Accuracy and performance

5.1. Mobility computation accuracy

The accuracy of the mobility computation is characterized by the relative∞-norm of the strain rate,i.e.,

e∞,r(E) = max
i∈{1,...,N}

‖ESE
i − E∗i ‖
‖E∗i ‖

, (78)

where theESE
i is the particle strain rate from the SE method andE∗i is a well-converged value from direct Ewald

summation. Other error measurements can be similarly defined. For example,e∞,r(U) for the linear velocity was used
by Lindbo & Tornberg [29] to characterize the accuracy of the SE method for point forces. For the stresslet-strain rate
level mobility computation here, we founde∞,r(E) the most stringent error criteria, possibly because more derivatives
are involved in Eq. (15).

To facilitate quantitative discussions, in this section wefocus on a random bidisperse hard-sphere system of
N = 50,φ = 0.05,λ = 2, andx2 = 0.3. The imposed force, torque, and stresslet on each particleare randomly drawn
from a normal distribution, and rescaled to ensure‖Fi‖ = 1, ‖Ti‖ = 1, and‖S i‖ = 1. The the simulation box lattice
vectors area1 = (L, 0, 0), a2 = (γL, L, 0), anda3 = (0, 0, L), with γ the strain. The computations are carried out in DP
accuracy on CPU.
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Figure 2: The wave-space accuracy measured bye∞,r (E) [Eq. (78)] as a function of the interpolation pointP with various shape parameterm at
M = 64 andξa1 = 0.1. The particle size effects are incorporated using (a): the real-space, (b): the hybrid, and (c): the wave-space approaches in
Sec.3.2. The values ofm are annotated in each figure. The solid and dashed lines represent the case ofγ = 0 and 0.5, respectively. The dashed
dotted lines show the exponential minimum error decay,e∞,r (E) ∼ exp(−Pπ/2).

5.1.1. Wave-space accuracy
Fig. 2 presents the accuracy of wave-space computation using different SE implementations with orthogonal (γ =

0) and sheared (γ = 0.5) simulation boxes in solid and dashed lines, respectively. The errore∞,r(E) is shown as a
function of the interpolation pointP with various shape parameterm at M = 64 andξa1 = 0.1. Different particle size
incorporation approaches discussed in Sec.3.2are presented: in Fig.2a the real-space approach, in Fig.2b the hybrid
approach, and in Fig.2c the wave-space approach.

There are several key observations in Fig.2. First of all, the errors associated with orthogonal and sheared simula-
tion boxes are almost identical. This validates the generalformalism for non-orthogonal simulation boxes in Sec.3.1.
Secondly, the SE method is sensitive toP andm, which respectively correspond to the discretization and truncation of
the shape functionh(t). At a givenm, e∞,r(E) first decreases exponentially, followed by a much slower reduction with
increasingP. The two-stage reduction ofe∞,r(E) is well understood for point forces [29]: the exponential decrease is
due to the improved resolution of the shape function, and theslower reduction is associated with the Gaussian trun-
cation from the shape parameterm. Therefore, at largeP andm the result is expected to be accurate; indeed, in Fig.2
the minimum errors are all close to the machine precision. Such accuracy is inaccessible using the PME or the SPME
method at this grid number (M = 64) due to the inherent coupling between the interpolation and the wave-space
truncation errors. Moreover, for a givenP, e∞,r(E) first decreases to a minimum and then increases with increasing m.
At the minimum,e∞,r(E) is transitioning from exponential to slower decay, and theerrors from the shape resolution is
about the same as the errors from the Gaussian truncation. From the error estimation of Lindbo & Tornberg [29, 30],
at a givenP, the minimum wave-space errore∞,r(E) and the corresponding shape parameterm are

e∞,r(E) ∼ exp(−Pπ/2) andm∼
√
πP, (79)

respectively. The asymptotic exponential decay of the minimume∞,r(E) is also shown as dash-dotted lines in Fig.2.
The exponential decay of the minimum error with respect toP to the round-off precision at largeP andm clearly
demonstrate the spectral accuracy [82] of the SE method.

In Fig. 2 different particle size incorporation approaches exhibit similar qualitative behaviors with quantitative
differences. For example, to achieve an accuracy ofe∞,r(E) ∼ 10−4 at the optimalm, in Fig.2a,2b, and2c the required
P are respectively 15, 13, and 9, corresponding to the real-space, hybrid, and wave-space approaches discussed in
Sec.3.2. The latter two approaches reduce theh(t) evaluations by 35% and 78% compared to the real-space approach
at a cost of the number of required FFTs. Therefore, there is asubtle balance between the number of interpolation
pointsP and the number of FFTs in the SE method implementation. The hybrid approach in Fig.2b achieves a good
balance between accuracy and computation efficiency, and therefore is adopted in SEASD.

Finally, Fig.2 shows that, in addition to the spectral accuracy and the easeof implementation, the SE method also
allows flexible error control by adjustingP andm without changing the grid pointsM. As a result, the errors from
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the wave-space summation and the interpolation can be separated, and this permits more flexible error control when
computing HIs in polydisperse systems. On the other hand, such error separation is not possible in other particle mesh
techniques such as the PME and the SPME methods.

5.1.2. Overall mobility accuracy
Both the wave-space and the real-space computations affect the overall mobility accuracy, and the controlling

parameters are the grid pointM, the interpolation pointP, the Gaussian shape parameterm, the real-space cutoff radius
rc, and the splitting parameterξ. Out of the five parameters, only changes inξ andm do not affect the computational
cost since adjustingM affects the FFT size, changingrc influences the neighbor search,etc.With fixed computation
cost,i.e., fixed M, P, andrc, it is desirable to find the combination ofmandξ that minimizes the overall error.

Fig.3 and4 present the effects ofmandξ on the overall mobility accuracy with variousP andrc for M = 64 and 32,
respectively. The wave-space computation uses the hybrid approach in Sec.3.2, and the simulation box is orthogonal
(γ = 0). The thick black lines in these figures indicate the theoretical optimal shape parameterm =

√
πP [29, 30].

Note that in our implementation, the cutoff radiusrc depends on the radiusai anda j in a particle pair.
Fig. 3i with M = 64, P = 21, andrc = 6(ai + a j) best illustrates the influences ofm andξ. Here, the mobility

computation can reache∞,r(E) < 10−9 at (ξa1,m) = (0.46, 8). With fixed m, e∞,r(E) exhibits a minimum with
increasingξa1, and whenm ≤ 8, the minimum degenerates to a plateau due to the wave-spaceGaussian truncation,
which is also illustrated in Fig.2 at low m. At low ξ, the overall error is dominated by the real-space error, which
decreases with increasingξ. At high ξ, the overall error is mainly from the wave space, and increases with increasing
ξ. With fixed ξ on the other hand,e∞,r(E) also shows a minimum with increasingm. Whenξa1 ≤ 0.46, thee∞,r(E)
minimum becomes a plateau since the real-space error is independent ofm. Here, the reduction ofe∞,r(E) with
increasingmat smallmcomes almost entirely from the reduced Gaussian truncation. Whenξa1 > 0.46, the minimum
plateau disappears as in this region the wave-space error issensitive tom, a point also illustrated in Fig.2. Furthermore,
in Fig. 3i there is a region ofe∞,r(E) > 1 at highξ and lowm due to large wave-space errors.

Comparison across rows and columns in Fig.3 and4 reveals the influences ofrc andP on the overall accuracy,
respectively. For both cases, reducingrc or P increases the minimum value ofe∞,r(E) and changes the corresponding
ξa1 andm. Comparing Fig.3g, 3h, and3i shows that reducingrc increases the real-space error and shifting the
minimum ofe∞,r(E) towards largerξa1. The decrease ofe∞,r(E) with respect to increasingξ at smallξa1 also becomes
slower. In Fig.3g, thee∞,r(E) minimum is atξa1 > 1. Comparing Fig.3i, 3f, and3c reveals the effects of reducing
the interpolation pointP. With diminishingP, the wave-space error increases due to poor Gaussian resolution, and
thee∞,r(E) minimum is shifted towards lowerm. In addition, the overall accuracy decreases significantlyfor largem
at smallP, e.g., in Fig.3c, e∞,r(E) > 1 whenm> 8.

Comparing Fig.3 and4 shows the effect of grid pointM on the mobility accuracy. Note that the color scales in
Fig. 3 and4 are different, and the minimume∞,r(E) in Fig. 3f and4f is approximately the same. The most apparent
effect of reducingM is the shrinkage of the parameter space corresponding toe∞,r (E) < 1 due to the truncation
of the wave-space sum. As a result, atM = 32, the mobility evaluation is more sensitive toξa1 compared to the
case ofM = 64. Otherwise, the qualitative aspects of Fig.4 are similar to Fig.3. Moreover, the thick black lines
representing the theoretical optimal shape parameterm =

√
πP is almost always in the vicinity of the regions of the

highest accuracy in both Fig.3 and4. This substantially simplifies the search for the optimalξ.
The influences of the particle numberN on the overall mobility accuracy is presented in Fig.5 for M = 32 and

64. The simulation box size is fixed atL/a1 = 23.5 in Fig.5a, and the suspension volume fraction is fixed atφ = 0.05
in Fig. 5b. Other parameters remain unchanged from the baseline case, and the mobility computation parameters are
P = 13, m = 6.7, andrc = 4(ai + a j). The mobility accuracy is more sensitive to changes inL than changes in
φ. In Fig. 5a, e∞,r(E) changes little, but in Fig.5b, thee∞,r(E) minimum increases drastically with differentN. The
almost identical decrease ine∞,r(E) at smallξa1 suggests the real-space error are not significantly changedby N in
either case. The diverginge∞,r(E) at higherξa1 in Fig. 5b suggests the wave-space computation is sensitive to the
box size at fixedP andm. This is well-known for particle mesh techniques in general[29, 67]. Therefore, to retain
the computational accuracy with larger systems at the same volume fraction, it is necessary to increase the grid point
M or the interpolation pointP. Finally, we note in passing that the same qualitative errorbehaviors are found in the
pressure moment computations.
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Figure 3: (Color online) The overall accuracy measured ine∞,r (E) as a function of the splitting parameterξa1 and the shape parametermat M = 64
for a real-space cutoff radiusrc = 2(ai + aj ) (left column), 4(ai + aj ) (middle column), and 6(ai + aj ) (right column), and the interpolation point
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the particle size effects are accounted using the hybrid approach.
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5.2. Accuracy of the GPGPU implementation

The accuracy of mobility computation using GPGPU programming discussed in Sec.3.4 is presented in Fig.6.
Clearly, the GPU computations provide sufficient accuracy for dynamic simulations. Fig.6a shows the GPU wave-
space accuracy as a function of the interpolation pointP for various shape parametersm for orthogonal (γ = 0) and
sheared (γ = 0.5) simulation boxes. Here, the particle size effects are incorporated using the hybrid approach in
Sec.3.2, and the SE method parameters are identical to those of Fig.2b. Moreover, for comparison the data in Fig.2b
are reproduced in gray. In Fig.6a, the GPU results in black lines are indistinguishable fromthe CPU results in gray
lines whene∞,r(E) > 10−5 for all mandγ, indicating that the GPU computations are only limited by the SP arithmetics.
When the errore∞,r(E) reaches 10−5, increasing the interpolation pointP does not improve the computation accuracy
on GPUs, while the error in the CPU computations using DP arithmetics continue to decrease untile∞,r(E) ∼ 10−14.
In addition, the wave-space error remaine∞,r(E) ∼ 10−5 after reaching the SP limit even with further increase inP,
i.e., increasingP does not adversely affect the wave-space accuracy.

The overall GPU mobility accuracy as a function ofξa1 is presented in Fig.6b for two M andP combinations
with m=

√
πP andrc = 4(ai +a j) in orthogonal simulation boxes. The errorse∞,r(E) are computed using the baseline

case of Sec.5.1. The GPU results are shown in solid lines and the CPU results in dashed lines. When the overall
errore∞,r(E) > 10−5, i.e., the case of (M,P) = (32, 13) in Fig.6b, the GPU and the CPU results are indistinguishable
from each other. However, the differences are evident for the case of (M,P) = (64, 21). When 0.5 < ξa1 < 0.85, the
GPU computations deviate from the CPU results with larger errors due to the SP arithmetics. Beyond this range, the
CPU and the GPU results overlap again. In both cases, the accuracy achieved by the GPU mobility computation is
sufficient for dynamic simulations, where the error tolerance istypically set at 10−3. The results in Fig.6 dispel any
concerns over the SP accuracy in the GPU mobility computations for dynamic simulations.

5.3. Overall performance

Fig. 7 presents the overall performance of various implementations of the SEASD and the conventional SD as a
function of the system sizeN. The program performance is characterized by the wall time,i.e., the actual time of
program execution, to march 100 steps in a dynamic simulation of Brownian suspensions at Pe= 1 starting from
an equilibrium configuration. The suspension composition is λ = 2, y2 = 0.5, andφ = 0.45. The SEASD mobility
computation parameters are fixed atM = 32, P = 11, rc = 4(ai + a j) with appropriateξ andm as they provide
sufficient accuracy. The tolerance of the iterative solvers is set at 10−3. For SEASD the far-field Brownian forces
are calculated using Eqs. (75) and (76) with ∆τ = 0.2, and for SEASD-nf the far-field diffusivities are from Table1.
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λ = 2, y2 = 0.5, andφ = 0.45 starting from equilibrium configurations.

The conventional SD result is from an efficient polydisperse implementation [11, 12, 83]. All the timing results are
collected from a workstation with Intel i7-3770K CPU and NVIDIA GeForce GTX 680 GPU.

Fig. 7 demonstrates the expectedO(N logN) asymptotic scaling of various SEASD implementations, highlighted
by the dash-dotted line. The implementations with the CPU mobility computation are shown in open symbols and
the GPU mobility computation in filled symbols. The GPU SEASDhas almost the same time scaling as the CPU
SEASD-nf at all the system sizeN. Both are almost an order of magnitude faster than the CPU SEASD at a typical
system sizeN ≈ 200. This clearly demonstrates the power and promise of GPGPU programming in the dynamic
simulation of colloidal suspensions. More significant speedup is achieved by combining the mean-field Brownian
approximation and the GPU mobility computation. In this case, the speedup of GPU SEASD-nf computation relative
to the CPU SEASD ranges between 40 times for small systems and15 times for large systems. We believe further
speedup is still possible by optimizing the GPU implementation. With the speedup shown in Fig.7, we are able
to study dynamics of larger systems at longer times. In addition, compared to the conventional SD, all the SEASD
implementations are faster at large enoughN due to their favorable scaling. Here, the conventional SD scales as
O(N2.2), highlighted by the dashed line in Fig.7. This peculiar scaling is a combined effect of the pairwise grand
mobility tensor construction and explicit matrix inversion. At N ≫ 1000, the scaling should recoverO(N3). In Fig.7,
the break-even between the CPU SEASD and SD isN = 216, and for GPU SEASD atN ≈ 40. At all the system sizes
studied here, the GPU SEASD-nf is always faster than the conventional SD.

6. Static and dynamic simulation results

6.1. Short-time transport properties

In this section we present static SEASD simulation results on the short-time transport properties of monodisperse
and bidisperse hard-sphere suspensions. With the iterative computation scheme in Sec.4.1, the short-time translational
and rotational self-diffusivities, instantaneous sedimentation velocities, and high-frequency dynamic shear and bulk
viscosities can be straightforwardly evaluated. Other transport properties can also be calculated with an appropriate
computation scheme.

The suspension short-time limit refers to a time scalet satisfyingτI ≪ t ≪ τD, whereτI is the inertial time andτD
is the diffusion time. The inertia timeτI = 2

9ρpa2
p/η0, whereρp andap are the characteristic particle density and radius,

describes the time required for theparticle momentum to dissipate by interacting with the solvent. WhenτI ≪ t, the
particle momentum dissipates almost instantaneously and the particle dynamics are completely overdamped. The
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Table 1: The polynomial coefficient fitted from the far-field diffusivities in Fig.9. The data is for polydisperse suspensions withλ = 2 andy2 = 0.5.
The far-field self-diffusivity dffs can be expressed asdffs /d0 = 1+ c1φ + c2φ

2 + c3φ
3, whered0 is the single particle diffusivity.

dt,ff
s,1 dt,ff

s,2 dr,ff
s,1 dr,ff

s,2
c1 -1.27 -1.70 -0.207 -0.538
c2 0.536 1.005 -0.131 -0.312
c3 -0.018 -0.12 -0.091 0.19

diffusion timeτD = 6πη0a3
p/kBT characterizes the time scale of suspension configuration change andt ≪ τD ensures

that the transport properties entirely arise from the (instantaneous) HIs. Therefore, they are only determined by
the configurationX, and can be calculated by sampling independent but equivalent configurations. In this work
we use the Monte-Carlo procedure of Wang & Brady [11]: the hard-sphere configurations are first generated by an
event-driven Lubachesky-Stillinger algorithm [84, 85], followed by a short equilibration. The transport properties are
then computed statically. Here we compare the results from the SEASD with CPU mobility computation with our
recent conventional SD results [11]. Although SEASD and SD are based on the same formalism, the grand mobility
tensorM constructed from SD includes an additional mean-field quadrupole term [63], which can have quantitative
consequences. For bidisperse hard-sphere suspensions, wefocus on the composition withλ = 2 andy2 = 0.5. In the
SEASD computations, the system size isN = 800, and the results are averaged over 500 independent configurations.
Note that for simple cubic array of monodisperse particles,SEASD produces identical results as those of Sierou &
Brady [36].

6.1.1. Short-time translational and rotational self-diffusivities
The microscopic definition of the short-time translationaland rotational self-diffusivities,dt

s,α anddr
s,α respectively,

for homogeneous suspensions are,

dt
s,α =

kBT
Nα

〈∑

i∈α
q̂ · µtt

ii · q̂
〉
, anddr

s,α =
kBT
Nα

〈∑

i∈α
q̂ · µrr

ii · q̂
〉
, (80)

where ˆq is a vector of unit length for the averaging process andµtt
ii andµrr

ii are respectively the diagonal blocks of the
force-linear velocity and torque-angular velocity couplings inR−1

FU. Note thati ∈ α in Eq. (80) suggests the summation
is restricted to particles of speciesα. The diffusivities are computed using the matrix-free approach of Sierou &
Brady [36]: the velocity disturbanceUR corresponding to a stochastic external forceF R satisfying〈F R〉 = 0 and
〈F RF R〉 = I is evaluated. It is straightforward to show that the ensemble average〈URF R〉 = diag(R−1

FU), allowing
extraction of the diffusivities in Eq. (80).

The computed short-time translational self-diffusivitiesdt
s,α exhibit a strongN−1/3 size dependence due to the

periodic boundary conditions. The size dependence from anN-particle system can be eliminated by adding the
following quantity to the results,

∆Ndt
s,α =

1.76dt
0,1

(x1 + x2λ3)
1
3

η0

ηs

(
φ

N

) 1
3

, (81)

wheredt
0,1 = kBT/(6πη0a1) is Stokes-Einstein-Sutherland diffusivity for species 1, andηs is the high-frequency dy-

namic shear viscosity from the same configurations. The shear viscosity exhibits little size dependence, and can be
directly used. The effectiveness of Eq. (81) has been demonstrated by Wang & Brady [11] in the wave-number-
dependent hydrodynamic functions. The results here alwayscontain this finite sizeN correction.

Fig. 8a and Fig.8b respectively presentdt
s,α/d

t
0,α anddr

s,α/d
r
0,α of monodisperse and bidisperse suspensions, where

the single particle translational and rotational self-diffusivities aredt
0,α = kBT/(6πη0aα) anddr

0,α = kBT/(8πη0a3
α).

The SEASD results, shown in symbols, agree well with the conventional SD results shown in lines. As expected,
both dt

s,α and dt
s,α decrease with increasing volume fractionφ, and for bidisperse suspensions, the small particles

show diffusivity enhancement while the large particles exhibit diffusivity supression. Compared todt
s,α, dr

s,α are less
sensitive to the volume fractionsφ, but more sensitive to the particle sizesλ. The SEASD results for large particles
show larger error bars compared to the SD results [11], most likely due to the stochastic computation procedure.
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Figure 8: (Color online) The species short-time (a): translational and (b): rotational self-diffusivities,dt
s,α anddr

s,α respectively, as a function of
the total volume fractionφ for monodisperse and bidisperse hard-sphere suspensions with λ = 2, y2 = 0.5. The results are scaled with the single
particle translation and rotational diffusivity, dt

0,α anddr
0,α, respectively. The SEASD results are shown in symbols and the conventional SD results

from Wang & Brady [11] are shown as lines.
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Figure 9: (Color online) The species far-field short-time translational and rotational self-diffusivities,dt,ff
s,α anddr,ff

s,α , respectively, as a function of the
total volume fractionφ for bidisperse hard-sphere suspensions withλ = 2 andy2 = 0.5. The results scaled with the single particle translation and
rotational diffusivity, dt

0,α anddr
0,α, respectively. The symbols are the computation results, and the dashed and the dash-dotted lines are polynomial

fittings for the small and the large particles, respectively.
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Figure 10: (Color online) The scaled species instantaneoussedimentation velocity,Us,α/U0,α, as a function of the total volume fractionφ for
monodisperse and bidisperse hard-sphere suspensions withλ = 2 andy2 = 0.5. The single particle sedimentation velocity isU0,α. The SEASD
results are shown in symbols and the conventional SD resultsfrom Wang & Brady [11] are shown as lines.

We also calculated the far-field short-time translational and rotational self-diffusivitiesdt,ff
s,α anddr,ff

s,α, where “ff”
suggests only the far-field HIs without the lubrication corrections are considered. They are the input for subsequent
SEASD-nf computations in Sec.6.2 and 6.3. The N−1/3 size dependency in the far-field translational diffusivity
dt,ff

s,α is corrected using Eq. (81) with the corresponding far-field viscosity. Fig.9 showsdt,ff
s,α anddr,ff

s,α for bidisperse
suspensions up toφ = 0.62. Compared to Fig.8, the far-field diffusivities exhibit weaker volume fraction dependence,
and they do not have sharp reductions at high volume fractions. Consistent with Fig.8, dr,ff

s,α also exhibits stronger
particle size dependence compared to its translational counterpart. In general, theφ dependence of any scaled far-field
diffusivity dffs /d0, with d0 the corresponding single-particle data, can be adequatelycaptured by a cubic polynomial
dffs/d0 = 1+ c1φ+ c2φ

2+ c3φ
3, where the coefficientsci , i ∈ {1, 2, 3}, only depend on the suspension composition. The

fitting coefficients for bidisperse suspensions withλ = 2 andy2 = 0.5 are presented Table1. The polynomial fittings,
also shown in Fig.9 in dashed and dash-dotted lines for the small and the large particles, respectively, indeed describe
the computation data. Not shown in Fig.9 are the SEASD far-field diffusivities for monodisperse suspensions, which
are identical to those of Banchio & Brady [39].

6.1.2. Instantaneous sedimentation velocity
The species instantaneous sedimentation velocitiesUs,α are computed by applying a uniform external forceFα to

each species. For bidisperse suspensions, the sedimentation velocityUs,α also depends on the species density ratio [8],
γ = ∆ρ2/∆ρ1, with ∆ρα = ρα − ρ0 the density difference of speciesα. The species force ratio satisfiesF2/F1 = γλ

3,
and here we setγ = 1 to facilitate comparison with earlier results. To eliminate theN−1/3 size dependence, the
following corrections are added to the results:

∆NUs,1 =
1.76U0,1

(x1 + x2λ3)
1
3

η0

ηs

(
φ

N

) 1
3
[
S11(0)+ λ3γ

√
x2

x1
S12(0)

]
, (82)

∆NUs,2 =
1.76U0,1

(x1 + x2λ3)
1
3

η0

ηs

(
φ

N

) 1
3
[√

x1

x2
S21(0)+ λ3γS22(0)

]
, (83)

whereU0,α = Fα/(6πη0aα) is the single particle sedimentation velocity andSαβ(0) is the partial static structural factors
in the zero wave number limit. Eqs. (82) and (83) are based on the finite-size correction for partial hydrodynamic
functions [11]. Here, the partial static structural factors are computedfrom the polydisperse Percus-Yevic integral
equations [86–89].
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Figure 11: (Color online) The high-frequency dynamic (a): shear viscosityηs and (b): bulk viscosityκs as functions of the total volume fractionφ
for monodisperse and bidisperse hard-sphere suspensions with λ = 2 andy2 = 0.5. The results are scaled with the solvent viscosityη0, and only
the particle contributions,ηs/η0 − 1 and (κs− κ0)/η0 are presented. The SEASD results are shown as symbols and theconventional SD results [11]
are shown as lines.

Fig.10presents the SEASDUs,α/U0,α in symbols, which are not the identical to the conventional SD results shown
in lines. The difference is especially pronounced at high volume fractions. For monodisperse suspensions, the SEASD
and the conventional SD agree with each other satisfactorily up toφ ≈ 0.3, and at higherφ, the SEASD results become
significantly higher. This difference is from the mean-field quadrupole term, which is absent in SEASD. Despite the
quantitative differences, the SEASD monodisperse sedimentation velocity remain positive and physical. A similar
overestimation of the sedimentation velocity is also foundwhen comparing ASD results [36] and the conventional SD
results [63] for simple cubic arrays.

The differences between the SEASD and the conventional SD results are more significant for bidisperse suspen-
sions. ForUs,1 of the small particles, the differences are not evident untilφ = 0.3, and forUs,2 of the large particles,
the differences are obvious even atφ ≈ 0.2. Moreover,Us,2 exhibits a minimum and increases withφ at higher volume
fraction, leading to a crossing ofUs,1 andUs,2 at φ = 0.45. These unphysical behaviors are caused by inaccurate
HI computations at the stresslet-strain rate level. Apparently, the HIs of the large particles, which are surrounded by
many small particles, are more complicated than those of thesmall particles and more difficult to capture accurately.
Note that for sedimentation the lubrication interactions are not important and one must rely on the far-field mobility
for all HIs.

Fig. 10also illustrates that sedimentation problems in dense bidisperse suspensions, even atλ = 2, is challenging
for SEASD. Incorporating the mean-field quadrupole term [63], (1− 1

5φ), in the grand mobility tensor can significantly
improve the results [11]. However, such incorporation is not carried out in this work.

6.1.3. High-frequency dynamic shear and bulk viscosities
The high-frequency dynamic shear and bulk viscosities,ηs andκs, are respectively defined as,

ηs = η0 + n〈SE〉xy/γ̇, andκs = κ0 + 1
3n〈SE〉 : I/ė, (84)

whereγ̇ is the imposed strain rate, ˙e is the imposed uniform expansion rate,SE is the hydrodynamic stresslet in
Eq. (65), and the subscriptxy denotes the velocity-velocity gradient component. They are directly computed from
SEASD and exhibit little size dependencies. Experimentally, ηs andκs are measured by imposing high-frequency,
low-amplitude deformations, such that the suspension microstructures are only slightly perturbed, and the Brownian
stress contributions are out of phase with the applied deformations [90].

Fig. 11a and11b present the volume fractionφ dependency of the particle contributions to the high-frequency
dynamic shear and bulk viscosities,ηs/η0 − 1 and (κs − κ0)/η0, respectively. The SEASD calculations are shown in
symbols, and the corresponding conventional SD results areshown in lines. Forηs, the SEASD and the conventional
SD results agree well over the entireφ range. The results for monodisperse and bidisperse suspensions withλ = 2 are
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Figure 12: (Color online) The equilibrium osmotic pressureΠ/(nkBT) of monodisperse and bidisperse Brownian suspensions withλ = 2 and
y2 = 0.5, as a function of volume fractionφ. The dashed line represents the CS equation of state, Eq. (86), and the dash-dotted line represents the
BMCSL equation of state, Eq. (87).

almost identical whenφ < 0.55. At higher volume fractions, the monodisperseηs are more sensitive toφ compared
to the bidisperse results, as introducing particles of difference sizes significantly alters the suspension hydrodynamic
environment in this limit. Unlike sedimentation, for the shear viscosity lubrication interactions are important and
dominate the behavior at highφ.

For the high-frequency dynamics bulk viscosityκs in Fig. 11b, the SEASD and conventional SD results show
qualitative agreement with noticeable quantitative differences at moderateφ: the SEASD results are higher and less
sensitive to the particle size ratioλ. The differences are caused by different pressure moment computation procedures.
Recall that the far-field grand mobility tensorM is not symmetric by construction, and the symmetry ofM−1 must
be restored for subsequent calculations. This is done in conventional SD by explicit copy of matrix elements after
the matrix inversion [91]. This is not applicable for the matrix-free computation ofM in SEASD. Here, the pressure
moment is computed from the far-field forces and stresses. Fig. 11b shows that the two conceptually equivalent
approaches do lead to small quantitative differences. Moreover, for dense suspensions, such differences are masked
by the dominance of lubrication interactions. Therefore, the SEASD and the conventional SD results agree well at
low and highφ. Near the close packing limit,κs for bidisperse suspensions is significantly lower than thatof the
monodisperse case, since the particle size polydispersityimproves the particle packing.

6.2. Equilibrium suspensions

Here we present the dynamic simulation results with SEASD and SEASD-nf for monodisperse and bidisperse
Brownian suspensions at zero Péclet number. In particular, we are interested in the following equilibrium prop-
erties: the osmotic pressureΠ, the high-frequency dynamic bulk modulusK′∞, and high-frequency dynamic shear
modulus,G′∞. The dynamic simulations are carried out with 100 particlesover 200 diffusive time units with a time
step∆tdt

0,1/a
2
1 = 10−3. The mobility computation in SEASD is performed on GPUs withM = 32, P = 11, and

rc = 4(ai + a j), and the far-field Brownian force is calculated using the IVP method in Sec.4.3 with ∆τ = 0.1. The
tolerance for the iterative solver is 10−3 and the tolerance for matrix inversion in Eqs. (75) and (76) is 0.02. The com-
position of bidisperse suspensions areλ = 2 andy2 = 0.5. Therefore, for the SEASD-nf computations the coefficients
in Table1 are used. Note that with Pe= 0, SEASD-nf computations do not contain far-field mobility evaluations.

6.2.1. Osmotic pressure
The osmotic pressure of an equilibrium suspension is definedas

Π = nkBT − 1
3n〈SB〉 : I, (85)
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Figure 13: (Color online) The high-frequency dynamic moduli: (a) the bulk modulusK′∞a3
1/(kBT), and (b) the shear modulusG′∞a3

1/(kBT), as
functions of volume fractionφ for equilibrium monodisperse and bidisperse Brownian suspensions withλ = 2 andy2 = 0.5. The results are
computed from SEASD (filled symbols) and SEASD-nf (open symbols).

where〈SB〉 is the Brownian stresslet in Eq. (67). For rigid particles with no-slip boundary conditions, Brady [51]
showed that the osmotic pressure is purely hydrodynamic in origin, and is identical to that of a hard-sphere fluid. The
osmotic pressure of monodisperse suspensions is well described by the Carnahan-Starling (CS) equation up to the
fluid-solid transition,

Π

nkBT
=

1+ φ + φ2 − φ3

(1− φ)3
. (86)

The CS equation of state is extended to polydisperse suspensions as the Boublik-Mansoori-Carnahan-Starling-Leland
(BMCSL) equation [92]:

Π

nkBT
=

1+ φ + φ2 − 3φ(z1 + z2φ) − z3φ
3

(1− φ)3
, (87)

wherez1 = ∆12(1+λ)/
√
λ, z2 = ∆12(y1λ+y2)/

√
λ, andz3 = [(y2

1x1)1/3+(y2
2x2)1/3]3 with ∆12 =

√
y1y2
√

x1x2(λ−1)2/λ.
Fig. 12 presents the equilibrium osmotic pressure of monodisperseand bidisperse suspensions withλ = 2 and

y2 = 0.5 as functions ofφ using SEASD and SEASD-nf computations. The CS [Eq. (86)] and the BMCSL [Eq. (87)]
equations of state at the corresponding bidisperse compositions are respectively shown in dashed and dash-dotted
lines. Also shown in Fig.12are the static computation results withN = 200, denoted “static”. The static computations
do not consider particle dynamics, and calculate the osmotic pressure by taking a full Brownian step from independent
particle configurations in a Monte-Carlo fashion. In Fig.12, at each volume fraction 500 independent configurations
are used in the static computations.

The osmotic pressures from the SEASD, the SEASD-nf, and the static computations agree with the CS and BM-
CSL predictions in Fig.12. The static computations show the best agreement over the entire φ range, and this directly
validates the Brownian stress computation method in Sec.4.3. The dynamic SEASD results are slightly higher than
the theoretical predictions because the configuration evolution is affected by the finite∆τ in the far-field Brownian
force computation. The slight difference does not invalidate this approach as it is well withinthe discretization errors
of Eqs. (75) and (76). Note that, as long as the tolerances for the iterative solution of Eqs. (75) and (76) are smaller
than the discretization step size∆τ, the principal source of error is the time discretization. We have verified that reduc-
ing the iterative solver tolerance with fixed∆τ does not improve the results. Finally, the agreement in the bidisperse
osmotic pressures from SEASD-nf and the BMCSL equation validates the extension of the mean-field Brownian ap-
proximation to polydisperse systems. The SEASD-nf resultsare only slightly lower than the theoretical predictions,
which is acceptable considering the substantial speedup offered by this approach.
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6.2.2. High-frequency dynamic moduli
The suspension high-frequency dynamic bulk and shear moduli, K′∞ andG′∞ respectively, can be computed from

the short-time limit of the pressure-pressure and stress-stress autocorrelation functions [91, 93, 94], i.e.,

K′∞ = lim
t→0

V
kBT
〈δΠ(t)δΠ(0)〉, andG′∞ = lim

t→0

V
kBT
〈σ(t)σ(0)〉, (88)

whereδΠ is the osmotic pressure fluctuations andσ is the off-diagonal components of the bulk stress〈Σ〉 in Eq. (64).
Note that the viscoelasticity of colloidal suspensions is entirely of hydrodynamic origin, and without HIs,e.g., in
hard-sphere fluids, these moduli are infinite.

Fig. 13a and13b respectively presentK′∞ andG′∞ of monodisperse and bidisperse suspensions as functions of
φ from the same SEASD and SEASD-nf dynamic simulations of Fig.12. Both K′∞ andG′∞ grow rapidly withφ,
and at the same volume fraction, the monodisperse moduli arealways higher. In Fig.13a, the bulk modulusK′∞
computed from SEASD and SEASD-nf share the same qualitativebehavior. However, the SEASD results are almost
always higher than the SEASD-nf results except at smallφ, and their differences grow with increasingφ. This
is consistent with the growing differences inΠ with increasingφ in Fig. 12. On the other hand, in Fig.13b the
differences in the shear modulusG′∞ between the SEASD and the SEASD-nf results decrease with increasingφ, with
the SEASD-nf data higher at low volume fractions. Note that the bidisperse SEASD results show large fluctuations
whenφ = 0.2 ∼ 0.25, most likely due to the small number of large particles atN = 100 and the particular particle
spacing at this volume fraction. Finally, small differences in fluctuation quantities such asK′∞ andG′∞ are expected
for SEASD and SEASD-nf because the Brownian stresses are computed differently. However, more importantly, the
same qualitative behaviors are followed in both methods.

6.3. Rheology of bidisperse suspensions

The final validation of SEASD and SEASD-nf is the steady shearrheology of Brownian suspensions at constant
strain rate. Both monodisperse and bidisperse hard-spehresuspensions are considered: the volume fractions are fixed
atφ = 0.45 in both cases, and the bidisperse composition isλ = 2 andy2 = 0.5. The results are extracted from SEASD
and SEASD-nf simulations with GPU mobility computation over a wide range of Péclet number Pe= 6πη0a3

1γ̇/(kBT).
Moreover, we introduce a small excluded volume on each particle to emulate the effects of surface asperities or
polymer coating and to prevent particle overlap. It is characterized by,

δ = 1− ai/bi, (89)

wherebi is the excluded volume radius for each particle. The SEASD and SEASD-nf simulations are carried out at
δ = 5 × 10−4 with N = 200 over 150 dimensionless time units with a step size 10−3. Other simulation parameters
are similar to those in Sec.6.2. The data are averaged in segments after the steady state is reached, usually after
20 dimensionless time units. As is customary, thex-direction is the velocity direction, they-direction is the velocity
gradient direction, and thez-direction is the vorticity direction.

6.3.1. Shear viscosity
Fig. 14a and14b respectively present the Brownian viscosityηB and the flow viscosityηE as functions of the

Péclet number. These viscosities are defined as

ηB = n〈SB〉xy/γ̇ andηE = n〈SE〉xy/γ̇, (90)

with 〈SB〉 in Eq. (67) and 〈SE〉 in Eq. (65). In this figure, the monodisperse data are shown in squares and the
bidisperse data in triangles, with the SEASD results in filled symbols and the SEASD-nf results in open symbols.
For comparison, the SD results of Foss & Brady [72] for monodisperse suspensions are presented in open circles. To
clarify the effects of the excluded volume parameterδ on viscosities, another set of monodisperse SD simulationswith
N = 30 are performed atδ = 5× 10−4 and 10−5, and the results are shown as crosses and pluses respectively. In all
cases, the stress contributions from inter-particle forces are negligible, and therefore are not presented.

In Fig. 14 both the Brownian viscosityηB and the flow viscosityηE exhibit the expected behaviors: with in-
creasing Pe,ηB decreases (shear-thinning) andηE grows (shear-thickening). In addition, there are several important
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Figure 14: (Color online) Different viscosity contributions to the rheology of monodisperse and bidisperse hard-sphere suspensions: (a) the
Brownian viscosityηB/η0 and (b) the flow viscosityηE/η0, as functions of Pe. The volume fractionφ = 0.45 in both cases, and the bidisperse
composition isλ = 2 andy2 = 0.5.

observations. First of all, the excluded volume parameterδ introduces quantitative effects on the suspension rheology,
especially at high Pe. Comparing the SD results withδ = 5× 10−4 and 10−5, increasingδ enhances the shear-thinning
of ηB and weakens the shear-thickening ofηE, especially at high Pe. At low Pe, the effect ofδ is almost unnoticeable.
The SD results atδ = 10−5 agree well with those of Foss & Brady [72], and the results atδ = 5× 10−4 are consistent
with the monodisperse SEASD and SEASD-nf results, with larger differences shown inηE. This difference is most
likely due to the number of particles in the computations. Next, the bidisperse Brownian viscosityηB is always lower
than the monodisperse value at all Pe, and for the flow viscosity ηE, their difference is most apparent at high Pe. The
large difference inηE at high Pe suggests distinct HIs and structures between the monodisperse and the bidisperse
suspensions, since Fig.11a suggestsηE is insensitive to equilibrium suspension structures atφ = 0.45. Finally, the
SEASD and SEASD-nf results in Fig.14 almost always overlap each other, showing that the mean-field Brownian
approximation is valid over the entire Péclet number range. At high Pe, the Brownian viscosityηB from SEASD shows
larger fluctuations compared to the SEASD-nf results as the Brownian stresses are difficult to compute with highly
anisotropic structures. However, these fluctuations do notaffect the overall viscosity since the Brownian contribution
at high Pe is insignificant.

6.3.2. Non-equilibrium osmotic pressures
Fig. 15a and15b present the Brownian and the flow contributions to the suspension osmotic pressure,

ΠB = nkBT − 1
3n〈SB〉 : I andΠE = − 1

3n〈SE〉 : I, (91)

respectively, as functions of Péclet number Pe. In these figures, the scaling for the Brownian contribution isnkBT
and the scaling for the flow contributionΠE is η0γ̇. Similar to Fig.15, the monodisperse data are presented in
squares and the bidisperse data in triangles, with the SEASDresults in filled symbols and SEASD-nf results in open
symbols. Fig.15also presents theN = 30 monodisperse SD results withδ = 5× 10−4 and 10−5 in crosses and pluses,
respectively. Similarly to the shear stresses, the inter-particle contribution to the osmotic pressures is also negligible
compared to the contributions from HIs.

In Fig. 15, bothΠB/(nkBT) andΠE/(γ̇η0) grow with increasing Pe when Pe< 100. The Brownian contribution
ΠB/(nkBT) asymptotes the equilibrium value as Pe→ 0. At higher Pe, the influence of the excluded volume param-
eterδ becomes apparent. For the Brownian osmotic pressure contributionΠB/(nkBT), the SD results atδ = 10−5

continuously grow with Pe up to Pe= 104, the highest value in our study, while withδ = 5 × 10−4, a maximum
in ΠB/(nkBT) around Pe= 103 is apparent. After the maximum,ΠB/(nkBT) decreases slowly with growing Pe. In
this case, the parameterδ not only brings quantitative, but also qualitative differences. On the other hand, the flow
osmotic pressure contributionΠE/(γ̇η0) increases and reaches a plateau at high Pe. Comparing the SDresults with
δ = 5× 10−4 and 10−5, increasingδ reduces the final plateau value ofΠE/(γ̇η0) at a smaller Pe. Apparently, the high
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Figure 15: (Color online) Different contributions to the osmotic pressures of monodisperse and bidisperse hard-sphere suspensions: (a) the Brow-
nian contribution scaled withnkBT, ΠB/(nkBT), and (b) the flow contribution scaled withη0γ̇, ΠH/(γ̇η0), as functions of Pe. The volume fraction
is φ = 0.45 in both cases, and the bidisperse composition isλ = 2 andy2 = 0.5.

Pe osmotic pressure is very sensitive to the excluded volumeparameterδ. In terms of the normal viscosity,i.e., Π/γ̇
with Π = ΠB + ΠE, increasingδ weakens the shear thickening of the normal viscosity. Furthermore, the SD results at
δ = 10−5 agree qualitatively with the results of Yurkovetsky & Morris [53], with slight quantitative difference due to
different osmotic pressure computations. Atδ = 5× 10−4, the Brownian osmotic pressuresΠB from SD and SEASD
almost overlap each other in Fig.15a, andΠE from SEASD is lower than the SD results in Fig.15b. Similarly to
Fig. 14b, the difference is most likely due to the small system sizes in the SD computations. Moreover, the SEASD
ΠB also exhibits larger error bars at high Pe due to the Brownianstress computation, but such errors are of little
consequences on the suspension total osmotic pressures.

For the bidisperse results shown in triangles in Fig.15, the Brownian osmotic pressureΠB is always lower than
its monodisperse counterpart, and the bidisperseΠE is first slightly higher than the monodisperse results at lowPe
and then lower at high Pe. The crossing of the monodisperse and bidisperseΠE demonstrates the complex interplay
between HIs and structures in polydisperse systems.

The SEASD-nf results in Fig.15 agree qualitatively with the SEASD computations. However,for ΠB, there are
quantitative differences at bothλ = 1 andλ = 2, with the SEASD-nf results systematically lower. This difference
is inherently associated with the far-field Brownian force computations in Sec.4.3 and the mean-field Brownian
approximations, and is also encountered in Fig.12. However, the quantitative discrepancies inΠB are still within the
discretization errors of∆τ in Eqs. (75) and (76). On the other hand, forΠE, the SEASD-nf and SEASD results almost
always overlap each other over the entire Pe range for both bidisperse and monodisperse suspensions. SEASD-nf
satisfactorily captures both contributions of the suspension osmotic pressures,ΠB andΠE.

6.3.3. Normal stress differences
The first normal stress differenceN1 and the second normal stress differenceN2, defined as

N1 = 〈Σ〉xx − 〈Σ〉yy andN2 = 〈Σ〉yy− 〈Σ〉zz, (92)

describe the stress anisotropy in sheared suspensions, andare important for understanding phenomena such as the
shear-induced particle migrations [52]. The normal stress differencesN1 andN2 are respectively shown in Fig.16a
and Fig.16b. The monodisperse data are shown in squares and the bidisperse data in triangles, with SEASD results
in filled symbols and SEASD-nf results in open symbols. In addition, in Fig.16, the SD results of Foss & Brady [72]
are presented in circles, and the SD computations atN = 30 with δ = 5 × 10−4 and 10−5 are respectively shown in
crosses and pluses.

In general, the first normal stress differenceN1 in Fig. 16a changes sign from positive to negative with increasing
Pe, and the second normal stressN2 in Fig. 16b remains negative for all Pe studied and exhibits weak Pe dependence.
The data with small systems are strongly scattered, particularly at small Pe. For monodisperse suspensions, the

31



10
-1

10
0

10
1

10
2

10
3

10
4

Pe

-3

-2

-1

0

1

2

3

4

N
1
/(
γ. η

0
)

Foss & Brady (2000)

SD, δ=5×10
-4

SD, δ=10
-5

SDASD, λ=1

SDASD, λ=2

SEASD-nf, λ=1

SEASD-nf, λ=2

10
-1

10
0

10
1

10
2

10
3

10
4

Pe

-3

-2

-1

0

N
2
/(
γ. η

0
)

Foss & Brady (2000)

SD, δ=5×10
-4

SD, δ=10
-5

SDASD, λ=1

SDASD, λ=2

SEASD-nf, λ=1

SEASD-nf, λ=2(a) (b)

Figure 16: (Color online) The normal stress differences: (a) the first normal stress differenceN1 and (b) the second normal stress differenceN2 as
functions of Péclet number Pe. The volume fraction isφ = 0.45 in both cases and the bidisperse composition isλ = 2 andy2 = 0.5.

excluded volume parameterδ has little effect onN1 or N2, as there lacks a qualitative difference for the SD results at
δ = 5× 10−4 and 10−5 in Fig. 16. These SD results in general agree with the data of Foss & Brady [72] when Pe> 1.
At smaller Pe, the data exhibit large errors due to fluctuations in Brownian stresses, making quantitative comparisons
difficult.

In Fig. 16 the SEASD results atλ = 1 follow the SD data with the same qualitative behaviors. Thedifferences
at low Pe is likely associated with the difficulties in measuring the fluctuating Brownian normal stresses. In addition,
the SEASD results show clearer trends at high Pe thanks to larger system sizes: bothN1 andN2 asymptote toward
constant values with increasing Pe. Particle size polydispersity weakens the influences of Pe on the first normal stress
differenceN1. In Fig. 16a, the bidisperseN1 are less sensitive to Pe compared to the monodisperse case, and as
Pe→ ∞, the bidisperseN1 asymptotes towards a negative value with a smaller magnitude. On the other hand, the size
polydispersity has little effect on the second normal stressN2, as the bidisperseN2 almost overlaps the monodisperse
N2, especially at large Pe.

The SEASD-nf and the SEASD results agree satisfactorily when Pe≥ 10 for both the monodisperse and bidisperse
suspensions. As expected, larger differences are found at low Pe, as the mean-field Brownian approximation in
SEASD-nf explicitly removes the anisotropy in the far-fieldmobility tensor. However, the SEASD-nf results still
capture the qualitative aspect ofN1 andN2 even in the low Pe limit.

6.3.4. Species stress distribution
Stress distributions across different species are key to understand the phenomena of particle migration and seg-

regation in polydisperse suspensions [95], and are presently only accessible from simulations. Fig.17 presents the
stress distribution, expressed as the stress fraction taken up by the small particles (species 1), as functions of Pe for
bidisperse suspensions withφ = 0.45,λ = 2, andy2 = 0.5. Fig.17a shows various shear stress fractions. In terms of
the definitions in Eqs. (64)–(67), σ1/σ (circles),σB

1/σ
B (squares) , andσE

1 /σ
E (triangles) in Fig.17a are

σ1/σ = x1〈Σ〉1,xy/〈Σ〉xy, σ
B
1/σ

B = x1〈SB〉1,xy/〈SB〉xy, andσE
1 /σ

E = x1〈SE〉1,xy/〈SE〉xy, (93)

where〈·〉α indicates averaging with respect to speciesα. Fig.17b presents various normal stress fractions. The normal
stress fractionsS1/S (circles),SB

1/S
B (squares), andSE

1 /S
E (triangles) in Fig.17b are similarly defined as

S1/S = x1(I : 〈Σ〉1)/(I : 〈Σ〉), SB
1/S

B = x1(I : 〈SB〉1)/(I : 〈SB〉), andSE
1 /S

E = x1(I : 〈SE〉1)/(I : 〈SE〉). (94)

In both figures, the SEASD results are shown in filled symbols and the SEASD-nf results are shown in open symbols.
Fig.17a illustrates that the total shear stress is roughly equallypartitioned between the two species, and the fraction

σ1/σ is almost constant with respect to Pe. This is largely because the flow shear stress fractionσE
1 /σ

E is insensitive
to Pe. The Brownian shear stress fractionσB

1/σ
B, on the other hand, exhibits weak Pe dependence: the ratioσB

1/σ
B
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Figure 17: (Color online) The fraction of stresses taken up by the small particles (species 1) in a bidisperse suspension: (a) the fraction of the shear
stress and (b) the fraction of the normal stress. The stress fractions are shown as functions of Pe. The composition of thebidisperse hard-sphere
suspension isφ = 0.45,λ = 2, andy2 = 0.5.

increases with Pe from less than 0.45 at Pe= 0.1 to close to 0.6 at Pe= 100. At higher Pe, the Brownian stress fraction
shows large fluctuations, also due to the difficulties associated with the anisotropic structures. However, in this limit,
the Brownian contribution to the total stress is small, and the large fluctuations in Fig.17a is inconsequential. On the
other hand, the total normal stress fractionS1/S in Fig. 17b shows stronger Pe dependency, and it decreases from
0.6 at Pe= 0.1 to 0.45 at Pe= 104. Contrary to shear stress distributions in Fig.17a, the Brownian normal stress
distributionSB

1/S
B is almost constant at 0.6, butSE

1 /S
E increases from 0.3 at Pe= 0.1 and asymptotes towards 0.45

as Pe→ ∞. Since the Brownian stresslet dominates at low Pe and the flowstresslet dominates at high Pe, the normal
stress distributions in Fig.17b are distinctively affected by both the flow and the Brownian contributions. Fig.17
demonstrates that both the shear and the normal stresses in bidisperse suspensions are distributed based on the species
volume and the distribution weakly depends on Pe. This is a useful insight for modelling polydisperse systems.

The stress distributions from SEASD-nf accurately capturethe SEASD results except the Brownian shear stress
distributionσB

1/σ
B at high Pe in Fig.17a, where the SEASD-nf results is slightly lower. This difference, however, is

expected since the mean-field Brownian approximation ignores the structural anisotropy in the suspension. Moreover,
the discrepancies are only evident at Péclet numbers wherethe Brownian stress does not affect the overall suspension
rheology. From this perspective, the overall quality of theSEASD-nf approximation is deemed satisfactory.

6.3.5. Long-time diffusion
An important characterization of the overall suspension dynamics is the translational long-time self-diffusivities.

The long-time limit refers to a time scalet ≫ τD, where, recall that,τD = 6πη0a3
p/kBT is the single particle diffusive

time scale. In this limit, the particle movement is diffusive due to extensive interactions with their neighbors. The
corresponding diffusivities are obtained from the particle mean-square displacement. In the velocity gradient and the
vorticity directions, these self-diffusivities are respectively defined as

dt,yy
∞,α = lim

t→∞
1
2d〈(∆y)2〉α/dt anddt,zz

∞,α = lim
t→∞

1
2d〈(∆z)2〉α/dt, (95)

where∆y and∆zare the particle trajectory fluctuations iny- andz-directions. Fig.18a and18b respectively present the
long-time diffusivitiesdt,yy

∞,α anddt,zz
∞,α as functions of Péclet number. The monodisperse results are shown in squares.

For bidisperse suspensions, the small and the large particle long-time self-diffusivities are presented in triangles and
circles, respectively. For comparison, Fig.18 also shows the results from Foss & Brady [72] in crosses. Moreover,
the SEASD and the SEASD-nf results are shown in filled and opensymbols, respectively.

For monodisperse suspensions in Fig.18, bothdt,yy
∞ anddt,zz

∞ grow with Pe due to the imposed shear flow, with
the velocity direction diffusivity dt,yy

∞ slightly higher. At low Pe,dt,yy
∞ anddt,zz

∞ grow weakly with Pe, and at large Pe,
both diffusivities are proportional to Pe. The SEASD results is consistent with the SD results of Foss & Brady [72] at
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Figure 18: (Color online) The species long-time self-diffusivities: (a) the velocity gradient direction diffusivity dt,yy
∞,α and (b) the vorticity direction

diffusivity dt,zz
∞,α of monodisperse and bidisperse hard-sphere suspensions asfunctions of Pe. The volume fraction isφ = 0.45 for both cases, and

the bidisperse composition isλ = 2 andy2 = 0.5.

intermediate Pe. The differences at large and small Pe are most likely due to the systemsize, as in this workN = 200
while in Foss & Brady [72] N = 27. For bidisperse suspensions, the long-time self-diffusivitiesdt,yy

∞,α anddt,zz
∞,α for

both species exhibit similar Pe dependencies as the monodisperse case. However, introducing a second species to the
suspension apparently enhances the long-time self-diffusivities of both species, particularly at high Pe. This mutual
diffusivity enhancement is in contrast to the short-time diffusivities in Fig.8a, where atφ = 0.45, the small particle
diffusivity enhancement is always accompanied by the large particle diffusivity supression. Moreover, the diffusivity
enhancement iny-direction is stronger than those inz-direction.

In Fig. 18 the diffusivities from SEASD-nf in general agree with the SEASD results for both monodisperse and
bidisperse suspensions. At low Pe, the SEASD-nf diffusivity is lower, particularly for the large particles. Theagree-
ment between SEASD and SEASD-nf improves with increasing Pedue to the reduced influences of Brownian motion.

6.3.6. Suspension structures
Finally, we examine the structures of sheared bidisperse suspensions via the projections of the partial pair-

distribution functionsgαβ(r), which are defined as the conditional probability of findinganother particle in species
β given a particle of speciesα, i.e.,

gαβ(r) =
1

nαnβ

〈∑′

i∈α,
j∈β

1
V
δ(r − ri + r j)

〉
. (96)

They are related to the pair-distribution functiong(r) through

g(r) =
∑

α,β

xαxβgαβ(r). (97)

Fig. 19, 20, and21 present projections ofg(r) andgαβ(r) on the velocity-velocity gradient (xy-) plane, the velocity-
vorticity (xz-) plane, and the velocity gradient-vorticity (yz-) plane, respectively, at selected Péclet numbers. These
figures are based on particle trajectories from SEASD simulation, and are indistinguishable from the SEASD-nf
results.

Fig. 19 clearly displays the structural anisotropy caused by the shear flow in thexy-plane, characterized by the
distortion of the otherwise isotropic pair-distribution rings. With increasing Pe, the overall pair-distribution function
g(r) shows an accumulation of neighboring particles in the compressional quadrant. This is indicated by the brighten-
ing and thinning of the rings at 2a1, a1+ a2, and 2a2, corresponding to the particle pairs of two small particles, a large
and a small particle, and two large particles, respectively. Meanwhile, the particle pairs are depleted in the extensional
quadrant.
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Figure 19: (Color online) The velocity-velocity gradient (xy-) plane projection of the pair-distribution functiong(r) and the partial pair-distribution
functionsgαβ(r) at various Pe for bidisperse suspensions withφ = 0.45,λ = 2, andy2 = 0.5.
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Figure 20: (Color online) The velocity-vorticity (xz-) plane projection of the pair-distribution functiong(r) and the partial pair-distribution functions
gαβ(r) at various Pe for bidisperse suspensions withφ = 0.45,λ = 2, andy2 = 0.5.
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Figure 21: (Color online) The velocity gradient-vorticity(yz-) plane projection of the pair-distribution functiong(r) and the partial pair-distribution
functionsgαβ(r) at various Pe for bidisperse suspensions withφ = 0.45,λ = 2, andy2 = 0.5.

Specific changes in different types of particle pairs are revealed by examining the corresponding partial pair-
distribution functiongαβ(r) in Fig. 19. The distribution of the small-small particle pairs is presented ing11(r). Simi-
larly to g(r), g11(r) is increasingly distorted and compressed in the compressional quadrant with increasing Pe, forming
a boundary layer. At higher Pe, the pair structure remain approximately unchanged. In the extensional quadrant, the
pair breakup point shifts from the extensional axis towardsthe velocity (x-) direction due to the lubrication interac-
tions, with a clear tail of high probability outlining the trajectory of small-small pair disengagement. The distribution
of the small-large particle pairs ing12(r) shows a similar structural distortion in the compressional quadrant with
increasing Pe. Moreover, in the extensional quadrant, the trajectory of particle disengagement is more diffusive com-
pared tog11(r) at the same Pe. This suggests that particle movement in bidisperse suspensions are facilitated by the
breakup of small-large particle pairs, and partially explains the mutual enhancement of long-time self-diffusivity in
Fig. 18. For the distribution of large-large particle pairs,g22(r) also exhibits anisotropy with increasing Pe in Fig.19.
However, due to the limited particle number, information beyond the first coordinate shell is difficult to analyze.

Fig. 20 displays the total and partial pair-distribution functionprojections in thexz-plane. Unlike thexy-plane
projections in Fig.19 which exhibits strong anisotropy, the suspension structures here are less sensitive to Pe. With
increasing Pe, the particles are compressed towards each other, which is evidenced by the thinning and brightening of
the first coordinate shells. More interestingly, at higher Pe≥ 100,g12(r) shows a belt of particle enrichment along the
flow direction, whileg11(r) andg22(r) exhibit a corresponding particle depletion. This indicates that the small-large
pairs are preferred in thexz-plane, and that the shear flow promotes species mixing in theflow direction.

Fig. 21shows the projection ofg(r) andgαβ(r) in theyz-plane. With increasing Pe, the shear flow also compresses
the particle pairs in this plane without apparent anisotropy. Note that even at Pe= 104, the suspension does not exhibit
string ordering [96] due to the HIs. The lack of structural formation is also confirmed by the continuous increase of
the long-time self-diffusivitiesdt,yy

∞,α anddt,yy
∞,α with Pe in Fig.18.

7. Conclusions

In this work we presented the Spectral Ewald Accelerated Stokesian Dynamics (SEASD) for dynamic simulations
of polydisperse colloidal suspensions. Using the framework of Stokesian Dynamics (SD), SEASD can accurately and
rapidly compute HIs in dense polydisperse suspensions. Other features of SEASD include (i) direct inclusion of the
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solvent compressibility and pressure evaluations; (ii ) the use of the Spectral Ewald (SE) method for accurate mobility
computation with flexible error control; (iii ) a far-field preconditioner to accelerate the convergence of the nested iter-
ative scheme; (iv) GPGPU accelerated mobility evaluation for almost an orderof magnitude speed improvement; and
(v) the incorporation of SEASD-nf, an extension of the mean-field Brownian approximation of Banchio & Brady [39]
to polydisperse suspensions.

We extensively discussed the accuracy of mobility computation using the SE method, established the baseline for
parameter selection, and demonstrated the adequate accuracy in the GPU single precision (SP) mobility computa-
tion. We found that compared to the full SEASD computations,SEASD-nf can achieve significant speedup without
substantially sacrificing accuracy. Indeed, for all the dynamic simulations in this work, the SEASD and SEASD-nf
results agree satisfactorily. In addition, we verified theO(N logN) computational scaling of SEASD and SEASD-nf
in dynamic simulations.

We rigorously validated SEASD and SEASD-nf for monodisperse and bidisperse colloidal suspensions via: (i)
the short-time transport properties, (ii ) the equilibrium osmotic pressure and viscoelastic moduli, and (iii ) the steady
Brownian shear rheology atφ = 0.45. For (i), the SEASD diffusivities and shear viscosity agree with the conventional
SD calculations. The SEASD sedimentation velocity differ qualitatively from the SD results due to the absence of a
mean-field quadrupole term in the mobility computation. Forthe bulk viscosity computation, different procedures to
eliminate the spurious HIs lead to slight differences in the SEASD and the SD results. In (ii ), SEASD and SEASD-nf
reproduced the equilibrium suspension osmotic pressure for monodisperse and bidisperse suspensions within the error
tolerance, with the SEASD data higher. For the steady shear rheology in (iii ), the agreement between SEASD-nf and
SEASD is satisfactory in the suspension mechanics, dynamics, and structures. Moreover, we found that the particle
size polydispersity reduces the suspension viscosity and osmotic pressure, and enhances the long-time translational
self-diffusivities of both species. Our rheological simulations also improve our understanding on the structure, dy-
namics, and rheology of polydisperse suspensions.

The SEASD and SEASD-nf developed in this work are important tools for studying dynamics of dense, polydis-
perse colloidal suspensions, and have significantly extended the parameter space accessible to computational studies.
For example, they can provide otherwise inaccessible details on a wide range of experimental observations including
the yielding phenomena in glass rheology and the continuousand discontinuous shear-thickening.

Finally, through SEASD and SEASD-nf we demonstrated the generality and versatility of the SD framework,
particularly the splitting of the far- and near-field interactions: with a suitable far-field computation, the lubrication
interactions can be added pairwise for free. We believe thatmany far-field HI computational methods can and should
be used with the SD framework to expand their accessible parameter range, particularly for dense systems.
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