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Abstract

In this work we develop the Spectral Ewald Accelerated StizkeDynamics (SEASD), a novel computational method
for dynamic simulations of polydisperse colloidal suspens with full hydrodynamic interactions. SEASD is based
on the framework of Stokesian Dynamics (SD) with extenstodampressible solvents, and uses the Spectral Ewald
(SE) method [Lindbo & Tornbergl. Comput. Phys229(2010) 8994] for the wave-space mobility computation. To
meet the performance requirement of dynamic simulatioresuge Graphic Processing Units (GPU) to evaluate the
suspension mobility, and achieve an order of magnitudedsgeeompared to a CPU implementation. For further
speedup, we develop a novel far-field block-diagonal prditmmer to reduce the far-field evaluations in the itera-
tive solver, and SEASD-nf, a polydisperse extension of teamdfield Brownian approximation of Banchio & Brady
[J. Chem. Phys118(2003) 10323]. We extensively discuss implementation aardipeter selection strategies in
SEASD, and demonstrate the spectral accuracy in the mobitaluation and the overad(N log N) computation
scaling. We present three computational examples to fuvidledate SEASD and SEASD-nf in monodisperse and
bidisperse suspensions: the short-time transport piepethe equilibrium osmotic pressure and viscoelastic-mod
uli, and the steady shear Brownian rheology. Our validatesults show that the agreement between SEASD and
SEASD-nf is satisfactory over a wide range of parameterd,adso provide significant insight into the dynamics of
polydisperse colloidal suspensions.

Keywords: Stokes flow, Stokesian Dynamics, Brownian Dynamics, GPUpmgation, Ewald summation, spectral
accuracy, colloidal suspensions, polydispersity

1. Introduction

Colloidal suspensions are dispersions of small particiesviscous solvent, and are found in almost every aspect
of our life, ranging from dairy milk to printer ink. They haweo distinguishing featuresi)(Brownian motion of
the particles due to thermal fluctuations, afidl the long-range, non-pairwise-additive hydrodynamieiiattions
(Hls) mediated by the solvent. As a result of these featutispersions exhibit many surprising behaviors such as
non-Newtonian rheology, glass transitions, phase transitetc, and have attracted extensive scientific and engineer-
ing interests I]. Using monodisperse colloidal suspensions as a modetrsystignificant understanding has been
achieved through theoretical, simulation, and experiadesttidies.

However, naturally occurring colloidal suspensions atd@®a monodisperse, and particle sizéfeliences are
often unavoidable. In addition, particle size disparitiyaaduces phenomena otherwise not observed in monodisperse
suspensions. For example, size polydispersity reducgess®n viscosity2—4], softens and even melts colloidal
glassesy], and promotes particle segregation in pressure driversfléjv Apparently, these behaviors can only be
understood by studying dynamics of polydisperse collosdapensions.

In this work we develop a computational method based on #madwork of Stokesian Dynamicg|[(SD) for fast
and realistic dynamic simulations of dense, polydispeodleidal suspensions, with a focus on suspension rheology.
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Presently, theoretical and computational studies on pghgise colloidal suspensions, even for the simplest case
of neutrally buoyant hard-sphere particles, are scarcg haavily focus on the dilute or the short-time limi&-[

12]: the former restricts Hls to the two- or three-body leveidahe latter ignores suspension dynamic evolution,
particularly the influence of Brownian motion. Beyond théseting cases, we are only aware of the work of Ando
& Skolnick [13], who studied particle diiusion in dense polydisperse colloidal suspensions usingezgional SD in

the context of biological molecular crowding. Their implemation limits HIs to the force-torque level, and therefor

is unsuitable for rheological investigations.

A difficulty in dynamic simulations of dense colloidal suspensiisrthe singular HIs due to the lubrication inter-
actions between close particle pairs. To directly resoll& B computational method must capture the flow details
in the small gap between particles. For multipole expansased methods| 14, 15], a large number of expansion
terms are necessary to achieve convergence, and for mdihedd on surface or spatial discretization, such as the
boundary element method®, 17] or direct numerical simulations B-21], very fine meshing is needed in the gap.
Directly resolving lubrication interactions drasticaihcreases the computational cost and limits many studiksito
volume fractions. For example, the force coupling methadgbf Abbaset al.[22] on the dynamics of non-Brownian
bidisperse suspensions is limited to particle volume foastbelow 20%.

A solution to the above dliculty is the SD frameworkd], which exploits the local and pairwise additive nature of
lubrication interactions. In SD, the long-range, non-p&e-additive Hls are computed from the mobility perspexti
using low-order multipole expansions, and for particleslase contact, lubrication corrections are added pairteise
the corresponding resistance formalism. The correctimmbased on the solutions of two-body problems with the far-
field contributions removed. In this way, SD avoids direcélgolving the singular lubrication interactions. The idéa
lubrication correction in SD is general enough for incogdimn to other computational methods. For example, similar
lubrication corrections has been developed for hydrodyoamltipole methods14, 15, 23, 24], the force coupling
method R9], the lattice Boltzmann metho@§], and the fictitious domain metho@T]. Moreover, with an appropriate
fluid solver, the lubrication corrections can be improveyidrel the pairwise levelg]. We feel that, by incorporating
the lubrication corrections, many recent computationainggques can significantly extend their accessible pammet
range without an increased computational burden. Thistj®ihemonstrated in the present work, which essentially
combines the lubrication corrections and the Spectral &{2E) method of Lindbo & Tornber@p, 30] for dynamic
simulations of dense polydisperse suspensions.

The Spectral Ewald (SE) method is a new particle mesh teakrfigr computing long-range electrostatR0]
or hydrodynamic 29] interactions, and has recently been incorporated intdbthendary element method for soft
particles B1]. Particle mesh techniques including the Particle MeshlBWRME) method 2] and the Smooth Par-
ticle Mesh Ewald (SPME) metho®@8] have been extensively used for calculating His vé{N log N) computation
scaling. Note that, although algorithms based on the fadtipnle method B4] can achieve a better computation
scaling—down ta(N), they often have significant computation overheads, agdire large system sizes to justify
the complexity B5]. Therefore, for many dynamic simulations, the particlesmé&chniques remain the practical
choice. Notable examples are Accelerated Stokesian Dysa(AED) [36] which uses the PME method for the far-
field mobility evaluation, and the work of Saintillaat al.[37], where the SPME method is employed to study fiber
sedimentation. Compared to other particle mesh technjtiue SE method is spectrally accurate, and can separate er-
rors from mesh interpolation and the wave-space truncaBoth features are essential for capturing the complicated
Hls in polydisperse suspensions.

Another challenge in dynamic simulations of colloidal seisgions is Brownian motion, which is configuration
dependent due to the fluctuation-dissipation relation. WBeler-Maruyama time integration is used, the determin-
istic particle drift due to the Brownian motion must also helided B8]. As a result, computing Brownian related
guantities requires the gradient and the square root of tiglity tensor. Fortunately, these quantities can be evalu
ated in a matrix-free manner under the framework of ASD, mgkliynamic studies on hundreds of colloidal particles
possible B9, 40]. Moreover, the mean-field Brownian approximation, whistireates the mobility tensor based on
the near-field Hls, is able to further speed up the computat@d, 41]. In this work, these developments are fully
incorporated for the dynamic simulation of Brownian pobjkrse suspensions. Note thatféedent approach to treat
the Brownian motion is based on fluctuating hydrodynamd& [where the thermal fluctuations are directly incor-
porated in the governing fluid equations. It has been apdi¢ide lattice Boltzmann methodJ], the force coupling
method §4], and the immersed boundary methdd]|

The emergence of the General Purpose Graphic Processin¢GREPU) programming often brings significant,
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sometimes orders of magnitude, speed improvements for m&siing algorithms. Recently, Kopp & Hoflingi§]
implemented the conventional SD for infinite solvent usin@GPU with direct HI summation. Despite tG¥N?)
scaling, they achieved impressive speedup over the CPlemmgaitation. However, to study the dynamics of homo-
geneous suspensions, further extension to periodic sgsiegmecessary. On the other hand, GPU acceleration of the
SPME method47, 48] in molecular dynamics provides access to millisecondesggnamics on personal computers.
These acceleration techniques are applicable to partiehtiechniques in general, and inspired the present work. In
particular, we used GPGPU programming to compute the Hls tiie SE method in homogeneous suspensions, and
realized almost an order of magnitude speedup in dynamiglatians.

Furthermore, our computation method extends SD to comiptessuspensions, allowing dynamic simulations
of constant pressure rheologg9 without introducing geometric confinement. This is poksibecause the flow
disturbances due to rigid particles in a compressible slaee incompressible and satisfy the Stokes equa&ii [
Another benefit of such extension is that the suspension astress, which is essential for particle migration in
sheared suspensiorslf-53], can be directly evaluated.

The remainder of the paper is arranged as follows: 3establishes the basic formalism for Hls in compressible
Stokes flow. In Sec3, various aspects of mobility computations with the SE métae presented. Here, we also
discuss dterent approaches to incorporate particle size polydiggeasd the GPGPU implementation. In Sé¢.
we present the Spectral Ewald Accelerated Stokesian DyisafBEASD) and its mean-field Brownian approxima-
tion, SEASD-nf, for dynamic simulations of Brownian polggerse suspensions. In SBave carefully discuss the
accuracy and parameter selections for the SE method, armbthputation scaling of various SEASD implementa-
tions. Sec6 presents a series of validation calculations for monodgspand bidisperse suspensions with SEASD and
SEASD-nf: Sec6.1addresses the short-time transport properties,&2evaluates the equilibrium osmotic pressure
and viscoelastic moduli, and Sex:3 presents various aspects of the steady shear rheology whizno suspensions.
The results also reveal the role of particle sizes in the dyosiof bidisperse suspensions. Finally, we conclude this
work with a few comments in Seg.

2. Hydrodynamic interactions in (compressible) Stokes flow

2.1. The mobility and resistance formalism

We first consider a suspensionfspherical rigid particles, each with radigisand positiorr;, in anincompress-
ible solvent of viscosity;g and densityg, occupying a volum. For the special case of bidisperse suspensions with
particle sizes; anday, the suspension composition is fully characterized byetldienensionless parameters,

A=a1/ap, ¢ = ¢1+ ¢2, andy, = ¢/, 1)

whereA is the size ratiog is the total volume fraction, ang is the volume ratio of species 2. The species volume
fractionis¢, = %naﬁnm a € {1, 2}, and the species number densitpjs The total number density satisfies n;+ny,
and the species number fractiorxis= n, /n. Without loss of generality, we tak® > a;.

If the particles are diiciently small, the particle Reynolds numberp,Re= poa,U./n0 < 1, whereU, is the
species characteristic velocity. In this limit, the vetgdield v(r) and the pressure fielo(r) of the solvent satisfy the
Stokes equation,

Vp=nV?, V-v=0, (2)

supplemented by no-slip boundary conditions on partictéases. Due to the linearity of Eg2), there is a linear
relation between the velocity disturbance on the surfaca pdrticlei, u/, and the surface force density of another
particlej, f;,

u/(r) = —fdr’ZMij(r, ' X) - (), 3)

j
where M;j(r, r’; X) is a mobility operator depending on positionsind r’ and the suspension configurati®n=
{r1,r2,...}. The surface force density is localized on the particleagfi.e., fj(r) = o(r) - njo(lIrll — a;), where

o is the stress tenson; is the surface normal of particle ands(x) is the Dirac delta function. The stress tensor
o = —pl + no[VV + (VV)'], with 1 indicating transposition ankiis the idem tensor. The velocity disturbangér) =
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Ui + Q; x (r — r;) — v°(r), wherev>®(r) is the ambient flow satisfyin§ - v° = 0, andU; andQ; are respectively
the linear and angular velocities of particleBy stacking the force density vectofs= (fy, f2,...)" and the velocity
disturbance vectons' = (u;, us, ...)" the grand mobility operatav! is constructed from elememi4; in Eq. 3), such

that

u(r) = - fdr'M(r, r'; X) - f(r), (4)

for theN particles in the suspension. Eg8) &nd @) are known as the mobility formalism, and the inverse retats
the resistance formalism,

f(r) = —fdr’R(r, r’; X) - u'(r’), (5)

whereR(r, t’; X) is the grand resistance operator.
The integral representations in Egé) &nd 6) can be equivalently expressed as multipole expansiofépand
u’(r), f andu’ respectively, around the particle centérs,

7:H 7/1/
f(n —f=|S"| andu'(r) > v = |~E”|, 6)

where7 " is the generalized hydrodynamic forc®} is the hydrodynamic stressle{’ is the generalized velocity
disturbance, an&® is the rate of strain tensor for the ambient flow. Note th&t= (F", TH)", whereFH andTH
are respectively the particle hydrodynamic force and terigu all particles, and{’ = (U - U*, Q — Q)T where

U - U* andQ — Q% are respectively the linear and angular velocity distudean The hydrodynamic force, torque,
and stresslet for particleare defined as integrals of the localized surface force tefsi

FH = —fdr fi(r), @)
TH = —fdr(r — 1) x fi(r), (8)
st =—fdr%[(f—ri)fi+fi(r—fi)]- (9)

In Eq. (6) the ambient velocities are evaluated at particle centersU>™ = v*(r;), Q* = %V X Ve[, andE® =

%[Vv"" + (VYv®)™],,. The expansions in Eqs#)(and 6) lead to the following infinite dimension linear relation,
f=-9(X) - v andu’ = -R(X) - f (20)

wherefn(X) and9i(X) are the multipole grand mobility and resistance tensoopefatorsVi(r, r’; X) andR(r, r’; X),
respectively. Evidenthy))t = 9371, and from the Lorentz reciprocal theoreB#], both are positive definite.

The infinite dimension vectofsandu’ can be reduced to finite dimensions by projection. To thessiee level
of f and the strain rate level af, we introduce projection matricé® andQ, such that? - § = (", s")" and
Q- v = (U,-E™)". Moreover,P-P" = Q-Q" = I, whereT is an identity matrix. The following linear relation
holds:

7_'

ﬂ/
S

_ -1
_Ee , andR = M, (11)

=_M.[

where M = QP is the (exact) grand mobility tensor ai= PRQ" is the (exact) grand resistance tensor. For
convenience, the grand resistance tensor is partitioned as

Rru  Rgee

R =
Rsu  Rse

: (12)

where, for exampleR#¢, describes the coupling between the generalized force andeheralized velocity. The
linear relation in Eqg.11) can also be deduced from the linearity of E8). {ithout appealing to the multipole ex-
pansion, but here we establish a connection with other waédsicularly the multipole methods of Cichocki and
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coworkers 15, 55]. Note that for rigid spherical particles, external flows@mly afect the first two moments gf
andu’ due to symmetry and the no-slip boundary condition.

Elements of)t andR can be computed from, for example, the induced force mudifss, 57], eigenfunction
expansions15, 24, 58], and multipole expansiong]. To the stresslet levefdt can be conveniently evaluated by
combining the Faxén formulae and the multipole expansiéos a rigid particld in an incompressible solvent, the
Faxén formulae arer],

) FP 1,22
Ui - U =~ +(1+ EaiV)\/|ri (13)
TH
Q-Q°=-——+1vxVv| (14)
8mnoad "
=3 st 1 ,2g2) 1 f
—E® = ——— +(1+ £a?v?) [V + (WW)T]] , (15)
%?ﬂﬂoa$ ( 10 )2 h

where the overline indicates the traceless part of the syinoriensor, and/(r) is the velocity field in the absence of
particlei. With the fundamental solution of Stokes equatit{n) and the force density, the velocity fieldv'(r) can
be computed aHH],

v(r) = _t fdr’J(r —r") - f(r'). (16)
8o
Expanding the force density around particle centers, we hav
V(r) = LZ'(H 18v?) U Fl 4+ R-TH - (1+ &ad) K st (17)
87170 j 6 j j 0% j ’

where the prime on the summation excludes the tasg and the functiond, R, andK are evaluated at-r;. In the
Cartesian tensor fornR = Rys = 2e5,5(Vy Jos — Voday) andK = Kogy = [V, Jag + Vpdoy ], With €, the Levi-Civita
symbol. With Eqgs. 13)—(15) and (L7), the grand mobility tensapi for incompressible solvents can be constructed in
a pairwise fashion.

2.2. The fundamental solutions

The formalism in Sec2.1relies onJ(r), the fundamental solution of Stokes equationff&ient boundary condi-
tions such as periodicitybP, 60], confinement24, 61], or a combination of bothg2], can be incorporated ta(r).
For an infinite expanse of fluid, we have the well-known Oseesdr,

J(r) = %(/ + PP), (18)

wherer = ||r|| andr = r/r.

To study dynamics of homogeneous suspensions, periodiedaoy conditions are necessary to assess the Hls.
In this case, the proper fundamental solutitfn) describes the fluid velocity disturbance due to an arrayeoibglic
forcesF 3.,6(r — Rp), whereRp = >3 1 Padq is the location of the periodic forcing. Herp,= (pi, p2, p3) € Z°,
6(r) is the 3D Dirac delta function, arad, a,, andag are the Bravais lattice vectors describing the spatiabpéity.
From Fourier expansion of Stokes equation [E)], (we have for the periodid(r):

J(r) = —%(/v2 -vV) k—14 explik - 1), (19)
k#0

where: = V=1, the unit cell volumeé/ = a; - (a2 x a3), the wave vectok = 22:1 jabg is defined by the reciprocal
vectorsby, by, andbs, j = (j1. j2. j3) € Z%, andk?® = k - k. Writing the lattice and the reciprocal vectors as column
vectors and defining matrices = [ajayas] and B = [bib,bs], we haveB™ = 27A~! and expik - Rp) = 1. By
requiringk # 0 in Eq. (L9), the external forces are balanced by the pressure grd@gnt necessary condition for
convergent HIs§3).



A difficulty associated with His is the long range naturd @, i.e., Eq. (18) decays as™* in the real space and
Eqg. (19) ask 2 in the wave space. For periodic systems, however, the dondlily converging sum in Eq16) can
be split into two exponentially fast converging series,

J(r) = Jr(r) + Jw(r), (20)

whereJg(r) is the real-space surdy(r) is the wave-space sum. Although the splitting in Exf)) (s not unique 29,
a particularly éicient scheme by Hasimot&9] utilizes the integral

1 00
L= fo BexprkZB)ds, (k % 0), (21)
and the Poisson summation formula. The result is
1 242
Jr(r) = ) (IV2-VV) [rErfc(rg) - —e"¢ } (22)
2, e
8 K\1 1.
Jw(r) = — ) (IV>-VV) (—1— —)—e‘4 Ergrikr) (23)
w Vv ;) 462 k4

where¢ is the splitting parameter and Erfg(is the complementary error function. The real-space $gnly covers
the neighboringperiodic cells. The parametéris consistent with the convention of Beenakl€[and satisfies
4raé? = 1, wherex is the splitting parameter introduced by Hasimdi6][

2.3. Extension to compressible fluid

The formalism in Se.1is limited to an incompressible fluide., the imposed flow must satis§-v>* = 0. This
requirement is relaxed by imposingiaiformrate of expansion everywhere in the fluid, such ¥awv> = E®, and
the fluid is assumed compressible with a bulk viscogjtyThe rigid particles, unable to expand with the compressibl
fluid, generate a velocity disturbance that satisfies thenmressible Stokes equatiobd]. From the linearity of
Stokes flow, this velocity disturbance can be superimpostdather flows in the suspension, extending the existing
formalism to compressible fluids.

For a rigid particle of radiug; located atr; = 0, the velocity disturbance; due to a compressible flow with an
expansion rat&® is

Ve(r) = —%a?E""rLs. (24)

This isotropic flow disturbance generates an isotropicsstmntribution. Introducing the pressure moment as the
trace of the stresslet in EcR)( i.e.,

SH=- fdr(r - 1) fi(r), (25)
we haveSH = —1—§7moa13E°° from Eq. @4). Therefore, the velocity disturbance due to a pressure env8{' at the
origin is

1
Vs(r) = mr—gsﬁ = Qs (26)
Adding the compressible velocity disturbanegg) from other particles to the incompressible velocity disance
V'(r) in Eq. (L7), the general velocity disturbance in a compressible suspe is

V(N =v()+ > Qi -rst. (27)
j

When applying the Faxén formulae [Eq$3/—(15)] in compressible suspensions, the velocity disturbaficastead
of v/, is used.
In addition to Egs.13)—(15), the Faxén relation for the pressure moment in a complesiid is [64, 65]

SiH = —l—??ﬂrloaisz + 47ra1-3p’(ri), (28)
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wherep’ is the pressure disturbance without the particle; atThe pressure disturbance can be obtained from the
pressure fundamental solution of Stokes equation,
r

P(T) = 5. 29)

such that the pressure distribution due to a force density is

p(r) = —% fdr’ P(r—r")- f(r). (30)

For the pressure disturbanpein Eq. (28), expanding the surface force densities leads to

/ 1 ’
p(r):EZ Pr—r)-F' = VP S|y +---. (31)
i

Eq. 28) is different from the Faxén formulae in Eq4.3[—(15) as it presents the pressure moment or trace of the
stresslet on the left hand side. This subtl@atence highlights a distinct feature of the compressible disturbances:

in a compressible fluid, the pressure moment can causelpariwvement satisfying the incompressible Stokes equa-
tion, but the incompressible force moments cannot genematgpressible disturbances. As a result, the interaction

part of the pressure moment can only be evaluated Eftef ", andS!4 are known. Otherwise, the resulting hydro-
dynamic interactions contain spurious contributions dué&é unphysical coupling between the incompressible force
moments and the compressible flow disturbances.

To extend the above results fay and S to periodic boundary conditions, we note that the divergesf® in
Eq. (26) satisfies

V-Q= ié(r), (32)
4no

sinceV2r—t = —4x6(r). This means that, for uniform expansion in compressib&pseusions, the particles act as
fluid sources, each with a strength proportional to its pressoment. In a periodic system, the velocity disturbance
corresponds to an array of sources are obtained by repléuengelta function in Eq.32) with 3 ,6(r — Rp). From
Fourier transform, the solution is

1 1
=~y Voe'k, 33
QAN =7 kZO € (33)
The above wave-space sum can be split to two exponentiailyecging seriesj0, 59|
1 —iker \ 1 1 — 1122 iker
Z Ee = Z ?Erfc(rg) + Z Ee N (34)
k#0 p0 k#0

Similar toQ(r), the pressure fundamental solutiBr) in Eqg. 29) can also be extended to periodic systems.

3. The mobility computation

The mobility problem seeks the action of the grand mobikitysort on the force moments such &' andSs".
It can be constructed in a pairwise fashion using the forsnain Sec2 for compressible suspensions. Naively, this is
anO(N?) operation for arN-particle system since the long-range HIs necessitatdamasions of all particle pairs.
However, with the Ewald summation that splits the fundamlesglutionsi(r), Q(r), andP(r) into exponentially fast
converging wave-space and real-space series, the partédé techniques can improve the computation scaling to
O(NlogN). In the following, our implementation of the mobility comnation is discussed.



3.1. Wave-space computation: the Spectral Ewald (SE) rdetho

The wave-space computation concerns the part of grand itydbihsor associated withy(r) of Eq. 23) and the
wave-space sum of Eg34) in P(r) andQ(r). Using the Fast Fourier Transform (FFT) algorithm, the paiation cost
can be reduced tO(N logN). To illustrate this, let us consider the wave-space leaii'sturbanchiW on particlei
at the Rotne-Prager level, obtained by combining Ef3), (17), and @3), i.e,,

i r]OVZ —zkr. k2 gl(k) Z 1 2k2 eterFH (35)
k#0
and the wave-space kernel
91(K) = (1+ 3K% %) ke o 74" (IK? — KK). (36)

Different from Eq. 17), the summation over particlgin Eq. (35) is unrestricted and includes the casei 6f j.
Therefore, the self interaction term fo& j, which is

€0~ 108 + Tafe’)
e

(37)

should be removed later. EB5) exposes the basic idea behind many particle mesh techmigcleding the PME
method and the SPME method. From an inverse Fourier transtbe real-space force distribution corresponding to
the summation oveyin Eq. 35) is

Z(1+ La2v?)Fhs(r - r)). (38)
j

The force distribution in Eq.38) is assigned to a regular spatial grid by approximating teléadunctions by La-
grangian polynomials in the PME metho@g] or Cardinal B-splines in the SPME metho83]. The interpolated
forces are then transformed to the wave space by FFT and treespece computation in EQY) is performed. The
wave-space results is then brought back to the real spacwérse FFTs. Subsequently, the velocity on each particle,
Uin is interpolated back from the grid, preferably using theeanterpolation scheme for the force assignmé.[
Here, the action of the mobility tensor on the fofe@, rather than the tensor itself, is computed. The kegnék) in

Eq. (36) is efectively a low-pass filter that cutdfdhe spatial signals at high Computationally, foM? grid points

the FFT scales a8(M3log M3). To ensure reasonable accurady, « N, and the wave-space computation scales as
O(NlogN).

There are two sources of errdifecting the accuracy of particle mesh techniques. The fietssciated with the
truncation of the wave-space sukigummation) in Eq.35). This is only dfected by the number of grid poinkd
in the simulation box. The second error is the interpolagmor, and arises from polynomial approximation of the
s-functions in Eq. 88). For a simulation box of sizk, this error scales a4 (M)P, wherep is the polynomial order
of the approximation scheme. Since both errors are assdcwith M, we cannot separate the two error sources.
Consequently, to maintain a satisfactory overall accyradgrgeM is often used in the wave-space computations to
keep the interpolation error small, resulting in unnecssB&T computations.

In addition, for polydisperse suspensionsfetient particle sizes introduce additional complicatiansaditional
particle mesh techniques. If the Laplacian in E3g)(is computed in the real space in the SPME method, the inter-
polation error increases td (M)P-2, which further increases thd requirement. For the PME method, real-space
differentiation is unsuitable due to the discontinuity of Lagjian polynomials, and all the computations have to be
carried out in the wave space. This significantly increaBegdtal number of FFTs. In addition,ftérent particle
sizes increase the complexity in the algorithm implemémtafT herefore, a simple method with flexible error control
is crucial for accurate andiicient wave-space computation in polydisperse systems.

To address these concerns, we use a new particle mesh teehtlig Spectral Ewald (SE) methdbE31] for
the wave-space mobility computation. The SE method deesuthlek-space truncation and interpolation errors,
and is accurate,figcient, and flexible for polydisperse systems. To show thisuse Eq.¥5) again as an example
and consider the general case of non-orthogonal latticeorsec We first introduce the fractional coordindte=
(t1,t2,t3)" € [0,1)%. For each point in the simulation boxy = tja; + t,a, + tzag = A - t. Accordingly, defining



q = (01, 02, gz) " such thak = qibs + qub, + gzbs = B - g, expk - r) = exp(2uq-t), andk? = " - B" - B - q. Eq. 35
is rewritten int andq as
UIW :i —27r1q~ti—:—é0q2.f’2 (1 _ %a]qu . BT .B . q) ez‘ltequfzgl(B . q)
MoV q#0
. Z (1 . %aqu"' .B".B. q) equ»tj—%eq?g-?Fl?’ (39)
j

with two e~5%¢”* multiplied after particle positions and oee’™<” beforeg,, andé is a parameter. Introducing the
Fourier transform pair

fy = f dtf(t)e?" 9 andf(t) = f dgfee 2t (40)

the basic idea of SE is to note that

) 2\ 3 242
h(t) = f dqe-z’"qt-éf*quz=(8”75) exp(—s”Tfntnf), (41)

i.e., the the Fourier transform of a Gaussian remains a Gaussmhthe shape of the Gaussian is controlledby
Here,|| - ||. indicates distance computation using the minimum imageeation for periodic systems. The inverse
Fourier transform of the second line of EGY with respect tay is

H(t) = Z (L+ ZHatn2vi-B"-B-Vi)h| _ F. (42)

J

whereV; = (8/dt1,0/dt,,0/0t3)". Eq. @2) facilitates interpolation of a discrete force distrilmrtionto a uniform
grid of coordinatet via the Gaussian shape functib(t) in Eq. @1). The dfect of particle size is automatically
incorporated in the grid assignment scheme in the real spgdter converting the real-spadé(t) to the wave-space
I:|q using FFTs, the wave-space computation produces

. 300 (B-q)- A
0 otherwise.
From Parseval’s theorem,
[atiwgm= ) f (44)
q

where T is a periodic lattice ang{indicates complex conjugation, EQ9) becomes a convolution integral with the
Gaussian shape function,

1 ¥
W _ 122y .B".B.V
U = oV detG(t)(1+ 2 “Vi-B'"-B t) h|(Hi), (45)

whereG(t) is the inverse Fourier transform é‘q. Extending the SE method to couplings beyond Rotne-Pragetl |
is straightforward, with adjusted (t) andG(t) based on the Faxén laws and multipole expansions inZSédn.this
work, we have implemented the mobility computation to tlesstlet and the strain rate level.

Unlike other particle mesh techniques, the SE formulatioEdgs. 89)—(45) is exact and therefore the errors are
entirely from the numerical implementations. Since the Rligorithm is accurate to machine precision, the sources
of error include the discretization and truncation of themhfunction [Eq.41)], and the numerical integration in
Eq. 45). Practically, the evaluation of each shape function istéohto P? points P < M) around the particle.
Due to the exponential decay bft), the truncation error decreases exponentially with iasirgP. Meanwhile, the
integral in Eq. 45) is evaluated using trapezoidal quadratut8 [30], which also exhibits exponential error decay
with increasingP. Therefore, the interpolation error in SE method dependkisively onP for suficiently largeM,
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and can be separately controlled from #igpace truncation error. The rapid, exponential error ylec&nown as
spectral accuracyp, 3], and this is the namesake of the SE method.

The computation cost of the SE method also becomes appaithrihe truncation oh(t). The grid assignmentin
Eqg. @2) and the convolution Eq46) areO(NP°) for an N-particle system, and the FFTs to and from the wave space
areO[M3log(M3)]. With M3 « N, the time limiting step is the FFT, and the SE method alscescaO(N log N) as
other particle mesh techniques.

The Gaussian shapefift) of Eq. @1) is controlled byg, which is parameterized as

2
o (5, )

on a regular grid oM?2 points withP® points for each shape function evaluation. The shape paeamén Eq. (46)
ensures that at the edge laft) evaluation,i.e, t2 = P2/(2M)? h « e™/2, Therefore, with fixedVl andP, m
describes the truncation &ft) on the discretized grid and is consistent with the origldgl method of Lindbo &
Tornberg P9, 30.

The computation fiiciency of the SE method relies on rapidly computing @& P®) different Gaussian shape
functionsh(t), which involves expensive exponential evaluations. Tuoe these expensive operations, Lindbo &
Tornberg P9, 3] introduced the fast Gaussian gridding (FGG) techni@@gto the SE method. In essence, the FGG
technique evaluates the exponential function on a reguidag

e—(t(6t+iAt)2 — —a(6t)? % (e—Z(tﬁtAt)i % [e—a(At)z]

i2
)

(47)

wherea is a constantgt is the df-grid value, At is the spacing of the regular grid, ands an integer within the
range FP/2,P/2]. It reduces the® exponential evaluations in each direction in the SE metloo8 &xponential
computations and at mosP2nultiplications. In addition, the last term of Ed@l7) is independent aft, and therefore
only needs to be computed once.

3.2. Wave-space computation: the particle sifeat

In Sec.3.1 the terms associated with finite particle sizes in the Fda@ars and the multipole expansions are
incorporated in the real-space derivatives of the shapetiifumh(t). For example, in a simple shear flow with lattice
vectorsy; = (L, 0,0),a, = (yL,L,0), andaz = (0,0, L), wherey is the strain, the relevant term in Eq42 and @5)
is

(%8°772V{ - BT B- Vi) h(t) =

5(@

2
322 03+ + 1620+ Y + 6+ & - 2vtatal (. (48)

The finite particle sizes introduce additional featurediogshape function, and for non-orthogonal simulation boxes
non-trivial anisotropy. As a result, compared to the caspaift forces, more point® are needed to resolve the
details in Eq. 48). On the other hand, the benefit of evaluating the partide dfects in the real space is that fewer
FFTs are involved. To compute the mobility problem of consgilele suspensions to the stresslet and the strain rate
levels, only four pairs of FFTs are necessary: three arecaded withJy in Eq. (23), and one associated with tige
in Eq. (26).

Alternatively, the particle sizeffect can be completely accounted in the wave space. Thisresgdor each
particlej, FY, T, ands?, as well asF" anda?s'!, to be separately interpolated to the grid ki#) and brought to
the wave space for computation. The derivatives assocwitedhe Faxén laws and multipole expansions in Sec.
are carried out in the wave space as multiplication of wawtors. The final results are then combined frofffiedent
convolutions and weighted by the particle sizes. To denmatesthis, we again take the wave-space Rotne-Prager
velocity, Eq. B9), as an example. In this approach, the grid assignmentitsrgjol two parts,

H'(t) = Z h(t - t))F! andH" (t) = Z h(t - t))a2F". (49)
]

]
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The wave-space computation fge: O is also split as

1

Gy =" g,(B - ) [Fy - (3a" - BB ], 0
é'q' =(-1q"-B'-B- Qe g, (B - q)- [ﬂa ~-(3q"-B"-B- q)ﬂa'], (51)
andé'q - éa = 0 whenq = 0. The wave-space velocity disturbance is a sum of two caiieuls,

2

uW = L fdtG'(t)h(t —t)+ i fdtG"(t)h(t - t). (52)

noV Jr noV Jr

Note that the convolution associated wi{(t) is weighted by the particle sizz. Compared to the other approach,
the wave-space computation is rather straightforwardi®farce interpolation and convolution. With the salf¢he
accuracy is expected to be higher as the derivatives aralatdd in the wave spacéT]. However, the computation
burden is shifted to the FFTs: for the mobility problem to ghandE level, a total of 20 pairs of FFTs are necessary:
12 for FH, TH, andsf', three fora?F"!, and five for the traceless partm’ffs'j*.

Athird approach, a hybridization between the wave- andehkspace approaches above, aims to reduce the errors
associated with the high order derivativeshff) in the real space. It retains the real-space derivativeéisdrforce
interpolation step, but when evaluating the Faxén lawss séttond order derivatives are computed in the wave space
for improved accuracy. The first order derivatives are cai@gin the real space to keep the total number of FFTs
low. As aresult, this hybrid approach requires 12 FFTs: fouhe wave space and eight from the wave space. Taking
Eq. 39) again for example, the most significant error in St.is due to applying the operatdv{- B - B - V) twice
to h(t), once during the force interpolation, and another timerdguthe convolution. The hybrid approach retains the
real-space grid assignment usiHdt) in Eq. @42), but evaluates the convolution using E§2) with modifiedé’(t)
andé"(t): in the wave-space computations, the content in the sduraket on the right hand side of EgS0Y and
(51 is replaced witH:|q in Eq. @2). We adopted this hybrid approach in this work to computeHle and discuss
the accuracy of various approaches in Set.

3.3. Real-space computation

The real-space contributions to the grand mobility teoare computed pairwise using the formalism in Sec.
SinceJg(r) [Eq. (22)] decays exponentially fast with distance, when the patangés suficiently large, only particle
pairs within a cut distancer; need to be evaluated. Introducing the ¢bitadiusr. for pair evaluation allows
fast neighbor searching algorithms such as the linked@@t ¢r the chaining mesh7[0] method to be used. These
methods divide the simulation box into cells of size sliglrger tharr., and sort the particles into the cells. To find
the neighbors of a particle, only particles in the residietj and its 26 neighboring cells need to be searched. This
effectively improves the operation count@N log N) for the real-space computations.

To accommodate the iterative scheme for HI computationgmn4 the real-space grand mobility tensor is con-
structed as a sparse matrix at each time step. After thexatatnistruction, the action of the real-space contributions
to 90t is simply a matrix-vector multiplication. Otherwise, nelgpr searching and pair HI evaluations need to be
carried out at every iteration. Note that we also includes#ié contributions from the wave-space computatiens,

Eq. 37), and the self-part of the pressure Faxén law [R&)]( in the real-space grand mobility tensor.

3.4. GPGPU acceleration of the mobility computation

The mobility computation with the SE method was first impleteel on CPU and the performance was unsat-
isfactory for dynamic simulations. The bottlenecks areftree interpolation step and the convolution step. These
are common speed limiting steps in particle mesh technidquego inéfective memory caching between the particle
and the grid data. For polydisperse systems in this worksito@tion is aggravated as more interpolation poihts
are needed for satisfactory HI resolution. After a few ojtation iterations on CPU, we realized that the key to the
performance is the memory bandwidths. Since modern GPUsatyyphave significantly higher memory bandwidths
compared to CPUs, in this work the entire mobility computatis carried out on GPU using CUDA C, a popular
GPGPU programming model with a relatively mature environtfier scientific computations.

The GPU mobility computations are carried out in Single Rien (SP) for the highest GPU performance. The
cost of the performance in SP computation is the accuratlyeaSP arithmetics can be severely limited by the number
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of significant digits compared to the Double Precision (IMwever, this is not a problem in this work for at least
three reasons:i) For dynamic simulations with iterative solvers, the SPuaacy is often sfiicient; (i) The SE
method is able to reach the round-error of the SP arithmetics with proper parameter seledionto its spectral
accuracy; andii{) The far-field Hls captured by the mobility computations ameooth compared to the lubrication
interactions, which are evaluated in DP on CPUs. The spthi®hear- and far-field His in SD allows a natural mixed
precision HI computation that captures the most significantributions from each part.

The GPGPU computations exploit the massively parallecttine of modern GPUs by simultaneously executing
a large number of similar tasks, or threads, on the data. Totaia performance, data dependencies and commu-
nications between threads should be minimized. This mdie&PU implementation of the SE methodfelient
from its CPU counterpart. Inspired by earlier GPU implenaéiohs of particle mesh techniques, this work combines
the grid-based method of Ganesainal. [47] for force interpolation and the particle-based approatcharvey &
De Fabritiis B8] for convolution. The grid-based force interpolation keegist of contributing particles for each grid
point, and the list is updated when the particle configuratiare changed. The grid values are computed in parallel
usingM? threads: with the particle list, each thread sums the fdozgue, and stresslet contributions independently
for each grid point. On the other hand, the particle-basewalation is a weighted summation ¢ grid points
for each particle. To maximize parallelization, the suniorafor each particle is performed by a groupPthreads
cooperatively. Each thread in the group first suPAgyrid points on the transverse plane, and for the final rethe,
first thread in the group adds up the values from other thresidg the shared memory of the GPU. Moreover, on the
GPU we use theufft package for the FFTs and thesparse package for the sparse matrix-vector multiplication.

4. Dynamic simulation with Stokesian Dynamics
The framework of SDT, 63] approximates the projected grand resistance teRsnrEq. (12) as
R =9+ R, (53)

wheret is the multipole grand mobility tensor, asd' is the pairwise additive lubrication correction withoueth
far-field contributions. Recall that the inversion @t captures the many-body aspect of Hls, and the short-range
correctionR™ captures the lubricationfiects. The SD recovers the exact result for two-body problemisagrees
well with the exact solutions of three-body problend][ It can provide significant insights to the His of dense
suspensionsrp, 73].

4.1. Iterative computation of hydrodynamic interactions

We incorporate the SE mobility computation into the framegkvof SD using the iterative scheme of Swan &
Brady [62], and call the resulting method the Spectral Ewald Accéder&stokesian Dynamics (SEASD). Here, a
matrix-free iterative scheme is necessary as the grandlitydbinsor9t is not explicitly constructed. The iterative
scheme splits the overall hydrodynamic force,

FH = —Rrqs - U™ + Rpg - E™, (54)

wherel" is the velocity disturbances due to Hls, into a near-field @ad a far-field part. The near-field part satisfies

0= R, - U+ FHI L 7P, (55)
whereRY, is the7 U coupling inR™ and is stored as a sparse matfi, = FP + R E% contains the interparticle

force#" and the near-field contributions froBf°. The far-field hydrodynamic force™ satisfies

i]-on )

_E® gHft

where SH is the far-field stresslet from His. Solving Eq85[ and 66), the far-field hydrodynamic forces and

stresslets are _ _ —
[T“ﬂ (R';fw)(;1 : ?P} . [ 0

sH»ff] =t ((Asm -1)- e

) (57)
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where
M = ((I — M) -

(ﬁ;fg)*l g] + 9)?) . (58)

To ensure invertibility, a diagonal matrid, with A a parameter, is added ®,, i.e, R, = RY +al, and

accordingly7H = #H 4 aq/H. A convenient choice fol is 670a, wherea is the reference particle radiugd].

Solving Eq. §7) requires nested iteration as each evaluatioMiafontains the solution of the near-field problem
with R”;(u. The near-field problem idigciently solved by the Generalized Minimum Residual (GMRE®}thod with
an Incomplete Cholesky preconditioner with zero fill-in Q)G74]. To reduce the ICO breakdown, prior to applying
the preconditioner particles are reordered using the sev@uthill-McKee algorithm. For isotropic suspensions, th
near-field problem typically converges to an error of 1 @ithin 10 iterations 6. For suspensions with strong
structural anisotropy, however, the convergence beconoes dificult and the ICO preconditioner breaks down even
with the reordering. This is resolved by increasihim R;‘Jﬂ, or introducing a threshold valuge in during the ICO
preconditioner computatiorYf]. Increasingd in ﬁ;ﬁw does not change the convergence of the near-field problem,
but increases the number of expensiaterations. On the other hand, increasitig deteriorates the quality of the
ICO preconditioner and increases the iterations requoethke near-field problem, but has littl&ect on the far-field
evaluations. In dynamic simulations, bottand,c are adjusted for optimal computatioftieiency.

The pressure moment computation in SEASD also follows ttee-rend far-field splitting scheme in Eq&5
and 66). Due to the special coupling between the pressure momeutother force moments in compressible
suspensions (Se2.3), the interaction contribution to the far-field pressuremnent is evaluated aftée™ and the
traceless part o8™ are solved in Eq.57). On the other hand, the near-field part of the pressure mosievaluated
along with other parts of the stresslets using the near+fesigtance functions.

The near-field pairwise lubrication correctioR¥ are based on the exact solutions of two-body problems iaseri
form [64, 65, 75, 76] up to s 3%, wheres = 2r/(a +a;), with  anda; the radii of the pair, is the scaled particle center-
center distance. In the simulations, the lubrication adioas are activated whesx 4: for s> 2.1 the interpolation of
tabulated data and far< 2.1 the analytical expressions are used. Note®@tatonstructed from two-body problems
contains both the relative and the collective motions ofggagicle pair and, as pointed out by Cichoekial. [23],
the lubrication corrections corresponding to the collextinotion can destroy the far-field asymptotics beyond the
pair level. However, for dense suspensions, this only lémdsminor quantitative dlierence on the suspension static
properties 11] in conventional SD. Therefore, we retain the full lubricatcorrection here for consistency with the
existing SD framework. The SD implementations of Ando & $kck [13] removed the pair collective motion in the
lubrication corrections.

4.2. Far-field preconditioner

Here we introduce a preconditioner ft to reduce the number of expensive far-field mobility evatres when
solving Eq. 67). SinceMt is not explicitly constructed, the preconditioner needbeaduilt from a suitable approx-
imation. For mobility problems without the lubrication cections, Saintillaret al. [37] and Keaveny 44] found
substantial iteration improvement even with the diagonabitity approximation. Unfortunately, the approximation
of M is more involved due to the presence §£}f(u)‘1. In this work, a block diagonal approximationﬁ for the
far-field preconditioner is adopted. First, the near-figlsistance tensﬁ;‘cf,u is approximated by blocks of 6x 6
submatrices along its diagonal. Using the direct sum raathis is@il(ﬁgfﬂ)n, whered is the direct sum, and

(ﬁ;ﬁw)ij is the block submatrix between particiesnd j in ﬁ;ﬁw. To approximatélt, we use

N
(R) ™ ~ EPIRE )l (59)
i=1

which only involvesN inversion of 6x 6 matrices. The mobility tensdbt is approximated by its block-diagonal
components using direct Ewald summatioa,, for each particle, the approximation only considers theractions
with its periodic images. To obtain the preconditioner, \pelg the Incomplete LU decomposition with zero fill-in
(ILUO) [74] on the approximateﬁt, which is constructed following Eq58) with the approximated?(“?“(u)‘1 andn.
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Figure 1: The number of far-field iteratiori., the number of the grand mobility tensdt evaluations, as a function of the GMRES residual with
(solid line) and without (dashed line) the far-field precitinder for a bidisperse suspensionif= 200,14 = 2, x, = 0.3, andg = 0.2.

Unlike Saintillanet al.[37], including close pair interactions has an adver$eat on the preconditioner due to the
diagonal approximation dR”;(u.
The dfectiveness of this preconditioner on the far-field iterai® demonstrated in Fid.. In this case, the His
corresponding to random forces and strain rates are sobreadfandom bidisperse suspension of 200 particles with

A =2,% = 0.3, andgy = 0.2. The far-field preconditioner substantially reduces thmber of GMRES iterations.
Evidently, its usage is justified when the required GMRESdred is small, since constructing the approximate
M and the ILUO decomposition also take time. In dynamic sitthoies, further time saving can be achieved by
updating the preconditioner every few time steps. In addjtihe exact break-even time also depends on the far-field
mobility computation parameters, includin, P, andr. that indirectly d@ect the iterative solver. Finally, since the
preconditioner construction is &(N) operation and th@lt evaluation scales &N log N), preconditioning is almost
always justified for large systems.

4.3. Dynamics simulation of Brownian suspensions
Particle dynamics in a suspension are described by the glezsetN-body Langevin equation,

m-(::j—([::?"H+7:P+7:B (60)

wherem is the generalized mgssoment of inertial matrixZ{ is the generalized particle velocity afd’, #©, and
¥8 are the forces on particles. The hydrodynamic fofékarises from the His and can be computed from 5¢).(
The interparticle forcer P originates from the interparticle potentials. The Brownfarce 7© is due to thermal
fluctuations in the solvent, and from the fluctuation-diasigm theorem77], 7 © satisfies

FB(t) = 0 andFB(0)FB(t) = 2ke To(t) Ryras, (61)

where the overline denotes an average over the solventdliimis andkgT is the thermal energy scale.
The configuration evolution is obtained by integrating E&f)) (wice over an appropriate time scalg and the
result is B8, 78]
AX = [U + Ry, - (Rre - B + )| At+ ke TV - R, At + AXE, (62)

whereAX is the suspension configuration change over k(> is the generalized velocity from the imposed flow,
andAXB is the Brownian displacement which satisfies

AXB = 0 andAXBAXB = 2ks TAtR Y. (63)
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The second term on the right hand side of E&R)(is the deterministic drift due to the configuration deperide
Brownian forceF , and the divergence operator is acting on the last ind@g@j. The divergence can be numerically
evaluated following Banchio & Bradysp).

The suspension bulk stress is obtained by spatially auvegabge Cauchy stress(), 51], i.e.,

(Z) = ~(p! + 20(E™) + (ko — Zm0)E™1 — nke T1 + n((SF) + (SP) + (S®)), (64)

where(p); is the average solvent pressu¢e,is the volume average over the entire suspensigis the fluid bulk
viscosity, anch is the particle number density. The particle stress®tsare broken down as" = SF + s7 + B,
whereSE is the contributions from the the imposed fl&¥, from the interparticle potential, ar&P from the Brownian
motion. Their suspension averages are expressed in ressensors

(S%y == (Rsy - R, - Rre — Rse), (65)
(SPy = = ((Rsu - Ry + 11) - FP), (66)
(SP) = — ke T(V-(Rsus - R;)), (67)

where the divergence in Ecg) is applied to the last index in the bracket. For hard-speaspensionsg,s") = 0 as
the HI and the interparticle force contributions exactlpaal each otherdl]. The Brownian stressles®) can also
be computed using the modified mid-point sche 3.

In dynamic simulations, the Brownian displacemai is evaluated from the Brownian for¢e® in Eq. (61) as

AXP = R, - FRAL. (68)
Following Banchio & Brady B9], the Brownian force can be split into a near-field part andrditld part,
Fo = FB 4 Bl (69)
Both 78" and# & have zero mean and satisfy
2kg T

ch,nf—grB,nfz_At R/, (70)
——— 2kgT

Forzen =281 oty @
FERFB =0, (72)

where 0t 1) 74, is theF U block of the inverted far-field grand mobility tensor. Therpase-additive lubrication cor-
rections allow pairwise evaluation of the near-field Brosmforce7 " [39]. Sincet is not explicitly constructed,
to computer B it is necessary to solve

B 2kgT
KSB] - lZ'—%(sm‘lfz) ¥, (73)

where¥ is a Gaussian noise of zero mean and unit varianceA&fds the fluctuation part of the Brownian stress in
Eq. (67). The inverse square root of the grand mobility teri8br*/? in Eq. (73) can be approximated using Chebychev
polynomials with eigenvalue estimatior®9 79|, or solved as an Initial Value Problem (IVP3Q, 80], which was
first used by Swan & BradyiJ] in ASD. The solution of the following IVP§1] with matrix A,

dx 1 -1

G =2l @-DAT (A=) x x(O0) =, (74)
att = 1 satisfiesx(1) = A~Y/2. c. Swan & Brady £0] devised a numerical scheme to solve E&f)(n ASD: at each
time step with step sizar, Eq. (74) is marched first with a Euler forward half-step then a Eubsckward half-step,
ie.,

Xi+% — X

At/2

=—3[nl +Q-n)AI - (A= 1) xi, o
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Xi+1 — Xq,%
T/ZI == 3 [rial + A -7i) Al (A= 1) - Xi (76)

With A = 9t andc = (2kgT/AD)Y, Eq. (73) is solved atr = 1. In SEASD, both Eqgs.76) and (76) are solved
iteratively, usually with a smaller tolerance comparedto The results withAr = 0.1 are often satisfactory.

For dynamic simulation of Brownian suspensions under a leirapear flow with strain rate, the ratio of the
convective transport rateand the difusive transport ratks T/ (67moag) defines the Péclet number,

o 6rnoany
=~

Small Pe indicates Brownian motion dominance, and largeegasuggest negligible Brownian influences. For bidis-
perse suspensions, we define Pe based on the size of the amialleg to capture the dynamics of the most rapid
changesi.e, a, = a;. In dynamic simulations, the time in E¢63) is scaled according to the Péclet number: when
Pe< 1, itis scaled with the diusive time scale of the small particlesygas/(kg T), and when Pe- 1, the convective
time scaley™ .

(77)

4.4. The mean-field Brownian approximation

The most time-consuming step in dynamic simulations of Briaw suspensions is computifig- from Eq. (73
due to the large number 0t evaluations, although the IVP approach in S&8.is expected to be faster than the
Chebychev approximatiod{)]. Further speed improvement is possible by introducing anvield approximation
of the Brownian-related quantitie89. In this approach, the far-field grand mobility ten$o¥ is approximated as
a diagonal matrix for all Brownian related computationsg d@ine full HI computations are retained for the flow-
related quantities such & . As a result, this method retains N log N) scaling, but with an order of magnitude
smaller prefactor for monodisperse suspensiBag [The diagonal approximation 8t uses the single particle result
for the ES coupling, and the far-field translational and tioteal short-time self-diusivities for the/# coupling.
These far-field values are from Monte-Carlo computationspfilibrium configurations at the same volume fraction
withoutthe lubrication corrections. Extending this approach tlygisperse suspensions is trivial: the suspension far-
field diffusivities in the diagonal elements are replaced by the éd-diffusivities for each species. The mean-field
Brownian approximation is especially suitable for study@tense suspension rheology, where the Hls are dominated
by the near-field lubrication interactions. Following Bya®d Banchio [39], we designate this approximation scheme
SEASD-nf.

5. Accuracy and performance

5.1. Mobility computation accuracy
The accuracy of the mobility computation is characterizgthie relativeco-norm of the strain rate,e.,

IE" - E7ll
N ET (78)
where theEF is the particle strain rate from the SE method afdis a well-converged value from direct Ewald
summation. Other error measurements can be similarly aefffrar examplee.,(U) for the linear velocity was used
by Lindbo & Tornberg 9] to characterize the accuracy of the SE method for poineferé&or the stresslet-strain rate
level mobility computation here, we foured, ;(E) the most stringent error criteria, possibly because meriwatives
are involved in Eq.15).

To facilitate quantitative discussions, in this section fweus on a random bidisperse hard-sphere system of
N =50,¢ = 0.05,1 = 2, andx, = 0.3. The imposed force, torque, and stresslet on each paatieleandomly drawn
from a normal distribution, and rescaled to engifg| = 1, ||Ti|| = 1, and||Sj|]| = 1. The the simulation box lattice
vectors are; = (L, 0,0),a; = (yL, L,0), andas = (0,0, L), with y the strain. The computations are carried out in DP
accuracy on CPU.
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Figure 2: The wave-space accuracy measuree.l¥E) [Eq. (78)] as a function of the interpolation poiftwith various shape parameterat

M = 64 andéa; = 0.1. The particle sizeftects are incorporated using (a): the real-space, (b): thadyyand (c): the wave-space approaches in
Sec.3.2 The values ofm are annotated in each figure. The solid and dashed linessesyirthe case of = 0 and 05, respectively. The dashed
dotted lines show the exponential minimum error deeay,(E) ~ exp(-Pn/2).

5.1.1. Wave-space accuracy

Fig. 2 presents the accuracy of wave-space computation usifegetit SE implementations with orthogongk
0) and shearedy(= 0.5) simulation boxes in solid and dashed lines, respectivehe errore, (E) is shown as a
function of the interpolation poirf® with various shape parameterat M = 64 andéa; = 0.1. Different particle size
incorporation approaches discussed in Sezare presented: in Fi@a the real-space approach, in F29.the hybrid
approach, and in Fi2c the wave-space approach.

There are several key observations in RAgFirst of all, the errors associated with orthogonal ancsée simula-
tion boxes are almost identical. This validates the gerieralalism for non-orthogonal simulation boxes in Séd.
Secondly, the SE method is sensitivéd®andm, which respectively correspond to the discretization anddation of
the shape functioh(t). At a givenm, e, (E) first decreases exponentially, followed by a much sloweucgon with
increasing?. The two-stage reduction ef, [ (E) is well understood for point force29]: the exponential decrease is
due to the improved resolution of the shape function, andliwer reduction is associated with the Gaussian trun-
cation from the shape parameter Therefore, at larg@ andmthe result is expected to be accurate; indeed, inZFig.
the minimum errors are all close to the machine precisioch&ecuracy is inaccessible using the PME or the SPME
method at this grid numbeM = 64) due to the inherent coupling between the interpolatiwh the wave-space
truncation errors. Moreover, for a givéh e, ((E) first decreases to a minimum and then increases with inoigans
At the minimum e, (E) is transitioning from exponential to slower decay, andatrers from the shape resolution is
about the same as the errors from the Gaussian truncatiom the error estimation of Lindbo & Tornberg9, 3Q],
at a givenP, the minimum wave-space erreg ,(E) and the corresponding shape parametere

€.r(E) ~ exp(-Pr/2) andm ~ VzP, (79)

respectively. The asymptotic exponential decay of the mimh e, (E) is also shown as dash-dotted lines in Fg.
The exponential decay of the minimum error with resped® tim the round-& precision at largé®> andm clearly
demonstrate the spectral accura8¥] [of the SE method.

In Fig. 2 different particle size incorporation approaches exhibitlaingualitative behaviors with quantitative
differences. For example, to achieve an accuraey ofE) ~ 10~* at the optimaim, in Fig. 2a, 2b, and2c the required
P are respectively 15, 13, and 9, corresponding to the remdesphybrid, and wave-space approaches discussed in
Sec.3.2 The latter two approaches reduce kite evaluations by 35% and 78% compared to the real-space agipro
at a cost of the number of required FFTs. Therefore, theresishde balance between the number of interpolation
pointsP and the number of FFTs in the SE method implementation. Thedgpproach in Fig2b achieves a good
balance between accuracy and computatt@iniency, and therefore is adopted in SEASD.

Finally, Fig.2 shows that, in addition to the spectral accuracy and theaasglementation, the SE method also
allows flexible error control by adjusting andm without changing the grid pointsl. As a result, the errors from
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the wave-space summation and the interpolation can beategaand this permits more flexible error control when
computing His in polydisperse systems. On the other haruth stror separation is not possible in other particle mesh
techniques such as the PME and the SPME methods.

5.1.2. Overall mobility accuracy

Both the wave-space and the real-space computatidast ahe overall mobility accuracy, and the controlling
parameters are the grid poidt, the interpolation poin®, the Gaussian shape parametethe real-space cuficradius
re, and the splitting parametér Out of the five parameters, only changeg mndm do not dfect the computational
cost since adjustiniyl affects the FFT size, changimginfluences the neighbor seardic. With fixed computation
cost,i.e, fixed M, P, andrg, it is desirable to find the combination wfand¢ that minimizes the overall error.

Fig.3and4 present theféects ofmand¢ on the overall mobility accuracy with vario®sandr. for M = 64 and 32,
respectively. The wave-space computation uses the hyppicbach in Sec3.2, and the simulation box is orthogonal
(y = 0). The thick black lines in these figures indicate the thiécakoptimal shape parameter = VzP [29, 30].
Note that in our implementation, the céitoadiusr; depends on the radiag anda; in a particle pair.

Fig. 3i with M = 64, P = 21, andr; = 6(& + a;) best illustrates the influences wfandé. Here, the mobility
computation can reach.(E) < 107° at (fa;, m) = (0.46,8). With fixed m, e.,(E) exhibits a minimum with
increasingta;, and wherm < 8, the minimum degenerates to a plateau due to the wave-§aacssian truncation,
which is also illustrated in Fig2 at low m. At low &, the overall error is dominated by the real-space errorciwhi
decreases with increasiggAt high &, the overall error is mainly from the wave space, and in@easth increasing
&. With fixed £ on the other hand. ;(E) also shows a minimum with increasing Whenéa; < 0.46, thee,,((E)
minimum becomes a plateau since the real-space error ipéndent ofm. Here, the reduction oé, (E) with
increasingn at smallm comes almost entirely from the reduced Gaussian truncafihrensa; > 0.46, the minimum
plateau disappears as in this region the wave-space esems#tive tan, a point also illustrated in Fi@. Furthermore,
in Fig. 3i there is a region o0&, (E) > 1 at high¢ and lowm due to large wave-space errors.

Comparison across rows and columns in Bignd4 reveals the influences of andP on the overall accuracy,
respectively. For both cases, reducig@r P increases the minimum value ef ;(E) and changes the corresponding
£a; andm. Comparing Fig.3g, 3h, and3i shows that reducing. increases the real-space error and shifting the
minimum ofe,, [ (E) towards large£a;. The decrease & (E) with respect to increasingat smalléa; also becomes
slower. In Fig.3g, thee,((E) minimum is at¢a; > 1. Comparing Fig3i, 3f, and3c reveals the fects of reducing
the interpolation poinP. With diminishingP, the wave-space error increases due to poor Gaussiantiesphnd
thee,(E) minimum is shifted towards lowen. In addition, the overall accuracy decreases significdotlyargem
at smallP, e.g, in Fig. 3c, e, ((E) > 1 whenm > 8.

Comparing Fig3 and4 shows the ffect of grid pointM on the mobility accuracy. Note that the color scales in
Fig. 3 and4 are diferent, and the minimure.,,(E) in Fig. 3f and 4f is approximately the same. The most apparent
effect of reducingM is the shrinkage of the parameter space correspondieg t(E) < 1 due to the truncation
of the wave-space sum. As a result,Nit= 32, the mobility evaluation is more sensitiveda; compared to the
case ofM = 64. Otherwise, the qualitative aspects of Fgare similar to Fig3. Moreover, the thick black lines
representing the theoretical optimal shape pararmeter VzP is almost always in the vicinity of the regions of the
highest accuracy in both Fi§.and4. This substantially simplifies the search for the optighal

The influences of the particle numbidron the overall mobility accuracy is presented in Fidor M = 32 and
64. The simulation box size is fixed ata; = 23,5 in Fig.5a, and the suspension volume fraction is fixed at0.05
in Fig. 5b. Other parameters remain unchanged from the baselinearag¢he mobility computation parameters are
P =13, m = 6.7, andr; = 4(a + a;). The mobility accuracy is more sensitive to changes ithan changes in
¢. In Fig. 5a, e r(E) changes little, but in Fighb, thee,, ((E) minimum increases drastically withftgérentN. The
almost identical decrease &, ,(E) at smalléa; suggests the real-space error are not significantly chamgédin
either case. The divergirg,,(E) at higheréa; in Fig. 5b suggests the wave-space computation is sensitive to the
box size at fixed® andm. This is well-known for particle mesh techniques in geng28| 67]. Therefore, to retain
the computational accuracy with larger systems at the saoene fraction, it is necessary to increase the grid point
M or the interpolation poinP. Finally, we note in passing that the same qualitative dvetraviors are found in the
pressure moment computations.
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Figure 3: (Color online) The overall accuracy measureglp(E) as a function of the splitting paramet&r; and the shape parameteatM = 64
for a real-space cufbradiusre = 2(a; + a;) (left column), 46 + a;) (middle column), and & + a;) (right column), and the interpolation point
P = 9 (top row), 15 (middle row), and 21 (bottom row). The thickdH lines represemh = VzP. The simulation cell is orthogona}  0), and
the particle sizeféects are accounted using the hybrid approach.
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Figure 4: (Color online) The overall accuracy measured.dn(E) as a function of the splitting parametgay and the shape parameterwith
M = 32 for a real-space cufiradiusrc = 2(a; + a;) (left column), 46 + a;) (middle column), and & + a;) (right column), and the interpolation

point P = 9 (top row) and 15 (bottom row). The thick black lines représe = VzP. The simulation cell is orthogonay (= 0), and the particle
size dfects are accounted using the hybrid approach.

L =
107'F E
~107F E
)
Q); 3
107F N M=32 M=64 ]
50 @ OO
100 B-Hm O
10 200 A-A AN T
L=23.5 =0.05 L]
-5 L L L L (a)‘ ¢ L L L L (b)‘
10 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Eal Eal

Figure 5: (Color online) The overall mobility accuracy me@si ine.. (E) as a function of the splitting parametewith N = 50, 100, and 200,
andM = 32 (filled symbols) and 64 (open symbols) for (a): constantdipelL/a; = 235 and (b): constant volume fractigh= 0.05. Changes
are based on the baseline case in Set.Other parameters afe= 13,m = 6.7, andrc = 4(a; + a;).
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Figure 6: The accuracy of GPGPU mobility computation measime,.,, (E). (a): the wave-space accuracy as a functioR édr variousm with
the same parameters in FRp. The GPU results are shown in black lines, and the CPU eesuRig. 2b are reproduced in gray lines. The values
of mare annotated in the figure. The solid and dashed lines mirédse case of = 0 and 05, respectively. (b): The overall mobility accuracy
from the GPU (solid lines) and the CPU (dashed lines) contipuisias a functioa; with re = 4(a + a;) andm = VrP. The correspondingy!
andP are annotated in the figure.

5.2. Accuracy of the GPGPU implementation

The accuracy of mobility computation using GPGPU prograngnaiscussed in SeB.4 is presented in Fig.
Clearly, the GPU computations providefiscient accuracy for dynamic simulations. F&a shows the GPU wave-
space accuracy as a function of the interpolation pBifar various shape parametarsfor orthogonal = 0) and
shearedy = 0.5) simulation boxes. Here, the particle sizéeets are incorporated using the hybrid approach in
Sec.3.2 and the SE method parameters are identical to those o2Fidloreover, for comparison the data in Faip.
are reproduced in gray. In Figa, the GPU results in black lines are indistinguishable ftbenCPU results in gray
lines where,;(E) > 107° for all mandy, indicating that the GPU computations are only limited by 8P arithmetics.
When the erroe..(E) reaches 1@, increasing the interpolation poiRtdoes not improve the computation accuracy
on GPUs, while the error in the CPU computations using Diatics continue to decrease umtil, (E) ~ 10714
In addition, the wave-space error remai,(E) ~ 10 after reaching the SP limit even with further increas®jn
i.e. increasing® does not adverselfi@ct the wave-space accuracy.

The overall GPU mobility accuracy as a functiondaf; is presented in Figeb for two M and P combinations
with m= V7P andr. = 4(a + a;) in orthogonal simulation boxes. The erregs; (E) are computed using the baseline
case of Sec5.1 The GPU results are shown in solid lines and the CPU resulashed lines. When the overall
errore,(E) > 1075, i.e, the case of I, P) = (32 13) in Fig.6b, the GPU and the CPU results are indistinguishable
from each other. However, theftrences are evident for the case Wi, P) = (64,21). When (6 < £éa; < 0.85, the
GPU computations deviate from the CPU results with largersdue to the SP arithmetics. Beyond this range, the
CPU and the GPU results overlap again. In both cases, theasgcachieved by the GPU mobility computation is
sufficient for dynamic simulations, where the error tolerandgpécally set at 10°. The results in Fig6 dispel any
concerns over the SP accuracy in the GPU mobility computafior dynamic simulations.

5.3. Overall performance

Fig. 7 presents the overall performance of various implementatad the SEASD and the conventional SD as a
function of the system sizB. The program performance is characterized by the wall tiree,the actual time of
program execution, to march 100 steps in a dynamic simulafdrownian suspensions at RPe 1 starting from
an equilibrium configuration. The suspension compositioh £ 2,y, = 0.5, and¢ = 0.45. The SEASD mobility
computation parameters are fixedMt= 32, P = 11, rc. = 4(a + a;) with appropriate¢ andm as they provide
sufficient accuracy. The tolerance of the iterative solvers isis&@0°. For SEASD the far-field Brownian forces
are calculated using Eqs75) and (76) with At = 0.2, and for SEASD-nf the far-field ffusivities are from Tabl4.
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Figure 7: (Color online) The wall time (in second) of 100 tisteps in dynamic simulations at Pel as a function of the particle numbirusing
the conventional SD, SEASD, and SEASD-nf. The open symiepiesent the CPU mobility computation and the filled symt@<GPU mobility
computation. The dashed line show tBEN??) scaling, and the dash-dotted line show @@ log N) scaling. The suspension is bidisperse with
A=2,y2 = 0.5, andg = 0.45 starting from equilibrium configurations.

The conventional SD result is from affieient polydisperse implementatiohl] 12, 83]. All the timing results are
collected from a workstation with Intel i7-3770K CPU and NDIA GeForce GTX 680 GPU.

Fig. 7 demonstrates the expect@(N log N) asymptotic scaling of various SEASD implementationshhgted
by the dash-dotted line. The implementations with the CPWility computation are shown in open symbols and
the GPU mobility computation in filled symbols. The GPU SEAB&s almost the same time scaling as the CPU
SEASD-nf at all the system siZ¢. Both are almost an order of magnitude faster than the CPUSEE# a typical
system sizeN ~ 200. This clearly demonstrates the power and promise of GP@Bgramming in the dynamic
simulation of colloidal suspensions. More significant shgeis achieved by combining the mean-field Brownian
approximation and the GPU mobility computation. In thisegabe speedup of GPU SEASD-nf computation relative
to the CPU SEASD ranges between 40 times for small system4&itiches for large systems. We believe further
speedup is still possible by optimizing the GPU implemeaatat With the speedup shown in Fig, we are able
to study dynamics of larger systems at longer times. In addicompared to the conventional SD, all the SEASD
implementations are faster at large enolNllue to their favorable scaling. Here, the conventional S&lescas
O(N??), highlighted by the dashed line in Fig. This peculiar scaling is a combineffect of the pairwise grand
mobility tensor construction and explicit matrix invensicAt N > 1000, the scaling should recov@¢(N3). In Fig. 7,
the break-even between the CPU SEASD and 9045216, and for GPU SEASD & ~ 40. At all the system sizes
studied here, the GPU SEASD-nf is always faster than theardgional SD.

6. Static and dynamic simulation results

6.1. Short-time transport properties

In this section we present static SEASD simulation resultthe short-time transport properties of monodisperse
and bidisperse hard-sphere suspensions. With the iter@inputation scheme in Sdcl, the short-time translational
and rotational self-diusivities, instantaneous sedimentation velocities, agd-frequency dynamic shear and bulk
viscosities can be straightforwardly evaluated. Othergpart properties can also be calculated with an apprepriat
computation scheme.

The suspension short-time limit refers to a time stal&isfyingr; < t < 7p, wherer, is the inertial time andp
is the difusion time. The inertia time = éppaS/no, wherep, anda, are the characteristic particle density and radius,
describes the time required for tparticle momentum to dissipate by interacting with the solvent. Whex: t, the
particle momentum dissipates almost instantaneously la@gbarticle dynamics are completely overdamped. The

22



Table 1: The polynomial cdgcient fitted from the far-field diusivities in Fig.9. The data is for polydisperse suspensions with2 andy, = 0.5.
The far-field self-dfusivity df can be expressed d§/do = 1+ c1¢ + co? + c3¢p®, whered is the single particle diusivity.

il il T Bl
dgy dg, d;l d;z
¢ | -1.27 | -1.70 | -0.207| -0.538

c; | 0.536| 1.005| -0.131| -0.312
c3 | -0.018| -0.12 | -0.091| 0.19

diffusion timerp = Gnnoag/kBT characterizes the time scale of suspension configuratiangghand < 7p ensures
that the transport properties entirely arise from the énttneous) HIs. Therefore, they are only determined by
the configurationX, and can be calculated by sampling independent but equiva@nfigurations. In this work
we use the Monte-Carlo procedure of Wang & Bradl§]{ the hard-sphere configurations are first generated by an
event-driven Lubachesky-Stillinger algorithi®¥] 85], followed by a short equilibration. The transport propestare
then computed statically. Here we compare the results ffmSEASD with CPU mobility computation with our
recent conventional SD results]]. Although SEASD and SD are based on the same formalism,rénedgnobility
tensort constructed from SD includes an additional mean-field quaale term 63], which can have quantitative
consequences. For bidisperse hard-sphere suspensioftgugeon the composition with = 2 andy, = 0.5. In the
SEASD computations, the system sizéis= 800, and the results are averaged over 500 independent gaifims.
Note that for simple cubic array of monodisperse particBASD produces identical results as those of Sierou &
Brady [36].

6.1.1. Short-time translational and rotational selffdsivities
The microscopic definition of the short-time translatiomad rotational self-diusivities,d} , anddy , respectively,
for homogeneous suspensions are,

dy, =TS q.uf ), anddt, = “€T( S g -a). (80)

iea iea

wheredis a vector of unit length for the averaging process aghdndy" are respectively the diagonal blocks of the
force-linear velocity and torque-angular velocity congk inR;l,u. Note thai € « in Eqg. (80) suggests the summation
is restricted to particles of species The ditusivities are computed using the matrix-free approach efdsi &
Brady [36]: the velocity disturbancé&(R corresponding to a stochastic external fofc® satisfying(¥ =) = 0 and
(FRFRY = I is evaluated. It is straightforward to show that the enseralierage€/R7R) = diag(R;,lﬂ), allowing
extraction of the dtusivities in Eq. 80).

The computed short-time translational selffgivitiesdg,, exhibit a strongN~Y2 size dependence due to the
periodic boundary conditions. The size dependence fromgoarticle system can be eliminated by adding the
following quantity to the results,

AN dtsd =

1.76da1 0 (¢ )% (81)

(X]_ + Xg/ls)% s N
Whered}ll = kgT/(6rnoa1) is Stokes-Einstein-Sutherlandidisivity for species 1, angs is the high-frequency dy-
namic shear viscosity from the same configurations. Thershgeosity exhibits little size dependence, and can be
directly used. The féectiveness of Eq.8(l) has been demonstrated by Wang & Brady][in the wave-number-
dependent hydrodynamic functions. The results here alwaytain this finite sizé\ correction.
Fig. 8a and Fig8b respectively preseldfw/d}m anddg,/dg , of monodisperse and bidisperse suspensions, where

S,

the single particle translational and rotational seffudiivities ared), = kgT/(67m02,) and do, = ks T/(8m10a°).

The SEASD results, shown in symbols, agree well with the eatisnal SD results shown in lines. As expected,

bothd.,, andd. A6 decrease with increasing volume fractipnand for bidisperse suspensions, the small particles
S,a Sa

show difusivity enhancement while the large particles exhibfiiugiivity supression. Compared d),, di, are less

sensitive to the volume fractiors but more sensitive to the particle sizesThe SEASD results for large particles
show larger error bars compared to the SD resdlty nost likely due to the stochastic computation procedure.
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Figure 8: (Color online) The species short-time (a): tramshal and (b): rotational self-ﬂlhsivities,dga anddg,, respectively, as a function of
the total volume fractio for monodisperse and bidisperse hard-sphere suspensiting w 2, y, = 0.5. The results are scaled with the single
particle translation and rotationalfflisivity, d}m andd], , respectively. The SEASD results are shown in symbols amddhventional SD results
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Figure 9: (Color online) The species far-field short-timenslational and rotational selffﬂjsivities,dts"; anddg?,, respectively, as a function of the
total volume fractions for bidisperse hard-sphere suspensions with 2 andy, = 0.5. The results scaled with the single particle translatioth a
rotational ditusivity, d}m andd('m, respectively. The symbols are the computation resultsffaedashed and the dash-dotted lines are polynomial
fittings for the small and the large particles, respectively
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Figure 10: (Color online) The scaled species instantansedsmentation velocity)s,/Uo,, as a function of the total volume fractiaf for
monodisperse and bidisperse hard-sphere suspensionsg withandy, = 0.5. The single particle sedimentation velocityls,. The SEASD
results are shown in symbols and the conventional SD refsatts Wang & Brady [L1] are shown as lines.

We also calculated the far-field short-time translatioma eotational self-dfusivitiesds!, anddS, where ‘f”
suggests only the far-field Hls without the lubrication eations are considered. They are the input for subsequent
SEASD-nf computations in Seé.2 and6.3. The N~Y/3 size dependency in the far-field translationatusivity
dtgg is corrected using Eq8(Q) with the corresponding far-field viscosity. Fig.showsdtgg andd;;ff for bidisperse
suspensions up = 0.62. Compared to Fid, the far-field dffusivities exhibit weaker volume fraction dependence,
and they do not have sharp reductions at high volume frasti@onsistent with Fig8, d;;g also exhibits stronger
particle size dependence compared to its translationaitegoeart. In general, thedependence of any scaled far-field
diffusivity d /do, with do the corresponding single-particle data, can be adequedpitured by a cubic polynomial
dif/dg = 1+ c1¢ + Cp? + c3¢p3, where the coicientsc;, i € {1, 2, 3}, only depend on the suspension composition. The
fitting codficients for bidisperse suspensions witk 2 andy, = 0.5 are presented Table The polynomial fittings,
also shown in Fig9 in dashed and dash-dotted lines for the small and the lamgjielpa, respectively, indeed describe
the computation data. Not shown in Fijare the SEASD far-field dfusivities for monodisperse suspensions, which
are identical to those of Banchio & Brad$q).

6.1.2. Instantaneous sedimentation velocity

The species instantaneous sedimentation veloditigsare computed by applying a uniform external foFgeto
each species. For bidisperse suspensions, the sedimentalibcityUs, also depends on the species density r&jo [
v = Ap2/Ap1, With Ap, = p, — po the density dierence of specias. The species force ratio satisfiEs/F; = yA2,
and here we set = 1 to facilitate comparison with earlier results. To elintméhe N-/3 size dependence, the
following corrections are added to the results:

B (X1 + X2A3)3 11s \N 1n JAVEE DR
1.76Ug1 10 (¢ 1 [\/)71 , }
e (X1 + Xg/ls)% ns \N Xo 21(0) vS22(0) (83)

whereUg, = F,/(671708,) is the single particle sedimentation velocity &g (0) is the partial static structural factors
in the zero wave number limit. Eqs82) and @83) are based on the finite-size correction for partial hydraagic
functions [L1]. Here, the partial static structural factors are compdtedh the polydisperse Percus-Yevic integral
equations$6-89].
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Figure 11: (Color online) The high-frequency dynamic (djear viscosity;s and (b): bulk viscosityks as functions of the total volume fractign
for monodisperse and bidisperse hard-sphere suspensiting w 2 andy, = 0.5. The results are scaled with the solvent viscosgityand only
the particle contributionsss/no — 1 and ks — xo)/no are presented. The SEASD results are shown as symbols acdnventional SD results[]
are shown as lines.

Fig.10presents the SEASDs, /Uy, in Symbols, which are not the identical to the conventiorat&sults shown
in lines. The diference is especially pronounced at high volume fractioasntonodisperse suspensions, the SEASD
and the conventional SD agree with each other satisfagtapito¢ ~ 0.3, and at highep, the SEASD results become
significantly higher. This dference is from the mean-field quadrupole term, which is abseSEASD. Despite the
guantitative diferences, the SEASD monodisperse sedimentation velocitgirepositive and physical. A similar
overestimation of the sedimentation velocity is also fowmen comparing ASD result8§] and the conventional SD
results p3] for simple cubic arrays.

The diferences between the SEASD and the conventional SD reselta@e significant for bidisperse suspen-
sions. FolUg; of the small particles, the flerences are not evident until= 0.3, and forUs; of the large particles,
the diterences are obvious evenat 0.2. MoreoverUs, exhibits a minimum and increases wiglat higher volume
fraction, leading to a crossing &fs1 andUsg» at¢ = 0.45. These unphysical behaviors are caused by inaccurate
HI computations at the stresslet-strain rate level. Appiyethe His of the large particles, which are surrounded by
many small particles, are more complicated than those odriadl particles and moreflicult to capture accurately.
Note that for sedimentation the lubrication interactiores@ot important and one must rely on the far-field mobility
for all Hls.

Fig. 10also illustrates that sedimentation problems in denseélse suspensions, evenlat 2, is challenging
for SEASD. Incorporating the mean-field quadrupole te8},[(1 - %¢), in the grand mobility tensor can significantly
improve the resultsl[1]. However, such incorporation is not carried out in this kvor

6.1.3. High-frequency dynamic shear and bulk viscosities
The high-frequency dynamic shear and bulk viscositieandxs, are respectively defined as,

ns =10 + N(S%)xy /7, andks = ko + 2n(SF) : 1/, (84)

wherey is the imposed strain rate,is the imposed uniform expansion ra& is the hydrodynamic stresslet in
Eq. (65), and the subscripty denotes the velocity-velocity gradient component. Theydirectly computed from
SEASD and exhibit little size dependencies. Experimeptall and«s are measured by imposing high-frequency,
low-amplitude deformations, such that the suspensionasituctures are only slightly perturbed, and the Brownian
stress contributions are out of phase with the applied d&itons PQ].

Fig. 11a and11b present the volume fractiom dependency of the particle contributions to the high-festpy
dynamic shear and bulk viscositieg/no — 1 and ks — ko) /no, respectively. The SEASD calculations are shown in
symbols, and the corresponding conventional SD resultstenen in lines. Fors, the SEASD and the conventional
SD results agree well over the entifeange. The results for monodisperse and bidisperse suspsengthi = 2 are
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Figure 12: (Color online) The equilibrium osmotic presstit&nksT) of monodisperse and bidisperse Brownian suspensionswith2 and
y2 = 0.5, as a function of volume fractiop. The dashed line represents the CS equation of state8Bgahd the dash-dotted line represents the
BMCSL equation of state, Eq87).

almost identical whew < 0.55. At higher volume fractions, the monodispeng@re more sensitive t¢ compared
to the bidisperse results, as introducing particles fiedeénce sizes significantly alters the suspension hydradina
environment in this limit. Unlike sedimentation, for theesin viscosity lubrication interactions are important and
dominate the behavior at high

For the high-frequency dynamics bulk viscosityin Fig. 11b, the SEASD and conventional SD results show
gualitative agreement with noticeable quantitativestences at moderage the SEASD results are higher and less
sensitive to the particle size ratio The diferences are caused byfdrent pressure moment computation procedures.
Recall that the far-field grand mobility tensi is not symmetric by construction, and the symmetrylf! must
be restored for subsequent calculations. This is done imestdional SD by explicit copy of matrix elements after
the matrix inversion91]. This is not applicable for the matrix-free computatiordifin SEASD. Here, the pressure
moment is computed from the far-field forces and stresseg. 1Ab shows that the two conceptually equivalent
approaches do lead to small quantitativBetences. Moreover, for dense suspensions, sutdgreinces are masked
by the dominance of lubrication interactions. Therefolhe, EEASD and the conventional SD results agree well at
low and high¢. Near the close packing limiks for bidisperse suspensions is significantly lower than diahe
monodisperse case, since the particle size polydispéngigoves the particle packing.

6.2. Equilibrium suspensions

Here we present the dynamic simulation results with SEAS® SIBASD-nf for monodisperse and bidisperse
Brownian suspensions at zero Péclet number. In particularare interested in the following equilibrium prop-
erties: the osmotic pressurg the high-frequency dynamic bulk modulg,, and high-frequency dynamic shear
modulus,G.,. The dynamic simulations are carried out with 100 partickesr 200 dffusive time units with a time
stepAtd}n/ai = 10°3. The mobility computation in SEASD is performed on GPUs with= 32, P = 11, and
re = 4(a + a;), and the far-field Brownian force is calculated using th® IMethod in Seat.3with At = 0.1. The
tolerance for the iterative solver is 10and the tolerance for matrix inversion in Eqg5(and (76) is 0.02. The com-
position of bidisperse suspensions are 2 andy, = 0.5. Therefore, for the SEASD-nf computations thefGoegents
in Tablel are used. Note that with Re0, SEASD-nf computations do not contain far-field mobilitakiations.

6.2.1. Osmotic pressure
The osmotic pressure of an equilibrium suspension is defised

IT=nksT — 2n(SB) 1 1, (85)
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Figure 13: (Color online) The high-frequency dynamic mad(d) the bulk modulusK(;,ai/(kBT), and (b) the shear modullﬂsx,ai/(kBT), as
functions of volume fractionp for equilibrium monodisperse and bidisperse Brownian ensjpns withi = 2 andy, = 0.5. The results are
computed from SEASD (filled symbols) and SEASD-nf (open sgisib

where(S®) is the Brownian stresslet in Eq87). For rigid particles with no-slip boundary conditions,aly [51]
showed that the osmotic pressure is purely hydrodynamid@ing and is identical to that of a hard-sphere fluid. The
osmotic pressure of monodisperse suspensions is wellideddry the Carnahan-Starling (CS) equation up to the
fluid-solid transition,

I 1+¢+¢?>—¢°

nkeT  (1-¢)°

The CS equation of state is extended to polydisperse susperas the Boublik-Mansoori-Carnahan-Starling-Leland
(BMCSL) equation 92:

(86)

I 1+¢+¢°-3p(z+29) - 26°
nkeT (1-¢)° ’

wherez; = A1p(1+2)/ VA, 22 = Ara(y1d+Y2)/ VA, andzs = [(yixa)3+(y3x2) 313 with Arp = ¥1Y2 VX Xa(d—1)%/ .

Fig. 12 presents the equilibrium osmotic pressure of monodispandebidisperse suspensions with= 2 and
y» = 0.5 as functions 0§ using SEASD and SEASD-nf computations. The CS [B)](and the BMCSL [Eq. &7)]
equations of state at the corresponding bidisperse cotippusiare respectively shown in dashed and dash-dotted
lines. Also shown in Figl2 are the static computation results with= 200, denoted “static”. The static computations
do not consider particle dynamics, and calculate the osrpatissure by taking a full Brownian step from independent
particle configurations in a Monte-Carlo fashion. In Fig, at each volume fraction 500 independent configurations
are used in the static computations.

The osmotic pressures from the SEASD, the SEASD-nf, andtttiie somputations agree with the CS and BM-
CSL predictions in Figl2. The static computations show the best agreement over tine gmange, and this directly
validates the Brownian stress computation method in &&c.The dynamic SEASD results are slightly higher than
the theoretical predictions because the configurationutieol is dfected by the finite\r in the far-field Brownian
force computation. The slightflierence does not invalidate this approach as it is well witndiscretization errors
of Egs. (5 and (76). Note that, as long as the tolerances for the iterativetisolwf Eqgs. {5) and (76) are smaller
than the discretization step size, the principal source of error is the time discretizatiore Neve verified that reduc-
ing the iterative solver tolerance with fixeéd- does not improve the results. Finally, the agreement in itlisferse
osmotic pressures from SEASD-nf and the BMCSL equatiomagdis the extension of the mean-field Brownian ap-
proximation to polydisperse systems. The SEASD-nf resutsonly slightly lower than the theoretical predictions,
which is acceptable considering the substantial speeffaped by this approach.

(87)
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6.2.2. High-frequency dynamic moduli

The suspension high-frequency dynamic bulk and shear mdulandG., respectively, can be computed from
the short-time limit of the pressure-pressure and strgesssautocorrelation function8], 93, 94, i.e.,

Y Y
ke T ke T

wheredIl is the osmotic pressure fluctuations ani the dt-diagonal components of the bulk stré&s in Eq. 64).
Note that the viscoelasticity of colloidal suspensionsrigrely of hydrodynamic origin, and without HI®.g, in
hard-sphere fluids, these moduli are infinite.

Fig. 13a and13b respectively preserit/, and G/, of monodisperse and bidisperse suspensions as functions of
¢ from the same SEASD and SEASD-nf dynamic simulations of ERy. Both K/, and G/, grow rapidly with ¢,
and at the same volume fraction, the monodisperse modukla@ys higher. In Figl3a, the bulk modulus/,
computed from SEASD and SEASD-nf share the same qualitaéliavior. However, the SEASD results are almost
always higher than the SEASD-nf results except at spaknd their diferences grow with increasing This
is consistent with the growing fierences il with increasings in Fig. 12 On the other hand, in Fidl3b the
differences in the shear modul@§ between the SEASD and the SEASD-nf results decrease witbdsingp, with
the SEASD-nf data higher at low volume fractions. Note thathidisperse SEASD results show large fluctuations
wheng¢ = 0.2 ~ 0.25, most likely due to the small number of large particleblat 100 and the particular particle
spacing at this volume fraction. Finally, smalfig¢rences in fluctuation quantities suchkds andG/, are expected
for SEASD and SEASD-nf because the Brownian stresses arputechditerently. However, more importantly, the
same qualitative behaviors are followed in both methods.

KL, = lim === (TI)TI(0)), andG,, = lim == (r())r(0)), (88)

6.3. Rheology of bidisperse suspensions

The final validation of SEASD and SEASD-nf is the steady shiaology of Brownian suspensions at constant
strain rate. Both monodisperse and bidisperse hard-spabpensions are considered: the volume fractions are fixed
at¢ = 0.45in both cases, and the bidisperse compositiani2 andy, = 0.5. The results are extracted from SEASD
and SEASD-nf simulations with GPU mobility computation paavide range of Péclet number Pebrnoay/ (ks T).
Moreover, we introduce a small excluded volume on eachgarto emulate the fiects of surface asperities or
polymer coating and to prevent particle overlap. It is chaazed by,

6 =1-a/b, (89)

whereb; is the excluded volume radius for each particle. The SEASDSBASD-nf simulations are carried out at
§ = 5x 10 with N = 200 over 150 dimensionless time units with a step siz&.10®ther simulation parameters
are similar to those in Se6.2 The data are averaged in segments after the steady statacised, usually after
20 dimensionless time units. As is customary, xhdirection is the velocity direction, thedirection is the velocity
gradient direction, and thedirection is the vorticity direction.

6.3.1. Shear viscosity

Fig. 14a and14b respectively present the Brownian viscosjyand the flow viscosity;® as functions of the
Péclet number. These viscosities are defined as

778 = n<SB>xy/'j’ andUE = n<SE>xy/j’» (90)

with (SB) in Eq. 67) and(SF) in Eq. 65). In this figure, the monodisperse data are shown in squamstee
bidisperse data in triangles, with the SEASD results indibgmbols and the SEASD-nf results in open symbols.
For comparison, the SD results of Foss & Brad@g][for monodisperse suspensions are presented in opensciiice
clarify the dfects of the excluded volume paramet®n viscosities, another set of monodisperse SD simulatigths
N = 30 are performed at = 5 x 10~* and 10°, and the results are shown as crosses and pluses respedtivell
cases, the stress contributions from inter-particle foere negligible, and therefore are not presented.

In Fig. 14 both the Brownian viscosity® and the flow viscosity;® exhibit the expected behaviors: with in-
creasing Pey® decreases (shear-thinning) agfdgrows (shear-thickening). In addition, there are sevenglartant
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Figure 14: (Color online) Dferent viscosity contributions to the rheology of monodispeand bidisperse hard-sphere suspensions: (a) the
Brownian viscosity;B/n0 and (b) the flow viscosity® /70, as functions of Pe. The volume fractign= 0.45 in both cases, and the bidisperse
composition ist = 2 andy, = 0.5.

observations. First of all, the excluded volume parametetroduces quantitativeféects on the suspension rheology,
especially at high Pe. Comparing the SD results with5 x 10~* and 10°, increasing enhances the shear-thinning
of B and weakens the shear-thickeningbf especially at high Pe. At low Pe, thfect of¢ is almost unnoticeable.
The SD results ai = 107° agree well with those of Foss & Brady7], and the results at = 5 x 10~ are consistent
with the monodisperse SEASD and SEASD-nf results, withdadiferences shown inF. This diference is most
likely due to the number of particles in the computationsxtiNthe bidisperse Brownian viscosi#f is always lower
than the monodisperse value at all Pe, and for the flow viscgSj their diference is most apparent at high Pe. The
large diference imjF at high Pe suggests distinct Hls and structures between ¢tmedisperse and the bidisperse
suspensions, since Fifjla suggestsF is insensitive to equilibrium suspension structureg at 0.45. Finally, the
SEASD and SEASD-nf results in Fig4 almost always overlap each other, showing that the meashBiedwnian
approximation is valid over the entire Péclet number rakgéigh Pe, the Brownian viscosify? from SEASD shows
larger fluctuations compared to the SEASD-nf results as tiogvBian stresses arefficult to compute with highly
anisotropic structures. However, these fluctuations daffiect the overall viscosity since the Brownian contribution
at high Pe is insignificant.

6.3.2. Non-equilibrium osmotic pressures
Fig. 15a and15b present the Brownian and the flow contributions to the susipa osmotic pressure,

I1° = nks T — 2n(SB) : 1andII® = —-in(SF) 1 1, (91)

respectively, as functions of Péclet number Pe. In thesedig the scaling for the Brownian contributionniks T

and the scaling for the flow contributidi® is 0y. Similar to Fig.15, the monodisperse data are presented in
squares and the bidisperse data in triangles, with the SE&SIIts in filled symbols and SEASD-nf results in open
symbols. Figl5also presents th = 30 monodisperse SD results wiih= 5x 10~* and 10° in crosses and pluses,
respectively. Similarly to the shear stresses, the indetigle contribution to the osmotic pressures is also gégk
compared to the contributions from His.

In Fig. 15, bothTI1®/(nksT) andTI®/(y1n0) grow with increasing Pe when Re 100. The Brownian contribution
I18/(nks T) asymptotes the equilibrium value as Pe0. At higher Pe, the influence of the excluded volume param-
eteré becomes apparent. For the Brownian osmotic pressure lootitm I18/(nksT), the SD results aé = 107°
continuously grow with Pe up to Pe 10% the highest value in our study, while with= 5 x 1074, a maximum
in TIB/(nksT) around Pe= 10° is apparent. After the maximunil®/(nksT) decreases slowly with growing Pe. In
this case, the paramet&mot only brings quantitative, but also qualitativéfdiences. On the other hand, the flow
osmotic pressure contributidii® /(o) increases and reaches a plateau at high Pe. Comparing thesSI% with
§ = 5x 10~* and 10°, increasing reduces the final plateau valueldf /(yno) at a smaller Pe. Apparently, the high
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Figure 15: (Color online) Bierent contributions to the osmotic pressures of monodispand bidisperse hard-sphere suspensions: (a) the Brow-
nian contribution scaled withkg T, TIB/(nkg T), and (b) the flow contribution scaled witfyy, IT7 /(770), as functions of Pe. The volume fraction
is ¢ = 0.45 in both cases, and the bidisperse composition42 andy, = 0.5.

Pe osmotic pressure is very sensitive to the excluded voparemetes. In terms of the normal viscositige., I1/y
with IT = TIB + TIE, increasings weakens the shear thickening of the normal viscosity. Feuntiore, the SD results at
§ = 107° agree qualitatively with the results of Yurkovetsky & Marf63], with slight quantitative dference due to
different osmotic pressure computations §At 5 x 1074, the Brownian osmotic pressurBS from SD and SEASD
almost overlap each other in Fig5a, andIl® from SEASD is lower than the SD results in Figgb. Similarly to
Fig. 14b, the diference is most likely due to the small system sizes in the SBpadations. Moreover, the SEASD
I1B also exhibits larger error bars at high Pe due to the Browsiegss computation, but such errors are of little
consequences on the suspension total osmotic pressures.

For the bidisperse results shown in triangles in Hif.the Brownian osmotic pressufe® is always lower than
its monodisperse counterpart, and the bidisp&Fses first slightly higher than the monodisperse results at Rav
and then lower at high Pe. The crossing of the monodispeiseidispersdl® demonstrates the complex interplay
between Hls and structures in polydisperse systems.

The SEASD-nf results in Fidl5 agree qualitatively with the SEASD computations. Howef@r]18, there are
guantitative diferences at bothh = 1 andA = 2, with the SEASD-nf results systematically lower. Thiffelience
is inherently associated with the far-field Brownian foraenputations in Sec4.3 and the mean-field Brownian
approximations, and is also encountered in ERy.However, the quantitative discrepancieglifiare still within the
discretization errors ok in Egs. 5) and (76). On the other hand, fdi®, the SEASD-nf and SEASD results almost
always overlap each other over the entire Pe range for baibgarse and monodisperse suspensions. SEASD-nf
satisfactorily captures both contributions of the susfmenssmotic pressuresl? andIIE.

6.3.3. Normal stress flerences
The first normal stress fierenceN; and the second normal stresfeiienceN,, defined as

Ni = (Z)xx — <z>yy andN; = <z>yy —(Z)zz (92)

describe the stress anisotropy in sheared suspensiongramaportant for understanding phenomena such as the
shear-induced particle migratior89. The normal stress fferencesN; andN, are respectively shown in Fid6a
and Fig.16b. The monodisperse data are shown in squares and the bgtisfeta in triangles, with SEASD results
in filled symbols and SEASD-nf results in open symbols. Iniéald, in Fig. 16, the SD results of Foss & Brady 2]
are presented in circles, and the SD computations at 30 with = 5x 107* and 10° are respectively shown in
crosses and pluses.

In general, the first normal stresgférencelN; in Fig. 16a changes sign from positive to negative with increasing
Pe, and the second normal strébksn Fig. 16b remains negative for all Pe studied and exhibits weak Perdignce.
The data with small systems are strongly scattered, péatlguat small Pe. For monodisperse suspensions, the
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Figure 16: (Color online) The normal streséfeiences: (a) the first normal stresfefienceN; and (b) the second normal stresfelienceN; as
functions of Péclet number Pe. The volume fraction is 0.45 in both cases and the bidisperse compositioh=s2 andy, = 0.5.

excluded volume parametéihas little éfect onN; or N, as there lacks a qualitativeffiirence for the SD results at

§ = 5x 10 and 10° in Fig. 16. These SD results in general agree with the data of Foss &g when Pe> 1.

At smaller Pe, the data exhibit large errors due to fluctiatia Brownian stresses, making quantitative comparisons
difficult.

In Fig. 16 the SEASD results at = 1 follow the SD data with the same qualitative behaviors. difkerences
at low Pe is likely associated with thefficulties in measuring the fluctuating Brownian normal sess$n addition,
the SEASD results show clearer trends at high Pe thanksderlaystem sizes: botk; and N, asymptote toward
constant values with increasing Pe. Particle size polyity weakens the influences of Pe on the first normal stress
differenceN;. In Fig. 16a, the bidispersdl; are less sensitive to Pe compared to the monodisperse casasa
Pe— oo, the bidispers&l; asymptotes towards a negative value with a smaller magnit0d the other hand, the size
polydispersity has little fect on the second normal strédg as the bidispersk, almost overlaps the monodisperse
N, especially at large Pe.

The SEASD-nf and the SEASD results agree satisfactorilynwies> 10 for both the monodisperse and bidisperse
suspensions. As expected, largeffatiences are found at low Pe, as the mean-field Brownian aippatign in
SEASD-nf explicitly removes the anisotropy in the far-figlwbbility tensor. However, the SEASD-nf results still
capture the qualitative aspectif andN, even in the low Pe limit.

6.3.4. Species stress distribution

Stress distributions acrossfidgirent species are key to understand the phenomena of gartigtation and seg-
regation in polydisperse suspensiof8|[ and are presently only accessible from simulations. Evgpresents the
stress distribution, expressed as the stress fractiom tadoy the small particles (species 1), as functions of Pe for
bidisperse suspensions with= 0.45,1 = 2, andy, = 0.5. Fig.17a shows various shear stress fractions. In terms of
the definitions in Eqs.64)—(67), o1 /o (circles),of/o® (squares) , andf/oF (triangles) in Fig17a are

01/0 = XUE) 109/ Edxys 02/ = X1(SB)14y/(SB)ys @NAOE/0F = X1(SF)1xy/(SE )y (93)

where(-), indicates averaging with respect to specie§ig. 17b presents various normal stress fractions. The normal
stress fraction$,/S (circles),SB/SPB (squares), an8E/SE (triangles) in Fig17b are similarly defined as

S1/S = xa(1 1 {Z)1)/(1: (%)), SB/SB = xq(1: (SB)1)/(1: (SB)), andSE/SE = x,(1: (SE)1)/(1: (SFY).  (94)

In both figures, the SEASD results are shown in filled symbiotstae SEASD-nf results are shown in open symbols.
Fig. 17a illustrates that the total shear stress is roughly egpaliiitioned between the two species, and the fraction

o1/o is almost constant with respect to Pe. This is largely bexthesflow shear stress fractiorf /oE is insensitive

to Pe. The Brownian shear stress fractidfyc2, on the other hand, exhibits weak Pe dependence: thea8fio®
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Figure 17: (Color online) The fraction of stresses takenwthle small particles (species 1) in a bidisperse suspen@dihe fraction of the shear
stress and (b) the fraction of the normal stress. The stras8dns are shown as functions of Pe. The composition obitlieperse hard-sphere
suspension ig = 0.45,1 = 2, andy, = 0.5.

increases with Pe from less thadB at Pe= 0.1 to close to (6 at Pe= 100. At higher Pe, the Brownian stress fraction
shows large fluctuations, also due to thidulties associated with the anisotropic structures. Heweéw this limit,

the Brownian contribution to the total stress is small, dralarge fluctuations in Fid.7a is inconsequential. On the
other hand, the total normal stress fract®y/'S in Fig. 17b shows stronger Pe dependency, and it decreases from
0.6 at Pe= 0.1 to 045 at Pe= 10*. Contrary to shear stress distributions in Figa, the Brownian normal stress
distributionSB/SB is almost constant at®, butSE/SE increases from @ at Pe= 0.1 and asymptotes towardsi6

as Pe— . Since the Brownian stresslet dominates at low Pe and thesti@gslet dominates at high Pe, the normal
stress distributions in Figl7b are distinctively &ected by both the flow and the Brownian contributions. HBig.
demonstrates that both the shear and the normal stresséssipdose suspensions are distributed based on the species
volume and the distribution weakly depends on Pe. This iséuli;sight for modelling polydisperse systems.

The stress distributions from SEASD-nf accurately captieeSEASD results except the Brownian shear stress
distributiono®/o® at high Pe in Figl7a, where the SEASD-nf results is slightly lower. Thiffelience, however, is
expected since the mean-field Brownian approximation igetire structural anisotropy in the suspension. Moreover,
the discrepancies are only evident at Péclet numbers whe®rownian stress does ndfect the overall suspension
rheology. From this perspective, the overall quality of B8ASD-nf approximation is deemed satisfactory.

6.3.5. Long-time dfusion

An important characterization of the overall suspensiomadhyics is the translational long-time selffdsivities.
The long-time limit refers to a time scale> p, where, recall that;p = Gnnoaf;/kBT is the single particle diusive
time scale. In this limit, the particle movement igtdsive due to extensive interactions with their neighborise T
corresponding diusivities are obtained from the particle mean-square aigghent. In the velocity gradient and the
vorticity directions, these self-flusivities are respectively defined as

A = fim 4ck(Ay)?), /dt anddi? = lim $d(A2)%),/dt, (95)
whereAy andAz are the particle trajectory fluctuationsyinandz-directions. Figl8a andl8b respectively present the
long-time dffusivitiesdi;,‘fi andd‘gf; as functions of Péclet number. The monodisperse resdtstewn in squares.
For bidisperse suspensions, the small and the large galtiog-time self-diusivities are presented in triangles and
circles, respectively. For comparison, Fif also shows the results from Foss & Brady[in crosses. Moreover,
the SEASD and the SEASD-nf results are shown in filled and ggerbols, respectively.

For monodisperse suspensions in Fig, bothd?” andd“?? grow with Pe due to the imposed shear flow, with
the velocity direction dfusivity d%” slightly higher. At low Ped?” anddi? grow weakly with Pe, and at large Pe,
both difusivities are proportional to Pe. The SEASD results is &tast with the SD results of Foss & Bradg] at
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Figure 18: (Color online) The species long-time setfudivities: (a) the velocity gradient directionfiisivity d;yﬁ and (b) the vorticity direction
diffusivity df;iﬁ of monodisperse and bidisperse hard-sphere suspensifmscéisns of Pe. The volume fraction ¢gs= 0.45 for both cases, and
the bidisperse composition is= 2 andy, = 0.5.

intermediate Pe. Theflierences at large and small Pe are most likely due to the systeras in this worll = 200
while in Foss & Brady 72] N = 27. For bidisperse suspensions, the long-time seﬂiﬁsii/itiesdi;y,ﬁ anddfj,é for
both species exhibit similar Pe dependencies as the m@edescase. However, introducing a second species to the
suspension apparently enhances the long-time sgifsiliities of both species, particularly at high Pe. This ualit
diffusivity enhancement is in contrast to the short-tinféudivities in Fig.8a, where ap = 0.45, the small particle
diffusivity enhancement is always accompanied by the largéfeadiffusivity supression. Moreover, theflilisivity
enhancement ig-direction is stronger than thosezrdirection.

In Fig. 18the ditusivities from SEASD-nf in general agree with the SEASD Hssior both monodisperse and
bidisperse suspensions. At low Pe, the SEASD-fiftidivity is lower, particularly for the large particles. Thgree-
ment between SEASD and SEASD-nfimproves with increasinduiedo the reduced influences of Brownian motion.

6.3.6. Suspension structures

Finally, we examine the structures of sheared bidisperspesisions via the projections of the partial pair-
distribution functiong,s(r), which are defined as the conditional probability of findargpther particle in species
B given a particle of species i.e.,

Gus(F) = ﬁ(z %50 - rj)>. (96)

ieB

They are related to the pair-distribution functigr) through

o) = > XaXsGas(r). (97)
B

Fig. 19, 20, and21 present projections aj(r) andg,s(r) on the velocity-velocity gradienif-) plane, the velocity-
vorticity (xz) plane, and the velocity gradient-vorticityZ) plane, respectively, at selected Péclet numbers. These
figures are based on particle trajectories from SEASD sitimmaand are indistinguishable from the SEASD-nf
results.

Fig. 19 clearly displays the structural anisotropy caused by tleaisHow in thexy-plane, characterized by the
distortion of the otherwise isotropic pair-distributiangs. With increasing Pe, the overall pair-distributiondtion
o(r) shows an accumulation of neighboring particles in the aasgional quadrant. This is indicated by the brighten-
ing and thinning of the rings ai?, a; + a,, and &y, corresponding to the particle pairs of two small partickelmrge
and a small particle, and two large particles, respectivdBanwhile, the particle pairs are depleted in the exteraio
guadrant.
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Figure 19: (Color online) The velocity-velocity gradientX) plane projection of the pair-distribution functigir) and the partial pair-distribution
functionsg,g(r) at various Pe for bidisperse suspensions with0.45,1 = 2, andy, = 0.5.
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Figure 20: (Color online) The velocity-vorticity¢) plane projection of the pair-distribution functig(r) and the partial pair-distribution functions
0ap(r) at various Pe for bidisperse suspensions with0.45,1 = 2, andy, = 0.5.
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Figure 21: (Color online) The velocity gradient-vorticiyz) plane projection of the pair-distribution functigir) and the partial pair-distribution
functionsg,(r) at various Pe for bidisperse suspensions with0.45,1 = 2, andy, = 0.5.

Specific changes in flerent types of particle pairs are revealed by examining treesponding partial pair-
distribution functiong,s(r) in Fig. 19. The distribution of the small-small particle pairs is getd ing:1(r). Simi-
larly to g(r), g11(r) is increasingly distorted and compressed in the compreabkguadrant with increasing Pe, forming
a boundary layer. At higher Pe, the pair structure remaim@pmately unchanged. In the extensional quadrant, the
pair breakup point shifts from the extensional axis towdhdsvelocity &-) direction due to the lubrication interac-
tions, with a clear tail of high probability outlining theajectory of small-small pair disengagement. The distidut
of the small-large particle pairs igio(r) shows a similar structural distortion in the compressianeadrant with
increasing Pe. Moreover, in the extensional quadranty#jectory of particle disengagement is morfutive com-
pared tog;1(r) at the same Pe. This suggests that particle movement ispleidie suspensions are facilitated by the
breakup of small-large particle pairs, and partially ekpahe mutual enhancement of long-time seffidivity in
Fig. 18. For the distribution of large-large particle paigs(r) also exhibits anisotropy with increasing Pe in Fi§.
However, due to the limited particle number, informatiogdued the first coordinate shell isfiicult to analyze.

Fig. 20 displays the total and partial pair-distribution functiprojections in thexzplane. Unlike thexy-plane
projections in Fig19 which exhibits strong anisotropy, the suspension stresthere are less sensitive to Pe. With
increasing Pe, the particles are compressed towards daah which is evidenced by the thinning and brightening of
the first coordinate shells. More interestingly, at highee=PL00,g;2(r) shows a belt of particle enrichment along the
flow direction, whilegi1(r) andgo(r) exhibit a corresponding particle depletion. This indésathat the small-large
pairs are preferred in the~plane, and that the shear flow promotes species mixing ifidhvedirection.

Fig. 21 shows the projection ajf(r) andg,s(r) in theyzplane. With increasing Pe, the shear flow also compresses
the particle pairs in this plane without apparent anisgtré\ote that even at Pe 10%, the suspension does not exhibit
string ordering 96] due to the Hls. The lack of structural formation is also conéd by the continuous increase of
the long-time self-dtusivitiesd??, andd?, with Pe in Fig.18.

7. Conclusions

In this work we presented the Spectral Ewald AcceleratekeSian Dynamics (SEASD) for dynamic simulations
of polydisperse colloidal suspensions. Using the fram&wb6tokesian Dynamics (SD), SEASD can accurately and
rapidly compute Hls in dense polydisperse suspensionsr@hatures of SEASD includé) (direct inclusion of the
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solvent compressibility and pressure evaluatioimsttie use of the Spectral Ewald (SE) method for accurate titywbil
computation with flexible error controliji() a far-field preconditioner to accelerate the convergehteeonested iter-
ative scheme;iy) GPGPU accelerated mobility evaluation for almost an ood@nagnitude speed improvement; and
(v) the incorporation of SEASD-nf, an extension of the mealaHBrownian approximation of Banchio & Brad39)

to polydisperse suspensions.

We extensively discussed the accuracy of mobility comjrtaising the SE method, established the baseline for
parameter selection, and demonstrated the adequate egduridne GPU single precision (SP) mobility computa-
tion. We found that compared to the full SEASD computati@ESASD-nf can achieve significant speedup without
substantially sacrificing accuracy. Indeed, for all theayic simulations in this work, the SEASD and SEASD-nf
results agree satisfactorily. In addition, we verified @& log N) computational scaling of SEASD and SEASD-nf
in dynamic simulations.

We rigorously validated SEASD and SEASD-nf for monodispeasd bidisperse colloidal suspensions vid: (
the short-time transport properties) the equilibrium osmotic pressure and viscoelastic moaud (i) the steady
Brownian shear rheology at= 0.45. For {), the SEASD dfusivities and shear viscosity agree with the conventional
SD calculations. The SEASD sedimentation velocitjetiqualitatively from the SD results due to the absence of a
mean-field quadrupole term in the mobility computation. #er bulk viscosity computation, filerent procedures to
eliminate the spurious Hls lead to slighfigrences in the SEASD and the SD results.iln SEASD and SEASD-nf
reproduced the equilibrium suspension osmotic pressuradnodisperse and bidisperse suspensions within the error
tolerance, with the SEASD data higher. For the steady shealagy in {ii ), the agreement between SEASD-nf and
SEASD is satisfactory in the suspension mechanics, dyrsaraia structures. Moreover, we found that the particle
size polydispersity reduces the suspension viscosity anmbtic pressure, and enhances the long-time translational
self-diffusivities of both species. Our rheological simulation® asprove our understanding on the structure, dy-
namics, and rheology of polydisperse suspensions.

The SEASD and SEASD-nf developed in this work are importaoistfor studying dynamics of dense, polydis-
perse colloidal suspensions, and have significantly exigtite parameter space accessible to computational studies
For example, they can provide otherwise inaccessibleldetaia wide range of experimental observations including
the yielding phenomena in glass rheology and the continandsliscontinuous shear-thickening.

Finally, through SEASD and SEASD-nf we demonstrated theegaity and versatility of the SD framework,
particularly the splitting of the far- and near-field intetians: with a suitable far-field computation, the lubrioat
interactions can be added pairwise for free. We believerttzaty far-field HI computational methods can and should
be used with the SD framework to expand their accessiblenets range, particularly for dense systems.
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