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1 Introduction

The flow and transport of granular media have been of major im-
portance in commerce and industry for a long time; materials such
as coal, ore, cement, grain, soap granules, sugar, sand, gravel, etc., flow
in hoppers, bins, chutes, rotating drums, and moving bands. The
desire to improve such transportation equipment and to reduce the
energy expenditure has motivated interest in understanding the fluid
mechanics of such bulk flows (Wieghardt [25]1). Though transport,
heat transfer, and other processes are often effected by fluidization
we are concerned here with those situations in which the flow takes
place with direct physical contact between the grains. Indeed the
simplest situation is that in which the interstitial fluid (usually air)
has a negligible effect on the equations of motion.

The purpose of this paper is to present a comparison of experi-
mental data and analysis for the flow of dry granular media through
a two-dimensional or wedge-shaped hopper. It will be seen that the
analytical solution which begins with the constitutive postulates
suggested by Jenike and Shield [9] of (i) intergrain Coulomb friction
and (ii) isotropy produces results which are in good agreement with
the experimental measurements.

2 Equations of Flow for a Cohesionless Granular
Medium

The equations used to describe the flow of a granular medium (and
by a flow we mean the process of continuous deformation which ex-
cludes quasi-flows in the form of undeforming plugs) are basically
those of soil mechanics with inertial terms added. Here we confine
ourselves to planar flow and u, v will initially denote the velocities in
the directions of the Cartesian coordinates x and y. It is first assumed
that the medium has reached a critical void ratio upon initiation of
the continuous deformation and that the void ratio remains relatively
constant thereafter; thus the medium is characterized by a constant
bulk density, p (see Section 7) and continuity requires
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This assumption is motivated by the observation of little global vol-
umetric change during continuous deformation in simple uniform
flows such as that involved in pure shearing (see Taylor [22], Jenike,
Elsey, and Woolley 8], Jenike and Shield [9], Scott [18], Jenike [10]).
However its validity is open to question in more complex flows; for
example, the rupture zones observed by Templeton [23] seem at the
very least to involve localized departures from the average bulk
density.
The equations of motion which will be used neglect the effects of
interstitial fluid and denote the integrain forces by a continuum stress
tensor, o: ’
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where the orientation of the coordinate system is such that the grav-
itational body force is in the negative y-direction.

It remains to discuss appropriate constitutive relations governing
the continuous deformation of the granular medium and we shall
adopt those suggested by the work of Drucker, Gibson, and Henkel
[6], Shield [19] and Jenike and Shield [9]. It is first assumed that for
the cohesionless materials considered here the maximum shear stress
in the medium and the normal force on the corresponding principal
plane are directly related by a simple Coulomb friction condition
where the friction angle ¢ is assumed to be a constant material prop-
erty. It follows that

- 2 1/2 +
(=52 ] (222

where the inequality is included merely to indicate the conditions
prior to the initiation of flow or in regions of unyielded material which
may exist in conjunction with flowing regions. Jenike and Shield [9]
also indicate that the condition (4) may be readily modified to include
the effects of cohesion, ¢, by addition of a term —c¢ cos ¢ on the
right-hand side; the effect could then be incorporated in an effective

- internal friction angle if one assumes that ¢ is proportional to the

mean stress (g, + oy,). It should be noted that there have been other
interpretations of the Coulomb condition (4) as a modification of a
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Fig. 1 Schematic and notation of two-dimensional hopper flow

Tresca or Von Mises yield criterion (Drucker [4, 5], Shield [19],
Drucker, et al. [6]). Note also that unlike unconventional fluid me-
chanics these flows are dependent on the absolute magnitude of the
mean stress.

The condition (4) is however insufficient in itself to complete the
system of equations for the flow and stress fields; one other consti-
tutive relation is necessary. We shall again follow Jenike and Shield
[9] and others in adopting a condition of isotropy which states that
the directions of principal stress and principal deformation coincide

"so that
2(2-2)
ox Oy

Oxy ou  ov
oy 0x

It should however be mentioned that rigorous justification for either
the condition of Coulomb friction or the condition of isotropy does
not exist and both are open to question; recent experimental and
theoretical investigations of these conditions have been reviewed by
Mandl and Fernandez Luque [13]. For example, the observations of
Drescher and de Josselin de Jong [2] and of Drescher [3] indicate that
for relatively small deformations there are significant departures from
isotropy due to the fact that deformation occurs by the propagation
of nonisotropic dislocations.

From a simpler point of view, however, one might simply regard the
conditions (4) and (5) as constitutive postulates whose practical value
in predicting the flows of granular materials should be tested by
comparison with measurements on simple rheological flows. But both
of the rheological flows so widely used in fluid mechanics, namely, pipe
flow and Couette flow, present difficulties in granular media because
they may result in simple slippage at the solid walls and no continuous
deformation of the granular medium unless the walls are very rough.
Indeed hopper flows of the kind studied in this paper are among the
simplest true flows and as such could be regarded as a rheological test
of the constitutive postulates.

Oxx — Oyy _

()

3 Flow in a Two-Dimensional Hopper

The primary purpose of this paper is to present a solution of the
equations of the last section for the flow through a two-dimensional
or wedge-shaped hopper of the kind shown in Fig. 1 and to compare
the results with experimental measurement. For this purpose the
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governing equations (1)-(5) are rewritten in the polar coordinate
system (r, §) shown in Fig. 1 where for convenience «, v will now de-
note the velocities in the negative r, 8 directions and the flow is as-
sumed steady in time (see Section 9). Furthermore by defining Sok-
olovski [20] functions ¢ and v such that

o = —a(l — sin ¢ cos 2v)
ags = —o(1 + sin ¢ cos 2v) (6)
arg = ofsin ¢ sin 2v)

the Coulomb friction condition (4) is automatically satisfied and the
basic equations (1)-(3) and (5) become
Continuity

d 12
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r —Equation of Motion
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which must be solved for the unknown functions u, v, v, and ¢ of r and
9. .

A number of authors including Jenike [10], Pemberton [15], and
Savage [16] have reported attempts to construct the flow and stress
fields in a two-dimensional hopper. Jenike [10] begins with the as-
sumption that the inertial terms on the right-hand sides of the
equations of motion (8) and (9) are negligible. The immediate con-
sequences of this is that the problem is reduced to one of static soil
mechanics in which the velocities z and v and thus the discharge from
the hopper is indeterminate. This can be readily demonstrated since .
following the omission of the inertial terms the remaining equations
are homogeneous in the velocities which could therefore be multiplied
by any arbitrary constant. Indeed it is the inertial terms which de-
termine the flow velocities and the discharge. Nevertheless, Jenike’s
solution is of value in determining the kind of stress distribution one
might expect in a hopper (see also Johanson [11]). Pemberton [15] has
also reported inertia-less solutions similar to those of Jenike [10] but
in which the isotropy condition was replaced by a somewhat modified
version in which deformation occurs by shear along the characteristic
curves of the stress equation. In the context of the present paper we
should also note that neither of these inertialess solutions permit the
existence of a “traction-free” surface (¢ = 0) of the kind which must
exist at discharge from the hopper.

Savage [16] (see also Sullivan [21]) on the other hand has reported
a special solution in which the inertial terms are retained but in which
the sidewalls are frictionless and gravity is assumed to act radially
toward the point 0, Fig. 1, rather than vertically. Thus the problem
is cylindrically symmetric with v = 0, v = 0 and expressions for u, ¢
which are independent of 8. It is then a straightforward matter to show
from the equation of continuity (7) that u = A/r and from the equation
of motion (8) that
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Fig.2 Detail of the initially undetermined traction-free boundary, T', at dis-
charge from the hopper
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‘where A, B are constants and w* = 2sin ¢/(1 — sin ¢) (a different ex-
pression for o results in the special case sin ¢ = 14). The conditions
that ¢ = 0 at both upper (r = ry) and lower (r = r1) traction-free sur-
faces were then applied to determine the (uniform) velocity, Up, at

discharge:
i (fl)“’*-l I
DD2 (w t 2) re

gr1i  (w*—1) [1 _ (ﬂ)wwzl
T2

This expression yielded mass flow rates which were substantially
greater than those exhibited in experiments. This motivated the
present study in which friction on the walls is included and more
plausible boundary conditions applied at the upper and lower sur-
faces. It will, however, be seen in the following section that the results
for sidewalls with friction and with normal gravitational effects follow
a similar form to the expression (12). Savage [16, 17] also reported an
approximate solution of the flow-through a conical hopper which
included inertia and wall friction; though the present solution for a
two-dimensional hopper is superficially somewhat similar in form
there are impertant differences. Savage’s equations were the spherical
coordinate version of those of the last section except that isotropy was
not assumed. This was replaced by the assumption that the velocity
u was independent of § and that v = 0; thus isotropy was not satisfied.
Furthermore the conditions at inlet to and discharge from the hopper
which were adopted were those of traction-free surfaces (¢ = 0) onr
= ry, ro. We shall see that a more detailed examination of these
boundaries leads to conditions which are better justified physical-
ly.

o =Bre* + (11)

. (12)

4 Analytical Solution for Flow in a Two-Dimensional
Hopper

The purpose of this section is to present an approximate solution
for the equations of motion (7)-(10) which includes the effects of
friction between the granular media and the walls of a planar hopper
(Figs. 1 and 2).

We first observe that specific values of v at the walls § = £0,, result
from the assumption of Coulomb friction on the wall of the form

arg
(—’——) =+ tand
099/ 0=%0u

Journal of Applied Mechanics

(13)

where § is the wall friction angle. From equations (6) this leads to the
relation

(1 + sin ¢ cos 2v,,) tan & = sin ¢ sin 2y, (14)

from which an exact value of (v)s=s, = (=¥)o=-4, = ¥w can be ob-
tained numerically given only the two friction angles ¢ and 6. Thus
assuming symmetry of the stress field about the center line § = 0, v
increases from zero at 8 = 0 to the known value of v, at § = 0,. (It
should be noted in passing that the other choice of v = 7/2 on the
center line with a corresponding change in the value on the wall can
be shown to correspond to flow tn the oppasite direction to that. of
relevance here).

The present solution is constructed under the assumption that the
opening angle, 9, is small though quantitative evaluation of the
precise nature of this limitation which also involves the magnitude
of the friction on the wall is delayed until later. We shall assume that
both the flow and stress fields are symmetric about the center line,
# = 0; in doing so it should be noted that nonsymmetric flows have
been observed particularly by Lee, Cowin, and Templeton [12] but
comment on this is delayed until Section 9. Thus the functions to be
determined, namely, u, v, v, and o are expanded in the form

w= o) +usr) (1) 40 (1) (15)
0= 0i) (37) + 50 () +o (;fg) (16)
v =m0 (57) + 70 () +0 (5 o

r= o)+ o) (37) 40 (75) )

where, given a power series in 6, the indices are dictated by the sym-
metry of the field. The procedure is to expand the governing equations
(7)-(10) in powers of 8 and to obtain ordinary differential equations
for wug, vy, v1, 0o, etc., by equating coefficients of powers of 8. The
hierarchy of equations which result begins with the #0 terms in the
continuity equation (7) and the r equation of motion (8) which yield,
tespectively,

e (19)
r Oy
o Pe)
(1—sin zp)rﬂ - 2069sin ¢ (1 + ﬂ) + pgr = ‘—pTUQ_E’g. (20)
or 1 or

w

Second, the 8! terms in the isotropy condition and the § equation of
motion produce

ou 2u ov
471r—0 =22,
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Third, the 62 terms in continuity and the r equation of motion
yield
(23)

> 3
(1 —sin ¢) =2 — 20, sin ¢ (1 + l) + 41200 sin ¢ (1 + 11)
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The boundary conditions on the solid side walls are that the normal
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velocity v is zero and that vy takes the value of ,, calculated from the
relation (14). Hence

0=U1+1.)3+... (25)

(26)

Clearly, the solution is only valid provided each coefficient is much
smaller than its predecessor; the conditions on 8, and v,, which this
implies will be determined as we proceed.

First consider the solution which results when the series for v and
~ are both terminated with a single term; it follows from the boundary
conditions (25) and (26) that

Yw=711tv3t...

01 =0; (27)

Integration of the forms of equations (19) and (20) which result leads
to
up=U (ﬂ)
r

o L /r
pgri (0= 1)(1 —sin ¢) <r1>

F w
T @+ (1 -sing (%)2 +8 (i) 29)

where r; is some chosen typical length, the integration constants U
and S remain to be determined, F is a modified Froude number
U?/gry and w is a known quantity calculated from

96
o= 2EE ()2
(1 —sin ¢) B

It might be noted in passing that though the solution (29) has been
obtained for the case in which the wall friction angle, 6, is constant
along the walls it is also possible to construct a more general solution
in which § and hence 7,, is some prescribed function of r (Pearce
[14]).

Having obtained uo(r) and oo(r) except for the two undetermined
constants U and S expressions for u» and o3 then follow simply from
(21) and (22):

V1= Yw-

(28)

(30)

us = — 20,v,U <ﬁ>
-
02 _ [7w(30w+2'yw)sin<p+ 6,2 ] <L>
pEry (w—1)(1 —sin2¢) 2(1+sing)l \ry
_ 27, %F sin ¢ 1)\ 2
(w + 2)(1 — sin2 o) ( )
+ Sywlwdy, + 2v, + 26,) sin ¢ (_r—
(1+sin¢)

(31)

r

ra

Each of the basic equations have thus been used once to produce a
solution in which all terms of order #3 or greater have been dropped
from the expansions (15)—(18). It is particularly significant to note
from the results (31) and (32) that the order of magnitude of 1o is less
than that of ug by the factor 6,,v,, and that the order of o5 is less than
that of oo by the factors 6,7, V.2 and 6,,2. Thus in so far as suc-
cessive terms have been determined the expansions converge provided
6, and v, are substantially less than unity.

5 Boundary Conditions on the Upper and Lower
Surfaces

Before the solution comprised of (27)-(29), (31), and (32) can be
used to compute quantities such as net flow rate the constants S and
U must be determined by the application of boundary conditions at
the upper and lower surfaces. Of these two boundaries it will be seen
that provided the approximate positions (Fig. 1) given by r = ro and
ry, respectively, are such that ro/r; « 1 then it is particularly impor-
tant to apply realistic boundary conditions at the discharge from the
hopper. Physically what happens at this boundary is that along some
line, T, such as that dashed in Fig. 2, the intergrain pressure becomes
zero (¢ = 0) and below this line the grains effectively freefall with
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)w. (32)

contact which is intermittent at most. Thus the most appropriate
condition is that ¢ = 0 on some undetermined surface I" which, in
general, does not lie on the cylindrical surface r = ry. Since the
boundary condition on the upper surface which is located in the vi-
cinity of r = rq is less critical we shall assume a similar boundary
condition for the upper surface even though a number of alternative
conditions dependent on the actual hopper problem are possible.

But prior to the application of these conditions it is instructive to
simply assume that the surfaces r = ry, ro are free surfaces with ¢ =
0 and to the first order, to apply ao(ry) =.00(r2) = 0 to the relation (29).
Then both S and F (or U) are determined and o

U2_(w+2) [1 - (:—;)w_l]

F=— . (33)

IS
r2

The fact that o9(r1) = a2(r2) = 0 cannot simultaneously be satisfied
is simply a reflection of the unjustified assumption that the free
surfaces lie on r = ry, ro. Nevertheless (33) may be regarded as the
first-order solution for which the corresponding average discharge
velocity Up = U. Note that the character of the solution (33) when
ro > ry differs according to whether w is greater or less than unity.
This critical value can be seen from the relation (30) to correspond -
effectively to an internal friction angle greater or less than about 20°,
or more precisely

Peritical = sin~1 [{3 + Z'Yw/aw}_l]' (34)

If «y is greater than this then the flow rate given by the result (33)
becomes independent of the head or position of boundary r = rg
provided ry > r1. (In this situation the constant S becomes negligible
and the constant F and hence the flow rate is effectively determined
by the boundary condition at discharge alone).

To obtain a more accurate result than (33) which includes the
OBy, 8,,2) terms we assume that the radial distance, €(6), between
actual discharge free surface, T, and the surface r = rq (Fig. 2) is given
by LY

=a[- ()

Then the condition that ¢ = 0 on this surface is expanded in a Taylor
series to obtain the condition

(35)

#\2\ /00

nta () G @
Substituting the series expansion (18) this condition yields
[}

(‘TO)r=r1 + e <ﬂ> =0 (37)

or /r=r,

Qg Qag
v (22— (22 =0 (38)
@nta (3., (5

from which it is clear that ¢; is of order 6,,v., 6,2 and that to this
order
(‘70 + 62)r=r1 =0 (39)

_ (02)r=r1
€1

== 40y
(aUO/br)r:rl ( )

Using the modified condition (39) at both r; and rs the corrected result
which differs from (33) by factors involving 6,,v,, and 6,2 can be
written as

v (w+2)[1_ (:_Dw—l]
ey

(87 sin ¢ + 30y, sin ¢ — Gw)]. (41)

O
X [1 o
2(1 + sin ¢)
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Table 1 Some measured properties of granular media

%*

* %
Internal Surface

Mean Standard Particle Critical Bulk Surface
particle deviation Specific Void Specific Friction Friction Friction
diameter  (mm) Gravity Ratio Gravity Angle Angle(s) Angle(d)
(mm) of(deg. ) with with
MATERIAL lucite Aluminum
Glassbeads:
P-0140 0.272 0.046 2.47 0.65 1.50 18.2 15. 7
P-0170 0.325 0.041 2.47 0.69 1.46 24.6 15.3 17.7
P-0280 0.592 0.056 2.47 0.67 1.48 24.3 14. 4 15.1
V-070 1.326 0.114 2.92 0.71 1.71 26.8 14.2 15.1
V-160 3.23 0.175 2.92 0.76 1.66 31.7 12.9
Mu'stard Seed 2.07 0.196 1.22 0.72 0.71 38.2 12.0
Fine Grain Quartz Sand 0.224 0.074 2.67 0.71 1.56 24.1 20.2
Medium Grain Quartz Sand 0.317 0.071 2.67 0.75 1.53 30.7 17.9
Coarse Grain Quartz Sand 0.681 0.109 2.67 0.75 1.53 30.6 14.4 24.5
*Data scatter is less than 120,
Furthermore by including u as given by equation (31), the average Ury 2 dug 2 duo
. . . . u = - — —— —_ prsue—
discharge velocity, Up, is simply related to U by o 3 wYwl or + 3 O ysr or
2 0,200 } 2(r,
Up = (1 - _0w7w> U. (42) 42 1= (rug) — rw (45)
3 6 lor or?
Combining (41) and (42) one obtains the result . . . . .
& where U is again an arbitrary constant and the last terms involving
[1 _ <ﬂ) "’_1] v3 and 0,2 represent corrections to the preceding solution. Also
Up? (w+2) re 2
L - = —pa=— 8, — (rug). 46
gri (w— 1)[1 _ <£1_>w+2:| U1 v3 i - (ruo) (46)
r2 Now v3 follows directly from equation (24) and can be evaluated up
<14 0,,v. (16 sin ¢ — 8) + 6,29 sin ¢ — 3) 43) to and including terms of order 8,3, 6,,%v,, 6,72 and v,,° in the
12(1 + sin ¢) small quantities using the preceding expression (29) for a¢. Then

which is accurate to order 8,7y, and 6,2 Note that provided ¢ is
greater than 30° the net correction is always positive unlike that in-
dicated by (42) alone. It is convenient to use the hopper opening width,
d (Fig. 2), rather than ry to define a nondimensional discharge flow
rate Up/(gd)'/2 = Up/(2gry sin 6,,)1/2. 1t also follows that the maxi-
mum separation of the discharge free surface and the cylindrical
surfacer = ry is

f_l_g Y sin ¢ +0_w(3sin<p—1)
d 3(1+sing) 12 (1+sing)

(44)

6 Higher-Order Solution
In the preceding section we obtained a solution up to O(63) in the
expansions and that solution indicates that the expansions converge
provided 6, < 1, v, < 1; we shall see that the solution yields sig-
nificant improvement in the comparison of theory and experiment
over the frictionless wall solution of Sullivan [21). In terms of the small
quantities we have seen that uo, oo are order unity, vy is zero, vy is
O(vw), uz is O(6,7.) and oy contains terms of order 8,2 and 6,,7v,.
Before proceeding to utilizing the results of that solution, we should
briefly examine the nature of the solution to the next highest order.
Clearly, this requires that a further term in each of the expansions be
included and evaluated. Thus the boundary conditions (25) and (26)
on the walls become
vi(r) +va(r) = 0;  v1(r) + valr) = v

From equations (19), (21), and (23) it follows that uo and 3 are now
related by the differential equation

Journal of Applied Mechanics

improved expressions for ug and og accurate up to quartic terms like
0% 03vw, 002702 8vw3, and v,,4 follow from (45) and (20). Con-
sequently, expressions for us, o9, vy, U3, U4, 64 accurate to the same
order follow. The algebra is extremely tedious due to the presence of
a denominator like the right-hand side of equation (29) caused by the
present of og in the 3 term of equation (24) and the details will not
be included here. The form of the solution is discussed only to dem-
onstrate feasibility and to show that the next correction to v and ¥y
is cubic order in 8, and v, and the next correction to u and ¢ is of
quartic order.

7 Measurements of Material Properties

Prior to comparison of the results of Section 5 with experiment it
is necessary to briefly discuss the required material properties,
namely, the bulk density p in the flowing state, the internal friction
angle ¢, and the wall friction angle é.

Both the experiments and theory concern granular media which
are in a flowing state. Most granular materials exhibit dilation as they
are subject to loading and reach a critical void ratio at the point of
yield and initiation of flow. This critical void ratio appears to be in-
dependent of the initial packing and changes little with further de-
formation or with deformation rate (Taylor [22], Scott [18], Jenike
[10]). Thus the relevant bulk density p required in the analysis is
obtained from the particle material density and the critical void ratio
or by other standard means which measure directly the mass of a given
volume of granular medium in its critical state.

Pearce [14] measured the relevant material properties of nine dif-
ferent granular media and these are listed in Table 1 (for other mea-
surements see, for example, Weidler and Pasley [24], Drucker, et al.
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Fig.3 Variation of dimensionless discharge, Up/ (gd)''2 with hopper height,
r2/r4, for an opening angle of §,, = 30°, an internal friction angle of ¢ = 30°
and various wall friction angles, 8, as shown

[6], and Sullivan [21]). The internal friction angles, ¢, were measured

- using a Direct Shear Apparatus (Scott [18]) in which a sample under
a given normal load is subjected to shear displacement and the reac-
tive shear force measured. The ratio of the shear force to the normal
load reaches a maximum value after sufficient displacement, that
value being tan ¢ where ¢ is the internal friction angle. For the cohe-
sionless materials tested this angle was virtually independent of the
applied normal load and the values are listed in Table 1. The exhibited
increase of ¢ with increasing standard deviation in particle size is
worthy of note and may be due to greater interlocking of the grains
in the materials with larger variations in particle size. A somewhat
similar interlocking phenomena may explain the greater internal
friction angle in the more irregular particles such as the sands and
mustard seed.

Finally, Pearce also measured surface friction angles between the
granular materials of Table 1 and walls made of lucite and aluminum.
The device used was similar to that employed for measurement of
internal friction but the normal load and shear displacement were
applied to lucite and aluminum pads and the inverse tangents of the
ratio of shear force to normal loading determined the wall friction
angles, 4, listed in Table 1. The scatter in individual friction angle
measurements was about £2°.

8 Comparison With Theory

One of the difficulties in comparing the theoretical results with
experiments on the flow through two-dimensional or wedge-shaped
hoppers is a frequent lack of data on p, ¢, or 6. Thus Table 1 and the
last section have been included in order not only to report some typical
values of these quantities but also to permit comparison with hopper
discharge rates measured by Sullivan [21] (the measurements of the
last section were performed with granular materials similar to those
used by Sullivan).

Sullivan [21] measured discharge flow rates for the P-0170 glass
beads and a sand (fur which measurements showed ¢ = 30°, 6 = 25°)
through aluminum-plated brass “two-dimensional” hoppers of various
opening angles, 8,,. The discharge opening, d, was 6.35 mm (¥; in.) and
the flow was bounded in the other dimension by vertical lucite side
plates separated by either 55.6 mm or 68.3 mm. This dimensional
change had no discernible effect on the results indicating that the
frictional effects of these side plates was small. The supply to the
hoppers was from a vertical duct 68.3 mm square, the value of ro/ry
being 10.75. It was observed that the flow rate was head independent.
In Fig. 3 we have plotted the variation of the nondimensional dis-
charge Up,/Vzd from equation (43) against ro/r; for a typical opening
angle 6, of 30°, various wall friction angles, 6 and a typical internal
friction angle, ¢, of 30°. It can be seen that provided ry/r; is greater
than about 5 the discharge is indeed independent of ry/r; for typical
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Fig- 4 Asymptotic values of the dimensionless discharge, Up /(gd)''2; for
r2/ry >> 1 and an internal friction angle of ¢ = 25° plotted against the hopper
opening angle for various wall friction angles, 8, as shown. The experimental
points are measurements of Sullivan [21] on glass beads (¢ ~ 25°) with a wall
friction angle 6 of 17°.

friction angles. The asymptotic values of discharge rate from equation
(43) are plotted against 8,, in Figs. 4 and 5 values of ¢ of 25° and 30°
and various wall iriction angles. The zero wall friction curves corre-
spond to but are different from those of Savage’s [16] frictionless wall
theory. Sullivan’s [21] experimental data for glass beads (¢ = 25°, 8
=~ 17°) and for a sand (¢ =~ 30°, § ~ 25°) are also plotted in Figs. 4 and
5. It can be seen that the agreement between theory and experiment
is good in both cases.

Apart from the global property of total discharge we can also
compare the variation of the local velocity u with position 8 (the ve-
locity profile) with the experiments of Bosely, Schofield, and Shook
[1] who made photographic measurements of the particle velocities
at discharge from a lucite hopper for which 8, = 32.5°. Their results
for a sand with an effective internal friction angle of 35° are plotted
as the ratio of local particle velocity to average particle velocity (like
Up) in Fig. 6. Also shown are the predictions of the present solution
for wall friction angles of 0°, 10°, and 20°. It can be seen that the ex-
periments agree well with the theoretical prediction for an expected
4 of about 15° (see Table 1). Though we have plotted here the ratios
of velocities the total mass discharge rates also agree well with the
theory.

Another feature of interest in the theory is the distance ¢; between
the discharge free surface at § = 0 and the cylindrical surface r = ry.
This is plotted nondimensionally as ¢;/d (from equation (44)) in Fig.
7 as a function of 6, for a typical value of ¢ (25°), tall hoppers (ry/ry
> 1) and various wall friction angles. Notice that ¢,/d is always small
and is only slightly dependent on either ¢ or ,,; it is primarily de-
termined by the wall friction angle, §, being given approximately by
Y tan 8.

Finally, we have also plotted the variation of the theoretical non-
dimensional pressure, o/pgr1, on the walls with position r/rq for a
hopper opening angle of 25°, a hopper height of r2/r; = 18 and an
internal friction angle of 35° in Fig. 8. An experimental “line” given
by Handley and Perry {7] is also shown and pertains to a hopper of
opening angle 25° and a sand of ¢ = 35°, § = 20°. The scatter on these
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Fig. 8 Nondimensional wall pressure (o/ pgr, at the wall) as a function of
position, r/r,, for a 25° hopper for which ro/r; = 18, a granular medium ot
¢ = 35° and various wall friction angles as indicated. The experimental data
given by the dashed line are taken from Handley and Perry 7] for which 0,,
= 25°, ra/rqy, ¢ =~ 35°, and § ~ 20°.

experimental measurements was not given by Handley and Perry and
hence the experimental line could only be regarded as representative
of the trend in these difficult experimental measurements. In this
respect the theory would appear to be consistent with the experi-
mental results.

9 Concluding Remarks

We have shown that an analytical solution for the flow of a granular
medium in a two-dimensional hopper which is based on the Jenike-
Shield constitutive relations yields results which are in good agree-
ment with the experiments as far as hopper discharge and the nature
of the flow near discharge are concerned. The solution is restricted
to so-called “mass flow hoppers” of moderate opening angle 8,,. The
solution demonstrates the well-known experimental fact that the
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discharge rate is primarily a function of the conditions at discharge
and is independent of the conditions at inlet provided by ro/r; »
1. :

In most experiments on mass flow hoppers the inflow is provided
by a vertical duct leading from another supply hopper. Thus there
exists a transition from an unyielded plug to the flow in the test
hopper; Lee, Cowin and Templeton [12] have observed that this
transition can be quite unsteady in some materials. However the flow
near discharge appeared to be much more regular and steadier. (In
this regard we might mention that an examination of the stability of
the present solution to nonsymmetric perturbations indicated that
it was always stable under the boundary conditions assumed in Sec-
tion 5.)

Experiments show that as the angle, 8, is increased beyond a
certain value the flow in the hopper changes character and takes a
form in which flow exists in a central core surrounded by unyielded
material. The present solution though restricted to small 6,, does
indicate progressively smaller velocities near the walls as 8, is in-
creased. Indeed the relations (28) and (31) suggest that the wall ve-
locity reaches zero when 6, ~ 2v,,. Though such angles are beyond
the realm of validity of the solution the resulting limiting wall angles
in the neighborhood of 50° are not inconsistent with the experimental
observations (Wieghardt [25]).

Finally, we should mention that the corresponding solution for
conical hoppers should follow lines very similar to those presented
here and will be presented shortly.
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