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Abstract. The Dynamic analysis of structures constructed of homogeneous smart 
materials is greatly simplified by the observation that the eigenfunctions of such 
structures are identical to those of the same structures constructed entirely of 
purely elastic materials. The dynamic analysis of such structures is thus reduced to 
the analysis of the temporal behaviour of the eigenmodes of the structure. The 
theory is illustrated for both continuous and discrete structures using the 
generalization of ‘positive position feedback‘ to distributed control. 

1. lntrbduction 

In the last decade the introduction of ‘smart’ materials 
has made possible the robust control of multi-degreeof- 
freedom and continuous structures. If the skructure is 
fabricated of homogeneous ‘smart’ material the dynamic 
analysis of the structure is 5 e a t l y  simplified by the 
observation that the eigen functions of such structures are 
identical to those of the same siructure constructed entirely 
of purely elastic materials. The dynamic analysis of such 
structures is thus reduced to the temporal analysis of the 
eigenmodes of the structure. 

2. Background 

Consider the following partial differential equation with 
homogeneous boundary conditions and given initial 
conditions: 

A(x)Utt + D I ( B ( x ) D I U )  = f ( x ,  t )  : 0 < x < L. (1) 

In equation (1) A ( x )  is a mass density, B ( x )  a distribution 
of elastic stiffness, D1 a spatial operator, f ( x , t )  a 
spatial distribution of time varying force. If equation (1) 
has homogeneous boundary conditions, then under weak 
restrictions on A@), B(x)  and D1 equation (1) possesses 
a complete set of eigenvalues 0; and corresponding 
orthonormal eigenfunctions 4; ( x ) .  

The solution of equation (1) can therefore be express 
in the form 

m 

( X , t )  = C U i ( t ) @ i i ( X )  (2)  
i=n 

where ai@), i E 1 1 , ~ )  are the solutions of the ordinary 
differential equations 

zi + o;ai = q&) (3) 
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with given initial conditions a&), &(i). and qi(t) is given 
by: 

L 
qi (0  = f ( x ,  t)di(X)dr. (4) 

Consider now the following partial diiferential with 
homogeneous boundary conditions and given initial 
conditions 

A(x)Utt + DI(B(x)DI  V )  = f ( ~ ,  t )  : 0 < x i L (5 )  

where V ( x ,  t )  is given by 

V ( x ,  t )  = j - i h ( r  - r )U(x ,  s )dr  (6) 

or 

V ( x ,  t) = ?iU(X, t) (7) 

where H is the hereditary operator relating V ( x ,  t )  and 
U ( x ,  t )  such as occurs in viscoelasticity. 

As in the case of equation (1) we seek a solution in the 
form 

m - 
u(x,t) = Cbi( tMi(x)  (8) 

i=O 

where bi( t ) , i  E [Loo) are the solutions of the 
integrodifferential equations: 

+ o”Hbj = q;( t )  (9) 

with given initial conditions bi(0). &(O), and qi(r) given 
by equation (4). 

Equation (9) is easily solved using integral transform 
methods such as Laplace or Fourier. This technique was 
used by Caughey (1962) to srudy the dynamics of systems 
with linear hysteretic damping. 
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3. Active damping control 

All physical systems possess some degree of internal 
damping which usually increases with frequency, so that 
the higher-frequency modes are more highly damped than 
the low-frequency modes. Flexible space structures tend 
to have very light damping in the low-frequency modes 
while the high-frequency modes are usually adequately 
damped. This means that the settling time for flexible 
space structures can be quite long unless active damping 
techniques are employed to increase the effective damping. 
In addition to the problem of settling time, light damping 
in the low-frequency modes makes the shucture very 
sensitive to disturbances. For these reasons there has 
been considerable research into the active control of 
structures. Initially these studies were concemed with 
aerospace structures, but in recent years such studies have 
been extended to civil structures such as buildings and 
bridges. Numerous control techniques have been suggested; 
these have been reviewed by Balas (1982) and Meirovitch et 
al(1981). Most techniques employ the concept of optimal 
control, but are often plagued by the problem of observation 
spillover. Tliis tends to destabilize some of the uncontrolled 
or unmodelled modes, as has been amply demonstrated by 
Balas (1978a) and Schaechter (1982). Another important 
problem which has been largely ignored is the problem 
of actuator dynamics. This poblem has been considered 
by Balas (1978b) and Caughey and Goh (1982, Goh and 
Caughey 1985), who have shown that the finite bandwidth 
of practical actuators, while providing excellent control of 
low-frequency modes, may destabilize the intermediate or 
higher-frequency modes. 

The technique of collocated direct velocity feedback 
has been examined by Auburn (1980), Balas (1978b) and 
Chen (1982) and shown to be unconditianally stable in 
the absence of actuator dynamics. However if actuator 
dynamics are included, instabilities may arise unless special 
precautions are taken. It is possible to design stable velocity 
feedback control systems, including actuator dynamics, and 
several techniques are discussed by Caughey and Goh 
(1982). An altemate control scheme first proposed by 
Caughey in the late 1970's as a way in which collocated 
sensors and actuators could be used in active control to 
increase the damping of the lower modes of space struchues 
without the actuator dynamics causing instability in the 
uncontrolled or unmodelled modes. Caughey and his 
students Goh and Fanson further developed this rather 
unconventional technique, which is a generalization of the 
concept of the tuned vibration absorber. The theory of 
positive position feedback is covered in the papers by 
Goh and Caughey (1983, 1985) and experiments with the 
technique are covered in the paper by Fanson and Caughey 
(1987). Addition details are contained in two Calech Ph.D. 
thesis Goh (1983) and Fanson (1987). The technique has 
been exploited by Fanson at JPL and is now covered by a 
NASA patent. 

In addition to its other advantages, positive position 
feedback can, in concept, be incorporated directly into the 
material of which the structure is fabricated, hence the title 
of this paper. 
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4. Positive position feedback 

4.1. Single degree of freedom case 

Consider the following system of differential equations 
describing a system to be controlled and the dynamics of 
its associated actuator: 

m l j l + d ~ x + k l x = k , y +  f ( t )  (10) 
may + daf  + k,y = k,x (11) 

It will be observed that if in equation (10) k,  = k, 
and kl = k + ka, then equations(l0) and (11) describe 
the conventional tuned vibration absorber. Thus positive 
position feedback may be regarded as a generalization of 
the well known tuned vibration absorber. 

Define: 

Equations (10) and (11) take the form 

(13) 
f (0 
ml 

x + B1k + 6$X = A& + - 
y + p a y  + w,'y = w;x (14) 

Equations (13) and (14) may combined in the form 

'H=I-h'F( ,  
I 

?Lax = l _ h ( t  - r)x(r)dr = y ( r )  

4.1.1. StabiIity Setting f(t) = 0 in equation (13), 
Laplace transforming (13) and (14) with respect to t 
and combining these equations we have the characteristic 
equation for the complete system 

s4 -t ( A  +pl ) s3  + (U: + 4 + B ~ ~ ~ ) s ~  + cw:sl + W?B& 

+w:w:(l -A)  = 0 (174 

s4 + u p 3  + azsz + a3s + a4 = 0 (17b) 

Applying the Routh Hurwitz criterion to the characteristic 
equation, necessary and sufficient conditions for stability 

Which is of the form 



are: 

(i) ai > 0, i = 1.2,3,4 
(ii) ala2 > a3 (18a) 
(iii) l i l l i 2 l i 3  i i$. 

It may be shown that conditions (ii) and (iii) in equation 
(18a) are satisfied if conditions (i) are satisfied. Hence 
necessary and sufficient conditions for stability are: 

(1) > 0 

(2) pi > 0 (18b) 
(3) 0 e A < 1. 

Since the inherent system damping is always positive, and 
since pa is designed to be positive, the only condition for 
stability is that A be less than unity. Thus if the system 
is statically stable it is also Liapunov asymptotically stable 
(LAS). (It should be noted from equations (10) and (1 1) that 
static stability requires that k l  > %. or k l ( l  - A )  > 0, thus 
if A > 0, the condition for static stability is that A e 1.) 

4.1.2. Frequency response of system The analysis of 
the stability of the system under positive position feedback 
M L U W C U  Uull I, U,= LUUIUILLCU SyJLGLlL wa> ara%LLtmLy *Lu"IT .I 

was also Liapunov asymptotically stable, and that this was 
true for any combination of systedactuator frequencies. 
In this section we shall utilize this property to design a 
control system which will be robust to changes in the 
system frequency and damping, which are often not known 
accurately. 

Since the system is LAS all initial displacements and 
velocities will disappear with time. Thus we need only 
consider the steady state response to sinusoidal excitation, 
since by Fourier's Theorem we can synthesis the response 
to any type of excitation. 

Fourier transforming equation (15) with respect to f, 
setting all initial conditions to zero, we have: 
",>.,,..\ n , . . \ * . . 2  rtUJlAl(mJ = U(mJ0lWi 

P(w) = [w4 - (O - U' + W: + @&)w2 + u:w:(~ -A) 

^L -1 'L". :c.L* ---t.:..*2 ... ^^ "*..*:-",I.. -+-T.,- :* 

( E )  

-j(pB+pl)W3 -tj(w:~1 + 4 ~ m 1  (20) 
Q(w) = [U,' - + j ~ p a l  (21) 

where SI = I f l / k l  
Thus the frequency response function R(o) is given by: 

Introducing the dimensionless frequencies q.  = wn/ml 

2 2  {[U - q2)(q: - 7') - 4~1z~q .q~  - Aqal  
+4$[qaza(l - 11') + Z I ( ~ :  - S2)]2]-"2 (23) 

where zn = pJm:. Examination of equation (23) shows 
the following properties: 

,I\ " .~  -.~ . _ _ ^ _  :. , ._.- :-., L.. \ 
(1) i u e  siauc rcspurwr. IS uciaiuincu uy A. 

(2) The peak response is determine primarily by qa and 
za. which are properties of the actuator. 
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(3) The intermediatefrequency response is mainly 
determined by z1 which depends on the damping inherent 
in the system. 

(4) The high-frequency response goes to zero as q->. 
Figure 1 shows the frequency response of the controlled 

system as a function of q. the normahzed natural frequency 
of the actuator. The. values of the damping parameters za 
and z1 have been set at 0.5 and 0.005 respectively. Figure 
2 shows the maximum response of the system for different 
values of the actuator frequency parameter qa in the range 
of 0.7 to 2.0. It is seen that best performance is achieved 
when the actuator is 'tuned' to the vicinity of the system 
natural frequency, however, the tuning is not very sensitive. 

4.2. Multi degree of freedom case 

Consider now the application of positive position feedback 
to a discrete multi degree of freedom system in which each 
spring is equiped with a relative displacement sensor/force 

proportional to the force through the spring. Furthermore 
suppose that each actuator has the same dynamic response. 
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The equations of motion of such a system are: 

Mi! + Bk + KXz = f(x, t). (24) 

where: M, E, K are symmmetric positive definite N by 
N matrices, (in the aerospace context only .,bI is  positive^ 
definite), z is an N vector and X is the hereditary operator 
7-1 = (1 - AX,) where: 

Let Cx = b be the conguence transformation which 
diagonalizes M, B, K, then equation.(25) is transformed to: 

6i + Bibi + o;'Hb; = 4i(t) ,  i E [l,  NI.  (26) 

4.2.1. Stability Setting qi(t)  = 0 in equation (26) 
and Laplace imnsfonning with respect to t we have the 
characteristic equation for the ith. mode of the complete 
system 

s4 + 6% + B i b 3  + (U: + U; + B;B.)SZ 

+(@:pi + w?W)s + o:w?(l -A)  = 0 

i E 11, NI. (27) 

Applying the Routh Hurwitz stability criterion to the 
characteristic equation (27) & before, it is easily seen that 
necessary and sufficient conditions for stability are: 

(1) B. 0 
(2) pi >= 0 (28) 
(3) 0 < A  < 1. 

Since the inherent system damping pi is always positive, 
and since fia is designed to be positive, the only condition 
for stability is that h be less than unity. This is true for 
each mode of the complete system. Thus if the system is 
statically stable it is also Liapunov asymptotically stable. 

4.2.2. Frequency response of system The analysis of 
the stability of the system under positive position feedback 
showed that if the combined system was statically stable it 
was also Liapunov asymptotically stable, and that this was 
true for any combination of systedactuator frequencies. In 
this section we shall utilize this property to design a system 
which will be insensitive to disturbancies. 

Since the system is LAS all initial displacements and 
velocities will disappear with time. Thus we need only 
consider the steady state response to sinusoidal excitation, 
since by Fourier's Theorem we can synthesis the response 
to any type of excitation. 

Fourier transforming equation (26) with respect to t ,  
I rettino -..... all  -. ....-- initisl rnnditinnc -_ tn .- I_._, 7pm we h a v r  

P(U)&(O) = Q(w)~Iu: (2% 

-i(a + + j(U,2pi + U?B.)UI (30) 

P(W) = [U4 - (U: + U; + p a p i ) J  + U:U;(l - h)  

Q(U) = [U," - U' + j o p i  (31) 
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where 81 = [q[/wT. Thus the frequency response function 
R(w) is given by: 

Introducing the dimensionless frequencies qi = u ; / u ~ ,  and 
setting B. = 20,z,, pi = b i z ; .  

Ri(tl) = $($ - q2)2 + (2tlqazd21 
2 2 2  I[($ - IjL)(tli - q2) - 4~iZaziqaqi$ - htlnqi 1 

+41ilIz,17a(qT - q2) + Zitli(d - r1*)I2h (33) 
Examination of equation (33) shows the following 
properties 

(1) The static response is determined by A. 
(2) The peak response is determine primarily by qn and 

za, which are properties of the actuator. 

determined by zi which depends on the damping inherent 
in the system. 

(4) The high-frequency response tends to zero as q-'. 

Figure 3 shows the peak-frequency response of the 
eigenmodes of the controlled system for different values 

(7) n e  intermediate-frequency response is mainly 
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can be obtained from Figures 3 and 4. Thus we see that 
for continuous systems ‘smart’ material implimentation of 
positive position feedback gives a control system which is 
robust to variations in the frequecies and damping of the 
eigen modes, which are usually not known accurately. 

An aiternative derivation of the stability of the 
controlled beam is established in Appendix A without the 
use of eigenfunctions. 

It should be noted that in the case of discrete multi- 
degree-of-freedom systems, if the ‘springs’ are fabricated 
from ‘smart’ material, the system will automatically have 
the proper form for positive position feedback control. 

5. Conclusions 

(1) It has been shown that the dynamic analysis of structures 
fabricated from a homogeneous ‘smart’ material is greatly 
simplified by the observation that the eigen functions of 
such shuctures are identical to those of the same structure 
fabricated entirely of purely elastic materials. The dynamic 
analysis of such structures is thus reduced to the temporal 
analysis of the eigenmodes of the smcture. 

(2)  It has been shown that ‘positive position feedback 
control‘ is easily implimented in concept in both discrete 
and continuous systems. It is shown that one can design 
such a control system which will significantly increase 
the damping in the lower-frequency modes of a structure 
without affecting the stability of the uncontrolled higher- 
frequency, or unmodelled modes. Furthermore it is 
shown that an exact knowledge of the natural frequencies 
of the structue is not required in order to design an 
effective control system. With modem micro-fabrication 
techniques it is possible to miniaturize the sensors, actuators 
and amplifiers used in positive position feedback and 
to construct structural materials which have the desired 
damping properties built into them. 

Appendix A. Stability of positive position 
feedback for continuous systems 

The stability of the continuous model system equation (34) 
can be established directly without recourse to the use of 
eigenfunctions, to this end we can rewrite equation (34) in 
scaled component form: 

VI, - BUxzi + uz.rzz = waF.Vxx; 0 < x < x (AI) 
v,, +&%VI + w,zv = W,AU, (A21 

where U ( x ,  t )  is the displacement of the simply supported 
beam we wish to control, V ( x ,  t )  is the control signal, and 
h e 1  

V ( t ) =  l / 2 ~ ~ l U ~ + V ~ + U ~ ~ + w ~ V Z f 2 0 a A ( l i ; V l ] d X .  

using the Cauchy-Schwa& inequaiity it is easiiy seen that 
V ( t )  is positive definite for U ( x ,  t )  # 0. 

Differentiating V ( t )  with respect to t and evaluating 
along the trajectories of the motion, we have: 

Consider the Liapunov function V(t): 

0\3) . 

of qi the normalized natural frequency of the ith. mode. 
The values of the parameters ma, za and z; have been set 
at 1.2, 0.5 and 0.005 respectively. It is seen that the peak 
response in all modes is less than 3.2. Figure 4 shows 
a comparison of the peak response in all modes with and 
wiihout controi. it is seen that tine response in aii modes 
is less than or equal to the response without control. In 
particular the response of the first mode is reduced by a 
factor of over thirty, if the intemal damping,in the system 
is only 0.001 then the response in the first mode is reduced 
by a factor of over one hundred and fifty. 

4.2.3. Continuous systems Fanson and Caughey (1987) 
applied the concept of positive position feedback io the 
vibrational control of a cantilevered beam using a single 
collocated piezoelechic sensodactuator pair. By using 
tuned filters in the feedback loop excellent control was 
obtained for the first five modes of vibration. Dosch et 
ul (1992) showed that one could combine the piezoelechic 
sensor/ actuator in a single element. This raises $e 
possibility that with modem micro- fabrication techniques 
one could make engineering materials in which the 
sensor/actuator eIements and the associated amplifiers were 
incorporated into the materials. Structures fabricated from 

To illustrate these ideas, consider the following model 
problem, of a simply supported beam fabricated out of such 
a ‘smart’ material 

LTLa+zr$s ;x20-’d .h,a\7e hi&$ des;-.hlp ppegies .  

nu,, - A U ~ ~  + muxzu = f ( x ,  t )  o < x < L. (34) 
With simply supported boundary conditions, the eigenfunc- 
tions for equation (34) are: 

~ , i ( x )  = m s i n ( z i x / L )  i E [I, 00). (35) 

The corresponding eigenvalues are: 

= ( i n / L ) ’ m ,  i E [I, 00). (36) 

Expressing the solution of equation (34) in the form: 

m 
U ( x ,  t )  = C U i ( t ) Q i ( X ) .  

i=O 
(37) 

Substituting equation (37) into equation (35) and making 
use of the orthogonality of the eigenfunctions we have: 

a; + 20;zjuj + w;XuHai = q&) (38) 

where: 
L 

9dO = 1 Q d x ? f ( x ,  t)&. (39) 

The structure of equation (38) is identical in form to 
that of equation (26) except that N = 00. Thus we see 
that all the eigen modes of the continuous system are 
Liapunov asymptotically stable for A < 1, hence if the 
system is statically stable it is also LAS. Furthermore, except 
for the fact that the natural frequencies extend to infinity, 
the frequency response of the continuous system are given 
by equation (33). Therefore if zi = z = 0.005, and za 
in 7ta = 0.5, then the response of the continuous system 
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Thus the system is Liapunov stable, however, standard 
arguments show that unless U ( x ,  t )  = V ( x ,  t )  = 0, 9 
can vanish only on sets of zero measure, thus the controlled 
beam is in fact Liapunov asymptotically stable. 
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