Park, Hyunwoong and Vecitis, Chad D. and Hoffmann, Michael R. (2009) Electrochemical Water Splitting Coupled with Organic Compound Oxidation: The Role of Active Chlorine Species. Journal of Physical Chemistry C, 113 (18). pp. 7935-7945. ISSN 1932-7447. https://resolver.caltech.edu/CaltechAUTHORS:20150804-121741191
![]() |
PDF
- Supplemental Material
See Usage Policy. 41Kb |
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20150804-121741191
Abstract
The need for alternative energy sources with minimal to no carbon footprint is growing. A solar-powered electrochemical system that produces hydrogen via water splitting using organic pollutants as sacrificial electron donors is a possible solution. The hybridization of a BiO_x−TiO_2/Ti anode with a stainless steel cathode powered by a photovoltaic (PV) array has been shown to achieve this process. The electrochemical degradation kinetics of a variety of organic substrates is investigated as a function of a background electrolyte, NaCl versus Na_2SO_4. The observed substrate (S) degradation kinetics (k_(obs)^S) are found to correlate well with the cell current (I_(cell)) and the H_2 production energy efficiency (EE) in the presence of NaCl as the background electrolyte. In the case of Na_2SO_4, no correlation is observed and the degradation rates are greatly reduced in comparison to NaCl. This suggests that the primary chemical oxidant is electrolyte-dependent. The k_(obs)^S’s are found to be proportional to the bimolecular rate constants of Cl_2^(•−) with the substrate (k_(Cl_2^(•−) + S)) and to substrate-induced ΔEEs (EE with substrate − EE without substrate) in the presence of NaCl. The ΔEE correlation arises from the active chlorine species acting as an electron shuttle, which compete with H_2 production for cathodic electrons. In the presence of the organic substrates, the active chlorine species are quenched, increasing the fraction of electrons utilized for the H_2 production.
Item Type: | Article | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Related URLs: |
| ||||||||||||
ORCID: |
| ||||||||||||
Additional Information: | © 2009 American Chemical Society. Received: November 24, 2008; Revised Manuscript Received: February 3, 2009. We are grateful to the Hydrogen Energy Research & Development Center, and 21st Century Frontier Research and Development Program of the Ministry of Science and Technology of Korea for research support. Supporting Information: Kinetic mass balances and steady-state concentrations of the reactive species are provided in Table S1. Reaction rate constants for Cl^• and Cl_2^(•−) reacting with the target substrates are provided in Table S2. | ||||||||||||
Funders: |
| ||||||||||||
Issue or Number: | 18 | ||||||||||||
Record Number: | CaltechAUTHORS:20150804-121741191 | ||||||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechAUTHORS:20150804-121741191 | ||||||||||||
Official Citation: | Electrochemical Water Splitting Coupled with Organic Compound Oxidation: The Role of Active Chlorine Species Hyunwoong Park, Chad D. Vecitis, and Michael R. Hoffmann The Journal of Physical Chemistry C 2009 113 (18), 7935-7945 DOI: 10.1021/jp810331w | ||||||||||||
Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||||||||||
ID Code: | 59183 | ||||||||||||
Collection: | CaltechAUTHORS | ||||||||||||
Deposited By: | George Porter | ||||||||||||
Deposited On: | 05 Aug 2015 22:11 | ||||||||||||
Last Modified: | 09 Mar 2020 13:19 |
Repository Staff Only: item control page