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Screening is one of the most important concepts in the study of charged systems. Near a dielectric
interface, the ion distribution in a salt solution can be highly nonuniform. Here, we develop a theory
that self-consistently treats the inhomogeneous screening effects. At higher concentrations when the
bulk Debye screening length is comparable to the Bjerrum length, the double layer structure and inter-
facial properties are significantly affected by the inhomogeneous screening. In particular, the deple-
tion zone is considerably wider than that predicted by the bulk screening approximation or the WKB
approximation. The characteristic length of the depletion layer in this regime scales with the Bjerrum
length, resulting in a linear increase of the negative adsorption of ions with concentration, in agree-
ment with experiments. For asymmetric salts, inhomogeneous screening leads to enhanced charge
separation and surface potential. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4945011]

I. INTRODUCTION

Screening due to the ionic atmosphere is one of the
most important concepts in electrostatics.1–7 The concept was
introduced 90 yr ago by Debye and Hückel in the study of
the thermodynamic properties of bulk electrolyte solution,8

who showed that the bare 1/r Coulomb interaction becomes
damped exponentially with a screening length κ−1

b
. Screening

has profound effects on essentially all properties in systems
containing salt ions. Indeed, the effects of salts on the structure,
thermodynamics and interfacial properties of soft-matter and
biophysical systems are primarily due to screening. When the
ion distribution is nonuniform, as in the vicinity of a charged
surface or an interface with dielectric discontinuity, screening
also becomes inhomogeneous. The inhomogeneous screening
of the fixed surface charge by the mobile ions is accounted for,
at the mean-field level, by the Poisson-Boltzmann theory;1–3

however, the inhomogeneous screening of the charge on a
mobile ion, manifested by its interactions with other mobile
ions as well as with its own image charge, has not been fully
examined.

For a salt solution near a dielectric interface, e.g., the
water/air interface, the repulsive image force creates a
depletion layer, whose theoretical treatment was pioneered by
Onsager and Samaras (OS)9 based on the work of Wagner.10

This problem is related to a number of phenomena, such
as conductivity in artificial and biological ion-channels,11–14

stability of colloidal, bubble, and protein suspensions,15–18

and the rate of ozone consumption.19,20 Assuming that the
image force is screened by the bulk Debye length, the
OS theory qualitatively explains the excess surface tension
of the electrolyte solution observed in experiments and
yields agreement with the experiment data in the low
salt concentration regime (cb < 0.01M). However, there is
large discrepancy between the OS theory prediction and

a)zgw@caltech.edu

experimental data at high salt concentrations (cb > 0.1M).21,22

The OS theory predicts that the width of the depletion layer
shrinks as the salt concentration increases, which results
in a concave downwards curve for surface tension vs. cb.
In contrast, the experimental data show essentially a linear
increase of the surface tension with the salt concentration for
cb > 0.1M. To reconcile the discrepancy with the experiment
data, an exclusion zone of constant width or large hydrated
radius of the ions is usually invoked in recent theoretical
descriptions.23,24

An obvious effect missing in the OS theory9 and
in subsequent modifications23–39 is the spatially varying
screening of the image force near a dielectric interface (see
Figure 1): the ion concentration changes gradually from
zero at the interface to the bulk value. In this depletion
layer, the ionic cloud is highly anisotropic, giving rise to
different features of the screening near the interface from
the homogeneous and isotropic bulk. Close to the interface,
ions are strongly depleted; the local ionic strength around
the test ion (Ion 1 in Figure 1) is much lower than the bulk.
The bulk screening approximation clearly overestimates the
screening effect and hence underestimates the image force.
Even for an ion approaching the bulk (Ion 2 in Figure 1),
the screening is still weaker than in the bulk due to the long-
range, accumulative effects from the depletion zone. This
feature extends the effective range of the image force beyond
the Debye screening length. The WKB approximation37,38

provides an approximate treatment of the inhomogeneous
nature of screening by using the local ionic strength; however,
it does not capture the long-range, accumulative effects.

Since approximate treatments cannot fully account
for all the features of inhomogeneous screening, previous
calculations using these approximations for the double layer
structure and interfacial properties are likely to be inaccurate.
Such inaccuracy in treating the essential electrostatic
contributions makes it impossible to evaluate the relative
importance of the various non-electrostatic effects invoked,

0021-9606/2016/144(13)/134902/8/$30.00 144, 134902-1 © 2016 AIP Publishing LLC

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  131.215.70.231 On: Mon, 18 Apr

2016 14:54:53

http://dx.doi.org/10.1063/1.4945011
http://dx.doi.org/10.1063/1.4945011
http://dx.doi.org/10.1063/1.4945011
http://dx.doi.org/10.1063/1.4945011
http://dx.doi.org/10.1063/1.4945011
http://dx.doi.org/10.1063/1.4945011
http://dx.doi.org/10.1063/1.4945011
http://dx.doi.org/10.1063/1.4945011
http://dx.doi.org/10.1063/1.4945011
mailto:zgw@caltech.edu
mailto:zgw@caltech.edu
mailto:zgw@caltech.edu
mailto:zgw@caltech.edu
mailto:zgw@caltech.edu
mailto:zgw@caltech.edu
mailto:zgw@caltech.edu
mailto:zgw@caltech.edu
mailto:zgw@caltech.edu
mailto:zgw@caltech.edu
mailto:zgw@caltech.edu
mailto:zgw@caltech.edu
mailto:zgw@caltech.edu
mailto:zgw@caltech.edu
mailto:zgw@caltech.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4945011&domain=pdf&date_stamp=2016-04-05


134902-2 R. Wang and Z.-G. Wang J. Chem. Phys. 144, 134902 (2016)

FIG. 1. Schematic of the inhomogeneous screening near the dielectric inter-
face. The red and yellow spheres represent the cations and anions, respec-
tively. The two test ions are labeled, with Ion 1 located very close to the
interface and Ion 2 approaching the bulk solution. The two black spheres are
the image charges corresponding to the two test ions.

for example, to explain the surface tension behavior, such as
the cavity energy,23,24 hydration,24 and dispersion forces.27,28

In this work, we examine the issue of inhomogeneous
screening in salt solutions near a dielectric interface using
a nonperturbative fluctuation theory developed by us.40–42 By
comparing the result from numerical solution of the full Green
function with results obtained using approximate methods, we
find that the effects of inhomogeneous screening on the double
layer structure and interfacial properties are quite pronounced
as the Debye screening length becomes comparable to the
Bjerrum length.

II. THEORY

In recent work, we have shown that the image charge
repulsion generates a depletion boundary layer near the
dielectric interface, which necessitates a non-perturbative
treatment.42 Using a renormalized Gaussian variational
approach,43 we developed a general theory for weak-coupling
systems with a fixed charge distribution ρex(r) in the presence
of mobile cations with charge q+e and anions with charge q−e,
in a dielectric medium of a spatially varying dielectric function
ε(r).40 The key result of the theory is the following set of
self-consistent equations for the mean electrostatic potential
ψ(r) (nondimensionalized by kT/e), the correlation function
(Green function) G(r,r′), and the self-energy u±(r) of the
mobile ions

− ∇ · (ϵ∇ψ) = ρex + Γλ+q+e−q+ψ−u+ − Γλ−q−eq−ψ−u−, (2.1)
− ∇ · [ϵ∇G(r,r′)] + 2I(r)G(r,r′) = δ(r − r′), (2.2)

u±(r) = 1
2


dr′dr′′h±(r − r′)G(r′,r′′)h±(r′′ − r). (2.3)

In these equations, ϵ is the scaled permittivity
ϵ = kTε0ε(r)/e2. λ± is the fugacity of cations and anions
determined from the bulk salt concentration. The function
Γ(r) is introduced to constrain the mobile ions in the solvent
region; Γ = 1 in the solvent region and Γ = 0 in regions
inaccessible to the mobiles. I(r) = �

q2
+c+(r) + q2

−c−(r)
�
/2 is

the local ionic strength, with the concentration of cations and
anions given by

c±(r) = λ±Γ exp [∓q±ψ(r) − u±(r)] . (2.4)

The short-range charge distribution function h±(r − r′) on
the ion in Eq. (2.3) is introduced to yield a finite Born
solvation energy. For our purpose, we will eventually take the
point-charge limit h±(r − r′) = q±δ(r − r′).

Eq. (2.1) is the self-energy modified Poisson-Boltzmann
(PB) equation, reflecting the fact that the ion distribution is
determined by both the mean electrostatic potential and the
self-energy. The Green function in Eq. (2.2) is a conditional
potential at r generated by a point charge at r′ mediated
by other mobile ions, in the presence of spatially varying
dielectric constant and ionic strength. The self-energy given
by Eq. (2.3) is a unified expression that includes the Born
energy of the ion, the interaction between the ion and its ionic
atmosphere, as well as the image charge interaction. As shown
in Eqs. (2.2) and (2.3), the inhomogeneity in the ionic strength
affects the solution of the Green function and the self-energy,
which consequently affect the double layer structure through
Eq. (2.1), especially when the fixed charge density is small.

The set of Equations (2.1)–(2.4) are applicable to arbitrary
geometry and fixed charge distribution. We now specify
to a salt solution in contact with a low dielectric medium
through a sharp interface (at z = 0) with fixed surface charge
density ρex(r) = σδ(z). Mobile ions are excluded from the
low dielectric side. Both Γ and ε are then step functions:
Γ = 0 and ε = εP for z < 0;44 Γ = 1 and ε = εS for z > 0. In
the solvent region (z > 0), Eq. (2.1) becomes

− ϵS
∂2ψ(z)
∂z2 = λ+q+e−q+ψ−u+ − λ−q−eq−ψ−u−, (2.5)

with boundary condition (∂ψ/∂z)z=0 = −σ/ϵS.
Assuming the solvent has a uniform dielectric constant in

the entire z > 0 region, the Born energy is constant and can
be absorbed into the reference chemical potential. We single
out this constant contribution by rewriting Eq. (2.3) as

u±(r) = 1
2


dr′dr′′h±(r − r′) 1

4πϵS |r′ − r′′| h±(r
′′ − r)

+
1
2


dr′dr′′h±(r − r′)

×

G(r′,r′′) − 1

4πϵS |r′ − r′′|


h±(r′′ − r), (2.6)

where we recognize the first term on the right hand side as the
Born energy. The remaining contribution is finite in the point-
charge limit, so we can simply set h±(r − r′) = q±δ(r − r′),
which leads to the following expression for the nontrivial and
nondivergent part of the self-energy u∗±:

u∗± =
q2
±

2
lim
r′→ r


G(r,r′) − 1

4πϵS |r − r′|

. (2.7)

To solve the Green function in the planar geometry, it
is convenient to use a cylindrical coordinate (r, z). Owing to
the translational invariance in the directions parallel to the
interface, the Green function is most conveniently expressed
using a partial Fourier transform in the transverse directions

G(r, z, z′) = 1
2π

 ∞

0
kdk J0(kr)Ĝ(k, z, z′), (2.8)
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where J0 is the zeroth-order Bessel function. It is easy to show
that Ĝ(k, z, z′) satisfies

− ∂
2Ĝ(k, z, z′)
∂z2 +

�
κ2(z) + k2� Ĝ(k, z, z′) = 1

ϵS
δ(z, z′), (2.9)

for z > 0, with the boundary condition ϵS∂Ĝ/∂z − kϵPĜ = 0
at z = 0. This boundary condition is obtained by combining the
continuity of Ĝ(k, z, z′) at z = 0 with the form of the analytical
solution for Ĝ(k, z, z′) in the z < 0 region. κ(z) = [2I(z)/ϵS]1/2
can be considered the inverse of the local Debye screening
length.

Two approximate approaches are usually adopted in
the literature to avoid numerically solving the high-
dimensional Green function. The simplest and most common
approximation is the bulk screening approximation,9,23–35

which replaces the spatially varying screening length κ(z)
in Eq. (2.9) by the constant bulk screening length κb. With
the bulk screening approximation, the Green function has an
analytical solution as

Ĝ(k, z, z′) = 1
2ϵSω


e−ω |z−z′| + ∆e−ω(z+z′) , (2.10)

where ω =

κ2
b
+ k2 and ∆ = (ϵSω − ϵPk)/(ϵSω + ϵPk).

Substituting Eq. (2.10) into Eq. (2.8) leads to the following
intuitive form for the self-energy when ϵS ≫ ϵP:

u∗± =
q2
±

8πϵS

(
−κb +

f e−2κbz

2z

)
, (2.11)

with f = (ϵS − ϵP)/(ϵS + ϵP) denoting the dielectric contrast.
The first term on the right hand side of Eq. (2.11) accounts for
the interaction with the local ionic atmosphere surrounding the
test ion, and the second term is the image-charge interaction,
which is repulsive for f > 0. The second approximate
approach was proposed by Buff and Stillinger based on
the WKB approximation:37,38,41 the Green function is first
solved for a constant ionic strength, but in the resulting
expression (Eq. (2.11)) the bulk κb is replaced by its local
value κ(z) = [2I(z)/ϵS]1/2 that depends on the local, spatially
dependent ionic strength I(z).

In this work, we perform the full numerical calculation
of the Green function using the finite difference method.45

For each k, Eq. (2.9) is solved with 2000 grid points for
the variable z and 20 000 grid points for the variable z′.
We use different discretization between z and z′ to increase
the numerical accuracy in calculating the self-energy for
the ions very close to the interface. The Dirac delta
function is approximated by the Kronecker delta. In order
to ensure consistent numerical accuracy in removing the
singular part of the same-point Green function, the free-space
Green function satisfying −∂2Ĝ0/∂z2 + k2Ĝ0 = δ(z, z′)/ϵS is
also solved numerically along with Eq. (2.9). We obtain
the following nontrivial and nondivergent part of the
self-energy:

u∗±(z) =
q2
±

4π

 ∞

0

�
Ĝ(k, z, z) − Ĝ0(k, z, z)� kdk . (2.12)

Numerical integration in the k space (Eq. (2.12)) is performed
using the Simpson method with 200 grid points. Far

away from the interface (z → ∞), the ion concentration
approaches the bulk value cb±. It is straightforward to show
λ± = cb± exp

�
−q2
±κb/(8πϵS)

�
.40

III. NUMERICAL RESULTS AND DISCUSSIONS

We now apply the theory to salt solutions near the
water/air interface (εS = 80 and εP = 1) with zero fixed
surface charge (σ = 0). This is the same system studied
by Onsager and Samaras. We first study salt solutions with
equal-valent cations and anions, in which there is no charge
separation and the electrostatic potential is everywhere zero.
Then we study systems containing asymmetric salt, where
different image force between cations and anions induces
charge separation and hence a finite electric field. We
compare the results from fully solving the Green function
with results obtained by the bulk screening approximation
and the WKB approximation. We note that the point-charge
ions and the sharp interface represent a highly idealized
model for the actual salt solutions near the water/air interface,
where the ions have finite sizes and the interfacial width is
comparable to the ion sizes. This simple model has been
used in most of the literature that studies the same system.
Here, we also use the same model to illustrate the concept
of inhomogeneous screening and to provide comparison with
previous approaches. Models with a finite charge distribution
on the ion near a diffuse interface can be treated by our
full theory (Equations (2.1)–(2.4)) without any essential
difficulty.

The image charge repulsion creates a depletion boundary
layer near the dielectric interface. In the absence of fixed
surface charge, the structure of the depletion layer is governed
by two length scales: the Bjerrum length lB = 1/(4πϵS)
(approximately 7 Å for water) and the bulk Debye screening
length κ−1

b
. Within the Bjerrum length, the ion is strongly

repelled by its own image charge; whereas beyond the
bulk Debye screening length, the image charge repulsion
is significantly reduced due to the screening from other ions.
The effect of inhomogeneous screening on the ion distribution
is twofold. First, within the Bjerrum length from the interface,
there is little screening of the image-charge repulsion, and as
a result, the depletion of ions on this length scale is stronger
than predicted by the bulk screening-length approximation.
Second, the low ion concentration near the interface has a
long-range and accumulative effect on the screening strength
beyond the Bjerrum length, which extends the range of the
depletion layer. Figures 2(a) and 2(b) show the concentration
profile of the ions in a 1:1 salt solution for two bulk
concentrations. At low salt concentrations when κ−1

b
≫ q2lB,

the effect of inhomogeneous screening is insignificant as
shown in Figure 2(a), because screening is weak even in the
bulk. In addition, in this regime, the accumulative effect of
strong ion depletion within the Bjerrum length is relatively
short-ranged compared to the Debye screening length. The
behavior of the double layer is primarily characterized by
the bulk Debye screening length. Both the bulk screening
approximation and the WKB approximation are valid in this
regime.
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FIG. 2. Effect of inhomogeneous screening on the ion distribution of (a)
0.01M and (b) 1.0M 1:1 salt solution near the water/air interface. “Bulk κ”,
“WKB” and “Full Green” refer to the bulk screening approximation, the
WKB approximation and numerically solving the full Green function, respec-
tively.

In contrast, at higher salt concentrations when κ−1
b

be-
comes comparable to or even smaller than lB; inhomogeneous
screening affects the entire range of the depletion layer as
shown in Figure 2(b). Close to the interface (z < lB), the ion
concentration calculated by fully solving the Green function
is significantly lower than that predicted by the bulk screening
approximation, because the local ionic strength is obviously
smaller than the bulk. In Figures 3(a) and 3(b) we provide
a more visual representation of inhomogeneous screening
by plotting the nondivergent part of the Green function,
G(r,r′) − 1/ (4πϵS |r − r′|), i.e., the nondivergent part of the
linear response electrostatic potential generated by a test point
charge at a given distance from the interface. The potential
generated by the ion close to the interface (z = 1.5 Å) is
much stronger than that predicted by the bulk screening
approximation, the latter severely overestimating the local
screening effect on the image charge interaction. Although
this local effect is captured by the WKB approximation,
neither of these two approximations capture the long-range
and accumulative nature of the screening. The depletion layer
calculated by fully solving the Green function extends to
a range significantly longer than the bulk Debye screening
length. As shown in Figure 3(d), even for an ion approaching

the bulk solution (z = 5 Å, which is larger than the bulk
screening length of 3.3 Å), the electric field from its
image charge is not screened out. This remaining image
charge interaction in turn has a long-range and accumulative
effect that reinforces the field at the position of the point
charge.

Levine and Bell suggested that the WKB approximation
should provide the lower bound for the screening strength,38

i.e., the actual screening should be stronger than described by
the WKB approximation. This suggestion is not supported
by our results: WKB actually over-screens the image-
charge repulsion in the longer-range part of the ion profile.
Overall, both the bulk screening approximation and the
WKB approximation overestimate the long-range part of
the screening and underestimate its effect on the image-
charge repulsion. The two approximate methods become
progressively poorer as the salt concentration increases.

While our discussions here are for the simple model of
point-charge and sharp interface, we show in the Appendix
that ion profile remains essentially unchanged for the case
of a diffuse interface, as long as the interfacial width is
comparable to the ion sizes, a condition that is satisfied by
most liquid/air interfaces far way from the critical point;
see Figure 7(a). When the interfacial width is much larger
than the ion sizes, the ion profile in the interfacial region
will be quantitatively different from the profile obtained
using the sharp interface model as shown in Figure 7(b).
However, the discrepancy between the results obtained by
fully solving the Green function and by using both the
bulk screening approximation and the WKB approximation
persists. We emphasize that the use of the point-charge and
sharp interface model for salt solutions near the water/air
interface is to highlight the effects of inhomogeneous
screening. The quantitative aspects of our results will be
modified as more realistic features are included, such as the
excluded volume of the ions and the cavity energy.2,24,46,47

Nevertheless, inhomogeneous screening remains an essential
feature in treating electrostatic interactions in nonuniform
systems.

Applying a Gibbs-like construction, we define d
=
 ∞

0 [cb − c(z)] dz/cb to characterize the width of the ion
depletion layer, which is shown in Figure 4 as a function of
the salt concentration. The two approximate methods predict d
to be an ever decreasing function of cb, determined by the bulk
Debye screening length (d ∼ κ−1

b
). In contrast, d calculated

by fully solving the Green function deviates significantly
from the results of the approximate methods as κ−1

b
becomes

comparable to q2lB and reaches a constant value as cb further
increases up to 1M. Thus, at high salt concentrations the
image-charge repulsion renormalized by the inhomogeneous
screening creates a depletion layer of nearly constant width
scaled by the Bjerrum length (d ∼ q2lB) instead of κ−1

b
and

becomes nearly independent of the salt concentration.
As a consequence of the different behavior in the width

of the depletion layer due to inhomogeneous screening,
there is pronounced difference in the negative adsorption
of ions (−Γ =

 ∞
0 [c(z) − cb] dz) at the interface between

results obtained by fully solving the Green function and
those using the approximate methods as shown in Figure 5.
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FIG. 3. 2D visualization of the nondivergent Green function, G(r, r′)−1/(4πϵS |r−r′|), for 1.0M 1:1 salt solution near the water/air interface. The test ion
(white dot) is at z′= 1.5 Å for (a) and (b), and z′= 5 Å for (c) and (d).

Because the approximate methods predict an ever decreasing
d as cb increases, −Γ is a concave downwards function
of cb, as first shown by Onsager and Samaras.9 However,
experimentally both −Γ and the surface tension of the 1:1

FIG. 4. The characteristic length of ion depletion as a function of salt con-
centration for a 1:1 salt solution at the water/air interface.

salt solution increases essentially linearly with cb in the
range of 0.1M < cb < 1M.21,22 To fit the experimental data,
an ion-exclusion zone with constant width has been invoked
in previous theoretical treatments.23,24 By fully accounting for

FIG. 5. Inhomogeneous screening effect on the negative adsorption of ions
for a 1:1 salt solution at the water/air interface.
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FIG. 6. Inhomogeneous screening effect on 0.05M 2:1 salt solution near the
water/air interface. (a) Ion concentration scaled by cb

± and (b) dimensionless
electrostatic potential.

the inhomogeneous screening, our theory naturally predicts
that −Γ increases linearly with cb for 0.1M < cb < 1M, as a
consequence of a nearly constant d. In light of these results,
it is quite possible that the inhomogeneous screening of
the image charge repulsion provides an explanation on the
experimentally observed linear increase of the surface tension
with the salt concentration; we are currently exploring this
possibility.

Because of the quadratic dependence of the image-
charge repulsion on the valency, in an asymmetric salt
solution, multivalent ions will be more strongly depleted
than monovalent ions. Furthermore, multivalent ions are more
effective in screening. Therefore, inhomogeneous screening
has an even more pronounced effect on asymmetric salt
solutions containing multivalent ions. For a 2:1 salt solution,
the divalent cations calculated by fully solving the Green
function are pushed further away from the interface than
predicted by the approximate methods as shown in Figure 6(a),
leading to a larger degree of charge separation. As a result,
the induced electrostatic potential is much larger than that
obtained using the approximate methods; see Figure 6(b).
Such a large self-induced surface potential can significantly
affect the interpretation of the zeta potential of colloidal
surfaces1 and is a major contribution to the Jones-Ray effect
in the surface tension of salt solution.30,48–50

IV. CONCLUSIONS

In this work, we have presented a self-consistent treatment
of the inhomogeneous screening in salt solutions near a
dielectric interface. The effect of inhomogeneous screening
is twofold. First, the ionic atmosphere in the depletion layer
is anisotropic with lower ionic strength than the bulk; this
decreased ion concentration results in less screening on
the image force and hence stronger ion depletion. Second,
the ion depletion near the interface has a long-range and
accumulative effect on screening, which extends the range
of the depletion layer. Consequently, the ion distribution
is significantly affected when the bulk screening length
is comparable to or smaller than the Bjerrum length. In
this regime, the depletion layer structure and the interfacial
properties cannot be described by either the bulk screening
approximation or the WKB approximation. The characteristic
length of the depletion layer scales with the Bjerrum length,
resulting in a linear increase of the negative adsorption of
ions with concentration, in agreement with experiments. The
inhomogeneous screening effect becomes more pronounced
in less polar solvent and for ions of higher valency.

Nonuniform ion distribution near a dielectric interface
exists in many colloidal and biophysical systems. Inhomo-
geneous screening is an integral part in the electrostatic
contribution to the structure, thermodynamics and dynamics,
which, however, has not been adequately treated in previous
theoretical work. An accurate treatment of inhomogeneous
screening is important to fully understand the role of electro-
static interactions in these systems, which in turn is necessary
for evaluating the various nonelectrostatic contributions, such
as the cavity energy, hydration, and dispersion forces to the
surface and interface properties of aqueous solutions.51–53

The relative importance of these nonelectrostatic contributions
has been a subject of controversy.54 In our opinion, the origin
of the controversy reflects the lack of a uniform and accurate
theory for treating the electrostatic contributions. By a more
accurate treatment of the inhomogeneous screening effect, we
are in a position to better evaluate the role nonelectrostatic
contributions in the explanation of long standing problems,
such as the specific ion effects and salt concentration effects
in the water/air and water/oil interfacial tension.
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APPENDIX: THE CASE OF A DIFFUSE INTERFACE

In this appendix, we present an approximate treatment of
salt solutions near a diffuse water/air interface by combining
the contributions from local Born solvation energy and the
long-range image charge interaction. We will show that
inhomogeneous screening persists when the interface has
finite width.

We assume the following density profile (volume fraction
φ(z)) for water in the diffuse interface (−∞ < z < ∞) is set to
be
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φ(z) = [1 + tanh (z/α)]/2, (A1)

where the parameter α characterizes the width of the interface,
and the Gibbs dividing interface is set at z = 0. The local
dielectric constant is assumed to be a simple volume fraction
weighted average of its two components,

ϵ(z) = ϵSφ(z) + ϵP [1 − φ(z)] . (A2)

Since the dielectric constant is spatially varying, the Born
solvation energy is no longer constant. A finite charge
distribution on the ion is necessary to avoid divergence of the
Born energy in the point-charge model. However, numerically
solving the full equations (Equations (2.1)–(2.4)) for ions with
a finite charge distribution is nontrivial because both the small
length-scale features on the scale of the ion radius and the
large length-scale features on the scale of depletion layer need
to be resolved.

Here, we use an approximate treatment by separating
the self-energy of ions into a local contribution from Born
solvation energy and long-range contributions that can be
approximated using the point-charge model. Similarly to
Eq. (2.7), we decompose the self-energy as

u±(r) = 1
2


dr′dr′′h±(r − r′)G0(r′,r′′)h±(r′′ − r)

+
1
2


dr′dr′′h±(r − r′)

× [G(r′,r′′) − G0(r′,r′′)] h±(r′′ − r), (A3)

where G0(r,r′) is now the free Green function in a spatially
varying dielectric medium given by −∇ · [ϵ(z)∇G0(r,r′)]
= δ(r − r′). The first term on the right hand side of Eq. (A3)
is Born solvation energy, which can be approximated by
using the local dielectric constant as q2

±/[8πϵ(z)a±],40 with a±
the Born radius of cations and anions. The second term on
the right hand side of Eq. (A3) includes contributions from
ion-ion correlation and image charge interaction, which is
expected to be of longer range than the ion radius and hence
can be approximated by using the point-charge model as in
Eq. (2.12). Thus, Eq. (A3) is rewritten as

u±(r) ≈ q2
±

8πϵ(z)a± +
q2
±

4π

 ∞

0

�
Ĝ(k, z, z) − Ĝ0(k, z, z)� kdk,

(A4)

where Ĝ(k, z, z′) satisfies

− ∂ϵ(z)
∂z

∂Ĝ(k, z, z′)
∂z

− ϵ(z)∂
2Ĝ(k, z, z′)
∂z2

+
�
2I(z) + ϵ(z)k2� Ĝ(k, z, z′) = δ(z, z′). (A5)

Ĝ0(k, z, z′) is a special case of Ĝ(k, z, z′) with I(z) in Eq. (A5)
set to 0.

In Figure 7 we show the ion profiles calculated using the
approximate treatment of the self-energy presented above. For
interfacial widths comparable to the ion sizes (the case for most
liquid/air interfaces far from critical point), the ion profiles
are in good agreement with the profiles obtained for the sharp
interface; see Figure 7(a). Our results presented in the main
text using the sharp interface model is therefore quantitatively
valid under such conditions. When the width of the interface

FIG. 7. Effect of inhomogeneous screening on the ion distribution of 1.0M
1:1 salt (a±= 1.0 Å) solution near the water/air interface with diffuse compo-
sition profile as described in Eq. (A1). The ion profiles in the sharp interface
are also shown for comparison. The width of diffuse interface in (a) is
comparable to the ion sizes and in (b) much larger than the ion sizes and
comparable to the Bjerrum length.

is much larger than the ion size, the ion distribution is pushed
towards the inner water region in comparison with the results
obtained for the sharp interface; see Figure 7(b). However,
inhomogeneous screening still persists in this case, as seen
by the wider depletion layer obtained from fully solving the
Green function in the diffuse interface compared with the
results using bulk screening and WKB approximations.
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