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The mechanism for electron transfer is discussed in terms of an atomic motion on a 
potential-energy surface in many-dimensional atomic configuration space. In the absencc 
of electronic coupling between the reactants, a surface for the reactants intersects one for 
the products. Electronic coupling causes the usual removal of this degcncracy and permits 
the products to be formed adiabatically or nonadiabatically by an atomic motion across 
the " intersection " surface. 

The properties of a system on this latter surface are formulated in terms of statistical 
mechanics, in order to treat in a consistent manner the ligands microscopically and the 
exterior solvent macroscopically. A concept of " equivalent equilibrium distribution " is 
introduced to evaluate the surface integral. A macroscopic quantity is invoked only in 
the last step of the derivation, replacing its statistical-mechanical equivalent. 

A relatively simple expression is obtained thereby for the reaction rate, which rcduces 
to that obtained in part 1 when ligand and salt contributions are omitted. Applications 
can be made to a number of problems, such as prediction of non-isotopic electron-transfer 
rates from isotopic ones, relation between chemical and electrochemical electron transfers 
inert salt effects and possibility of an inverted chemical effect. 

1. INTRODUCTION 
In a recent series of papers, the writer has formulated and applied a quanti- 

tative theory of the rates of electron transfers in solution.1-3 In that work the need 
for reorganization of configuration of the solvent molecules before and after 
electron transfer was discussed. The free energy of solvent reorganization was 
then computed using a macroscopic treatment 4 for such a system having " non- 
equilibrium dielectric polarization ". 

In some electron transfers there are also changes in distances in the co- 
ordination shell as well (cf. ref. (947)). Clearly, this contribution needs to be 
estimated in microscopic terms. In order to include both contributions in a 
consistent manner, we first formulate the entire discussion of the reaction rate 
in terms of statistical mechanics and only in the last step we replace, for ease of 
calculation, one of the quantities by its macroscopic equivalent. 

2. MANY-DIMENSIONAL POTENTIAL ENERGY SURFACES 

(i) No ELECTRONIC INTERACTION 

In discussions of electron transfer, problems which have frequently arisen and 
have occasioned some uncertainty and confusion concern the charge distribution 
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22 E L E C T R O N  T R A N S F E R  T H E O R Y  

in the transition state, the mode of calculating its interaction with surrounding 
molecules, and the mcchanism of the electron transfer itself. To treat these prob- 
lems, we first consider a hypothctical case where no elcctroiiic coupling between 
the redox orbitals of the reactants occurs, so that no clectroii transfer is possible. 
To anticipate, conclusions reached in 5 2 include those reached somewhat more 
intuitively in part 1 (cf. ref. (8). 

In this case, we have two distinctly different electronic states-one having the 
electronic structure of the reactants, the other having that of the products. The 
lowest electronic state of each chemical pair has its own potential-energy surface 
in a many-dimensional atomic configuration space, whose co-ordinates are those 
of all the atoms of the two reactants, of the solvent, and of any electrolyte. 

The two surfaces each have their own valleys but the two sets of valleys occur 
in quite different regions of the space, reflecting differenccs in stable bond lengths, 
solvent orientations, etc. The surfaces intersect, usually along some upper reaches 
of each, and form thereby a surface of one less degree of freedom. A cross- 
section of the surfaces and of their intersection is indicated in fig. 1. 

atomic configuration 
FIG. 1 .-Profile of N-dimensional potential energy surfaces plotted against an atomic 
configurational co-ordinate of the entire system. Curve R denotes reactants (ox1 +redz) ; 
curve P, products (redl -FOX& Dotted lines show intersection of surfaces (zero electronic 

interaction case) and solid lines indicate the splitting for the case of weak interaction. 

The intersection surface can be reached by any suitable fluctuation of atomic 
co-ordinates to produce some atomic configuration which is usually a compromise 
between the stabler ones of the two electronic states. Because of the absence of 
electronic interaction of the redox orbitals, such a fluctuation does not cause any 
electron transfer. The system merely stays on the surface corresponding to the 
original electronic configuration on passing through the intersection. Fluctuations 
of this nature involve simultaneous changes in orientation, position and atomic 
polarization of the solvent molecules, in internuclear distances in the co- 
ordination shell, in relative motion of the reactants and in configuration of the 
ionic atmosphere. 

(ii) ADIABATIC AND NON-ADIABATIC MECHANISMS FOR ELECTRON TRANSFER 

Consider next the weak electronic interaction between the redox orbitals which 
occurs, for example, when the reactants are not too far apart. Their interaction 
leads to the usual splitting of the surfaces, as indicated in fig. 1. 
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R .  A .  M A R C U S  23 

For sufficient electronic interaction, a system passing across the intersection 
during a fluctuation will always stay on the lowest surface. We see from fig. 1, 
therefore, that the products have been formed from the reactants adiabatically (in 
the quantum-mechanical sense) as a result of this atomic motion. This motion, 
then, is one which produces an atomic configuration of the system more favourable 
to the electronic charge distribution of the products. 

When the electronic interaction is extremely weak, on the other hand, for 
example when the reactants are far apart, the system tends to retain its original 
electronic configuration on passing across the intersection, i.e., the system " jumps " 
to the upper surface at such times and jumps back on its return. Each time no 
electron transfer tends to occur. There is, nevertheless, in such cases a small proba- 
bility of " transition ", For this system, we have thereby a " non-adiabatic " 
mechanism for electron transfer. 

As long as the interaction is not too strong, the splitting is relatively small, and 
little error is made in regarding the correct potential energy at the " intersection " 
surface as being essentially equal to that for the zero-interaction system. Thus, 
both the potential energy and the probability distribution on the intersection surface 
can be computed for the weak interaction system by the simple expedient of regarding 
the system as being the conceptually simpler zero-interaction one. Moreover, it may 
be emphasized here that in the computation, the charge distribution for the zero- 
interaction case should be used. It is the one for the reactants (or products) and 
not some compromise. 

In both cases, adiabatic and non-adiabatic, it is necessary for the system to 
pass through the intersection surface. In the first approximation the theoretical 
rate expression deduced below for the adiabatic mechanism will apply to a non- 
adiabatic one if, in the latter case, it is multiplied by some factor denoting an average 
transition probability per passage through the intersection region. (Nuclear 
tunnelling through the barrier in fig. 1 is neglected here in both cases.) 

3. QUANTITATIVE FORMULATION OF THE THEORY 

(i) EQUATIONS FOR RATE AND FOR INTERSECTION SURFACE 

We shall use an equation for rate of passage through a surface in many- 
dimensional space, in our case the intersection surface. It is similar to the usual 
transition state theory equation (e.g. ref. (9) and unpublished results). If Apt 
denotes the difference in free energy of the reactants when they are constrained 
to exist on this (N-1) dimensional surface as compared with their existing in all 
atomic configurations, the rate constant, kr, is 

kr = (kT/h)  exp ( -AF$/kT) .  (3.3 .l) 
For defining the intersection surface in terms of molecular properties, we 

/c = any atomic configuration of the entire system in N-dimensional space, 
p = superscript to designate throughout a property of the products (a change 

introduce the following notation : 

of notation from part l), 
Z'k = potential energy of reactants in configuration k, 

A 8  = difference between electronic energy of the lowest electronic state of the 
products and that of the reactants when each is at its own zero of potential 
energy. 

Since the electronic energies of the reactants and products are equal along the 
intersection surface, the latter obeys the relation, 

gk = 8; + A&' 
at the intersection. 

(3.1.2) 
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24 E L E C T R O N  T R A N S F E R  T H E O R Y  

The potential energy of the reactants on the intcrsection surface, Z'i, say, equals 
Ek and because of (3.1.2) could also be written as 

(3.1.3) 

where rn is any constant. The usefulness of (3.1.3) will be shown in tj 3.4. 

(ii) POTENTIAL-ENERGY EXPRESSION 

two contributions : 
We assume that the potential energy of the reactants is essentially the sum of 

(3.2.1) 

where 8'ki depends on the internal co-ordinates, k i ,  of the co-ordination shells alone 
(gki being defincd as zero at the equilibrium values of these co-ordinates), and 
g,p depends on all other co-ordinates, k", of the entire system. Thus, k, the 
totality of all co-ordinates,* is an abbreviation for ki plus k" ("inner" and 
" outer "). 

We treat thejth particle as possessing a permanent dipole moment pj, an iso- 
tropic polarizability aj, and a charge el, some of which may be zero. We introduce 
the following additional notation : 

E = electric field strength at any point, arising from all the ionic charges 

$ = potential arising directly from all ionic charges = Zjej/rj. 
D = contribution to E arising solely from the charges. D = -@. 

and from the permanent and induced dipoles. 

D, = contribution to E arising solely from the permanent dipoles. 
Qk0 =I van der Waals' potential energy of interaction of all the particles 

(repulsive, dispersive, permanent dipole-dipole). Qko is taken to 
depend only on k", i.e. f&' = @o. 

j = subscript to also denote fields at yarticlej, minus the latter's contribu- 
tion. 

It can then readily be shown that 8 k o  is given by 

(3.2.2) 

To establish (3.2.2), arguments related to those in appendix IV of ref. (4) may be 
used (cf. ref. (10)). The second term is the interaction between the charges. The 
third is that between the charges and the permanent dipoles. The remainder is a 
composite one. It includes ion-induced dipole interactions, - CjajEj . Dj ; an 
induced-permanent dipole term, - CjajEj . D,j ; induced-induced, - 3CjajEj . 
(Ei- Dj-D,j) ; and the energy stored up in the induced dipoles ZjajE? /2. The 
R,,o term includes the permanent dipole-dipole term, - Zjpj . Dpj/2. 

Ej obeys the relation : 

(3.2.3) 

(Cf. ref. (11) for non-polar and ref. (10) for polar molecules between parallel elec- 
trodes in a non-electrolyte system.) Unlike the D in ref. (ll), say, ours is not 
the dielectric displacement, a quantity with little molecular significance here, but 
is the microscopic equivalent of 4 EF). 

* There would be no real loss of generality if one now omitted from k", k and further 
consideration those co-ordinates whose behaviour is entirely the same in each of the two 
electronic states (e.g. some solvent vibrations). 
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R .  A.  M A R C U S  25 

(iii) POTENTIAL ENERGY FOR TRANSITION STATE 

Introducing the above quantities into (3.1.3), an expression is obtained for 8i 
which simplifies considerably when the linearity property of (3.2.3) is applied.” 
We obtain 

where 
8i  = a;i+(.f,a+c, (3.3.1) 

8; = fiko+Zj[e;+j+/2--pj. Dj’-cxjEf .(Df+DPj)/2]. (3.3.2) 

47, D;, Ej’- and are abbreviations for functions of the type 

X +  = X+m(X-XP) ;  (3.3.3) 
C = m(m + 1)C j [a j (E j  - Ey) . (Dj - Ds) + ( e j  - ep)($ - 49/21 - mA6. (3.3.4) 

C depends esscntially only on the positions of the two reacting species : for 
Dj-Df and related factors depend only on these co-ordinates, while Ej-E! is 
independent of molecular orientations and of positions of atmospheric ions. 
Because a liquid is closely packed, the energy term invoIving Ej-E! can be taken 
as effectively independent of the much less important variables, the positions of 
the solvent molecules. 

(iv) EQUIVALENT EQUILIBRIUM DISTRIBUTION (e.e.d.) : 
It is instructive, for evaluating A F J ,  to first compare the transition state, in 

which exp (- g$/k?’) is integrated over the intersection surface, with a state in which 
this factor is integrated over all of space. We shall term the configurational dis- 
tribution of the latter state the “ equivalent equilibrium distribution ” (e.e.d.). 

Comparison of (3.3.1) with (3.2.1.) and of (3.3.2) with (3.2.2) reveals that the 
e.e.d. is one which would be obtained in a corresponding equdibrium system in 
which the charges on the two central ions were enf, i.e. e,+m(e,-e;), (n = 1,2), 
and which had tFli as a potential function for the co-ordination shell. 

The transition state of the zero-interaction system differs from this system in 
only two respects : the charges of the two central ions are those of the reactants, 
and it has one less dimension of freedom than an N-dimensional system. 

4. EVALUATION OF THE REACTION RATE CONSTANT 

(i) GENERAL 
For exact evaluation of the surface integral, we should examine in detail the 

motion along the surface, for example, by examining the atomic motion normal 
to it, i.e., the reaction co-ordinate. We hope to analyze this dynamical problem 
at a later date. For the present, we use instead the following procedure. 

By a suitable choice of m (see 5 4.4. and appendix l), the e.c.d. is made to centre 
on the intersection surface, and thercby to die away fairly rapidly along the normal. 
Since (3.3.1) applies both to e.e.d. and to the transition state, we may then set the 
surface integral over exp ( - t f i /kT) equal to the volume integral for the e.e.d., 
divided by a partition function along the normal, as found in appendix 1. (If some 
of the motions along the surface are quantized, this statement could be expressed 

* For any given j and k”, Ej is the same function of the D,,-+-Dp, as ET is of the 
DL+Dpm and as E,-EP, is of the Dm-D1’. This relationship becomes evident when :hc 
n simultaneous vector eqn. (3.2.3) are written in matrix form and inverted to obtain a 
formal cxplicit expression for the matrix of EjS. (The procedure is analogous to that 
cmployed in eqn. (4) of ref. (10) for a simpler system.) A similar procedure is then used 
to obtain Epand, by subtraction, Q-Ef. 
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26 ELECTRON T R A N S F E R  T H E O R Y  

in terms of equating corresponding free energies of the two systems.) Most of 
thc likely motions along the normal to thc transition state surface, such as some 
of those mcntioned in 5 2.1 have a " frequency " of motion of about 1013 sec-1. 
We anticipate, therefore, that the partition function just noted, which may be 
written as kT/hv, will be of the order of unity, and that the procedure just 
outlined makes the rate constant uncertain only by a small numerical factor. 

(ii) APPLICATION OF e.e.d. 
The e.e.d. was seen to have " inner " co-ordinates which behave as though the 

potential function were 8'; (or as we shall now denote it, 8'$. Let the latter's 
minimum rchtive to the zero of 8'ki be called A8/ and the corresponding vibrational 
energy levels be 2?: (totality of quantum numbers, u). Let Fdenote the free energy 
of the reactants. 

Using (3.3.1.) we then deduce for AFT : 

exp ( -AFtjkT) = $ L k T ) J .  . Jf exp - (a: + As! 
v = O  

+.&lo + C + K)/kT]dz, ,  (4.2.1) 
where K is the kinetic energy of the NO outer co-ordinates and dzo is their volume 
element in phase space. Summation over all 2, immediately yields the vibrational 
partition function, Qtib, for the inner co-ordinates, and integration over the No 
momenta cancels a corresponding momentum integral in an expression for F (as 
does the hNo factor). The residual integrand depends only on the relative " outer " 
co-ordinates (position and orientational) of all the particles. We next hold all 
of these relative co-ordinates fixed within two fairly large spheres, one about each 
central ion (large enough so that the long range ion-ion-solvent interactions are 
negligible on their surfaces). We then integrate over the co-ordinates of the centre 
of gravity of these two ions and over the orientations of their line of centres, 
translating and rotating, respectively, the entire system within the large spheres to 
ensure constancy of the important relative co-ordinates during integration. 
Holding the distance Y between the ions fixed, we next integrate over all other 
outer co-ordinates, the integral being denoted later by exp (-F&r)/kT). In 
integrating finally over Y, we first note two factors which favour small YS in spite 
of any coulombic repulsion : the solvent reorganization barrier is smaller there 
(cf. below) and, at the larger YS, the electronic interaction becomes so weak that 
out there the integral should be multiplied by some small non-adiabatic transition 
probability. We presumably err relatively little if we simply take Y as the distance 
of closest approach and set the corresponding r-partition function equal to unity, 
i.e. kT/hvr-l (cf. also 5 4.1). We obtain after some cancellation : 

(4.2.2) 
where 

k, = Z exp [ -(A.F! +AF;)/kT],  

AFy = A@ - kT 111 Qti,,/Qvib, (4.2.3) 

A F i + F o  = F&(r) = -kT In exp (-b"i.[kT)dkb. (4.2.4) s-s  
In these equations, Qvib, the vibrational partition function of the inner co- 

ordinates of the reactants, was extracted from F: F&r) is the configurational 
free energy of the reactants due to all ion-solvent-ion interactions in (3.2.4), 
at fixed positions of the central ions ; dk', is the configuration volume element of 
the remaining (N-6) outer co-ordinates. 2 is the same as the usual collision 
frequency of two non-polar molecules in solution (probably about 1011 l./rnole sec 
rather than the value suggested in ref. (2) and (12)). 
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R. A .  M A R C U S  27 

(iii) EvaLrrArIoN OF AFi AND AF,? 

It follows from $ 3.4 that (4.2.4) for F&) is simply the free energy of a system 
having the charges of the reactants a distance r apart but a distribution of orienta- 
tions of solvent molecules and of positions of ions in the ionic atmosphere which 
would be in equilibrium with the hypothetical charges, e,+rn(e,-e{), (n = 1, 2), 
on the two central ions. It is at this point that we introduce the macroscopic 
expression4 for the frec energy of this type of non-equilibrium system. We 
obtain * 

A F ~  = w + m2L, (4.3.3) 

(4.3.4) 

where w is the coulombic work required to bring the reactants together at the 
prevailing salt concentrations and equals ele2/D,r at infinite dilution; Ae is the 
charge transferred; a1 and a2 are the ionic radii of the ions (including their co- 
ordination shells) ; we take r = al+ a2 ; n and D, are the refractive index and 
static dielectric constant, respectively. 

We evaluate the contributions to AFf when the vibrations are harmonic, the 
anharmonic values being somewhat more complex. If q, denotes a bond co- 
ordinate of the reactants, having equilibrium value q: and force constant K,, we 
havc 

F k i  = CsKs(q,- 43'12. (4.3.5) 

Upon finding the minimum of 
for the transition state : 

and evaluating i%'~,/aq, there (at qd), we deduce 

(4.3.6) qzt = [(m + l)K,q,P - mK,Pq:]K:, 

K ;  = (m + S)K, - mK:, (4.3.7) 

A€! = (m2/2)ZsK,(Aq~)2(K~/K,?)2,  (4.3.8) 
where 

Aq," = q:'-q;. 

In appendix 2, these equations are obtained approximately for a normal co- 
ordinate treatment, the qs-qi then becoming normal co-ordinates and the 1/KS/2n 
becoming vibration frequencies of the normal modes. 

(iV) EQUATION FOR Vl 

The equation for rn is obtained by equating the difference between free energies 
of activation for the forward and reverse reactions to the standard free energy of 
reaction at the prevailing electrolyte concentration, AF"'. In the process, we 
tacitly set the free energy of the reactants on the intersection surface equal to that 
of the products there (by making both equal F f )  and so satisfy the energy condition 
(Al) in appendix 1, sincc the entropies of two systems similarly distributed on the 

* Eqn. (25) and (2%) of ref. (4) wcre used in conjunction with certain macroscopic 
properties (Pu and ci) of the c.e.d. system. Two minor approximations were madc: 
" image effects " were neglected. We estimate 13 that their inclusion would raise AFA by 
less than 10 % (see also ref. (14)). In calculating the salt effect, an additional approximation 
was made but leads to no error in the Debye-Hiickel region and is probably unimportant 
otherwise. Incidentally, the ions are not treated as conducting spheres, as suggested on 
p. 986 of ref. (4). The mathematical details of these calculations will be dcscribed else- 
where. 
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28 E L E C T R O N  T R A N S F E R  T H E O R Y  

same surface are also equal. Thereby the e.e.d. is made to centre on the inter- 
section surface. 

The term ( F Z - P )  can cither be calculated directly or simply by using the 
following transformation property to obtain it from FS-F; any property of the 
transition state is invariant with respect to a simultaneous replacing of -m by 
m+ 1 and interchange of " p  " and " no p " superscripts (the property can be 
established from (3.1.3)-valid now for all k of the e.e.d.-with some caution, 
remembering that t??i is relative). We obtain for m : 

- (2m + 1)A +Ad'! - Abft = AF"'- AF& + w p  - w, (4.4.1) 

where At??:' is A.8: with m+ 1 and K, replaced by -in and Kf, and where - AF& 
is defined as kT In Qtib/Qvib. When Ks = Kf, A8)- A8fS  becomes simply 
- (2m+ I)X&(Aq;)2/2. 

5. CONCLUDING REMARKS 

Eqn. (4.2.2) and (4.4.1) reduce to those of part 1 when any effects from co- 
ordination shell distances and from electrolyte are omitted. Eqn. (4.2.3) for the 
contribution of the " inner " co-ordinates reduces to that obtained by George and 
Griffith 15 if AF" is set equal to zero, the partition function omitted and the normal 
co-ordinates replaced-by bond co-ordinates. 

Among the topics to which the results of the present analysis could be applied 
are the following : 

(i) Relation between chemical and electrochemical electron transfer rates : 
cf. ref. (3) for solvent reorganization only. This discussion could now be 
generalized. 

(ii) Prediction of electron transfer rates of non-isotopic exchanges from iso- 
topic ones : e.g., taking K s g K f ,  one finds from (4.2.2) that when correc- 
tions are made for any differences of coulombic repulsion, the mixed rate 
constant is related to the isotopic ones (kl and k2) and to the equilibrium 
constant K in the given electrolyte medium by k12~(klk2K)* if AFo is 
not too large. 

(iii) Numerical estimate of contribution to activation free energy from the 
co-ordination shells when the necessary force constants and internuclear 
distances are available * (cf. ref. (7)). 

(iv) Inert salt effects (subject to an assumed treatment of the ionic atmosphere 
as a continuous distribution, however). 

(v) Possibility of "inverted" chemical behaviour. If AF" becomes too 
negative, intersection of the two surfaces becomes possible only at high 
potential energies, unless in such cases a more favourable reaction mech- 
anism is found. In (4.3.3) and (4.3.8) m2 eventually increases with in- 
creasing - AF", and the rate constant decreases. 

(vi) Analysis of assumptions made when electron transfers are interpreted in 
the terms of the Franck-Condon principle (cf. analysis in ref. (8)). 

APPENDIX 1 
PROPERTY OF THE e.e.d. 

If the e.e.d. is indeed " centred " on the intersection surface, a system having 
the e.e.d. and the electronic configuration of the reactants would have the same 

* A similarly made estimate for D20fH20 effects using (4.2.3) would be valid only 
if the contribution of the OH frequencies to thc reaction co-ordinate were negligible (cf. 
discussion of uncertainty in kr in 9 4.1) and only if one added to AFS any additional con- 
tribution from changes in hydrogen bonding as the charged reactants approach each 
other, if any. 
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R. A .  MARCUS 29 

average energy as a system having the same e.e.d. and the electronic configuration 
of the products. That is, it would satisfy 

each averaged over the e.e.d. (They would also have the same free energy too,) 
It is easy to show that such an e.e.d. exists. Consider the expression 

-kT In J . . exp (-8'#T)dzk, as a function of rn and minimize it with 
respect to rn. One obtains immediately, using (3.1.3) : 

' (Al)  
J . . J exp (- bi/kT)b,dz, - $ . . S exp (- &$/kT)(&;+A&)dz, - 
J . . J exp (- bi/kT)dz, J . . J exp (- €i/kT)dr, 

This is the desired property. Thus, there is an e.e.d. centred on the intersection 
surface. It has the property that the In term, i.e. the free energy, is a minimum 
with respect to rn. (4.4.1), the equation in the text for m, satisfies the above 
equation. 

We now examine in more detail the approximation of replacing the ( N -  1)- 
dimensional surface integral by an N-dimensional volume integral over the e.e.d., 
N being large. 

We note first that the intersection of the two potential surfaces in fig. 1 defines 
a surface of (N-1) degrees of freedom and that shifting the potential-energy 
surface of the products vertically by an amount I? without change of shape, pro- 
duces a different intersection which defines a new (N- 1)-dimensional surface 
parallel to the first one. In this way a family of parallel surfaces can be generated, 
each member associated with a particular value of r and obeying (A2) (cf. 9 3.1). 

Let CT denote the totality of (N- 1) orthogonal curvilinear co-ordinates defining 
position on any given surface and let y be the co-ordinate normal to the family 
of surfaces, so that k in 8 k  consists of 0 and y. Let the origin of y be at the actual 
intersection surface, for which I? = 0. T(y) is a strictly monotonic function of y 
and r(0) = 0. 

A co-ordinate system is introduced as follows. 

&, = Gc+A&+I'.  (A2) 

Consider now the volume integral over the e.e.d., 

1. . . { exp (- &t,/kT)dody, 

where 8'& satisfies (A3) (cf. 3.1.3)) and rn was selected so that (A4) is satisfied 
(cf. (Al), using A2)). 

In the vicinity 
(A4) thus becomes 

where F!, the free 
given by (A6) : 

of y = 0, I? equals y(fl/dy)o, the derivative being non-zero. 

03 [ -a2 yexp(-F:,,/kT)dy = 0, (4 
energy of a system constrained to exist on the surface y, is 

exp (- Ft,,/kT = J . . . [ exp (- &.&/kT)da. (A61 

Since (A5) is applicable to all T, we infer that F$ is an even function of y and 
write therefore the Taylor's series (A7), retaining only terms up to y2 for physical 
reasons based on fig. 1 : 

F l y )  = F t 0 ) + ( y 2 / 2 ! ) F { 6 ) +  . . . . (A71 
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30 ELECTRON TRANSFEK T H E O R Y  

Using (A7) the N-dimensional volume integral becomes 

But exp (-Ft0)/kT) equals $ . . . $ exp (-ikbo/kT)da, using (A6) and (A3) at 
y = 0, and so equals the desired (N- 1)-dimensional surface integral. Thus, if the 
" vibrational-like partition function " 2/27ckT/F& is of the order of unity, the 
basic approximation enunciated in 9 4.1 is seen from (A8) to be justified. 

We next estimate F& and incidentally investigate the significance of rn. 
Diflerentiating (A6) with the aid of (A3), we find 

q o )  = m(dr/dy),=o + <(d~u, /WO)O,  

q l )  = <(d26,/dr2)o>o + [(d&:,ldY)o); - <(d@y/dY);)ol/w 

(A9) 

( A W  
where (f)o denotes any function f averagcd over the intersection surface, 

1. . . Jjcxp (-C,,/kT)do//. . . J exp (-Buo/kTda. 

Sincc F& = 0, wc find 

It can thereby be seen that for any fixed shape of the two potential energy sur- 
faces (i.e. for fixed AS"), rn is the increase in activation energy per unit increase 
in standard energy of reaction. Accordingly, if m were 0, the activated complex 
would resemble the reactants. It would resemble the products if in were - 1  
and would be as much like one as the other if rn were -3. These remarks can 
also be inferred from (3.3.3). 

F(d, contains first an average force constant term ((dz8':y/dr2)o)o. The sum 
of the second and third terms is found from approximate calculations based on 
(4.3.5) to be of a magnitude comparable with the first. Accordingly, it seems 
reasonable to expect that the results of more detailed calculations will show that 
the value of F& is of the order of that of a typical force constant, and that there- 
fore the partition function is of the order of unity. The results for the calculated 
free energy of activation are, it follows from (AS), relatively insensitive to the 
exact value of F;;;. 

APPENDIX 2 

NORMAL CO-ORDINATES A N D  AFf 

As before, 8'ii is minimized and AT! and the vibration frequencies v6 are then 
computed. 

A reactant whose structure has a similar syrnmctry in  the two rcdox states will 
also have similar types of normal co-ordinates, Qs. The dependcnce of certain of 
these co-ordinates (particularly stretching co-ordinates) on the internal co-ordinates 
of displacement, St = xt-x;) ,  will also be essentially the same in spite of any changes 
in equilibrium bond lengths. Moreover, comparing molecules of similar geometry, 
it may be deduced from the pertinent transformation equations 16 that cach Qs is 
unaffected by changes in corresponding force constants when only one type of 
force constant contributcs appreciably to that Q, or when all contributing ones 
change by the same factor. The former appcars to be true for many vibrations, 
its inferrcd from the valcncy forcc field approximation ' 7  and pcrhaps from the 
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R. A .  M A R C U S  31 

relative constancy of vibration frequencies associated with the relative motion of 
two atoms or of two groups. We shall, for simplicity, make this approximation 
here. 

Thus, writing 
Qs =CtZ,t(~.t  - $1 and Q," =CJ,",(.t - x,OP>7 

we shall let Ift  = I,*. Denoting 4n2v: by A,, we also have 

We next define a new set of coordinates qs (equilibrium values q i )  : 

4 s  = CtlstXto7 4: = ZtLtC 

Therefore, 
Q, = qS- 4; alld Qf = 4,- 4;". 

Regarding 8'$ as a function of the qs now, we may expand it about its minimum 
at qs = qil say) by the usual process of computing derivatives with respect to 
the qs. Eqn. (4.3.6) to (4.3.8) are then obtained, with the Ks replaced by As and 
the q3s having the above meaning. The A: are related to the frequencies v: by 
the equation, 

A: = 4x2v:2. 
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