
Impaired Reward Processing in the Human
Prefrontal Cortex Distinguishes Between

Persistent and Remittent Attention Deficit
Hyperactivity Disorder

Friedrich Wetterling,1* Hazel McCarthy,1 Leonardo Tozzi,1

Norbert Skokauskas,2 John P. O’Doherty,3 Aisling Mulligan,1 James Meaney,4

Andrew J. Fagan,4 Michael Gill,1 and Thomas Frodl1,5

1Department of Psychiatry, School of Medicine, Trinity College, the University of Dublin,
Dublin 2, Ireland

2Regional Centre for Child and Youth Mental Health and Child Welfare, Faculty of Medicine,
Norwegian University of Science and Technology, Trondheim, Norway

3Division of the Humanities and Social Sciences and Computation and Neural Systems Pro-
gram, California Institute of Technology, Pasadena, California

4Centre for Advanced Medical Imaging (CAMI), St. James’s Hospital/School of Medicine,
Trinity College, the University of Dublin, Dublin 8, Ireland

5Department of Psychiatry, University Hospital, Otto Von Guericke University Magdeburg,
Germany

r r

Abstract: Symptoms of attention deficit hyperactivity disorder (ADHD) in children often persist into
adulthood and can lead to severe antisocial behavior. However, to-date it remains unclear whether
neuro-functional abnormalities cause ADHD, which in turn can then provide a marker of persistent
ADHD. Using event-related functional magnetic resonance imaging (fMRI), we measured blood oxy-
genation level dependent (BOLD) signal changes in subjects during a reversal learning task in which
choice of the correct stimulus led to a probabilistically determined ‘monetary’ reward or punishment.
Participants were diagnosed with ADHD during their childhood (N 5 32) and were paired with age,
gender, and education matched healthy controls (N 5 32). Reassessment of the ADHD group as adults
resulted in a split between either persistent (persisters, N 5 17) or remitted ADHDs (remitters, N 5 15).
All three groups showed significantly decreased activation in the medial prefrontal cortex (PFC) and
the left striatum during punished correct responses, however only remitters and controls presented
significant psycho-physiological interaction between these fronto-striatal reward and outcome valence
networks. Comparing persisters to remitters and controls showed significantly inverted responses to
punishment (P< 0.05, family-wise error corrected) in left PFC region. Interestingly, the decreased acti-
vation shown after punishment was located in different areas of the PFC for remitters compared with
controls, suggesting that remitters might have learned compensation strategies to overcome their
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ADHD symptoms. Thus, fMRI helps understanding the neuro-functional basis of ADHD related
behavior differences and differentiates between persistent and remittent ADHD. Hum Brain Mapp
36:4648–4663, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) is a
psychiatric disorder characterized by impaired attention,
hyperactivity, and impulsivity [Kooij et al., 2010; Lange
et al., 2010]. Contrary to earlier assumptions, ADHD is no
longer considered a disorder exclusive to childhood: about
50%–80% of cases have been found to persist into adult-
hood. Epidemiological studies indicate that 3% to 4% of
adults suffer from ADHD [Kessler et al., 2005]. Chronic
symptoms of ADHD in adults can significantly impair
activities of daily living, such as academic, social, occupa-
tional, and family functioning, which over time can exacer-
bate problems, especially in the absence of adequate
coping skills [Weiss and Weiss, 2004].

Structural and functional imaging studies have led to the
view that ADHD patients suffer from a dysfunction of
fronto-striatal pathways which might be related to imbalan-
ces in dopaminergic and noradrenergic systems [Frodl,
2010]. In particular, frontal regional deficits across tasks and
age groups are a consistent pattern of ADHD neural dys-
function [McCarthy et al., 2014]. The neuropsychological
findings in ADHD patients reflect the assumed roles of these
structures in cognition and attention [Manly et al., 2005].

In patients with ADHD, the prominent ventral striatal
response has been found to be largest during the receipt
of reward [Plichta and Scheres, 2014]. Abnormal reward
processing in adults with ADHD compared with controls
were reported to occur in the right orbitofrontal cortex
(OFC) [Stroehle et al., 2008], consistent with the dual path-
way theory of both motivational and executive dysfunc-
tion in ADHD [Sonuga-Barke, 2002]. Stroehle et al.
attributed group differences between ADHD patients and
controls to ADHD patients presenting with larger reward
activation versus punishment activation compared with
controls showing no contrast in the OFC. In contrast, in
another study, group differences between adult ADHD
and control groups were reported also in the right medial
OFC when comparing high and low incentive rewards
directly. However, here controls showed larger differences

between high incentive (reward) relative to low incentive
(punishment) outcome compared with ADHD patients
[Wilbertz et al., 2012].

More recently, Hauser et al. reported a group contrast
between adolescent ADHDs and controls bilaterally in the
medial prefrontal cortex (PFC), which is more dorsally
located in the frontal cortex compared with the medial
OFC. Controls showed a larger effect compared with
ADHD patients. During anticipation, ADHD effect size
was larger in the right mPFC compared with controls
[Hauser et al., 2014].

The aim of this study was to investigate the differences
in functional cerebral activation via a model free analysis
approach of the event-related time course data and effec-
tive connectivity during punished compared to rewarded
correct responses in ADHD patients. The reversal learning
task [Chantiluke et al., 2014; Cools et al., 2002] enables
assessing whether participants process punishment as
unexpected or whether they indeed fail to associate the
punishment with denied reward potentially leading to dif-
ferent decisions thereafter. Our hypothesis is that subjects
with ADHD have difficulties assessing the outcome and
thus show reduced activation in mPFC after punishment,
while remitters and controls present with strong connec-
tivity between the frontal and striatal areas after
punishment.

METHODS

Participants

Thirty-two adults with combined-type ADHD who
underwent careful clinical assessment as children when
taking part in genetic and neuropsychological studies
[Brookes and Faraone, 2006; Johnson et al., 2008] were
compared with 32 healthy controls matched for age, sex,
handedness, and educational level. The IQ during child-
hood did not significantly differ between groups. Handed-
ness was determined using the Edinburgh Inventory
[Oldfield, 1971]. Educational and occupational attainments
were based on the Hollingshead four factor index of social
status [Hollingshead, 1975]. Full-scale IQ was measured
using the Wechsler Adult Intelligence Scale [Wechsler,
1940], Fourth Edition (WAIS-IV, Pearson Education Inc.,
San Antonio, TX, USA); the subscales of Verbal Compre-
hension, Perceptual Reasoning, Working Memory, and
Processing Speed were used to compute full-scale

Abbreviations

ADHD attention deficit hyperactivity disorder
BOLD blood oxygenation level dependent
fMRI functional magnetic resonance imaging
PFC prefrontal cortex
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composite IQ scores. Three patients with persisting ADHD
and three previous patients in remission had never
received any treatment for ADHD. All others were treated
with methylphenidate during childhood and the majority
of them stopped methylphenidate before youth. However,
seven participants with persistent ADHD were being
treated with methylphenidate hydrochloride (MPH) at the
time of study participation and thus were required to
undergo a washout period of 48 hours prior to study
involvement, to exclude acute drug effects.

Exclusion criteria consisted of previous head injury with
loss of consciousness, comorbid psychiatric disorder or
disease, a history of hydrocortisone use, and current alco-
hol or substance abuse and/or dependency. All partici-
pants were interviewed and underwent diagnosis and
screening for any potential comorbidity according to exclu-
sion criteria using the structured clinical interview for
DSM-V (SCID-Interview) (American Psychiatric Associa-
tion, 2013) by either a Master’s level PhD student with a
degree in psychology or a psychiatrist trained in the appli-
cation and interpretation of the SCID interview. A sum-
mary of the group characteristics and behavioral
performance is listed in Table I.

Reversal Learning Task

On each trial, subjects were presented with the same
two abstract fractal images, randomly assigned to the left
or right side of a central fixation cross. These stimuli
were presented for 2.9s, during which time the subject
was asked to choose between the two images and press

the left or right button on a button box held in their right
hand (Current Designs, Philadelphia, PA). The chosen
image became brighter, followed by feedback for 2.9s,
indicating whether the subject had won or lost a 20 cent
Euro. Rewarding feedback was indicated with a picture
of a 20 cent Euro coin in the center of the screen, while
punishing feedback was indicated by a picture of 20 cent
Euro coin with a red X across the image. A running total
of subjects’ earnings during this task were presented
above the 20 cent Euro coin. Missed trials were indicated
with a red X in the center of the screen and no change in
the running total. The next trial immediately followed
[O’Doherty, 2007].

The images were randomly assigned to be the correct or
incorrect choice. Choosing the correct option was associ-
ated with the subsequent delivery of a monetary reward
(gaining 20 cent Euro) on 70% of trials and a monetary
punishment (losing 20 cent Euro) on 30% of trials. The
incorrect choice was associated with 60% probability of
punishment and 40% probability of reward. After subjects
chose the correct stimulus on four consecutive occasions,
the contingencies reversed with a probability of 25% on
each successive trial. Subjects had to infer that the reversal
took place and switch their choice, at which point the pro-
cess was repeated.

Subjects practiced this task for 30 minutes outside the
scanner during a pretraining session. Subjects were
instructed to sample both choices to ascertain which was
more rewarding (they were not told the exact probabilities
but merely that one-image delivered rewards more often).
In the scanner, subjects performed a session that included

TABLE I. Demographic and clinical characteristics as well as behavioral data for ADHD persisters, ADHD remit-

ters, and healthy controls. Shown are also the statistics after correction for multiple comparison using family wise

error (FWE)

Persisters Remitters Controls

P-value

Persisters vs.
remitters

Persisters vs.
control

Remitters vs.
controls

Number of participants 17 15 32
Gender (male/female) 15/2 12/3 27/5
Handedness (right/left) 14/3 13/2 28/4
Age 22 6 4 21 6 3 21 6 4 0.30 0.37 0.80
Child_IQ 102 6 8 104 6 17 110 6 7 0.74 0.27 0.66
Adult-WAIS-IV – Full scale IQ 103 6 8 105 6 16 114 6 12 0.67 0.0024* 0.051
Adult-WAIS-IV - working memory index 98 6 10 99 6 16 111 6 15 0.71 0.0032* 0.026
Adult-WAIS-IV - verbal comprehension index 104 6 11 110 6 16 112 6 12 0.21 0.03 0.73
Adult-WAIS-IV - perceptual reasoning index 105 6 13 106 6 18 112 6 15 0.93 0.13 0.22
Adult-WAIS-IV - processing speed index 101 6 16 93 6 13 106 6 11 0.14 0.24 0.0017*
Child-Wender Utah rating scale (WURS)

sum of ADHD items
64 6 20 59 6 13 13 6 19 0.60 1.4 3 10212* 4.8 3 10214*

Connor’s adult ADHD rating scale (CAARS) 67 6 7 47 6 6 43 6 7 1.0.3 1028* 4.2 3 10214* 0.12
Number of rewarded correct responses 39 6 9 43 6 6 44 6 9 0.15 0.038 0.53
Number of punished correct responses 15 6 5 16 6 4 17 6 4 0.51 0.19 0.58
Number of contingency reversals 4 6 2 4 6 2 5 6 2 0.59 0.018 0.093

*Indicated P-values below significance threshold of 0.05, FWE corrected.
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163 task trials with 56 null events (during which the fixa-
tion cross was presented for the duration of a normal trial)
randomly interspersed for a duration of 20 mins 6 secs.

Image Acquisition

Magnetic resonance images from each participant were
obtained with a Philips Achieva MRI scanner (Philips
Medical System, Netherland BV, Veenphuis 4–6, 5684 PC
Best, the Netherlands) operating at 3T. The functional
images were collected in single runs using a gradient echo
EPI (TE 5 28 ms; TR 5 2000 ms; field of view 5 131 mm 3

131 mm, flip angle 5 908) sensitive to blood oxygenation
level-dependent (BOLD) contrast (T2*-weighting). A total
of 37 contiguous 3.2 mm-thick slices were acquired paral-
lel to the anterior posterior commissure plane with (3 x 3)
mm2 in-plane resolution, providing complete brain cover-
age. The fMRI run included 600 volumes acquired contin-
uously. Structural data (for definitive atlas transformation)
included a high resolution sagittal, 3D T1-weighted Turbo
Gradient Echo Sequence (TE 5 3.9 ms, TR 5 8.5 ms,
TI 5 1060 ms, flip angle 5 88), 256 3 240 acquisition matrix,
(1 3 1 3 1) mm3 voxels) scan.

Preprocessing of Functional Data

Using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/soft-
ware/spm8 [Friston, 2006]) functional MRI (fMRI) data
were preprocessed using the following steps: compensa-
tion of systematic, slice-dependent time shifts and system-
atic odd-even slice intensity differences because of
interleaved acquisition were eliminated; rigid body correc-
tion for interframe head motion within and across runs.
Data were excluded if motion parameters exceeded 3 mm
in any direction or 3.08 of any angular motion throughout
the course of the scan. To account for group differences in
movement, all six rotations and translation movement
parameters were extracted for each participant. Next, core-
gistration of the structural T1 image to the functional scans
was carried out. Spatial normalization to standard (3 3 3
3 3) mm3 Montreal Neurological Institute space was then
applied to the functional images and to the structural
image respectively to allow for inter-subject analysis. Data
were then spatially smoothed using a 3D Gaussian filter
(smoothing full width at half maximum 5 8 mm).

Log-File Analysis and Conditions

The onsets for four contrasts were computed according
to the contrasts reported elsewhere [Cools et al., 2002]. The
hemodynamic response function was expected to be trig-
gered by the onset of the responses, which co-occurred
with the presentation of the feedback. The following
events were modeled (1) correct responses, co-occurring
with positive feedback, as a baseline; (2) probabilistic
errors, on which negative feedback was given to correct

responses (trials on which subjects reversed after a proba-
bilistic error were not included in the model); (3) final
reversal errors, resulting in the subject shifting their
responding; and (4) the other preceding reversal errors,
following a contingency reversal but preceding the final
reversal errors. The amount of rewarded and punished
correct responses and the amount of contingency reversals
was computed and is presented in Table I. For fMRI data
analysis the probabilistic error trials (punished correct
responses) were extracted and compared to rewarded cor-
rect responses.

Voxel-Based Trend Correction

A sixth degree polynomial was fit to the time course
data in each voxel. The fit result was used to normalize
the voxel signal so that the resulting time course signal
across 600 time steps was zero-mean and normalized to
the mean MRI signal in that voxel presented as the %
mean MRI signal.

Atlas Based Voxel by Voxel Analysis

Analysis comprised 116 ROIs extracted using the wfu_
pickatlas toolbox [Maldjian et al., 2003] in MATLABVR

(2014a, Mathworks, Inc., Nattick, MA) with reference to
the automated anatomical labeling (aal) atlas [Tzourio-
Mazoyer et al., 2002]. Masks were saved as nifti-files and
loaded into MATLABVR to compute the condition based
event related trials for each voxel in each ROI. The ROI
based analysis enabled concatenation of all trials for each
group using an iMac personal computer (OS X Version
10.9.5, 2.9GHz Intel Core i5 processor, 8GB 1600MHz
DDR3 memory).

Event-Related Trial-by-Trial Analysis

The onsets for each contrast were used to extract the
corresponding average BOLD responses for five volumes
before and ten volumes after onset for each trial. The cor-
responding movement information was also recovered
for each corresponding time point. Trials were discarded,
if the movement variation across the five volumes before
and after onset exceeded 0.3 mm. An example of dis-
carded and considered trial data including movement
and BOLD signal data is shown in Figure 1. The BOLD
signal was saved in a global variable comprising all trials
for each condition and group. To enhance the signal-to-
noise ratio (SNR), the trials for each of the three groups
(i.e. persisters, remitters, controls) were subdivided in
five subgroups by choosing every fifth trial starting with
the first trial for the first subgroup, every fifth trial start-
ing with the second trial for the second subgroup, etc.
The mean and standard deviation was computed for each
sampling point. A graphical example of this procedure is
presented in Figure 2. To determine significant
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differences between responses the P-value was computed
using the two-sample t-test from each time point data
between the two investigated trials (i.e. rewarded and
punished correct responses). The minimum P-value was
determined for the average of three consecutive time
points at 5 to 11s after stimulus onset and the time point
of the minimum P-value was used for further analysis.
This time point is further referred to as the time after
onset.

Preanalysis

The significance threshold was initially set to 0.001 to
determine voxels that showed a significant difference
between (1) rewarded and punished correct responses
within groups, and (2) reward minus punishment
responses between groups [(a) persisters vs remitters, (b)
persisters vs controls, and (c) remitters vs controls] at 5 to
11s after onset. Clusters with more than 100 voxels were
used for further analysis of family wise error (FWE) cor-
rected significance levels and psycho-physiological
interaction.

Psycho–Physiological Interaction

Strong predictions about the involvement of the ventral
striatum and OFC in reversal learning justified the applica-
tion of a psycho physiological interaction analysis (PPI).
The BOLD responses averaged across significant clusters
(P< 0.001, uncor.) in striatal and frontal ROIs was ana-
lyzed for all three groups. All three groups presented with
decreased activation for punished correct responses com-

pared to reward in the fronto-striatal ROIs. The correlation
factor was computed for 21 to 13 s pre/poststimulus
onset for each of the five trial subgroups and between
each of the striatal and frontal cortex VOIs. The change in
correlation factor from rewarded to punished correct
responses between any of those combinations was then
statistically assessed by computing the two-sample t-test
of the change in correlation factor. A P-value below 0.05
was considered as an indicator of significant psycho-
physiological interaction between the two investigated
brain regions.

Statistical Analysis

For the analyzed mean BOLD signal measured, we
report clusters with more than 100 voxels surviving a
cluster-level threshold of P<0.05 FWE corrected. The anal-
ysis was computed using MATLABVR (2014a, Mathworks,
Inc., Nattick, MA).

RESULTS

Behavioral Analysis

The number of reversal trials as a function of contin-
gency reversals for each group was analysed. A general
tendency of decreasing number of reversals needed for
increasing contingency reversals was detected for all
groups. The number of reversal trials did not significantly
differ between remitters, persisters, and controls.

Figure 1.

Excluded (left) and included (right) trial information as an example for the effect of large intratrial

motion on the BOLD response measured via MRI. Please note the large negative response in the

excluded trial measured (bottom left) in the nucleus accumbens while the generally recorded

BOLD response in the same region is rather small during rewarded correct responses (bottom

right). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 2.

Trial-by-trial averaging approach taken to process the group data on

the example observed in the left nucleus accumbens in persisters

for rewarded and punished correct responses. Please note that the

signal variations at approximately 5 to 9s after stimulus onset were

significantly different for the two conditions. The difference was

measured to be as small as 0.1% of the mean MRI signal measured

in the same brain tissue while the variation in the single trial data is

up to 2% of the mean MRI signal (trial-by-trial maps with color bar).

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Psycho–Physiological Interaction

The mOFC and the striatum were found to present with
different BOLD responses between punishment and
reward in all three groups (P< 0.001, uncorr.). The correla-
tion coefficient between the fronto-striatal BOLD responses
was near zero for persisters (0.08 6 0.24 [Rew] vs
0.10 6 0.31 [Pun], P 5 0.78) for both conditions. The corre-
lation factor was positive for rewards for remitters
(0.28 6 0.29 [Rew] vs 0.56 6 0.32 [Pun], P 5 0.013) and con-
trols (0.37 6 0.37 [Rew] vs 0.69 6 0.26 [Pun], P 5 0.036) pre-
senting with significantly increased correlation during
punishment compared with reward. The bar graph of this
result is shown in Figure 3 together with the averaged
BOLD response in the investigated ROIs.

Within Group Analysis

Statistically significant effects (P< 0.05, FWE corrected)
were observed in reward regions—the ventral and dorsal
striatum—for persisters (Fig. 4a, Table II). Significance test
excluded striatal ROIs found previously with P< 0.001 for
remitters (Table III) and controls (Table IV). Remitters and con-
trols showed decreased activation in the mOFC after punish-
ment compared with rewarded correct responses. The mOFC
region is responsible for processing denied rewards (Fig. 4b,c).

Group Comparison

The difference between reward and punishment (reward
– punishment) was analysed for (1) persisters versus

Figure 3.

Testing fronto–striatal connection via changes in the correlation

coefficient for BOLD responses measured (physiological) after

reward and punishment (psychological). The P-values indicating

significant differences at P< 0.05, testing whether the correla-

tion coefficient of the BOLD response measured in frontal and

striatal regions had changed for rewarded and punished condi-

tions were 0.78 for persisters, 0.013 for remitters, and 0.036

for controls. The time course data for persisters (third row),

remitters (second row), and controls (first row) and frontal

region (first column and striatal region (second column) are pre-

sented beside the bar graph. The lack of correlation of the blue

and red time courses is obvious for persisters while the strong

correlation of the red time courses for controls and remitters is

apparent. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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Figure 4.

Clusters for within group differences between BOLD signals after reward and punishment

(P< 0.05, cluster-level FWE corrected) for (a) persisters, (b) remitters, and (c) controls. Note

that remitters and controls show significant contrast in frontal cortex, while persisters show sig-

nificant contrast in the striatum. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

http://wileyonlinelibrary.com


remitters, (2) persisters versus controls, and (3) remitters
versus controls. The comparison between persisters and
controls yielded the largest number of five clusters (Table
V). The right mOFC showed increased activation during
punishment for persisters, but decreased activation for
controls (Fig. 5). More predominantly, the dorsal medial
and dorsal lateral PFC showed the same pattern (Fig. 6).
The comparison of persisters versus controls yielded three
more clusters, the right cuneus, the left precuneus, and the

right fusiform with similarly characteristic signal inver-
sions for both groups. Comparing persisters to remitters,
the ventral lateral and ventral medial PFC showed
increased activation after punished correct responses for
persisters while remitters presented with decreased activa-
tion in this region (Fig. 7, Table VI). Remitters and controls
significantly differed only in exceptionally ventral mOFC
regions and inspection of the BOLD responses indicated
that controls showed no activation in those ROIs after

TABLE II. Within group results for persisters

Main ROI
(voxel/
cluster size)

Rewarded
mean

Rewarded
STD

Punished
mean

Punished
STD

Time after
onset

P-value,
uncorr.

P-value,
cluster
level

FWE corr.
MNI

x
MNI

y
MNI

z

Putamen_L(NLG)
(120/190)

0.057 0.0087 20.078 0.023 5 4.7e-06 0.0044 217 8.6 26.7

Temporal_Inf_
R(T3D)
(104/104)

20.066 0.023 0.051 0.014 11 2.6e-05 0.046 55 246 221

TABLE III. Within group results for remitters

Main ROI (voxel/cluster size)
Rewarded

Mean
Rewarded

STD
Punished

mean
Punished

STD

Time
after
onset

P-value,
uncorr.

P-value,
cluster
level

FWE corr.
MNI

x
MNI

y
MNI

z

Frontal_Inf_Oper_R(F3OPD) (81/111) 0.044 0.012 20.056 0.013 9 3.3e-06 0.0055 60 16 6
Temporal_Mid_R(T2D) (410/895) 0.024 0.0076 20.035 0.012 11 3.6e-05 0.0074 63 229 26.7
Frontal_Inf_Tri_L(F3TG) (310/419) 0.036 0.034 20.12 0.013 7 2e-05 0.0088 248 35 1.3
Cingulum_Mid_L(CINMG) (137/445) 0.012 0.024 20.19 0.044 7 3.6e-05 0.015 1.4 229 49
Frontal_Med_Orb_L(FMOG)

(299/1348)
0.043 0.016 20.18 0.063 7 0.00015 0.02 21.4 43 213

Temporal_Mid_L(T2G) (526/653) 0.042 0.014 20.045 0.019 11 8.2e-05 0.023 258 229 21.3
Frontal_Mid_L(F2G) (102/102) 0.049 0.013 20.078 0.026 7 2.3e-05 0.04 245 28 41

TABLE IV. Within group results for controls

Main ROI (voxel/cluster size)
Rewarded

mean
Rewarded

STD
Punished

mean
Punished

STD

Time
after
onset

P-value,
uncorr.

P-value,
cluster
level

FWE corr.
MNI

x

MNI
y

MNI
z

Precentral_L(FAG) (84/129) 20.0096 0.011 20.082 0.005 11 1.7e-06 0.0024 248 2.9 20
Fusiform_R(FUSID) (352/1090) 0.048 0.012 20.044 0.018 7 3.2e-05 0.0054 28 229 220
Frontal_Med_Orb_R(FMOD)

(248/620)
0.023 0.031 20.12 0.014 7 2.5e-05 0.0073 0.86 48 26.9

Cerebelum_Crus2_R(CERCRU2D)
(248/466)

0.026 0.013 20.058 0.016 7 3.4e-05 0.013 31 275 238

Occipital_Mid_L(O2G) (222/317) 20.014 0.012 20.09 0.014 7 3.6e-05 0.02 240 274 28
Temporal_Mid_R(T2D) (70/118) 20.015 0.0054 20.087 0.014 11 1.4e-05 0.021 47 267 21.2
ParaHippocampal_L

(PARA_HIPPOG) (62/195)
0.044 0.019 20.065 0.018 7 3.3e-05 0.03 216 239 216

Postcentral_R(PAD) (211/401) 0.016 0.019 20.067 0.013 11 8.9e-05 0.04 43 220 49
Insula_L(ING) (70/129) 20.012 0.017 20.091 0.0091 11 3.4e-05 0.048 236 219 11
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punishment while remitters showed decreased activation in
those ROIs after punishment leading to a large response dif-
ference (Fig. 8, Table VII). Other significant ROIs included
the right middle temporal pole with remitters presenting
with negative response and controls remaining neutral.

DISCUSSION

To our knowledge, this study provides the first evidence
that adolescents with persisting ADHD symptoms diag-
nosed with ADHD during childhood have functional neu-
ral alterations in the left PFC, but that these alterations are

Figure 5.

(a) Group difference between persisters and controls in right

OFC (similar location as found by (Hauser et al., 2014; Stroehle

et al., 2008; Wilbertz et al., 2012). (b) The mean BOLD signal

measured in this cluster is shown for persisters (top row) with

larger punishment response compared with reward response at

11s after onset. The mean BOLD response for controls is

shown in the second row with smaller punishment response

compared with reward at 11s after onset. The within group

BOLD responses lead to a positive difference for controls

(reward – punishment) and a negative difference for persisters

with a significant (P< 0.05, cluster-level FWE corrected) differ-

ence at 11s after onset. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

r Impaired Reward Processing in PFC for ADHDs r

r 4657 r

http://wileyonlinelibrary.com


not present anymore in those who had remission of
ADHD symptoms over time. Activation of mPFC during
denied reward differed significantly between those in
whom ADHD symptoms persisted and those in whom
symptoms had improved or carefully matched healthy
controls with no history of ADHD.

Interestingly, remitters and persisters performed equally
well according to the reversal errors committed for each
contingency. All groups showed a decreasing number of
reversal errors with progressing number of contingency
reversals, and thus the behavioral performance during the
task can be assumed to have had no impact on above-

Figure 6.

(a) Group difference between persisters and controls in dorsal

medial and dorsal lateral frontal parts of the PFC. (b) The mean

BOLD signal measured in this cluster is shown for persisters

(top row) with larger punishment response compared with

reward response at 11s after onset. The mean BOLD response

for controls is shown in the second row with smaller punishment

response compared with reward at 11s after onset. The within

group BOLD responses lead to a positive difference for controls

(reward – punishment) and a negative difference for persisters

with a significant (P< 0.05, cluster-level FWE corrected) differ-

ence at 11s after onset. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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mentioned results. Comparing the BOLD responses for
punished and rewarded responses showed unilateral
left activations of the striatal region for all three groups.
All three groups also presented with significant BOLD sig-
nal reduction after punished correct responses (P< 0.001,
uncorr.) in mOFC and mPFC. The activation was more

frontally located for remitters and controls showed more
frontal dorsal activation compared with persisters.

Investigating the psycho-physiological interaction
between those ROIs in each group showed that only
remitters and controls connected fronto-striatal regions
during denied reward. Also Hauser et al. reported

Figure 7.

(a) Group difference between persisters and remitters in ventral

medial and ventral lateral frontal parts of the PFC. (b) The mean

BOLD signal measured in this cluster is shown for persisters

(top row) with larger punishment response compared with

reward response at 11s after onset. The mean BOLD response

for remitters is shown in the second row with smaller punish-

ment response compared to reward at 11s after onset. The

within group BOLD responses lead to a positive difference for

remitters (reward – punishment) and a negative difference for

persisters with a significant (P< 0.05, cluster-level FWE cor-

rected) difference at 11s after onset. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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correlation coefficient below 0.3 in ADHD, but above 0.3
for controls between mPFC and striatal regions when
analyzing reward prediction errors after outcome pre-
sentation [Hauser et al., 2014]. Our result confirms their
finding and refines the current knowledge clarifying that
remitters are indeed capable to establish such
connectivity.

Family-wise error corrected clusters were located in
striatal region for persisters, but not for remitters and con-
trols. Finding significant clusters in striatal regions may
have resulted from a hypersensitivity to rewards and
hence more significantly arising differences between pun-
ished and rewarded BOLD responses (Fig. 2a, blue line
presenting slight positive response during reward). This

Figure 8.

(a) Group difference between controls and remitters in the

mOFC. (b) The mean BOLD signal measured in this cluster is

shown for controls (top row) with neutral punishment response

and reward response at 9s after onset. The mean BOLD

response for remitters is shown in the second row with smaller

punishment response compared to reward at 9s after onset.

The within group BOLD responses lead to a positive difference

for remitters (reward – punishment) and a neutral difference for

controls with a significant (P< 0.05, cluster-level FWE cor-

rected) difference at 9s after onset. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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result coincided with findings of striatal hyperactivity in
ADHD after reward reception [Stroehle et al., 2008].
Remitters and controls showed decreased activation of the
mOFC with controls presenting decreased activation in
more dorsal regions compared to remitters. Reward
response was seemingly neutral for both groups. Bilateral
activation of the mOFC for controls versus persisters had
been reported previously [Wilbertz et al., 2012]. Remitters
can indeed activate the mOFC in response to punishment,
although activation occurred in ventral mOFC regions.

Group differences confirmed previous studies that found
right mOFC region differences between persisters and con-
trols [Hauser et al., 2014; Stroehle et al., 2008; Wilbertz
et al., 2012]. These were reported for ADHD> controls after
outcome [Stroehle et al., 2008], ADHD> controls during
cue presentation of reward prediction errors [Hauser et al.,
2014], but controls>ADHD during outcome [Wilbertz
et al., 2012]. We can confirm that the difference between
reward and punishment is larger for remitters and controls
in this region while the difference between reward and
punishment for persisters was inverted presenting with
negative values. This finding would confirm results
reported by Wilbertz et al. [Wilbertz et al., 2012]. More
importantly, these differences arose at 9 to 11s after onset.
A time delay between the within group cluster peaks (5 to
7s) and the between group cluster peaks is suggesting that
both events are indeed separable sequentially—for instance
the within group differences can hence relate to outcome
assessment and the within group differences can represent
decision making. Alternatively, such time delays may rep-
resent variations in neuronal firing rates in different corti-
cal tissue structures [Rolls and Baylis, 1994].

We report significant differences between persisters and
remitters in bilateral ventromedial PFC and left ventrolat-

eral PFC (Fig. 3). The signal differences arose for similar
reasons as reported in previous section. Persisters and con-
trols differed between left dorsomedial and dorsolateral
PFC with similarly inverted signal characteristics. Hauser
et al. reported bilateral mPFC region providing contrast
for controls>ADHD after outcome RPE and larger feed-
back negativity for controls as measured via EEG and
source localization [Hauser et al., 2014]. Thus, we addi-
tionally demonstrated subtype differences between remit-
ters and persisters in a similar region. Interestingly, the
decreased activation during the task was located in differ-
ent areas of the mPFC for controls and remitters. This
might tentatively support the hypothesis that remitters
learn to overcome their ADHD problems and thus might
learn to activate a different part of the mPFC to compen-
sate, since the normal area found amongst controls does
not do this. Recent literature suggests that children can
learn how to overcome ADHD symptoms [Guderjahn
et al., 2013]. Our study provides first evidence that differ-
ent brain regions present with functional activation after
punishment. Please note here that we investigated learning
using the reversal-learning task. These ideas are hypotheti-
cal and thus require replication in future studies.

With regard to observing group differences, we ana-
lyzed the BOLD response after each trial for each group
and found that the BOLD response after punishment was
larger than for reward in persisters, while punishment
resulted in lower BOLD response compared with reward
in remitters and controls. Considering that persisters
showed nearly no response in large parts of the mOFC,
but a positive response in the very frontal parts of the
mPFC leads to the assumption that persisters triggered
switching after potentially having registered punishment
during their last choice. Reviewing the literature revealed

TABLE V. Between group results for persisters (G1) versus controls (G2)

Main ROI
G1 Dif
Mean

G1 Dif
Std

G2 Dif
Mean

G2 Dif
Std

Time
after
onset

P-value,
uncorr.

P-value,
cluster
level

FWE corr.
MNI

x
MNI

y
MNI

z

Fusiform_R(FUSID) (174/293) 20.11 0.017 0.09 0.02 11 4.2e-07 0.00026 31 232 224
Frontal_Sup_L(F1G) (171/336) 20.2 0.038 0.11 0.034 11 1.6e-06 0.00085 216 63 8.7
Precuneus_L(PQG) (61/185) 20.088 0.029 0.098 0.022 11 6.8e-06 0.0067 20.88 243 54
Frontal_Sup_Medial_R(FMD)

(43/141)
20.16 0.025 0.074 0.045 11 1.5e-05 0.02 11 66 22.8

Cuneus_R(QD) (95/125) 20.046 0.019 0.051 0.0089 9 1.7e-05 0.024 15 282 25

TABLE VI. Between group results for persisters (G1) versus remitters (G2)

Main ROI
G1 Dif
mean

G1 Dif
STD

G2 Dif
mean

G2 Dif
STD

Time
after
onset

P-value,
uncorr.

P-value,
cluster level
FWE corr.

MNI
x

MNI
y

MNI
z

Frontal_Mid_Orb_L(F2OG)
(104/275)

20.14 0.056 0.11 0.03 11 4.2e-05 0.028 219 56 210
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that mOFC BA 10 (anterior frontopolar cortex, MNI coor-
dinates5[23;59;29] [Bode et al., 2011]; MNI-coordinates5

[0;60;23]) is temporally the first to carry intention-related
information [Bode et al., 2011; Soon et al., 2008] and hence
is involved and showed decreased activation when a con-
scious decision of switching is made. A tentative explana-
tion might be that negative response in frontopolar mOFC
region represents an inhibition to switch for remitters and
controls. Persisters more likely mistook the denied reward
trials as punishment leading them to switch while remit-
ters and controls stayed with their previously punished
choice because they had learned that it was the correct
response despite having been punished. This explanation
is further supported by the fact that the clusters showing
group differences occurred at 9 to 11s after onset, while
the within group differences were mostly detected at 7 to
9s after onset. The delayed response may be a hint that
frontopolar cortex increase in activation is a result of the
thought process conducted in mPFC.

The detection of lowered BOLD response via fMRI after
incorrectly punished trials —the denial of an anticipated
reward—may provide an objective way for the assessment
of ADHD patients in order to differentiate currently symp-
tomatic ADHD patients from subjects recovered from
ADHDs and controls.

Limitations arise from participants having been medi-
cated in the past and having had a history of drug abuse.
To overcome this influence of acute drug medication all
participants refrained from taking their methylphenidate
48 hours before the scanning. With regards to number of
patients who stopped methylphenidate; there were seven
in the group of persisters out of 17 and zero in the group
of remitters and thus we cannot rule out long-term effects
of methylphenidate. Furthermore, remitters and persisters
consumed more reversal tasks during the first reversal
contingency period compared to controls, which may be a
hint that persisters and remitters had a lesser understand-
ing of the task. Since remitters however showed significant
activation differences compared to persisters it can be
assumed that such behavioral differences had no signifi-
cant impact on the functional MRI result.

To overcome some of the issues with functional MRI,
we used some additional pre-processing steps which are
generally avoided because of the long computation times
needed. Event-related functional MRI is a promising
method for computing subtle neuro-functional changes

during emotional or reward stimulation. However, in con-
trast to block-design somatosensory paradigms where the
BOLD signal change is large (up to 10% of the average
MRI signal), reward related BOLD signal changes are
extremely small (in the range of 0.1 to 0.2%). Assuming a
static heamodynamic response function is furthermore
challenging because of the significantly lower firing rates
of neurons in the frontal lobe with 10-15 spikes/s [Rolls
and Baylis, 1994]) versus 60 to 120 spikes/s in the tempo-
ral lobe cortical viusual areas [Rolls and Tovee, 1995] and
the sparseness of the representations found in OFC [Rolls
and Tovee, 1995]. Hence, the time-to-peak of the heamody-
namic response function (hrf) was reported later at
approximately 10s after punishment compared to peak
times observed after visual or somatosensory stimuli in
the respective visual and somatosensory cortices [O’Doh-
erty et al., 2001]. Using standard fit of heamodynamic
response function can potentially disguise actual contrasts
and may have lead to inconclusive fMRI results for adult
and adolescent ADHD versus controls groups in the past.

In conclusion, we observed differences between controls
and ADHD persisters and differences between remitters
and persisters in their BOLD responses to punished and
rewarded correct responses. While persisters showed no
significant difference between the two conditions in mPFC,
remitters and controls showed lower BOLD response to
punished correct responses. Interestingly, the decreased
activation was located in a different region of the PFC
between remitters and controls.
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