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Abstract

Data centers have emerged as promising resources for demandresponse, particularly for emergency demand response (EDR),

which saves the power grid from incurring blackouts during emergency situations. However, currently, data centers typically

participate in EDR by turning on backup (diesel) generators, which is both expensive and environmentally unfriendly. In this

paper, we focus on “greening” demand response in multi-tenant data centers, i.e., colocation data centers, by designing a pricing

mechanism through which the data center operator can efficiently extract load reductions from tenants during emergencyperiods

to fulfill energy reduction requirement for EDR. In particular, we propose a pricing mechanism for both mandatory and voluntary

EDR programs,ColoEDR, that is based on parameterized supply function bidding andprovides provably near-optimal efficiency

guarantees, both when tenants are price-taking and when they are price-anticipating. In addition to analytic results,we extend the

literature on supply function mechanism design, and evaluate ColoEDR using trace-based simulation studies. These validate the

efficiency analysis and conclude that the pricing mechanismis both beneficial to the environment and to the data center operator

(by decreasing the need for backup diesel generation), while also aiding tenants (by providing payments for load reductions).

I. I NTRODUCTION

Data centers have emerged as a promising demand response opportunity. However, data center demand response today is not

environmentally friendly since data centers typically participate by turning on backup (diesel) generators. In this paper, we focus

on designing a pricing mechanism for a crucial class of data centers for demand response – multi-tenant colocation data centers

– that allows the data center operator to encourage load shedding among tenants in response to demand response signals; thus

greening data center demand response by reducing the need for use of backup (diesel) generation.

Data center demand response.Power-hungry data centers have been quickly expanding in both number and scale to support

the exploding IT demand, consuming 91 billion kilowatt-hour (kWh) electricity in 2013 in the U.S. alone [29]. While traditionally

viewed purely as a negative, the massive energy usage of datacenters has recently begun to be recognized as an opportunity. In

particular, because the energy usage of data centers tends to be flexible, they are promising candidates fordemand response, which

is a crucial tool for improving grid reliability and incorporating renewable energy into the power grid. From the grid operator’s

perspective, a data center’s flexible power demand serves asa valuable energy buffer, helping balance grid power’s supply and

demand at runtime [43].

To this point, data center is a promising, but still largely under-utilized opportunity for demand response. However, this is

quickly changing as data centers play an increasing role in emergency demand response (EDR) programs. EDR is the most

widely-adopted demand response program in the U.S., representing 87% of demand reduction capabilities across all reliability

regions [25]. Specifically, during emergency events (e.g.,extreme weather or natural disasters), EDR coordinates many large

energy consumers, including data centers, to shed their power loads, serving as the last protection against cascading blackouts that

could potentially result in economic losses of billions of dollars [27], [31]. The U.S. EPA has identified data centers ascritical

resources for EDR [11], which was attested to by the following example: on July 22, 2011, hundreds of data centers participated

in EDR by cutting their electricity usage before a large-scale blackout would have occurred [27].

http://arxiv.org/abs/1504.07308v1
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While data centers are increasingly contributing to EDR, they typically participate by turning on their on-site backupdiesel

generators, which is neither cost effective nor environmentally friendly. For example, in California (a major data center market),

a standby diesel generator often produces 50-60 times more nitrogen oxides (a smog-forming pollutant) compared to a typical

power plant for each kWh of electricity, and diesel particulate represents the state’s most significant toxic air pollution problem

[34].

In addition, relying on diesel generation for EDR presents emerging challenges which, if left unaddressed, may forfeitdata

center’s EDR capability. First, as EDR is becoming more frequent, the current financial compensation offered by power grid to data

centers (for committed energy reduction during EDR) may notbe enough to cover the growing cost of diesel generation. Second,

data center operators are aggressively cutting the huge capital investment in their power infrastructure (e.g., 10-15$/watt [6], [22]),

by down-sizing the capacity of diesel generator and uninterrupted power supply (UPS) system [39]. Such under-provisioning of

diesel generator may compromise data center’s EDR capability. Therefore, to retain and encourage data center’s participation in

EDR without contaminating the environment, it is critical and urgent that data centers seek alternative ways to shed load.

Consequently, modulating server energy for green EDR (as well as other demand response programs such as regulation service

[20]) has received an increasing amount of attention in recent years, e.g., [1], [2], [7], [14], [20], [24], [41], [43]. These studies

leverage various widely-available IT computing knobs (e.g., server turning on/off and workload migration) in data centers and

provide algorithms to optimize them for participation in demand response markets. Importantly, these are not simply theoretical

studies. For example, a field study by Lawrence Berkeley National Laboratory (LNBL) has illustrated that data centers can reduce

energy consumption by 10-25% in response to demand responsesignals, without noticeably impacting data center’s normal

operation [15].

Demand response in collocation data centers.While existing studies on data center demand response show promising

progress, they are primarily focused on owner-operated data centers (e.g., Google) whose operators have full control over both

servers and facilities. Unfortunately, such companies mayactually be the least likely to participate in demand response programs,

because many of their workloads are extremely delay sensitive and their data centers have been optimized for delay.

In this paper, we focus on another type of data centers — multi-tenant colocation data centers (e.g., Equinix). These have

been investigated much less frequently, but are actually better targets for demand response then owner-operated data centers. In a

colocation data center (simply called “colocation” or “colo”), multiple tenants deploy and keep full control of their own physical

servers in a shared space, while the colo operator only provides facility support (e.g., high-availability power and cooling). Colos

are less studied than owner-operated data centers, but theyare actually more common in practice. Colos offer data center solutions

to many industry sectors, and serve as physical home to many private clouds, medium-scale public clouds (e.g., VMware) [8],

and content delivery providers (e.g., Akamai). Further, a recent study shows that colos consume nearly 40% data center energy in

the U.S., while Google-type data centers collectively account for less than 8%, with the remaining going to enterprise in-house

data centers [29].

In addition to consuming a significant amount of energy (morethan Google-type data centers), colos are often located in

places more useful for demand response. While many mega-scale owner-operated data centers are built in rural areas, colos are

mostly located in metropolitan areas (e.g., Los Angeles, New York) [9], which are the very places where EDR is most needed.

Further, workloads in colos are highly heterogenous, and many tenants run non-mission-critical workloads (e.g., lab computing

[37]) that have very high scheduling flexibilities, different delay sensitivities, peak load periods, etc., which is ideal for demand

response participation.

For all these reasons, colos are key participants in EDR programs. Compared to owner-operated data centers that can leverage

various computing knobs, however, greening colos’ participation in EDR by reducing reliance on diesel generator is significantly

more challenging, because of colo operators’ lack of control over their tenants’ servers. On the other hand, many tenants in colos

run servers hosting highly-flexible and non-critical workloads with a great potential for shedding loads when called upon [37].
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Thus, tenants’ load shedding potentials, if appropriatelyexploited, can altogether form a green alternative to diesel generation

for colo EDR. Nonetheless, tenants manage their own serversindependently and may not have incentive to cooperate with the

operator for EDR, thus raising the research question: how can a colo operatorefficientlyincentivize its tenants’ load shedding for

EDR?1

Contributions of this paper. In this paper, we focus on “greening” colocation demand response by extracting load reduction

from tenants instead of relying on backup diesel generation. We study bothmandatoryEDR, a type of EDR program in which

participants sign contracts and are obliged to reduce loadswhen requested [31], andvoluntaryEDR, where participants voluntarily

reduce loads for financial compensation upon grid request. In both cases, we propose a new pricing mechanism with which colo

operators can extract load shedding from tenants. In particular, our proposed approach, calledColoEDR, can effectively provide

incentives for tenants to reduce energy consumption duringEDR events, complementing (and even substituting for) the high-cost

and environmentally-unfriendly diesel generation.

ColoEDR works as follows. After an EDR signal arrives at the colo operator, tenants bid using a parameterized supply

function, and then the colo operator announces a market clearing price which, when plugged into the bids, specifies how much

energy tenants will reduce and how much they will be paid. Participation by the tenants is straightforward, since they are required

to bid only one parameter, which can be viewed as a proxy of howmuch flexibility in energy usage they have at that moment.

This participation can be automated and so can be easily incorporated into current practice, and mimics the way generation

resources participate in electricity markets more broadly. For example, colo operators at Verizon Terremark already communicate

with tenants in preparation for an EDR event.

The main technical contribution of the paper is the analysisof the efficiency of the supply function mechanism proposed in

ColoEDR. In particular, while there is a large literature studying supply function bidding [5], [10], [16]–[18], our setting here

is novel and different because the colo operator can either satisfy the EDR request using flexibility from the tenants (asin prior

supply funding literature) or through its backup diesel generator. Thus, the diesel generator is an outside option thatallows for

elasticity in the amount of response extracted from the tenants. Further, the colo operator can combine and balance between its

two options (i.e., tenant load shedding and backup generator) in order to minimize costs. This creates a multi-stage game and

adds a considerable complexity as compared to the standard setting without an outside option, e.g., [18].

Despite the added complexity, our analysis precisely characterizes the equilibrium outcome, both when tenants are price-

taking and when they are price-anticipating. In both cases,our results highlight thatColoEDR suffers little performance loss

compared to the socially optimal outcome, both from the operator’s and the tenants’ perspectives. However, our analysis does

highlight one possible drawback ofColoEDR. In the worst case, it is possible thatColoEDR may result in using significantly

more on-site diesel generation than would the socially optimal. However, this bad event occurs only in cases where one tenant

has an overwhelmingly dominant amount of servers and has a unit cost (for energy reduction) just below that of on-site diesel

generation. Such an exploitation of market power is unlikely to be possible in practical multi-tenant colocation data centers.

In addition to our theoretical analysis, we investigate a case study of colocation demand response in §VI using trace-based

experiments. The results further validate the design ofColoEDR, and show that it achieves the mandatory energy reduction for

EDR while benefiting tenants through financial incentives and decreasing the operator’s cost. Moreover, our simulationstudy

shows that the efficiency loss in practical settings is even lower than what is suggested by the analytic bounds. This is especially

true for the amount of on-site generation, which the analytic results suggest can (in the worst-case) be significantly larger than

socially optimal but in realistic settings is very close to the social optimal.

1Tenants receive UPS-protected power from colo operator andshare cooling systems. In other words, tenants’ total energy consumption is not directly
provided by grid and includes non-separable cooling energy, which makes tenants ineligible for direct participation in EDR [31].
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II. PROBLEM FORMULATION

Our focus is to design a mechanism for a colo operator to extract tenant load reductions in response to to an EDR signal.

Thus, we need to begin by describing a model for a colo operator.

Recall that the colo operator is responsible for non-IT facility support (e.g., high-availability power, cooling). Wecapture

the non-IT energy consumption using Power Usage Effectiveness (PUE)γ, which is the ratio of the total colocation energy

consumption to the IT energy consumption. Typically,γ ranges from 1.1 to 2.0, depending on factors such as outside temperature.

When the operator receives an EDR signal from the LSE, it has two options for satisfying the load reduction. First, without

involving the tenants, the colo operator can use its on-sitebackup diesel generator.2 We denote the amount of energy reduction

by diesel generation byy and the cost per kWh of diesel generation (e.g., for fuels) byα.

Alternatively, the colo operator could try to extract IT load reductions from the tenants. We consider a setting where there

areN tenants,i ∈ N = {1, 2, · · · , N}. When shedding energy consumption, a tenanti will incur some costs and we denote

the cost from sheddingsi by a functionci(si). These costs could be due to wear-and-tear, performance degradation, workload

shifting, etc. For the purposes of our model, we do not specify which technique reduces the IT load, only its cost. For details on

how one might model such costs, see [4], [12], [30], [42]. A standard, natural assumption on the costs is the following.

Assumption 1. For eachn, the cost functioncn(sn) is continuous, withcn(sn) = 0 if sn ≤ 0. Over the domainsn ≥ 0, the

cost functioncn is convex and strictly increasing.

Intuitively, convexity follows from the conventional assumption that the unit cost increases as tenants reduce more energy

(e.g., utilization becomes higher when servers are off, leading to a faster increase in response time of tenants’ workloads).

III. PRICING TENANT LOAD SHEDDING IN MANDATORY EDR

EDR is the last line of protection against cascading power failures, and represents 87% of demand reduction capabilities

across all the U.S. reliability regions [25]. In general, there are two types of EDR programs: mandatory and voluntary (also called

economic) [31]. We focus on mandatory EDR first, and return tovoluntary EDR in Section V.

For mandatory EDR, participants typically sign contracts with a load serving entity (LSE) in advance (e.g., 3 years ahead

in PJM [31]) and receive financial rebates for their committed energy reduction even if no EDR signals are triggered during the

participation year, whereas non-compliance (i.e., failure to cut load as required during EDR) incurs heavy penalty [31]. If an LSE

anticipates that an emergency will occur, participants arenotified, usually at least 10 minutes in advance, and obligedto fulfill

their contracted amounts of energy reduction for the lengthof the event, which may span a few minutes to a few hours.

In mandatory EDR, the colo operator has two options for obtaining load reductions in response to an EDR signal that specifies

the reduction amount – tenants or on-site generation. Thus,it must balance between paying tenants for reduction and using on-site

generation in order to minimize cost. Note that tenants’ load reduction can also reduce the usage of diesel generator, mitigating

environmental impacts. Nonetheless, the challenge is thatthe operator does not know the tenant cost functions, and so cannot

determine the cost-minimizing price.

Consequently, the operator has two options: (i) predict thetenant supply function and compute prices based on the predictions,

or (ii) allow tenants to supply some information about theircost functions through bids. Clearly, there is a tradeoff here between

the accuracy of predictions and the manipulation possible in the bids. Both of these approaches have been looked at in theliterature

[3], [10], [18], [24], [28], though not in the context of colodemand response. In general, the broad conclusion is that approach

(i) is appropriate when predictions are accurate and one bidder has market power (e.g., is significantly larger than other bidders).

While market power is a considerable issue for the participation of owner-operated data centers in demand response programs due

2Other alternatives, e.g., battery [39], usually only last for < 5 minutes. So, diesel generation is the typical method [11].
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to their large size compared to other participants, it is notan issue within a specific colo that houses multiple tenants (typically

of comparable sizes), and so we adopt approach (ii) in this paper.

Specifically, we design a mechanism, namedColoEDR, where tenants bid using parameterized supply functions and then,

given the bids, the operator decides how much load to shed viatenants and how much to shed via on-site generation. In the

following, we describe the mechanism and then contrast our approach with other potential alternatives.

Note that, throughout this paper, we focus on one EDR event, and thus we omit the time index. In the case of multiple

consecutive EDR events,ColoEDR will be executed once at the beginning of each event, as is standard in the literature [24],

[33].

A. An overview of ColoDR

The operation ofColoEDR is summarized below, and then discussed in detail in the textthat follows.

1) The colo operator receives an EDR reduction targetδ and broadcasts the supply functionS(bn, p) to tenants according to (1);

2) Participating tenants respond by placing their bidsbn;

3) The colo operator decides the amount of on-site generation y and market clearing pricep to minimize its cost, using equations

(2) and (3);

4) EDR is exercised.∀n ∈ N , tenantn shedsS(bn, p), and receivespS(bn, p) reward.

Given the overview above, we now discuss each step in more detail.

Step 1.Upon receiving an EDR notification of an energy reduction target δ, the colo operator broadcasts a parameterized

supply functionS(b, p) to tenants (by, e.g., signalling to the tenants’ server control interfaces, which are widely existing today).

The form ofS(b, p) is the following parameterized family3:

S(bn, p) = δ − bn
p
. (1)

wherep is offered reward for each kWh of energy reduction andbn is the bidding values that can be chosen by tenantn. This

form is inspired by [18], where it is shown that by restricting the supply function to this parameterized family, the mechanism

can guide the firms in the market reach to an equilibrium with desirable properties.4 Note that, to be consistent with the supply

function literature, we exchangeably use “price” and “reward rate” wherever applicable.

Step 2.Next, according to the supply function, each participatingtenant submits its bidbn to the colo operator. This bid

specifies that, at each pricep, it is willing to reduceS(bn, p) unit of energy. The bid is chosen by tenants individually to maximize

their own utility and can be interpreted as the amount of IT service revenue that tenantn is willing to forgo. Note thatbn can be

chosen to ensure that tenantn will not be required to reduce more energy than its capacity.To see this, note that since the operator

is cost-minimizing,p(b, y) ≤ α always holds, i.e., the market clearing price is lower than the unit cost of diesel generation.

Hence, ifKn is the capacity of reduction for tenantn, as long asbn ≥ α(δ −Kn), then

S(bn, p) = δ − bn
p

≤ δ − bn
α

≤ Kn.

An important note about the tenant bids is that the supply function is likely of a different form than the true cost function cn,

and so it is unlikely for the tenants to reveal their cost functions truthfully. This is necessary in order to provide a simple form

for tenant bids. Bidding their true cost functions is too complex and intrusive. However, a consequence of this is that one must

3The supply function allows tenants to have negative supply,i.e., tenants consume more energy intentionally, which is neither profit maximizing nor practical.
We show in §IV that energy reduction of each tenant is always nonnegative in both equilibrium and social optimal outcomes.

4 [18] studies the case where firms bid to supply an inelastic demand, which is equivalent to fixing the diesel generationy = 0 in our case. Allowing the
operator to choosey in a cost-minimizing manner leads to significantly different results, as will be shown in §IV-A and §IV-B.
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carefully analyze the emergent equilibrium to understand the efficiency of the pricing mechanism. We study both the cases of

price-taking and price-anticipating equilibrium in §IV.

Step 3.After tenants have submitted their bids, the colo operator decides the amount of energyy to produce via on-site

generation and the clearing pricep. Given y, the market clearing price has to satisfyΣnS(p(b), bn) + y = δ, thus

p(b, y) =

∑

n bn

(N − 1)δ + y
. (2)

To determine the amount of local generationy, the operator minimizes the cost of the two load-reduction options, i.e.,

y = argmin
0≤y≤δ

(δ − y) · p(b, y) + αy. (3)

Step 4.Finally, EDR is exercised and tenants receive financial compensation from the colo operator via the realized price in

(2), shed loadS(p, bn), and on-site generation produces (3).

B. Discussion

To the best of our knowledge, this paper represents the first attempt to design a supply function bidding mechanism for

colocation demand response. Although alternative mechanisms may be applicable, there are compelling advantages to the supply

function approach. First, bidding for the tenants is simple– they only need to communicate one number, and it is already common

practice for operators to communicate with tenants before EDR events, so the overhead is small. Second, the colo operator collects

just enough information (i.e., how much energy reduction each tenant will contribute to EDR), while tenants’ private information

(i.e., how much performance penalty/cost each for energy reduction) is masked by the form of the supply function and hence not

solicited. Third,ColoEDR guarantees that the colo operator will not incur a higher cost than the case where only diesel generator

is used. Further,ColoEDR pays a uniform price to all participating tenants and hence ensures fairness.

The most natural alternative design to supply function bidding is a VCG-based mechanism, as is suggested in [46]. While

VCG-based mechanisms have the benefits of incentive compatibility, however, these mechanisms violate all the four properties

discussed above. Under such approaches, tenants must submit very complex bids describing their precise cost functions, the true

private cost of tenants is disclosed, payment made to tenants may be unbounded, and prices to different tenants are differentiated

and thus raises unfairness issues.

Due to these shortcomings, VCG-based mechanisms are typically not adopted in complex resource allocation settings such

as power markets, where supply-function based designs are common [18]. In fact, nearly all generation markets use a variation

of supply function bidding.

IV. EFFICIENCY ANALYSIS OF ColoEDR FOR MANDATORY EDR

Given theColoEDR mechanism described above, our task now is to characterize its efficiency. There are two potential causes

of inefficiency in the mechanism: the cost minimizing behavior of the operator and the strategic behavior (bidding) of the tenants.

In particular, since the forms of the tenant’s cost functions are likely more complex than the supply function bids, tenants cannot

bid their true cost function even if they wanted to. This means that evaluating the equilibrium outcome is crucial to understanding

the efficiency of the mechanism.

Further, the equilibrium outcome that emerges depends highly on the behavior of the tenants – whether they areprice-taking,

i.e., they passively accept the offered market pricep as given when deciding their own bids; orprice-anticipating, i.e., they

anticipate how the pricep will be impacted by their own bids. We investigate both models, in §IV-A and §IV-B, respectively.
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In both cases, the goal of our analysis is to assess the efficiency of ColoEDR. To this end, we adopt a notion of a (socially)

optimal outcome, and focus on the following social cost minimization problem.

SCM : min αy +
∑

i∈N
ci(si) (4a)

s.t. y + γ ·
∑

i∈N
si = δ (4b)

si ≥ 0, ∀i ∈ N , y ≥ 0. (4c)

wheresi andci are tenanti’s energy reduction and corresponding cost, respectively.

The objective inSCM can be interpreted as the tenants’ cost plus the colo operator’s cost. Note that the internal payment

transfer between the colo operator and tenants cancels, anddoes not impact the social cost. Also, note that payment fromthe LSE

to the colo operator is not included in the social cost objective, since it is independent of how the operator obtains the amount of

δ load reduction. Additionally, we do not include the option of ignoring the event and taking the penalty, since the penalties for

lack of participation are typically extreme. Finally, the Lagrangian multiplier of (4b) can be interpreted as the social optimal price

p∗, i.e., given this price as reward for energy reduction, eachtenant will individually reduce their energy bysn that corresponds

to the social cost minimization solution in (4).

Before moving to the analysis, in order to simplify notation, we suppress the PUEγ by, without loss of generality, setting

γ = 1. This is equivalent to a change of notationy′ = y/γ, δ′ = δ/γ, andα′ = αγ, i.e., translating the diesel generation, unit

cost of diesel generation, and EDR energy reduction target into their respective equivalent amounts in terms of server energy.

A. Price-Taking Tenants

When tenants are price-taking, they maximize their net utility, which is the difference between the payment they receive and

the cost of energy reduction, given the assumption that theyconsider their action does not impact the price.

Pn(bn, p) = pSn(bn, p)− cn(Sn(bn, p)) (5a)

= pδ − bn − cn
(

δ − bn
p

)

. (5b)

Here, the price-taking assumption implies that the variable p is considered to be as is. The market equilibrium for price-taking

tenants is thus defined as follows.

Definition 1. A triple (b, p, y) is a (price-taking) market equilibrium if each tenant maximizes its payoff defined in(5), market

is cleared by setting pricep according to(2), and the amount of on-site generation is decided by(3), i.e.,

Pn(bn; p) ≥ Pn(b̄n; p) ∀b̄n ≥ 0, n = 1, . . . , N. (6)

p =

∑

i∈N bi

(N − 1)δ + y
. (7)

y = argmin
0≤y≤δ

(δ − y) · p(b, y) + αy. (8)

1) Market Equilibrium Characterization:The key to our analysis is the observation that the equilibrium can be charac-

terized by an optimization problem. Once we have this optimization, we can use it to characterize the efficiency of the equilibrium

outcome. This approach parallels that used in [18]; however, the optimization obtained has a different structure due tolocal diesel

generation. Additionally, though we use an optimization tocharacterize the equilibrium, the game is not a potential game.

Our first result highlights that, given any choice for on-site generation, a unique market equilibrium exists for the tenants,

and can be characterized via a simple optimization.
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Proposition 1. Under Assumption 1, when tenants are price-taking, for any on-site generation level0 ≤ y < δ, there exists

a market equilibrium, i.e., a vectorbt = (bt1, . . . , b
t
N ) ≥ 0 and a scalarp > 0 that satisfies(2), and the resulting allocation

sn = S(bn, p) is the optimal solution of the following

min
s

∑

i∈N
ci(si) (9a)

s.t.
∑

i∈N
si = (δ − y), (9b)

si ≥ 0, ∀i ∈ N . (9c)

This result is a key tool for understanding the overall market outcome. Intuitively, the operator runningColoEDR is more

likely (than the social optimal) to use on-site generation,since this reduces the price paid to tenants. The following proposition

quantifies this statement.

Proposition 2. Under Assumption 1, it is optimal for price-taking tenants to use on-site generation if and only if

α <
(Σnbn)

(N − 1)δ
, 5 (10)

However, when the operator is profit maximizing, it will turnon on-site generation if and only if

α <
N

N − 1

(Σnbn)

(N − 1)δ
. (11)

This proposition is an important building block because themost interesting case to consider is when it is optimal to use

some on-site generation and some tenant load shedding, i.e., δ > y∗ > 0. Otherwise the EDR demand should be entirely fulfilled

by tenants, and the analysis reduces to the case of an inelastic demand, as studied in [18]. Thus, subsequently, we make the

following assumption, which ensures that on-site generation is valuable.

Assumption 2. The unit cost of on-site generation is cheap enough that the optimal on-site generation is non-zero, i.e.,α satisfies

(10).

Note that, when Assumption 2 holds, by first-order optimality condition of (3) we have

y =

√

(Σi∈N bi)Nδ

α
− (N − 1)δ, (12)

and so the market clearing price for the tenants given on-site generation is

p =

∑

i∈N bi

(N − 1)δ + y
=

√

(Σi∈N bi)α

Nδ
. (13)

Using these allows us to prove a complete characterization of the market equilibrium under price-taking tenants. This theorem

is the key to our analysis of market efficiency.

Theorem 3. When Assumptions 1 and 2 hold there is a unique market equilibrium, i.e., a vectorbt = (bt1, . . . , b
t
N ) ≥ 0, yt > 0

and a scalarpt > 0 that satisfies(6)-(8), and the resulting allocation(st, yt) wherestn = S(btn, p
t) is the optimal solution of

5We adopt the convention that0
0
= 0 and x

0
= +∞ whenx > 0. Therefore, whenN = 1, unless the bid is 0, the condition is always satisfied.
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the following problem

min
s,y

∑

n

cn(sn) +
α

2Nδ
(y + (N − 1)δ)2 (14a)

s.t.
∑

n

sn = δ − y, (14b)

sn ≥ 0, ∀n, y ≥ 0. (14c)

2) Bounding Efficiency Loss:We now use Theorem 3 to bound the efficiency loss due to strategic behavior in the market.

Denote the socially optimal on-site generation byy∗, the optimal price that leads to the optimal allocationsi,∀i ∈ N by p∗, and

let yt andpt be the allocation under the price-taking assumption.

Our first result highlights that, due to the cost-minimizingbehavior of the operator, the equilibrium outcome uses moreon-site

generation and pays a lower price to the tenants than the social optimal.

Proposition 4. Suppose that Assumptions 1 and 2 hold. When tenants are price-taking, the operator runningColoEDR uses

more on-site generation and pays a lower price for power reduction to its tenants than the social optimal. Specifically,yt ≥ y∗

and N−1
N

p∗ ≤ pt ≤ p∗.

Now, we move to more detailed comparisons. There are three components of market efficiency that we consider: social welfare,

operator cost, and tenant cost.

First, let us consider the social cost.

Theorem 5. Suppose that Assumptions 1 and 2 hold. Let(st, yt) be the allocation when tenants are price-taking, and(s∗, y∗)

be the optimal allocation. Then the welfare loss is bounded by:
∑

n cn(s
t
n) + αyt ≤∑n cn(s

∗
n) + αy∗ + αδ/2N.

Importantly, this theorem highlights that the market equilibrium is quite efficient, especially if the number of tenants is large

(the efficiency loss decays to zero asO(1/N)). However, the market could maintain good overall social welfare at the expense

of either the operator or the tenants. The following resultsshow this is not true.

Let costo(p, y) be the operator’s cost, i.e.,

costo(p, y) = p(δ − y) + αy. (15)

Then, we have the following results.

Theorem 6. Suppose that Assumptions 1 and 2 are satisfied. The cost of colo operator with price-taking tenants is smaller than

the cost in the socially optimal case. Further, we havecosto(p
∗, y∗)− αδ/N ≤ costo(p

t, yt) ≤ costo(p
∗, y∗).

B. Price-Anticipating Tenants

In contrast to the price-taking model, price-anticipatingtenants realize that they can change the market price by their bids,

i.e., thatp is set according to (13), and adjust their bids accordingly.Clearly, this additional strategic behavior can lead to larger

efficiency loss. But, in this section, we show that the extra loss is surprisingly small, especially when a large number oftenants

participate inColoEDR.

Given bids from the other tenants, each price-anticipatingtenantn optimizes the following cost over bidding valuebn

Qn(bn,b−n) = p(b)Sn(bn, p)− cn(Sn(bn, p))
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where we useb−n to denote the vector of bids of tenants other thann; i.e., b−n = (b1, . . . , bn−1, bn+1, . . . , bN ). Thus,

substituting (1) and (13), we have

Qn(bn;b−n) =

√

(Σnbn)αδ

N
− bn − cn

(

δ − bn√
Σmbm

√

Nδ

α

)

. (16)

Note that the payoff functionQn is similar to the payoff functionPn in the price-taking case, except that the tenants anticipate

that the colo operator will set the pricep according top = p(b, y) from (13).

Definition 2. A triple (b, p, y) is a (price-anticipating) market equilibrium if each tenant maximizes its payoff defined in(16),

the market is cleared by setting the pricep according to(2) and the amount of on-site generation is decided by(3), i.e.,

Qn(bn;bn) ≥ Qn(b̄n;bn) ∀b̄n ≥ 0, n = 1, . . . , N (17)

p =

∑

n bn

(N − 1)δ + y
. (18)

y = argmin
0≤y≤δ

(δ − y) · p(b, y) + αy. (19)

Note that our analysis in this section requires one additional technical assumption about the tenant cost functions.

Assumption 3. The marginal cost of all the tenants at 0 is greater thanα
2N

, i.e., ∂+cn(0)
∂sn

≥ α
2N

, ∀n.

This assumption is quite mild, especially if the number of tenantsN is large. Intuitively, it says that the unit cost of on-site

generation is competitive with the cost of tenants reducingtheir server energy.

1) Market Equilibrium Characterization:Our analysis of market equilibria proceeds along parallel lines to the price-

taking case. We again show that there exists a unique equilibrium and, furthermore, that the tenants and operator behavein

equilibrium as if they were solving an optimization problemof the same form as the aggregate cost minimization (4), but with

“modified” cost functions.

Theorem 7. Suppose that Assumption 1-3 are satisfied, then there existsa unique equilibrium of the game defined by

(Q1, . . . , Qn) satisfying(17)-(19). For such an equilibrium, the vectorsa defined bysan = S(p(ba), ban) is the unique optimal

solution to the following optimization:

min
∑

n

ĉn(sn) +
α

2Nδ
(y + (N − 1)δ)2 (20a)

s.t.
∑

n

sn = δ − y (20b)

y ≥ 0, sn ≥ 0, n = 1, . . . , N, (20c)

where, forsn ≥ 0,

ĉn(sn) =
1

2

(

cn(sn) + sn
α

2N

)

+
1

2

∫ sn

0

√

(

∂+cn(z)

∂z
− α

2N

)2

+ 2
∂+cn(z)

∂z

zα

Nδ
dz, (21)

and for sn < 0, ĉn(sn) = 0.

Although the form ofĉn(sn) looks complicated, there is a simple linear approximation that gives useful intuition.

Lemma 8. Suppose that Assumption 1-3 are satisfied. For all modified cost ĉn, n ∈ 1, . . . , N , for any 0 ≤ sn ≤ δ,

cn(sn) ≤ ĉn(sn) ≤ cn(sn) + sn
α

2N
,

Furthermore, when the left or right derivatives ofĉ(·) is defined, it can be bounded by

∂−cn(sn)

∂sn
≤ ∂−ĉ(sn)

∂sn
≤ ∂+ĉ(sn)

∂sn
≤ ∂+cn(sn)

∂sn
+

α

2N
.
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The form of Lemma 8 shows that the difference between the modified cost function in (21) and the true cost diminishes asN

increases, and this is the key observation that underlies our subsequent results upper bounding the efficiency loss ofColoEDR.

2) Bounding Efficiency Loss:We now use Theorem 7 to bound the efficiency loss due to strategic behavior. Note that, by

comparing to both the socially optimal and the price-takingoutcomes, we can understand the impact of both strategic behavior

by the operator and the tenants.

Our first result focuses on comparing the price-anticipating and price-taking equilibrium outcomes. It highlights that price-

anticipating behavior leads to tenants receiving higher price while providing less load shedding.

Theorem 9. Suppose Assumption 1-3 hold. Let(pt, yt) be the equilibrium price and on-site generation when tenants are price-

taking, and(pa, ya) be those when tenants are price-anticipating, then we have,yt ≤ ya ≤ yt+δ/2 and pt ≤ pa ≤ pt+α/2N.

Next, combining Theorem 9 and Proposition 4 yields the following comparison between the price-anticipating and socially

optimal outcomes.

Corollary 10. Suppose Assumption 1-3 hold. When tenants are price-anticipating, an operator runningColoEDR uses more

on-site generation and pays lower market price than in the socially optimal case, i.e.,ya ≥ y∗ and N−1
N

p∗ ≤ pa ≤ p∗.

Now, we move to more detailed comparisons. There are three components of market efficiency that we consider: social welfare,

operator cost, and tenant cost.

First, let us consider the social cost.

Theorem 11. Suppose that Assumption 1-3 hold. Let(sa, ya) be the allocation when tenants are price-anticipating, and(s∗, y∗)

be the optimal allocation. The welfare loss is bounded by:
∑

n cn(s
a
n) + αya ≤∑n cn(s

∗
n) + αy∗ + αδ/N.

Similarly to the price-taking case, the efficiency loss in the price-anticipating case decays to zero asO(1/N), only with a

larger constant. Also, as in the case of price-taking tenants, we again see that neither the tenants nor the operator suffers significant

efficiency loss.

Theorem 12. Suppose that Assumption 1-3 hold. The cost of colo operator for price-anticipating tenants is smaller than the cost

in the socially optimal case. Further, we have

costo(p
∗, y∗)− αδ

N
≤ costo(p

a, ya) ≤ costo(p
∗, y∗),

costo(p
a, ya)− αδ

N
≤ costo(p

t, yt) ≤ costo(p
a, ya)

Finally, let us end by considering the amount of on-site generation used in equilibrium. Here, in the worst-case, the equilibrium

on-site generation for price-anticipating tenants can be arbitrarily worse than the socially optimal, i.e., the socially optimal can

use no on-site generation while the equilibrium outcome uses only on-site generation.

Theorem 13. Suppose that Assumption 1-3 hold. For anyε > 0, N ≥ 1, there exist cost functionsc1, . . . , cN , such that the

on-site generation in the market equilibrium compared to the optimal is given byya − y∗ ≥ δ − ε.

This is a particularly disappointing result since a key goalof the mechanism is to obtain load shedding from the tenants.

However, the proof emphasizes that this is unlikely to occurin practice. In particular, the worst-case scenario is thatthere exists

a dominant (monopoly) tenant, which is unlikely in a multi-tenant colo, that has a cost function asymptotically linear with unit

cost roughly matching the on-site generation priceα. We confirm this in a case study in Section VI.
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C. Discussion

The main results for the price-taking and price-anticipating analyses are summarized in Table I. Note that simplified bounds

are presented in the table, to ease interpretation, and the interested reader should refer to the theorems in §IV-A and §IV-B for

the tightest bounds. Also, note that the benchmark for social cost we consider is an ideal, but not achievable, mechanism.

Tenants Price Ratio Colo Saving Welfare Loss
Price-taking [N−1

N
, 1] [0, αδ/N ] [0, αδ/2N ]

Price-anticipating [N−1

N
, 1] [0, αδ/N ] [0, αδ/N ]
TABLE I

PERFORMANCE GUARANTEE OFColoEDR COMPARED TO THE SOCIAL OPTIMAL ALLOCATION.

To summarize the results in Table I briefly, note first thatColoEDR always benefits the operator, since the price paid to

tenants to reduce energy is always less than the socially optimal price, and the total cost incurred by operator for energy reduction

is also less than that of the social optimal. Secondly,ColoEDR also gives the tenants approximately the social optimal payment,

since the operator’s additional benefit is bounded above byαδ/N . This naturally means that the loss in payment for tenants

compared to the social optimal is alsoαδ/N , which approaches 0 asN grows. Third, regardless of tenants being price-taking or

price-anticipating,ColoEDR is approximately socially cost-minimizing as the number oftenants grows.

However, whileColoEDR is good in terms of operator, tenant, and social cost, it may not use the most environmentally

friendly form of load reduction: in the worst case, the upperbound on the extra on-site generation thatColoEDR uses is not

decreasing withN . However, the analysis highlights that this worst-case occurs when there exists a dominant tenant with unit

cost of energy reduction that is consistently just below thecost of diesel over a large range of energy reduction. As our case

study in §VI shows, this is unlikely to occur in practice. So,ColoEDR can be expected to use an environmentally friendly mix

in most realistic situations.

V. PRICING TENANT LOAD SHEDDING IN VOLUNTARY EDR

We now turn from mandatory EDR to voluntary EDR and show how the analysis and design ofColoEDR can be extended.

Under voluntary EDR, a colo operator is offered a certain compensation rate for load reduction and can cut any amounts of energy

at will without any obligation. Voluntary EDR often supplements mandatory EDR, and both are widely adopted in practice [25],

[31]. Since the colo operator can freely decide on the amountof energy to cut based on the compensation rate [31], the amount of

energy reduction responses from tenants isfully elastic, differing from mandatory EDR where the total energy reduction (including

diesel generation if necessary) needs to satisfy a constraint δ.

In the following, we formulate the problem and generalizeColoEDR for the voluntary EDR setting. Furthermore, we illustrate

that the efficiency analysis, though more complicated, parallels that of mandatory EDR.

A. Problem Formulation

During a voluntary EDR event, the LSE offers a reward ofu for each unit of energy reduction (or diesel generation if

applicable). In our setting, the colo operator aims at maximizing its profit through extracting loads from tenants usingparameterized

supply function bidding, as considered for mandatory EDR.

A key difference with the case of mandatory EDR is that, sincethe reduction is voluntary, diesel generation need not be

considered. In particular, if the reward offered the the LSEfor reduction is larger than the cost of diesel, then the operator can

contribute its whole diesel capacity and, if the reward is smaller than the cost of diesel, no diesel need be used. Compared to

the mandatory EDR setting, operator need to use more diesel generation when tenants’ bids are high in order to meet the fixed

reduction targetδ; in the voluntary EDR case, the operator can simply reduce the DR contribution by tenants when their bids are

high. Thus, the optimization of diesel generation by the operator is separable from the optimization of tenant reduction.
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This yields a situation where the net profit (from tenant reduction) received by the colo operator is:

u · d− p · d (22)

wherep is the unit price the colo operator pays to the tenants to solicit d units of reduction in aggregate, which arises fromN

tenants where tenanti has reduction capacityDi.

a) An overview ofColoEDR: It is straightforward to adaptColoEDR to this setting. We outline its operation in four

steps below, which parallel the steps in the case of mandatory EDR.

1) The colo operator receives the voluntary EDR reduction priceu and broadcasts the supply functionS(bn, p) to tenants according

to

Si(bi, p) = Di − bi
p
, (23)

whereDi is the capacity of tenanti for reduction determined exogenously.

2) Participating tenants respond by placing their bidsbn in order to maximize their own payoff;

3) The colo operator decides the total amount of reduction from tenantsd and market clearing pricep to maximize its utility.

Given the bidsb = (b1, . . . , bn), if the operator decides to offerd amount of energy reduction to the utility, then the market

clearing pricep will be

p =

∑n

i=1 bi
∑n

i=1 Di − d
. (24)

Hence to maximize the operator’s profit, the operator will chooosed such that

d = argmax
0≤d≤∑

n

i=1
Di

(u− p)d =

(

u−
∑n

i=1 bi
∑n

i=1 Di − d

)

d. (25)

It follows from the first order optimality of (25) that

d =
n
∑

i=1

Di −
√

(
∑n

i=1 bi)(
∑n

i=1 Di)

u
, (26)

which gives that the price set by a profit maximizing operatorwill be

p =

√

u
∑n

i=1 bi
∑n

i=1 Di

. (27)

4) Voluntary EDR is exercised.∀n ∈ N , tenantn shedsS(bn, p), and receivespS(bn, p) reward.

b) Discussion:The key difference in the operation ofColoEDR for mandatory EDR and voluntary EDR is in the form

of the supply function used. In particular, we allow heterogeneity in the supply function for tenants in terms of their capacity

Dn. Recall, that in the case of mandatory EDR the desired reduction capacityδ was used. This difference stems from the fact

that the reduction target is flexible for voluntary demand response and creates significant challenges – both in terms of efficiency,

since it allows the chance of market power to emerge because of capacity differences, and for analysis, since it adds considerable

complexity.

B. Efficiency Analysis ofColoEDR for Voluntary EDR

Given the adaptation ofColoEDR to the voluntary EDR setting, it is natural to ask how the efficiency of the mechanism

changes when the operator has flexibility in the amount of response to provide to an EDR signal. Intuitively, the increased

flexibility leads to the possibility of more inefficiency, but how large is this effect?
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We again quantify efficiency through a comparison with the (socially) optimal outcome. Assuming that each tenant has a cost

ci(·) associated with energy reduction that is convex, increasing, andci(x) = 0,∀x ≤ 0 (Assumption 1). Then the allocation that

maximizes social utility (the sum of operator’s and tenants’ utility) solves the following problem

max
d,s

ud−
n
∑

i=1

ci(si) (28a)

subject to
n
∑

i=1

si = d (28b)

0 ≤ si ≤ Di. (28c)

Finally, note that our analysis makes the following naturalassumptions on the unit priceu and the marginal cost of each

tenants. Note that they are analogous to Assumption 2 and Assumption 3.

Assumption 4. The market clearing pricep is lower than the price offered by the utility for anyd > 0, i.e.,u ≥
∑

n

i=1 bi∑
n

i=1
Di

.

Assumption 5. The marginal cost of each tenants satisfies∂+cn(z)
∂z

∣

∣

∣

z=0
≥ γnu

2
,∀n.

Before moving to the main results, let us first define some notation. Let γn = Dn∑
n

i=1
Di

, we have
∑

n γn = 1. Here γn

behaves like “market share” of tenantn in the voluntary DR market. In the EDR case,γn = 1/N for all n. Furthermore, define

γ = maxn γn, as the “dominant share” in load reduction among the tenants, andD = maxn Dn.

C. Market Equilibrium Characterization

As in the case of mandatory EDR, we consider both the cases price-taking and and price-anticipating tenants.

1) Price-taking Tenants:Given other tenants, each price-taking tenantn optimizes the following cost over bidding value

bn,

Pn(bn,b−n) = pSn(bn, p)− cn(Sn(bn, p)) = pDn − bn − cn(Dn − bn
p
)

So, in a price-taking equilibrium(b, d, p), we must havePn(bn;b−n) ≥ Pn(b̄n;b−n) hold for each tenantn over all b̄n ≥ 0.

Also, the market clearing price must satisfy (24) and the total reduction must satisfy (25). Using techniques similar tothe proof

of Theorem 3, we can completely characterize the the price-taking equilibrium ofColoEDR in voluntary EDR as follows:

Theorem 14. There exists a unique equilibrium of the game defined by(P1, . . . , PN ) for ColoEDR. For such an equilibrium,

the vectorst defined bystn = S(p(bt), btn) is the unique optimal solution to the following optimization:

max ud− ud2

2
∑

n Dn

−
∑

n

cn(sn) (29a)

s.t.
∑

n

sn = d (29b)

d ≥ 0, 0 ≤ sn ≤ Dn, n = 1, . . . , N, (29c)

2) Price-anticipating Tenants:Given other tenants, each price-anticipating tenantn optimizes the following cost over

bidding valuebn,

Qn(bn,b−n) = p(b)Sn(bn, p)− cn(Sn(bn, p)) = γn
√
Σmbm

√

√

√

√u
n
∑

i=1

Di − bn − cn(Dn − bn
Σmbm

√

∑n

i=1 Di

u
),

So, in a price-anticipating equilibrium(b, d, p), we must haveQn(bn;b−n) ≥ Qn(b̄n;b−n) for all n over all b̄n. Also, the

market clearing price must satisfy (24) and the total reduction d must satisfy (25).
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Using techniques similar to the proof of Theorem 7, we can completely characterize the the price-anticipating equilibrium of

ColoEDR in voluntary EDR as follows.

Theorem 15. There exists a unique equilibrium of the game defined by(Q1, . . . , QN ) for ColoEDR. For such an equilibrium,

the vectorsa defined bysan = S(p(ba), ban) is the unique optimal solution to the following optimization:

max ud− ud2

2
∑

n Dn

−
∑

n

ĉn(sn) (30a)

s.t.
∑

n

sn = d (30b)

d ≥ 0, 0 ≤ sn ≤ Dn, n = 1, . . . , N, (30c)

where, forsn ≥ 0,

ĉn(sn) =
1

2

(

sn
γnu

2
+ cn(sn)

)

+
1

2

∫ sn

0

√

(

γnu

2
− ∂+cn(z)

∂z

)2

+ 2
∂+cn(z)

∂z

zu

ΣiDi

dz, (31)

and for sn < 0, ĉn(sn) = 0.

Like in the case of mandatory EDR, the above characterization can be approximated using a modified cost function whenγn

is small, i.e., when there are a large number of firms and all firms have similar market shares.

Lemma 16. For 0 ≤ sn ≤ Dn, the modified cost in(31) can be upper and lower bounded by,

cn(sn) ≤ ĉn(sn) ≤ cn(sn) + sn
γnu

2
,

Furthermore, where the left or right derivatives are defined, we have

∂−cn(sn)

∂sn
≤ ∂−ĉn(sn)

∂sn
≤ ∂+ĉn(sn)

∂sn
≤ ∂+cn(sn)

∂sn
+

γnu

2
. (32a)

D. Bounding Efficiency Loss

We now use the characterization results of Theorem 14 and Theorem 15 to analyze the social efficiency ofColoEDR in the

voluntary EDR setting for both price-taking and price-anticipating tenants.

Theorem 17. For price taking tenants, the welfare loss ofColoEDR is bounded byudt −∑n cn(s
t
n) ≥ ud∗ −∑n cn(s

∗
n) −

ud∗2

2
∑

n
Dn

. Moreover, the bound is tight.

Theorem 18. For price anticipating tenants, the welfare loss ofColoEDR is bounded byuda−∑n cn(s
a
n) ≥ ud∗−∑n cn(s

∗
n)−

u
2

(

ΣnDnγn + d∗2

ΣnDn

)

.

Theorem 17 highlights that the price-taking market equilibrium is efficient when the optimal energy reductiond∗ is small. This

is due to the profit maximizing behavior of the operator: whenthe social optimald∗ is large, the operator has greater opportunity

to raise his profit by lowering the market price.

Comparing Theorem 18 with Theorem 17, we can see that when tenants are price-anticipating, the additional welfare loss due

to the price-anticipating behavior of tenants is a functionof γn, the market share of the tenants. It is easy to see the additional

loss of social utility is minimized whenγn = 1/N for all n, i.e., when the reduction capacity of each tenant is equal.

Additionally, we can obtain tight bounds on the market clearing price, energy reduction quantity, and operator’s profitin a

similar fashion as our analysis done for the mandatory EDR case using Theorem 14 and Theorem 15. The results are summarized

in Table II and Table III.
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Tenants Price Ratio Colo Extra Profit Welfare Loss
Price-taking [1− d∗

ΣnDn
, 1] [0, ud∗2/ΣnDn] [0, ud∗2/2ΣnDn]

Price-anticipating [1− d∗

ΣnDn
, 1] [0, ud∗2/ΣnDn] [0, u(ΣnDnγn + d∗2/ΣnDn)/2]

TABLE II
PERFORMANCE GUARANTEE OFColoEDR COMPARED TO THE SOCIAL OPTIMAL ALLOCATION.

Price Markup Load Reduction Operator’s cost
[0, uγ/2] [−D/2, 0] [0, uD]

TABLE III
PERFORMANCE GUARANTEE OFColoEDR WHEN TENANTS ARE PRICE-ANTICIPATING COMPARED TO THEM BEING PRICE-TAKING .

E. Market Clearing Price

Proposition 19. When tenants are price-taking, the operator runningColoEDR uses more on-site generation and pays a lower

price for power reduction to its tenants than the social optimal. Specifically,dt ≤ d∗ and (1− d∗∑
n

Dn
)p∗ ≤ pt ≤ p∗.

By Lemma 16, we can characterize the the price markup under the supply function bidding mechanism:

Theorem 20. Let (pt, dt) be the equilibrium price and total tenant energy reduction when tenants are price-taking, and(pa, da)

be those when tenants are price-anticipating, then letγ = maxn γn, D = maxn Dn, we have,dt ≥ da ≥ dt −D/2 and pt ≤
pa ≤ min(p∗, pt + uγ/2).

F. Operator’s profit

Let Uo(p, d) = (u− p)d be the operator’s when the market clearing price isp and the total demand response from tenants

ared. From the price and vdr-quantity bounds provided in the previous sections, we can give bound on the utility ofColoEDR.

Theorem 21. Suppose that Assumptions 1, 4, 5 hold. The net utility for thecolo operator ofColoEDR can be characterized by

0 = Uo(p
∗, d∗) ≤ Uo(p

a, da) ≤ Uo(p
t, dt) ≤ ud∗2

ΣnDn
, and furthermore,Uo(p

t, dt) ≤ Uo(p
a, da) + uD.

Table II shows that as the optimal reductiond∗ increases, there is more opportunity for the operator to profitably reduce

market price and increase his own profit. Table III shows further that, when tenants are price-anticipating, they will drive the

market clearing price up, provide less energy reduction andreduce the operator’s profit. However, all these additionallosses can

be bounded by linear functions ofγ, the dominant share of the energy reduction capacity. Hencethe loss due to price-anticipating

behavior of tenants are minimizedD1 = D2 = · · · = DN .

VI. CASE STUDY

Our goal in this section is to investigateColoEDR in a realistic scenario. Given the theoretical results in the prior sections,

we know thatColoEDR is efficient for both the operator and tenants when the numberof tenants is large, but that it may use

excessive on-site generation (in the worst case). Thus, twoimportant issues to address in the case study are:How efficient is the

pricing mechanism in small markets, i.e., whenN is small? What is the impact of the pricing mechanism on on-site generation

in realistic scenarios?Additionally, the case study allows us to better understandwhen it is feasible to obtain load shedding from

tenants, i.e.,how flexible must tenants be in order to actively participatein a load shedding program?

We discuss only on mandatory EDR in this section. The resultsin the case of voluntary EDR are parallel.

A. Simulation Settings

We use trace-based simulations in our case study. Our simulator takes the tenants’ workload trace and a trace of mandatory

EDR signals from PJM as its inputs. It then executesColoEDR (by emulating the bidding process and tenants’ energy reduction

for EDR), and outputs the resulting equilibrium. The settings we use for modeling the colocation data center and the tenant costs

follow.



17

0 4 8 12 16 20 24
0

0.2

0.4

0.6

Hour

W
o

rk
lo

a
d

 

 

MSN
Wiki
University

MSNMSR

(a)

4 5 6 7 8 9 10 11 12
0

500

1000

1500

2000

2500

Hour

E
D

R
 (

kW
h)

(b)

Fig. 1. (a) Workload traces.(b) Energy reduction for PJM’s EDR on January 7, 2014 [32].

Colocation data center setup.We consider a colocation data center located in Ashburn, VA,which is a major data center

market served by PJM Interconnection [32]. By default, there are three participating tenants interested in EDR, thoughwe vary

the number of participating tenants during the experiments.

Each participating tenant has 2,000 servers, and each server has an idle and peak power of150W and250W, respectively. The

default PUE of the colo is set to1.5 (typical for colo), and hence, whenever a tenant reduces 1kWh energy, the corresponding

energy reduction at the colo level amounts to 1.5kWh. Thus, the maximum possible power reduction is 2.25MW (i.e., 1.5MW

IT plus 0.75 non-IT). We assume that the colo operator countsthe extra energy reduction at the colo level as part of the tenants’

contributions, and rewards the tenants accordingly.

The colo has an on-site diesel generator, which has cost0.3$/kWh estimated based on typical fuel efficiency [44].

For setting the energy reduction target received by the colo, we follow the EDR signals issued by PJM Interconnection

on January7, 2014, when many states in eastern U.S. experienced an extremely cold weather and faced electricity production

shortage [32]. Fig. 1(b) shows the total energy reduction requirement by PJM, which we further normalize and scale down such

that maximum energy reduction target for our considered colo is 900kWh.

Tenant workloads characteristics.We choose three representative types of workloads for participating tenants: tenant 1 is

running delay-sensitive workloads (e.g., user-facing webservice), tenant 2 is running delay-moderate workloads (e.g., enterprise’s

internal services), and tenant 3 is running delay-tolerantworkload (e.g., back-end processing).

The workload traces for the three participating tenants were collected from logs of MSR [35], Wiki [36], and a public

university (anonymous for review), respectively. Fig. 1(a) illustrates a snapshot of the traces, where the workloads are normalized

with respect to each tenant’s maximum service capacity.

The illustrated results us an average utilization for each tenant of 30%, consistent with reported values from real systems [6].

Our results are not particularly sensitive to this choice.

There are various power management techniques, e.g., load migration/scheduling, that can be used for reducing tenants’ server

energy consumption. Here, as a concrete example, we consider that tenants dynamically turn on/off servers according toworkloads

for energy saving subject to SLA [23]. This power-saving technique has been widely studied [13], [23] and also recently applied

in real systems (e.g., Facebook’s AutoScale [45]).

When tenants save energy for EDR by turning off some unused servers, their application performance might be affected. We

adopt a simple model based on an M/G/1/Processor-Sharing queueing model, as follows. For a tenant withM servers each with

a service rate ofµ, denote the workload arrival rate byλ. Whenm servers are shut down, we model the total delay cost as

c̄(m) = λ · β · T · delay(m) = βT
1

uM
− 1

M−m

, whereu = λ
µM

denotes the normalized workload arrival (i.e., utilization without

turning off servers),T is the duration of an EDR event, andβ is a cost parameter ($/time unit/job). In our simulations, we set the

cost parameter for tenant 1, tenant 2 and tenant 3 as 0.1, 0.03, 0.006, respectively, which are already higher than those considered

in the prior context of turning off servers for energy saving[23]. Note that we have experimented with a variety of other models

as well and the results do not qualitatively change.

We use a standard model for energy usage [6] and take the energy reductions as linear in the number of servers shut down,



18

4  6  8  10  12
0

100

200

300
S

oc
ia

l c
os

t (
$)

Hour 

(a) Social cost

4  6  8  10  12
0

500

1000

Hour 

E
ne

rg
y 

re
du

ct
io

n 
(k

W
h)

 

 

T1 T2 T3 Diesel

(b) Energy reduction

4  6  8  10  12
0

50

100

150

200

Hour

N
et

 u
til

ity
 (

$)

 

 

T1 T2 T3

(c) Tenants’ net profits

4  6  8  10  12
0

100

200

300

Hour

C
os

t (
$)

 

 

Tenants Diesel

(d) Operator’s total cost

4  6  8  10  12
0

0.1

0.2

0.3

0.4

P
ric

e 
($

/k
W

h)

Hour

 

 

Diesel price

(e) Market clearing price

4  6  8  10  12
0

50

100

U
til

iz
at

io
n 

(%
)

Hour

 

 

Utilization bound

(f) Tenant 1’s utilization

4  6  8  10  12
0

50

100

U
til

iz
at

io
n 

(%
)

Hour 

 

 

Utilization bound

(g) Tenant 2’s utilization

4  6  8  10  12
0

50

100

U
til

iz
at

io
n 

(%
)

Hour

 

 

Utilization bound

(h) Tenant 3’s utilization

Fig. 2. Performance comparison under default settings. Throughout this and later plots, the bars in each cluster are theprice-taking, price-anticipating, socially
optimal, and diesel only (if applicable) outcomes.

i.e., s = θ ·m, whereθ is a constant decided by server’s idle power andT . Then, it yields the following cost function for tenants’s

energy reductionc(s) = c̄( s
θ
) − c̄(0), where c̄( · ) is defined in the above paragraph. Note that we have experimented with a

variety of other forms, and our results are not sensitive to the details of this cost function.

Finally, note that tenants typically have delay performance requirement which, based on the above queueing model, is translated

as an utilization upper bound. Such translation is also common in real systems (e.g., default policy for auto-scaling virtual machines

[26]). In our simulation, we capture the performance constraint by setting utilization upper bounds for tenant 1, tenant 2, and

tenant 3 as 0.5, 0.6, and 0.8, respectively.

Efficiency benchmarks. Throughout our experiments, we consider the price-taking,price-anticipating, and social optimal

outcomes. Additionally, we consider one other benchmark,diesel only, which is meant to capture common practice today. Under

diesel only, the full EDR response is provided by the on-sitediesel generator.Throughout, our results are presented in grouped

bar plots with the bars representing (from left to right) theprice-taking, price-anticipating, social optimal, and diesel only (if

applicable) outcomes.

While other mechanisms (e.g., direct pricing [24], auction[46]) have been introduced in recent papers, we do not compare

ColoEDR with them here becauseColoEDR is already typically indistinguishable from the social optimal cost.

B. Performance Evaluation

We now discuss our main results, shown in Fig. 2.

Social cost.We first compare in Fig. 2(a) the social costs incurred by different algorithms. Note thatColoEDR is close to

the social cost optimal under both price-taking and price-anticipating cases even though there are only three participating tenants.

Further, the resulting social costs in both the price-taking and price-anticipating scenarios are significantly lowerthan that of the

diesel only outcome. This shows a great potential of tenants’ IT power reduction for EDR, which is consistent with the prior

literature on owner-operated data center demand response [1], [24], [43].

Energy reduction contributions. Fig. 2(b) plots EDR energy reduction contributions from tenants and the diesel generator.

As expected from analytic results, both price-taking and price-anticipating tenants tend to contribute less to EDR (compared

to the social optimal) because of their self-interested decisions. In other words, given self-interested tenants, thecolo operator

needs more diesel generation than the social optimal. Nonetheless, the difference is fairly small, much smaller than predicted

by the worst-case analytic results. This highlights that worst-case results were too pessimistic in this case. Of course, one must
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Fig. 3. Impact of number of tenants.

remember that all tenant reduction extracted is in-place ofdiesel generation, and so serves to make the demand responsemore

environmentally friendly.

Benefits for tenants and colocation operator.We show in Fig. 2(c) and Fig. 2(d) that both the tenants and thecolo operator

can benefit fromColoEDR. Specifically, Fig. 2(c) presents net profit (i.e., payment made by colo operator minus performance

cost) received by tenants, showing that all participating tenants receive positive net rewards. While price-anticipating tenants can

receive higher net rewards than when they are price-taking,the extra reward gained is quite small. Similarly, Fig. 2(d)shows cost

saving for the colo operator, compared to the “diesel only” case .

Market clearing price. Fig. 2(e) shows the market clearing price. Naturally, when using ColoEDR to incentivize tenants for

EDR while minimizing the total cost, the colo operator will not pay the tenants at price higher than its diesel price (shown via the

red horizontal line). We also note that the price under the price-anticipating case is higher than that under the price-taking case,

because the price-anticipating tenants are more strategic. However, the price difference between price-anticipating and price-taking

cases is quite small, which again confirms our analytic results.

Tenant’ server utilization. Tenants’ server utilizations are shown in Figs. 2(f), 2(g) and 2(h), respectively. These illustrate that,

while tenants reduce energy for EDR, their server utilizations still stay within their respective limits (shown via thered horizontal

lines), satisfying performance constraints. This is because tenants typically provision their servers based on the maximum possible

workloads (plus a certain margin), while in practice their workloads are usually quite low, resulting in a “slackness” that allows

for saving energy while still meeting their performance requirements.

C. Sensitivity Analysis

To complete our case study, we investigate the sensitivity of the conclusions discussed above to the settings used. For each

study, we only show results that are significantly differentthan those in Fig. 2.

Impact of the number of tenants.First, we vary the number of participating tenants and show the results in Fig. 3. To make

results comparable, we fix the EDR energy reduction requirement as well as total number of servers: tenant 1, tenant 2 and tenant

3 are each equally split into multiple smaller tenants, eachhaving fewer servers. We then aggregate replicas of the sametenant

together for an easy viewing in the figures, e.g., “tenant 1” in the figures represent the whole group of tenants that are obtained

by splitting the original tenant 1. One interesting observation is that as more tenants participate in EDR, the market becomes

more “competitive”. Hence, each individual tenant can onlygain less net reward, but both the price and the aggregate netreward

become higher (see Figs. 3(b) and 3(c)). Motivated by this, one might suggest a possible trick: a tenant may gain more utility by

splitting its servers and pretending as multiple tenants. In practice, however, each tenant has only one account (for billing, etc.)

which requires contracts and base fees, and thus pretendingas multiple tenants is not possible in a colo.

Impact of the price of diesel.Fig. 4 illustrates how our result changes as the diesel pricevaries. Intuitively, as shown in

Fig. 4(a), the social cost (which includes diesel cost as a key component) increases with the diesel price. We see from Figs. 4(b)

and 4(c) that, when diesel price is very low (e.g.,0.1$/kWh), the colo operator is willing to use more diesel and offers a lower

price to tenants. As a result, tenants contribute less to EDR. As the diesel price increases (e.g., from0.2$/kWh to 0.3$/kWh),
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Fig. 5. Impact of EDR energy reduction target.

the colo operator increases the market price (but still below the diesel price) to encourage tenants to cut more energy for EDR.

Nonetheless, tenants’ energy reduction contribution cannot increase arbitrarily due to their performance constraints. Specifically,

after the diesel price exceeds 0.4$/kWh, tenants will not contribute more to EDR (i.e., almost all their IT energy reduction

capabilities have been exploited), even though the colo operator increases the reward. In this case, tenants simply receive higher

net rewards without further contributing to EDR, as shown inFig. 4(d).

Impact of EDR requirement. Fig. 5 varies the EDR energy reduction target, with the maximum reduction ranging from

20% to 120% of the colo’s peak IT power consumption. As the EDR energy reduction target increases, tenants’ energy reduction

for EDR also increases; after a certain threshold, diesel generation becomes the main approach to EDR, while the increase in

tenant’s contribution is diminishing (even though the colooperator increases the market price), because of tenants’ performance

requirements that limit their energy reduction capabilities.

Impact of tenants’ workloads. In Fig. 6(a)-6(b), we vary the tenants’ workload intensity (measured in terms of the average

server utilization when all servers are active) from10% to 50%, while still keeping the maximum utilization bounds to50%,

60% and80% as the performance requirements for the three tenants, respectively. While it is straightforward that when tenants

have more workloads, they tend to contribute less to EDR, because they need to keep more servers active to deliver a good

performance. Nonetheless, even when their average utilization without turning off servers is as high as 50% (which is quite high

in real systems, considering that the average utilization is only around 10-30% [6]), tenants can still contribute morethan 20%

of EDR energy reduction underColoEDR, showing again the potential of IT power management for EDR.

Impact of workload prediction error. In practice, tenants may not perfectly estimate their own workload arrival rates. To

cope with possible traffic spikes, tenants can either keep more servers active as a backup or deliberately overestimate the workload

arrival rate by a certain overestimation factor. We choose the later approach in our simulation. Fig. 6(c)-6(d) shows the result

under workload prediction errors. We see that both the social cost and market price are fairly robust against tenants’ workload

over-predictions. For example, the social cost increases by less than10%, even when tenants overestimate their workloads by20%

(which is already sufficiently high in practice, as shown in [13]). Other results (e.g., tenants’ net reward, colo operator’s total cost)

are also only minimally affected, thereby demonstrating the robustness ofColoEDR against tenants’ workload over-predictions.
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Fig. 6. Impact of tenants’ workloads and the workload prediction errors.

VII. R ELATED WORK

Our work contributes both to the growing literature on data center demand response, and to the literature studying supply

function equilibria. We discuss each in turn below.

Recently, data center demand response has received a growing amount of attention. A variety of approaches have been

considered, such as optimizing grid operator’s pricing strategies for data centers [24] and tuning computing (e.g., server control

and scheduling) and/or non-computing knobs (e.g., coolingsystem) in data centers for various types of demand responseprograms

[1], [2], [7], [21], [40]. Field tests by LBNL also verify thepractical feasibility of data center demand response usinga combination

of existing power management techniques (e.g., load migration) [15]. These studies, however, have all focused on largeowner-

operated data centers.

In contrast, to our best knowledge, colocation demand response has been investigated by only a few previous works. The

first is [33], which proposes a simple mechanism, called iCODE, to incentivize tenants’ load reduction. But, iCODE is purely

based on “best effort” and does not include any energy reduction target (needed for EDR). More importantly, iCODE is designed

without considering strategic behavior by tenants, and canbe compromised by price-anticipating tenants [33]. More relevant to

the current work is [46], which proposes a VCG-type auction mechanism where colocation participation in EDR programs. While

the mechanism is approximately truthful, it asks participating tenants to reveal their private cost information through complex

bidding functions. Further, the colocation operator may beforced to make arbitrarily high payments to tenants. In contrast, our

proposed solution provides a simple bidding space, protects tenants’ private valuation, and ensures that the colocation operator

does not incur a higher cost for EDR than the case tenant contributions. Thus, unlike [46],ColoEDR benefits both colocation

operator and tenants, giving both parties incentives to cooperate for EDR.

Finally, it is important to note that our approach builds on,and adds to, the supply function mechanism literature. Supply

function bidding (c.f. the seminal work by [19]) is frequently used in electricity markets due to its simple bidding language

and the avoidance of the unbounded payments typical in VCG-like mechanisms. Supply function bidding mechanisms have been

extensively studied, e.g., [3], [5], [10], [16], [17], [38]. The literature primarily focuses on existence and computation of supply

function equilibrium, sometimes additionally proving bounds on efficiency loss. Our work is most related to [18], whichconsiders

an inelastic demandδ that must be satisfied via extracting load shedding from consumers and proves efficient bounds on supply

function equilibrium. In contrast, our work assumes that the operator has an outside option (diesel) that can be used to satisfy the

inelastic demand. This leads to a multistage game between the tenants and the profit-maximizing operator, a dynamic which has

not been studied previously in the supply function literature.

VIII. C ONCLUSION

In this paper, we focused on “greening” colocation demand response by designing a pricing mechanism that can extract load

reductions from tenants during EDR events. Our mechanism,ColoEDR, can be used in both mandatory and voluntary EDR

programs and is easy put in place given systems available in colos today. The main technical contribution of the work is the
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analysis of theColoEDR mechanism, which is a supply function mechanism for an elastic setting, a setting for which efficiency

results have not previously been attained in the supply function literature. Our results highlight thatColoEDR provides provably

near-optimal efficiency guarantees, both when tenants are price-taking and when they are price-anticipating. We also evaluate

ColoEDR using trace-based simulation studies and validate thatColoEDR is both beneficial to the colo operator (by reducing

costs), to the environment (by reducing diesel usage), and to the tenants (by providing payments for reductions).
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APPENDIX

A. Proof of Proposition 1

When tenants are price takers, they maximize the payoutPn(bn, p) = pSn(bn, p) − cn(sn) over the bidbn. Note that

bn ∈ [0, pδ] as no tenant will bid beyondpδ otherwise the payoutPn < 0. Henceb = (b1, . . . , bn) is an equilibrium if and only

if the following condition is satisfied

∂−cn(sn)

∂sn
≤ p, 0 ≤ bn < pδ, (A.33a)

∂+cn(sn)

∂sn
≥ p, 0 < bn ≤ pδ. (A.33b)

At least one feasible solution to (9) exists because it is minimizing a continuous function over a compact set. Furthermore, (9b)

- (9c) satisfy standard constraint qualification, hence forthe Lagrangian

L(s, µ) =
∑

n

cn(sn) + µ((δ − y)−
∑

n

sn),

there exists optimal primal dual pair(s, µ), such that (9b) and (9c) are satisfied, and

∂−cn(sn)

∂sn
≤ µ, sn > 0, (A.34a)

∂+cn(sn)

∂sn
≥ µ, sn ≥ 0. (A.34b)

Given the optimal(s, µ), let p = µ, andbn = p(δ − sn), then (9b) impliesp satisfies (2), and (A.34a)-(A.34b) implies (A.33a)

- (A.33b), hence an equilibrium exists.

Conversely, if(b, p) is an equilibrium andp satisfies (2), the resulting allocations is optimal to (9). To see this, if0 ≤ sn <

δ − y for all n, (A.33a)-(A.33b) is equivalent to (A.34a)-(A.34b) if we set µ = p, hence(s, µ) is primal dual optimal pair for

(9). If sn = (δ − y), thensm = 0, ∀m 6= n. In this case, we set̄µ = min{p, ∂+cn(sn)/∂sn}, and we can check that(s, µ̄) is

the primal dual optimal solution for (9).

B. Proof of Theorem 3

By Proposition 1, when tenants are price-taking, for anyy, the there is always an equilibrium, and the resultings is always

the optimal allocation to provide(δ − y) energy reduction.

Hence we only need to verify that the on-site generation level y is the solution to (14a)-(14c). Similar to the proof of Proposition

1, by Assumption 2, the first order optimality condition for the y in (14a)-(14c) is α
Nδ

(y + (N − 1)δ) = p. By Proposition 1,

p satisfies the relation (2), substitute the left-hand-side into (2) and solve fory, we havey =
√

ΣnbnNδ
α

− (N − 1)δ. This is

exactly the on-site generationy that minimizescosto(b, y) given in (12). Hence the datacenter will always picky that is optimal

for (14a)-(14c), together with Proposition 1, an equilibrium exists, and the resulting allocation(s, y) is optimal for (14a)-(14c).

C. Proof of Proposition 4

Sincey ≥ 0, it suffices to prove that whenever the optimal on-site generation is non-zero,y∗ > 0, yt ≥ y∗. From (4), the

Lagrangian ofSCM is

L(s, y, µ∗, λ∗) =
∑

n

cn(sn) + αy + µ∗((δ − y)−
∑

n

sn)− λ∗y.

By constraint qualification and the KKT conditions, assuming y∗ > 0, thenλ = 0, µ∗ = α, hence the market clearing price in

the optimal allocation should bep∗ = α.
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Next, consider the market price for price taking tenants. From (13),

pt =

∑

i∈N bti

(N − 1)δ + yt
=

√

(Σi∈N bti)α

Nδ
. (A.35)

The second equality yields
∑

i∈N bti =
((N−1)δ+yt)2

Nδ
α. Substitute this back to (A.35),

pt =

∑

i∈N bti

(N − 1)δ + yt
=

(N − 1)δ + yt

Nδ
α. (A.36)

And note thatyt ∈ [0, δ] andp∗ = α, thus (A.36) yieldsN−1
N

p∗ ≤ pt ≤ p∗.

Finally, from (14), the Lagrangian of the price-taking characterization optimization is,

L(s, y, µt, λt) =
∑

n

cn(sn) +
α

2Nδ
(y + (N − 1)δ)2 + µt((δ − y)−

∑

n

sn)− λty.

By examining the KKT condition and using a similar argument to the proof of Proposition 1, we havept = µt, also, ∂
−cn(st

n
)

∂st
n

≤
pt ≤ p∗ ≤ ∂+cn(s∗

n
)

∂s∗
n

. Thus,∀n, stn ≤ s∗n. Sincey = δ −∑ sn, yt ≥ y∗.

D. Proof of Proposition 2

From the proof of Proposition 4, we see that wheny∗ > 0, λ∗ = 0, andµ∗ = α. Furthermore, we have
∑

n sn < δ, but

sn = δ − bn
µ∗ . Hence(Nδ − Σnbn

α
) < δ. Conversely, if (10) holds, thenα(N − 1)δ <

∑

n bn. But by Proposition 1 and (2), we

have
∑

n bn = (p∗(N − 1)δ+ y). By combining the two equations above:α(N − 1)δ < p∗((N − 1)δ+ y∗). However, from the

proof in Proposition 1, we havep∗ ≤ α, hence we must havey∗ > 0.

On the other hand, when the data center operator is profit maximizing, the cost to the operatorcosto(b, y) =
(Σnbn)(δ−y)
(N−1)δ+y

+αy

is a convex function iny over the domainy ≥ 0. By first order condition, the cost is minimized when

y′ =

√

N δΣnbn
α

− (N − 1)δ, (A.37)

theny = y′ if and only if y′ ∈ [0, δ]. However,Σnbn = Σnp(δ − sn) = p((N − 1)δ + y) ≤ α(Nδ), where the last inequality

is becausey ≤ δ, andp ≤ α, since operator always has the option to use on-site generation to get unit cost of energy reduction

at α. Hence we always havey′ ≤ δ. So, if y > 0, by (A.37), (11) must hold, conversely, if (11) holds, then by (A.37), y′ > 0,

so operator will usey = y′.

E. Proof of Theorem 5

Note that(s∗, y∗) is a feasible solution to (14). By Theorem 3, we have
∑

n cn(s
t
n)+

α
2Nδ

(yt+(N −1)δ)2 ≤∑n cn(s
∗
n)+

α
2Nδ

(y∗ + (N − 1)δ)2. Rearranging, we have

∑

n

cn(s
t
n) + αyt −

(

∑

n

cn(s
∗) + αy∗

)

≤ α

2Nδ
(yt − y∗)

(

2δ − (yt + y∗)
)

=
α

2Nδ
[−(yt − y∗)2 + 2(δ − y∗)(yt − y∗)] ≤ α

2Nδ
[−(yt − y∗ − (δ − y∗))2 + (δ − y∗)2]

=
α

2Nδ
(δ − y∗)2 ≤ αδ

2N
.

F. Proof of Theorem 6

From Proposition 4, we haveN−1
N

α ≤ pt ≤ p∗ = α, and0 ≤ yt ≤ δ, which yields

cost∗o(p
∗, y∗)− costo(p

t, yt) = p∗(δ − y∗) + αy∗ −
(

pt(δ − yt) + αyt
)

= (α− pt)(δ − yt)
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Substituting the above bounds forpt andyt gives0 ≤ cost∗o(p
∗, y∗)− costo(p

t, yt) ≤ αδ
N
.

G. Proof of Theorem 7

The proof proceeds in a number of steps. We first show that the payoff functionQn is a concave and continuous function

for each firmn. We then establish necessary and sufficient conditions forb to be an equilibrium; these conditions look similar

to the optimality conditions (A.33a)-(A.33b) in the proof of Proposition 1, but for a “modified” cost function defined according

to (21). We then show the correspondence between these conditions and the optimality conditions for the problem (20a)-(20c).

This correspondence establishes existence of an equilibrium, and uniqueness of the resulting allocation.

Step 1:If b is an equilibrium, and Assumption 2 is satisfied, at least onecoordinate ofb is positive.

By Assumption 2,0 < α < Σnbn
(N−1)δ

, hence at least one coordinate ofb must be positive.

Step 2:The functionQn(b̄n;b−n) is concave and continuous in̄bn, for b̄n ≥ 0. From (16) and by pluggingp(b) into sn in

(1), we have

Qn(b̄n;b−n) =

√

(Σm6=nbm + b̄n)αδ

N
− b̄n − cn

(

δ − b̄n
√

Σm6=nbm + b̄n

√

Nδ

α

)

.

When Σm6=nbm + b̄n > 0, the function b̄n/
√

Σm6=nbm + b̄n is a strictly concave function of̄bn (for b̄n ≥ 0). Sincecn is

assumed to be convex and nondecreasing (and hence continuous), it follows thatQn(b̄n,b−n) is concave and continuous in̄bn,

for b̄n ≥ 0.

It is easy to show that forsn to be positive, we needbn ≤ bn wherebn = 1
2

(

αδ
N

+
√

αδ
N
(αδ
N

+ 4Σm6=nbm)

)

.

Step 3:In an equilibrium,0 ≤ bn ≤ bn,∀n.

Tenantn would never bid more than̄bn given b−n. If bn > bn, thenS(p(b), bn) = δ − bn√
bn+Σm 6=nbm

Nδ
α

< 0. so the payoff

Qn(bn;b−n) becomes negative; on the other hand,Qn(bn;b−n) = 0.

We specify the following condition when marginal cost of production is not less than the price:

∀n, ∂−cn(sn)

∂sn
≤ p(b), sn > 0. (A.38)

This condition is satisfied when tenants are price-taking, in the next step, we show that (A.38) also holds in an equilibrium

outcome when tenants are price-anticipating.

Step 4:The vectorb is an equilibrium if and only if(A.38) is satisfied, at least one component ofb is positive, and for eachn,

bn ∈ [0, bn], and the following conditions hold:

if 0 < bn ≤ bn,
1

2

(

∂+cn(sn)

∂sn
+

α

2N

)

+
1

2

√

(

∂+cn(sn)

∂sn
− α

2N

)2

+
∂+cn(sn)

∂sn

2snα

Nδ
≥ p(b), (A.39a)

if 0 ≤ bn < bn,
1

2

(

∂−cn(sn)

∂sn
+

α

2N

)

+
1

2

√

(

∂−cn(sn)

∂sn
− α

2N

)2

+
∂−cn(sn)

∂sn

2snα

Nδ
≤ p(b). (A.39b)

By Step 2,Qn(bn;b−n) is concave and continuous forbn ≥ 0. By Step 3,bn ∈ [0, bn]. bn must maximizeQn(bn;b−n) over

0 ≤ bn ≤ bn, and satisfy the following first order optimality conditions:

∂+Qn(bn;b−n)

∂bn
≤ 0, if 0 < bn ≤ bn;

∂−Qn(bn;b−n)

∂bn
≥ 0, if 0 ≤ bn < bn;
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Recalling the expression forp(b) given in (13), we have

1

2
√
Σmbm

√

αδ

N
− 1 +

∂−cn(sn)

∂sn

1

p(b)
(1− bn

2Σmbm
) ≤ 0, if 0 ≤ bn < bn;

1

2
√
Σmbm

√

αδ

N
− 1 +

∂+cn(sn)

∂sn

1

p(b)
(1− bn

2Σmbm
) ≥ 0, if 0 < bn ≤ bn.

We now note that by (13) and (1), we have : 1√
Σmbm

= 1
p(b)

√

α
Nδ

, and bn√
Σmbm

= (δ − sn)
√

α
Nδ

.

Substituting these two equations into the above, we have

1

2p(b)

α

N
− 1 +

∂−cn(sn)

∂sn

1

p(b)

(

1− 1

2p(b)

α

N

δ − sn
δ

)

≤ 0. (A.40a)

1

2p(b)

α

N
− 1 +

∂+cn(sn)

∂sn

1

p(b)

(

1− 1

2p(b)

α

N

δ − sn
δ

)

≥ 0. (A.40b)

To show (A.38) holds, we divide into two cases, whenN ≥ 2, by rearranging (A.40a), we have

∂−cn(sn)

∂sn

1

p(b)
≤ 2Np(b)− α

2Np(b)− α δ−sn
δ

≤ 1.

This is because by Assumption 2,2Np(b) − α > 0 whenN ≥ 2. Also, we have2Np(b) − α δ−sn
δ

≥ 2Np(b) − α. Hence

(A.38) holds forN ≥ 2.

WhenN = 1, we can simplify (A.40a) further to

1

2p(b)
α− 1 +

∂−cn(sn)

∂sn

1

2p(b)
≤ 0, ⇒ p(b) ≥ 1

2

(

α+
∂−cn(sn)

∂sn

)

≥ ∂−cn(sn)

∂sn
.

The last inequality is becauseα ≥ ∂−cn(sn)
∂sn

, otherwisep(b) > α, but profit maximizing operator will not pay for price more

thanα, contradiction. Hence (A.38) must hold for allN . After multiplying through (A.40a)-(A.40b) byp(b) and rearranging,

we have two quadratic inequalities in terms ofp(b). Solving the inequalities lead to two sets of conditions ofp(b) that satisfy

the first order optimality conditions, they are:

if 0 ≤ bn < bn,
1

2

(

∂−cn(sn)

∂sn
+

α

2N

)

± 1

2

√

(

∂−cn(sn)

∂sn
− α

2N

)2

+ 4
∂−cn(sn)

∂sn

snα

2Nδ
≤ p(b) (A.41a)

if 0 < bn ≤ bn,
1

2

(

∂+cn(sn)

∂sn
+

α

2N

)

± 1

2

√

(

∂+cn(sn)

∂sn
− α

2N

)2

+ 4
∂+cn(sn)

∂sn

snα

2Nδ
≥ p(b) (A.41b)

However, only the conditions with plus sign satisfies (A.38), the conditions with minus sign violates (A.38) because since

∀sn > 0, p(b) ≤ α

2N
≤ ∂+cn(0)

∂sn
<

∂−cn(sn)

∂sn
.

Hence we discard the conditions with minus sign and note that(A.41b)-(A.41a) corresponds to (A.39a)-(A.39b).

Conversely, suppose thatb has at least one strictly positive component, that0 ≤ bn ≤ bn, and thatb satisfies (A.38) and

(A.39a)-(A.39b). Then we may simply reverse the argument: by Step 2,Qn(bn;b−n) is concave and continuous inbn ≥ 0, and

in this case the conditions (A.39a)-(A.39b) imply thatbn maximizesQn(bn;b−n) over 0 ≤ bn ≤ bn. Since we have already

shown that choosingbn > bn is never optimal for firmn, we conclude thatb is an equilibrium, and it is easy to check that in

this case condition (A.38) is satisfied.

Step 5:If Assumption 2 holds, then the functionĉn(sn) defined in(21) is continuous, and strictly convex and strictly increasing

over sn ≥ 0, with ĉ(sn) = 0 for sn ≤ 0.

ĉn(sn) is continuous onsn > 0 by continuity ofcn and onsn < 0 by definition. We only need to show thatĉn(0) = 0, this is
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because whensn = 0, cn(sn) = 0, sn
α
2N

= 0, and integrating from 0 tosn is 0. Hencêcn(sn) = 0 for sn ≤ 0.

For sn ≥ 0, we simply compute the directional derivatives ofĉn:

∂+ĉn(sn)

∂sn
=

1

2

(

α

2N
+

∂+cn(sn)

∂sn

)

+
1

2

√

(

α

2N
− ∂+cn(sn)

∂sn

)2

+ 2
∂+cn(sn)

∂sn

snα

Nδ
,

∂−ĉn(sn)

∂sn
=

1

2

(

α

2N
+

∂−cn(sn)

∂sn

)

+
1

2

√

(

α

2N
− ∂+cn(sn)

∂sn

)2

+ 2
∂+cn(sn)

∂sn

snα

Nδ
.

Sincecn is strictly increasing and convex, for0 ≤ sn < s̄n, we will have

0 ≤ ∂+ĉ(sn)

∂sn
<

∂−ĉ(s̄n)

∂sn
≤ ∂+ĉ(s̄n)

∂sn
.

This guarantees that̂cn is strictly increasing and strictly convex oversn ≥ 0.

Step 6:There exists a unique vectors ≥ 0, y ≥ 0 and at least one scalarρ > 0 such that:

1

2

(

∂+cn(sn)

∂sn
+

α

2N

)

+
1

2

√

(

∂+cn(sn)

∂sn
− α

2N

)2

+
∂+cn(sn)

∂sn

2snα

Nδ
≥ ρ, if sn ≥ 0; (A.42a)

1

2

(

∂−cn(sn)

∂sn
+

α

2N

)

+
1

2

√

(

∂+cn(sn)

∂sn
− α

2N

)2

+
∂+cn(sn)

∂sn

2snα

Nδ
≤ ρ, if sn > 0; (A.42b)

α

Nδ
(y + (N − 1)δ) = ρ; (A.42c)

∑

n

sn = (δ − y). (A.42d)

The vectors and y is then the unique optimal solution to(20a)-(20c).

By Step 5, sincêcn is continuous and strictly over the convex, compact feasible region for eachn, we know that (20a)-(20c)

have a unique optimal solutions, y. As in the proof of Proposition 1, form the Lagrangian

L(s, y; ρ) =
∑

n

ĉn(sn) +
α

2Nδ
(y + (N − 1)δ)2 + ρ((δ − y)−

∑

n

sn).

By assumption 2,y > 0, and by the fact that̂cn(sn) = 0 for sn ≤ 0, sn ≥ 0. there exists a Lagrange multiplierρ such

that (s, y, ρ) satisfy the stationarity conditions which corresponds to (A.42a)-(A.42c) when we expand the definition ofĉn(sn),

together with the constraint (A.42d). The fact thatρ > 0 follows by (A.42c) asy > 0.

Step 7:If s ≥ 0, y ≥ 0 and ρ > 0 satisfy(A.42a)-(A.42d), then the triple(b, ρ, y) defined bybn = (δ − sn)ρ is an equilibrium

as defined in(17) and (18).

First observe that with this definition, together with (A.42d) and the fact thatsn ≥ 0, we havebn ≥ 0 for all n. Furthermore, we

can showbn ≤ bn, sincesn ≥ 0, bn ≤ ρδ, but by (A.42c)-(A.42d), we have

ρ =
α

Nδ
(y + (N − 1)δ) =

α

Nδ
(Nδ −

∑

n

sn) (A.43)

Substitute the definitionsn = δ − bn
ρ

into (A.43), we have

ρ =
α

Nδ

Σnbn
ρ

⇒ ρ =

√

Σnbnα

Nδ
. (A.44)

Substituting (A.44) intobn ≤ ρδ, we havebn ≤
√

(Σm 6=nbm+bn)αδ

N
, Solving this inequality we havebn ≤ bn.

Finally, at least one component ofb is strictly positive, since otherwise we havesn1 = sn2 = δ for somen1 6= n2, in which

caseΣnsn > δ, which contradicts (A.42d). (orsn = δ, y = 0, contradicting our assumption thaty > 0.)

By Step 4, to check thatb is an equilibrium, we must only check the stationarity conditions (A.39a)-(A.39b). We simply note
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that under the identificationbn = ρ(δ − sn), using (A.44) and (A.42c), we have

y =

√

ΣnbnNδ

α
− (N − 1)δ; ρ =

Σnbn
(N − 1)δ + y

= p(b).

Substitutep(b) into (A.42a) will correspond to (A.39a), and (A.42b) implies (A.39b) and (A.38) because∂
−cn(sn)
∂sn

≤ ∂+cn(sn)
∂sn

.

Thus (b, ρ, y) is an equilibrium.

Step 8:If (b, p(b), y) is an equilibrium, then there exists a scalarρ ≥ 0 such that the vectorb defined bysn = S(p(b), bn)

satisfies(A.42a)-(A.42d).

We simply reverse the argument of Step 7. Sinceb is an equilibrium bids, by (18) andsn = S(p(b), bn), we have
∑

n sn = (δ−y),

i.e., (A.42d) is satisfied. By Step 4,b satisfies (A.39a)-(A.39b). Sincey > 0 by Assumption 2,0 ≤ sn < δ for all n, let

ρ = max
{

p(b),
1

2

(

∂−cn(sn)

∂sn
+

α

2N

)

+
1

2

√

(
∂+cn(sn)

∂sn
− α

2N
)2 +

∂+cn(sn)

∂sn

2snα

Nδ

}

.

In this caseρ > 0 and0 ≤ bn ≤ bn for all n, so (A.39b) implies (A.42b) by definition ofρ, and (A.42a) holds by (A.39a) and

the fact that∂−cn(sn) ≤ ∂+cn(sn) (by convexity).

Step 9:There exists an equilibriumb, and for any equilibrium that price is greater than marginalcost, the vectors defined by

sn = S(p(b), bn) is the unique optimal solution of(A.42a)-(A.42d).

The conclusion is now straightforward. Existence follows from Steps 6 and 7. Uniqueness of the resulting production vector s,

and the fact thats is an optimal solution to (20a)-(20c), follows by Steps 6 and8.

H. Proof of Lemma 8

We exploit the structure of the modified costĉn to prove the result. Note that, for alln, sn ≥ 0, if we defineGn(sn) =
∫ sn

0

√

( ∂
+cn(z)
∂z

− α
2N

)2 + ∂+cn(z)
∂z

2zα
Nδ

dz, then

Gn(sn) ≥
∫ sn

0

√

(

∂+cn(z)

∂z
− α

2N

)2

dz = cn(sn)− sn
α

2N
.

First inequality is becausez ≥ 0, last equality is because by convexity and Assumption 3, we have ∂+cn(z)
∂z

≥ ∂+cn(0)
∂sn

≥ α
2N

.

Hence we havêcn(sn) = 1
2

(

cn(sn) + sn
α
2N

)

+ 1
2
Gn(sn) ≥ cn(sn).

On the other hand, notice thatsn ≤ δ, we have:

Gn(sn) ≤
∫ sn

0

√

(

∂+cn(z)

∂z
− α

2N

)2

+
∂+cn(z)

∂z

2δα

Nδ
dz

=

∫ sn

0

√

(

∂+cn(z)

∂z
+

α

2N

)2

dz = cn(sn) + sn
α

2N
.

Hence we havêcn(sn) = 1
2

(

cn(sn) + sn
α
2N

)

+ 1
2
Gn(sn) ≤ cn(sn) + sn

α
2N

. The bounds for the left and right derivatives can

be obtained from taking the left (or right) derivatives at the bounds ofGn(sn).

I. Proof of Theorem 9

Firstly we will prove one side of the inequalitypt ≤ pa, yt ≤ ya. Recall that by the examinging the Lagrangians of the

optimizations in Proposition 4 in and Theorem 7, we havept ≥ ∂−cn(s
t
n)/∂sn, pt ≤ ∂+cn(s

t
n)/∂sn, pa ≥ ∂−ĉn(s

a
n)/∂sn, pa ≤

∂+ĉn(s
a
n)/∂sn, at the domain where the left or right derivative is defined, and pt = α

Nδ
(yt+(N−1)δ), pa = α

Nδ
(ya+(N−1)δ).

If yt > ya, thenpt > pa. Also, because the total energy reductionδ is constant, we have
∑

n stn <
∑

n san.
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Hence there existsr > 0 such thatsar > str for somer ∈ {1, . . . , N}. Therefore, by strict convexity ofcn (Assumption 1):

pt ≤ ∂+cr(s
t
r)

∂sr
<

∂−cr(sar)

∂sr
. (A.45)

However, by Lemma 8 we have∂
−ĉr(sr)
∂sr

≥ ∂−cr(sr)
∂sr

. Hence, we have

pa ≥ ∂−ĉr(sar )

∂sr
≥ ∂−cr(sar)

∂sr
. (A.46)

Combining (A.45) and (A.46), we havept < pa, contradiction. Hence we haveyt ≤ ya, andpt ≤ pa.

Next we show the other side of the inequalitypa ≤ pt + α
2N

, ya ≤ yt + δ
2
, by the previous part, we have

∑

n san ≤∑n stn.

Let n = argmaxm(stm − sam), clearly stn ≥ san, otherwise
∑

n stn <
∑

n san, contradiction.

If stn = san, then∀m,stm = sam, andyt = ya, thenpt = pa.

If stn > san, then by strict convexity ofcn (assumption 1), and the fact thatsan ≥ 0, stn > 0, we have

∂+ĉn(s
a
n)

sn
<

∂−cn(s
t
n)

sn
≤ pa. (A.47)

Also, by Lemma 8, we have∂
+ ĉn(sn)
∂sn

≤ ∂+cn(sn)
∂sn

+ α
2N

, this gives us

pa ≤ ∂+ĉn(s
a
n)

∂sn
≤ ∂+cn(s

a
n)

∂sn
+

α

2N
. (A.48)

Combining (A.58) and (A.59), we havepa < pt + α
2N

. Hence we have

α

Nδ
(ya + (N − 1)δ) <

α

Nδ
(yt + (N − 1)δ) +

α

2N
,⇒ ya < yt +

δ

2
.

J. Proof of Theorem 13

Given anyε > 0, let ε′ = 1
2
ε. Consider the following set of cost function:

c1(s1) =



























α
2N

s1, if s1 < ε′;

α(1− 3ε′

2Nδ
)s1 + C1, ε′ ≤ s1 ≤ δ − ε′;

2αs1 + C2, s1 > δ − ε′

whereC1, C2 are constants that makec1 continuous6, thenc1 is piece-wise linear and convex. Also,∀m 6= 1, cm(sm) = 2αsm.

It is easy to see thats∗1 = δ − ε′ andy∗ = ε′ is the optimal allocation.

Let sa1 = ε′, ya = δ − ε′, and∀m 6= 1, sam = 0, we claim that(sa, ya) is the unique optimal solution to (20a)-(20c). To see

this, letρ = α(1− ε/(Nδ)), then,

α

Nδ
(ya + (N − 1)δ) = ρ;

∑

n

san = δ − ya; (A.49a)

∂−ĉ1(sa1)

∂s1
≤ ρ;

∂+ĉ1(s
a
1)

∂s1
≥ ρ;

∂+ĉm(0)

∂sm
≥ ρ, ∀m 6= 1. (A.49b)

where the second inequality is because if we letHn be the term under square root for∂+ ĉn(sn)
∂sn

, then

Hn =

√

(

∂+cn(sn)

∂sn
− (

α

2N
− α

N

sn
δ
)

)2

+ (
α2

N2

(δ + sn)(δ − sn)

δ2
)

≥ ∂+cn(sn)

∂sn
− (

α

2N
− α

N

sn
δ
).

6C1 = −αε′( (2N−1)δ−3ε′

2Nδ
), andC2 = −

α
Nδ

(Nδ2 + δε′ − 3ε′)
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Note that∂
+ĉn(sn)
∂sn

= 1
2
( ∂

+cn(sn)
∂sn

+ α
2N

)+ 1
2
Hn. Hence we have∂

+ ĉ1(s
a

1 )

∂s1
≥ ∂+c1(s

a

1 )

∂s1
+ αs1

2Nδ
= ρ. These conditions correspond

to (A.42a)-(A.42d), so we conclude that(sa, ya) is the unique optimal solution to (20a)-(20c). Henceya− y∗ = δ− 2ε′ = δ− ε.

K. Proof of Theorem 11

As (s∗, y∗) is a feasible solution to (20), by Theorem 7, we have

∑

n

ĉn(s
a
n) +

α

2Nδ
(ya + (N − 1)δ)2 ≤

∑

n

ĉn(s
∗
n) +

α

2Nδ
(y∗ + (N − 1)δ)2. (A.50)

Rearranging, we have
∑

n ĉn(s
a
n) + αya −

(
∑

n ĉn(s
∗
n) + αy∗) ≤ α

N

(

(ya − y∗)(1− ya+y∗

2δ
)
)

. By Corollary 10 and the fact

that y∗ ≤ δ, ya ≤ δ, both terms in the brackets are positive, hence right-hand-side expression is maximized wheny∗ → 0+ and

ya = δ, hence

(

∑

n

ĉn(s
a
n) + αya

)

−
(

∑

n

ĉn(s
∗
n) + αy∗

)

≤ αδ

2N
. (A.51)

However, by Lemma 8, we have
∑

n ĉn(s
∗
n) ≤

∑

n cn(s
∗
n) +

α
2N

(
∑

n sn) ≤
∑

n cn(s
∗
n) +

αδ
2N

; and
∑

n ĉn(s
a
n) ≥

∑

n cn(s
a
n).

Substituting the above relations into (A.51) and rearranging, we have the desired result.

L. Proof of Theorem 12

First, we compare the cost by operator between the price-taking and price anticipating cases, by definition (15) and rearranging,

we havecosto(pa, ya) − costo(p
t, yt) = (pa − pt)

(

δ − yt
)

+ (α− pa) (ya − yt). By the fact thatpa = α
Nδ

(ya + (N − 1)δ)

(shown in Theorem 9) and the fact that0 ≤ ya ≤ δ, we have

α

(

N − 1

N

)

≤ pa ≤ α. (A.52)

By the upper bound ofpa in (A.52) and the upper bounds ofpt, yt in Theorem 9, we have

costo(p
a, ya)− costo(p

t, yt) ≥ 0. (A.53)

Similarly, using the lower bound ofpa in (A.52) and the upper bounds ofpa, ya in Theorem 9, we have

costo(p
a, ya)− costo(p

t, yt) ≤
( α

2N

)

· (δ) +
(

α · 1

N

)(

δ

2

)

=
αδ

N
.

Second, we compare the cost by the operator to the social optimal. Since the energy reduction goalδ is the same, by Proposition

4 and Corollary 10, we havept ≤ p∗ andpa ≤ p∗. Hence we havecosto(pt, yt) ≤ costo(p
a, ya) ≤ costo(p

∗, y∗). Furthermore,

costo(p
∗, y∗)− costo(p

t, yt) = αδ − (pt(δ − yt) + αyt)

=(α− pt)(δ − yt) = α

(

δ − yt

Nδ

)

(δ − yt) ≤ αδ

N
. (A.54)

Lastly by (A.53) and (A.54), we havecost(p∗, y∗)− cost(pa, ya) ≤ cost(p∗, y∗)− cost(pt, yt) ≤ αδ
N
.

M. Proof Sketch of Theorem 14

Theo proof is similar to that of Theorem 3, which uses Proposition 1, note that in the VDR case, we can changeNδ in the

proof of Theorem 3 toΣnDn, and interpret the variabley asΣnDn − d, α asu andγn as1/N in the proof of Theorem 3.
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N. Proof Sketch of Theorem 15

Theo proof is similar to that of Theorem 7. note that in the VDRcase, we can changeNδ in the proof of Theorem 3 to

ΣnDn, and interpret the variabley asΣnDn − d, α asu andγn as1/N in the proof of Theorem 7.

O. Proof of Lemma 16

For the bound on the magnitude of the modified cost, we exploitthe structure of the modified costĉn to prove the result.

Note that, for alln, sn ≥ 0, if we defineGn(sn) =
∫ sn

0

√

(

∂+cn(z)
∂z

− γnu

2

)2

+ 2∂+cn(z)
∂z

zu
ΣiDi

, then

Gn(sn) ≥
∫ sn

0

√

(

∂+cn(z)

∂z
− γnu

2

)2

dz = cn(sn)− sn
uγn
2

.

First inequality is becausez ≥ 0, last equality is because by convexity and Assumption 5, we have ∂+cn(z)
∂z

≥ ∂+cn(0)
∂sn

≥ uγn
2

.

Hence we havêcn(sn) = 1
2

(

cn(sn) + sn
uγ

2

)

+ 1
2
Gn(sn) ≥ cn(sn).

On the other hand, notice thatsn ≤ Dn, we have:

Gn(sn) ≤
∫ sn

0

√

(

∂+cr(sn)

∂sn
− uγn

2

)2

+ 2
∂+cn(sn)

∂sn
γnudz = cn(sn) + sn

α

2N
.

Hence we havêcn(sn) = 1
2

(

cn(sn) + sn
α
2N

)

+ 1
2
Gn(sn) ≤ cn(sn) + sn

uγn
2

. The bounds for the left and right derivatives can

be obtained from taking the left (or right) derivatives at the bounds ofGn(sn).

P. Proof of Theorem 17

We can combine (26) with (27) to eliminate the
√
∑n

i=1 bi term to get a relation between market price and the vdr-quantity

decided by the profit maximizing operator:

p =
u

∑n

i=1 Di

(
n
∑

i=1

Di − d) (A.55)

By the characterization theorem, we haveud∗ − ud∗2

2
∑

n
Dn

−∑n cn(s
∗
n) ≤ udt − udt

2

2
∑

n
Dn

−∑n cn(s
t
n). Rearranging, we

have

ud∗ −
∑

n

cn(s
∗
n) ≤ udt −

∑

n

cn(s
t
n) +

u(d∗2 − dt
2
)

2
∑

n Dn

≤ udt −
∑

n

cn(s
t
n) +

u
∑

n d∗2

2
∑

n Dn

where the last inequality is due to the fact thatdt ≥ 0.

Q. Proof of Theorem 18

By Theorem 15, we haveuda− uda2

2
−∑n ĉn(s

a
n) ≥ uda− ud∗2

2
−∑n ĉn(s

∗
n) Using Lemma 16, and rearranging, we have

uda −
∑

n

cn(s
a
n)

≥ud∗ −
∑

n

cn(s
∗
n)−

u(d∗2 − da2)

2
∑

n Dn

−
∑

n

s∗n
γnu

2

≥ud∗ −
∑

n

cn(s
∗
n)−

u
∑

n Dn

2
−
∑

n

Dn
γnu

2

=ud∗ −
∑

n

cn(s
∗
n)−

u

2

∑

n

Dn(1 + γn).
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where the first inequality is becausecn(san) ≤ ĉn(s
a
n), and ĉn(s

∗
n) ≤ cn(s

∗
n) + s∗n

γnu

2
, and the second inequality is becuase

s∗n ≤ Dn.

R. Proof of Proposition 19

The Lagrangian of the welfare maximization problem (28) is

L(s, d;µ, λ̄, λ) = ud−
n
∑

i=1

ci(si) + µ(

n
∑

i=1

si − d) +

n
∑

i=1

λisi +

n
∑

i=1

λ̄i(Di − si).

By constraint qualification, the optimal primal dual solutions (s, y;µ) satisfies the KKT conditions

µ∗ = u,

∂−cn(sn)

∂sn
≤ µ∗, if 0 < sn ≤ Dn

∂+cn(sn)

∂sn
≥ µ∗, if 0 ≤ sn < Dn.

Hence the market clearing price in the optimal allocation should bep∗ = u. Now consider the market clearing price for price

taking tenants, from (A.55), we know thatpt = u− udt∑
n

Dn
≤ u = p∗. Similarly, by Theorem 14 and looking at the Lagrangian

of (29), we have∂−cn(st
n
)

∂sn
≤ pt for all 0 < stn ≤ Dn, hence for alln, such thatstn > 0 ands∗n < Dn, we have

∂−cn(stn)

∂sn
≤ pt ≤ p∗ ≤ ∂+cn(s

∗
n)

∂sn
,

hencestn ≤ s∗n for all suchn, on the other hand, ifstn = 0 or s∗n = Dn, we also havestn ≤ s∗n, hencedt =
∑

n stn ≤∑n s∗n = d∗.

Finally, by the fact thatdt ≤ d∗ and (A.55), we have

pt = u− udt
∑

n Dn

≥ u− ud∗
∑

n Dn

=

(

1− d∗
∑

n Dn

)

p∗.

S. Proof of Theorem 20

Firstly we will prove one side of the inequalitypt ≤ pa, dt ≥ da. We can prove this by contradiction. Supposedt < da, then

by (A.55), pt > pa. Also,
∑

n stn <
∑

n san.

Hence there existsar > 0 such thatsar > str for somer ∈ {1, . . . , N}. Therefore, by the stationarity of the Lagrangian of

(29) and strict convexity ofcn (Assumption 1):

pt ≤ ∂+cr(s
t
r)

∂sr
<

∂−cr(s
a
r )

∂sr
(A.56)

However, by the stationarity of the Lagrangian of (30) and Lemma 16, we have

pa ≥ ∂−ĉr(s
a
r )

∂sr
≥ ∂−cr(s

a
r)

∂sr
. (A.57)

Combining (A.45) and (A.46), we havept < pa, contradiction. Hence we haveyt ≤ ya, andpt ≤ pa.

Next we show the other side of the inequalitypa ≤ pt + uγ

2
, da ≤ dt − D

2
, by the previous part, we have

∑

n san ≤∑n stn.

Let n = argmaxm(stm − sam), clearly stn ≥ san, otherwise
∑

n stn <
∑

n san, contradiction.

If stn = san, then∀m,stm = sam, anddt = da. By (A.55), pt = pa.

If stn > san, then by stationary condition of the Lagrangian of (29) and strict convexity of cn (assumption 1), and the fact

that san ≥ 0, stn > 0, we have
∂+cn(s

a
n)

∂sn
<

∂−cn(s
t
n)

sn
≤ pt. (A.58)
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Also, by Lemma 16 and stationary condition of Lagrangian of (30), we have definition of

pa ≤ ∂+ĉn(s
a
n)

∂sn
≤ ∂+ĉn(s

a
n)

∂sn
+

γnu

2
. (A.59)

Combining (A.58) and (A.59), we havepa < pt + γnu

2
≤ pt + uγ

2
. Substitute the above relation into (A.55), we have

u− uda
∑

n Dn

< u− udt
∑

n Dn

+
uγ

2
,

da > dt − D

2
,

the last inequality is becauseD = maxn Dn = (
∑

n Dn)γ.

T. Proof of Theorem 21

Firstly, by theorem 20,da ≤ dt, andpa ≥ pt, henceUo(p
a, da) ≤ Uo(p

t, dt). Furthermore,

Uo(p
t, dt)− Uo(p

a, da) = (u− pt)dt − (u− pa)da

=(u− pt)(dt − da) + da(pa − pt). (A.60)

By theorem 20, we havedt ≤ da +D/2, pa ≤ pt + uγ/2, and by the fact thatda ≤∑n Dn, we have

Uo(p
t, dt)− Uo(p

a, da) ≤ u · D
2

+ (
∑

n

Dn)
uγ

2
= uD. (A.61)
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