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Abstract

Data centers have emerged as promising resources for damspohse, particularly for emergency demand response YEDR
which saves the power grid from incurring blackouts durimgeegency situations. However, currently, data centerscajly
participate in EDR by turning on backup (diesel) generatansich is both expensive and environmentally unfriendty.this
paper, we focus on “greening” demand response in multifiedata centers, i.e., colocation data centers, by desjgnipricing
mechanism through which the data center operator can efigiextract load reductions from tenants during emergepeayods
to fulfill energy reduction requirement for EDR. In partiauylwe propose a pricing mechanism for both mandatory anghtay
EDR programsColoEDR, that is based on parameterized supply function biddingpaadides provably near-optimal efficiency
guarantees, both when tenants are price-taking and whgrateeprice-anticipating. In addition to analytic resuli& extend the
literature on supply function mechanism design, and etlGaloEDR using trace-based simulation studies. These validate the
efficiency analysis and conclude that the pricing mecharigshoth beneficial to the environment and to the data centerabpr

(by decreasing the need for backup diesel generation)evettélo aiding tenants (by providing payments for load redosj.

|. INTRODUCTION

Data centers have emerged as a promising demand respormguofip. However, data center demand response today is not
environmentally friendly since data centers typicallytigpate by turning on backup (diesel) generators. In tlzipgs, we focus
on designing a pricing mechanism for a crucial class of datders for demand response — multi-tenant colocation datters
— that allows the data center operator to encourage loaddstigedmong tenants in response to demand response sigmads; t
greening data center demand response by reducing the neadef@f backup (diesel) generation.

Data center demand responsePower-hungry data centers have been quickly expandingtmramber and scale to support
the exploding IT demand, consuming 91 billion kilowatt-h@kWh) electricity in 2013 in the U.S. along [29]. While titidnally
viewed purely as a negative, the massive energy usage otdatars has recently begun to be recognized as an oppgrtimit
particular, because the energy usage of data centers ®hésflexible, they are promising candidatesdemand responsevhich
is a crucial tool for improving grid reliability and incorpating renewable energy into the power grid. From the gridrajor’s
perspective, a data center’s flexible power demand servesvatuable energy buffer, helping balance grid power’s suppd
demand at runtime [43].

To this point, data center is a promising, but still largelydar-utilized opportunity for demand response. Howeuds is
quickly changing as data centers play an increasing rolemergency demand response (EDR) programs. EDR is the most
widely-adopted demand response program in the U.S., reqiag 87% of demand reduction capabilities across alabdlty
regions [[25]. Specifically, during emergency events (esgtreme weather or natural disasters), EDR coordinatesy fzage
energy consumers, including data centers, to shed theielplmads, serving as the last protection against cascadegiduts that
could potentially result in economic losses of billions @fldrs [27], [31]. The U.S. EPA has identified data centersrétical
resources for EDR[11], which was attested to by the follgnimxample: on July 22, 2011, hundreds of data centers pated
in EDR by cutting their electricity usage before a largelsdadackout would have occurred [27].
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While data centers are increasingly contributing to EDRyttypically participate by turning on their on-site backdigsel
generators, which is neither cost effective nor envirortalgnfriendly. For example, in California (a major data temmarket),

a standby diesel generator often produces 50-60 times niwogen oxides (a smog-forming pollutant) compared to dciip
power plant for each kWh of electricity, and diesel parttalrepresents the state’s most significant toxic air gotuproblem
[34].

In addition, relying on diesel generation for EDR presemtgrging challenges which, if left unaddressed, may fodeia
center's EDR capability. First, as EDR is becoming moredest, the current financial compensation offered by powiertgrdata
centers (for committed energy reduction during EDR) mayb®enough to cover the growing cost of diesel generationor&kc
data center operators are aggressively cutting the hugelkcapestment in their power infrastructure (e.g., 1GAgatt [6], [22]),
by down-sizing the capacity of diesel generator and uninpted power supply (UPS) system [39]. Such under-pronisip of
diesel generator may compromise data center's EDR cafyafilierefore, to retain and encourage data center’'s faation in
EDR without contaminating the environment, it is criticaldaurgent that data centers seek alternative ways to shed loa

Consequently, modulating server energy for green EDR (dsam@ther demand response programs such as regulatidneserv
[20]) has received an increasing amount of attention innegears, e.g.[[1]12],[17],[124],[120] 1241 T41]/[23]. Alese studies
leverage various widely-available IT computing knobs (esgrver turning on/off and workload migration) in data tees and
provide algorithms to optimize them for participation inntnd response markets. Importantly, these are not simplyrétical
studies. For example, a field study by Lawrence BerkeleyddatiLaboratory (LNBL) has illustrated that data centens duce
energy consumption by 10-25% in response to demand resmigsals, without noticeably impacting data center's ndrma
operation [[15].

Demand response in collocation data centersWhile existing studies on data center demand response shomiging
progress, they are primarily focused on owner-operated damters (e.g., Google) whose operators have full contret both
servers and facilities. Unfortunately, such companies awyally be the least likely to participate in demand respgorograms,
because many of their workloads are extremely delay seasitd their data centers have been optimized for delay.

In this paper, we focus on another type of data centers — +aritint colocation data centers (e.g., Equinix). These hav
been investigated much less frequently, but are actuattgbtargets for demand response then owner-operated eaters. In a
colocation data center (simply called “colocation” or ‘@f| multiple tenants deploy and keep full control of thewro physical
servers in a shared space, while the colo operator only geeviacility support (e.g., high-availability power andbog). Colos
are less studied than owner-operated data centers, buatbectually more common in practice. Colos offer data cestkitions
to many industry sectors, and serve as physical home to midvstep clouds, medium-scale public clouds (e.g., VMwai&) [
and content delivery providers (e.g., Akamai). Furthee@ent study shows that colos consume nearly 40% data cergagyein
the U.S., while Google-type data centers collectively aotdor less than 8%, with the remaining going to enterpriséouse
data centerd [29].

In addition to consuming a significant amount of energy (mibi@n Google-type data centers), colos are often located in
places more useful for demand response. While many medma-ea@er-operated data centers are built in rural areasscale
mostly located in metropolitan areas (e.g., Los Angelesy Nerk) [9], which are the very places where EDR is most needed
Further, workloads in colos are highly heterogenous, andynt@nants run non-mission-critical workloads (e.g., lamputing
[37]) that have very high scheduling flexibilities, diffetedelay sensitivities, peak load periods, etc., which &ldor demand
response participation.

For all these reasons, colos are key participants in EDRranogt Compared to owner-operated data centers that caiadeve
various computing knobs, however, greening colos’ pauditton in EDR by reducing reliance on diesel generator isi@antly
more challenging, because of colo operators’ lack of comiver their tenants’ servers. On the other hand, many teriantolos

run servers hosting highly-flexible and non-critical warddis with a great potential for shedding loads when callezh (B7].



Thus, tenants’ load shedding potentials, if appropriatedploited, can altogether form a green alternative to tligeeeration
for colo EDR. Nonetheless, tenants manage their own seimdependently and may not have incentive to cooperate \migh t
operator for EDR, thus raising the research question: howaceolo operatoefficientlyincentivize its tenants’ load shedding for
EDR

Contributions of this paper. In this paper, we focus on “greening” colocation demand @asp by extracting load reduction
from tenants instead of relying on backup diesel generatiée study bothmandatoryEDR, a type of EDR program in which
participants sign contracts and are obliged to reduce lndes requested [31], anabluntary EDR, where participants voluntarily
reduce loads for financial compensation upon grid requegbtoth cases, we propose a new pricing mechanism with whilch co
operators can extract load shedding from tenants. In pdaticour proposed approach, call€dloEDR, can effectively provide
incentives for tenants to reduce energy consumption dEDR events, complementing (and even substituting for) tgh-bost
and environmentally-unfriendly diesel generation.

ColoEDR works as follows. After an EDR signal arrives at the colo aper, tenants bid using a parameterized supply
function, and then the colo operator announces a marketirdeprice which, when plugged into the bids, specifies howcimu
energy tenants will reduce and how much they will be paidti€pation by the tenants is straightforward, since they r@quired
to bid only one parameter, which can be viewed as a proxy of mmmeh flexibility in energy usage they have at that moment.
This participation can be automated and so can be easilygacated into current practice, and mimics the way genmmati
resources participate in electricity markets more brodelty example, colo operators at Verizon Terremark alreasignsunicate
with tenants in preparation for an EDR event.

The main technical contribution of the paper is the analg$ithe efficiency of the supply function mechanism proposed i
ColoEDR. In particular, while there is a large literature studyingly function bidding [[5], [[10], [[16]-H[18], our setting he
is novel and different because the colo operator can eithésfy the EDR request using flexibility from the tenants ifaprior
supply funding literature) or through its backup diesel erator. Thus, the diesel generator is an outside optionataws for
elasticityin the amount of response extracted from the tenants. Rutthe colo operator can combine and balance between its
two options (i.e., tenant load shedding and backup gengratorder to minimize costs. This creates a multi-stage eyamd
adds a considerable complexity as compared to the standtidgswithout an outside option, e.d., [18].

Despite the added complexity, our analysis precisely dbtaraes the equilibrium outcome, both when tenants areepri
taking and when they are price-anticipating. In both cases,results highlight thaColoEDR suffers little performance loss
compared to the socially optimal outcome, both from the ajmels and the tenants’ perspectives. However, our arglyses
highlight one possible drawback @oloEDR. In the worst case, it is possible th@bloEDR may result in using significantly
more on-site diesel generation than would the sociallynegiti However, this bad event occurs only in cases where arante
has an overwhelmingly dominant amount of servers and hastaost (for energy reduction) just below that of on-sitesgie
generation. Such an exploitation of market power is unjikel be possible in practical multi-tenant colocation dataters.

In addition to our theoretical analysis, we investigate secstudy of colocation demand response[inl §VI using traseeba
experiments. The results further validate the desig€aEDR, and show that it achieves the mandatory energy reduction fo
EDR while benefiting tenants through financial incentives decreasing the operator's cost. Moreover, our simulasioialy
shows that the efficiency loss in practical settings is ewsvet than what is suggested by the analytic bounds. Thispiecély
true for the amount of on-site generation, which the analsgisults suggest can (in the worst-case) be significantgjetathan

socially optimal but in realistic settings is very close ke tsocial optimal.

1Tenants receive UPS-protected power from colo operatorshiade cooling systems. In other words, tenants’ total gneegisumption is not directly
provided by grid and includes non-separable cooling enempch makes tenants ineligible for direct participationEDR [31].



Il. PROBLEM FORMULATION

Our focus is to design a mechanism for a colo operator to &xtemant load reductions in response to to an EDR signal.
Thus, we need to begin by describing a model for a colo operato

Recall that the colo operator is responsible for non-IT lifigcsupport (e.g., high-availability power, cooling). Weapture
the non-IT energy consumption using Power Usage Effeatsen(PUE)y, which is the ratio of the total colocation energy
consumption to the IT energy consumption. Typically;anges from 1.1 to 2.0, depending on factors such as outsidperature.

When the operator receives an EDR signal from the LSE, it Wasaojptions for satisfying the load reduction. First, withou
involving the tenants, the colo operator can use its onksiekup diesel generatdWe denote the amount of energy reduction
by diesel generation by and the cost per kWh of diesel generation (e.g., for fuelsjby

Alternatively, the colo operator could try to extract IT thaeductions from the tenants. We consider a setting whexee th
are N tenants; € N = {1,2,--- , N}. When shedding energy consumption, a tenawill incur some costs and we denote
the cost from shedding; by a functione;(s;). These costs could be due to wear-and-tear, performancadigipn, workload
shifting, etc. For the purposes of our model, we do not spegtich technique reduces the IT load, only its cost. Foritetm

how one might model such costs, sgé [4].][12]][30]. [42]. Anstard, natural assumption on the costs is the following.

Assumption 1. For eachn, the cost functiore, (s,) is continuous, withe, (s,) = 0 if s, < 0. Over the domairs,, > 0, the

cost functionc,, is convex and strictly increasing.

Intuitively, convexity follows from the conventional aseption that the unit cost increases as tenants reduce mergyen

(e.g., utilization becomes higher when servers are offjilgpto a faster increase in response time of tenants’ waddp

Ill. PRICING TENANT LOAD SHEDDING IN MANDATORY EDR

EDR is the last line of protection against cascading powéurtss, and represents 87% of demand reduction capasilitie
across all the U.S. reliability regions [25]. In generakrth are two types of EDR programs: mandatory and voluntdsp @alled
economic) [31]. We focus on mandatory EDR first, and returmdiointary EDR in Sectiob V.

For mandatory EDR, participants typically sign contracithva load serving entity (LSE) in advance (e.g., 3 years dhea
in PJM [31]) and receive financial rebates for their commditemergy reduction even if no EDR signals are triggered dutie
participation year, whereas non-compliance (i.e., failiar cut load as required during EDR) incurs heavy penalt}. [8an LSE
anticipates that an emergency will occur, participantsrartified, usually at least 10 minutes in advance, and obligefilfill
their contracted amounts of energy reduction for the lemdtthe event, which may span a few minutes to a few hours.

In mandatory EDR, the colo operator has two options for olitgiload reductions in response to an EDR signal that spscifi
the reduction amount — tenants or on-site generation. Tihosyst balance between paying tenants for reduction antyusi-site
generation in order to minimize cost. Note that tenantstlloeduction can also reduce the usage of diesel generatigatirig
environmental impacts. Nonetheless, the challenge isthieabperator does not know the tenant cost functions, ancasnot
determine the cost-minimizing price.

Consequently, the operator has two options: (i) predictehant supply function and compute prices based on theqpi@us,
or (ii) allow tenants to supply some information about thest functions through bids. Clearly, there is a tradeofeHsetween
the accuracy of predictions and the manipulation possibtae bids. Both of these approaches have been looked at lietfzgure
[3], [LO], [18], [24], [28], though not in the context of coldemand response. In general, the broad conclusion is tipadagh
(i) is appropriate when predictions are accurate and ongebilas market power (e.g., is significantly larger than rotieders).

While market power is a considerable issue for the partimpaof owner-operated data centers in demand responseapnsglue

20ther alternatives, e.g., battefy [39], usually only last$ 5 minutes. So, diesel generation is the typical method [11].



to their large size compared to other participants, it isamissue within a specific colo that houses multiple tenagiscally
of comparable sizes), and so we adopt approach (ii) in thempa

Specifically, we design a mechanism, nant@aoEDR, where tenants bid using parameterized supply functiouasthen,
given the bids, the operator decides how much load to shedewiants and how much to shed via on-site generation. In the
following, we describe the mechanism and then contrast ppraach with other potential alternatives.

Note that, throughout this paper, we focus on one EDR evemt,thus we omit the time index. In the case of multiple

consecutive EDR event€oloEDR will be executed once at the beginning of each event, as iglatd in the literature [24],

[33].

A. An overview of ColoDR
The operation ofColoEDR is summarized below, and then discussed in detail in thethettfollows.

1) The colo operator receives an EDR reduction tadgahd broadcasts the supply functisitb.,,, p) to tenants according t@1(1);
2) Participating tenants respond by placing their Higs
3) The colo operator decides the amount of on-site genergtand market clearing price to minimize its cost, using equations
(@ and (3);
4) EDR is exercisedvn € N, tenantn shedsS(b,,p), and receive®S(b,, p) reward.
Given the overview above, we now discuss each step in moegl.det
Step 1.Upon receiving an EDR natification of an energy reductiorgeay, the colo operator broadcasts a parameterized
supply functionS(b, p) to tenants (by, e.g., signalling to the tenants’ serverrobmiterfaces, which are widely existing today).

The form of S(b, p) is the following parameterized famiy

S(bn,p) =6 — 2. (1)
p
wherep is offered reward for each kWh of energy reduction @ndis the bidding values that can be chosen by temanthis
form is inspired by[[1B], where it is shown that by restrigtithe supply function to this parameterized family, the nagitm
can guide the firms in the market reach to an equilibrium wihkiichble properti&Note that, to be consistent with the supply
function literature, we exchangeably use “price” and “redveate” wherever applicable.

Step 2.Next, according to the supply function, each participatiagant submits its bid,, to the colo operator. This bid
specifies that, at each prigeit is willing to reduceS(b.., p) unit of energy. The bid is chosen by tenants individually @ximize
their own utility and can be interpreted as the amount of Iivise revenue that tenant is willing to forgo. Note that,, can be
chosen to ensure that tenantvill not be required to reduce more energy than its capa€aysee this, note that since the operator
is cost-minimizing,p(b,y) < « always holds, i.e., the market clearing price is lower tHa@ tinit cost of diesel generation.

Hence, if K, is the capacity of reduction for tenant as long a$, > a(d — K,), then

_ b

S(bap)=6—m <50 < k.
V% [0}

An important note about the tenant bids is that the supplygtfan is likely of a different form than the true cost functio,,,
and so it is unlikely for the tenants to reveal their cost fiors truthfully. This is necessary in order to provide a @ienform

for tenant bids. Bidding their true cost functions is too @be and intrusive. However, a consequence of this is thatronst

3The supply function allows tenants to have negative supply,tenants consume more energy intentionally, whicteithar profit maximizing nor practical.
We show in EIV that energy reduction of each tenant is alwaysnegative in both equilibrium and social optimal outcomes

4 [18] studies the case where firms bid to supply an inelastioatel, which is equivalent to fixing the diesel generatios 0 in our case. Allowing the
operator to choosg in a cost-minimizing manner leads to significantly differeesults, as will be shown il 8IVAA and_8IV}B.



carefully analyze the emergent equilibrium to understdral dfficiency of the pricing mechanism. We study both the cade
price-taking and price-anticipating equilibrium ip_8IV.
Step 3.After tenants have submitted their bids, the colo operatmidiés the amount of energyto produce via on-site

generation and the clearing prige Giveny, the market clearing price has to satisy,,S(p(b), b,») +y = ¢, thus

> bn
b,y) = —=n"" | 2
p(b,y) N =19ty @)
To determine the amount of local generatignthe operator minimizes the cost of the two load-reductiptions, i.e.,
y = argmin(é —y) - p(b,y) + ay. @)

0<y<é

Step 4.Finally, EDR is exercised and tenants receive financial @mation from the colo operator via the realized price in

@), shed loadS(p, b,,), and on-site generation producgs (3).

B. Discussion

To the best of our knowledge, this paper represents the fitsinpt to design a supply function bidding mechanism for
colocation demand response. Although alternative meshenimay be applicable, there are compelling advantage< tsuipply
function approach. First, bidding for the tenants is simptéey only need to communicate one number, and it is alreadyrmn
practice for operators to communicate with tenants bef@® Events, so the overhead is small. Second, the colo op&altects
just enough information (i.e., how much energy reductioche@nant will contribute to EDR), while tenants’ privatéarmation
(i.e., how much performance penalty/cost each for enerdyation) is masked by the form of the supply function and leemat
solicited. Third,ColoEDR guarantees that the colo operator will not incur a highet tteen the case where only diesel generator
is used. FurtherColoEDR pays a uniform price to all participating tenants and henmtiees fairness.

The most natural alternative design to supply function inigds a VCG-based mechanism, as is suggested_in [46]. While
VCG-based mechanisms have the benefits of incentive cobiligtihowever, these mechanisms violate all the four préips
discussed above. Under such approaches, tenants must siloyncomplex bids describing their precise cost functighs true
private cost of tenants is disclosed, payment made to temaay be unbounded, and prices to different tenants aregdtitiated
and thus raises unfairness issues.

Due to these shortcomings, VCG-based mechanisms are ltypica adopted in complex resource allocation settingshsuc
as power markets, where supply-function based designsaanenon [18]. In fact, nearly all generation markets use aatiam

of supply function bidding.

IV. EFFICIENCY ANALYSIS OF ColoEDR FOR MANDATORY EDR

Given theColoEDR mechanism described above, our task now is to charactesiedficiency. There are two potential causes
of inefficiency in the mechanism: the cost minimizing bebawf the operator and the strategic behavior (bidding) eftdnants.
In particular, since the forms of the tenant’s cost fundiane likely more complex than the supply function bids, ies@annot
bid their true cost function even if they wanted to. This neetirat evaluating the equilibrium outcome is crucial to ustinding
the efficiency of the mechanism.

Further, the equilibrium outcome that emerges dependdyh@hthe behavior of the tenants — whether they @riee-taking
i.e., they passively accept the offered market pricas given when deciding their own bids; price-anticipating i.e., they

anticipate how the price will be impacted by their own bids. We investigate both medat §V-Al and §IV-B, respectively.



In both cases, the goal of our analysis is to assess the afficief ColoEDR. To this end, we adopt a notion of a (socially)

optimal outcome, and focus on the following social cost mimation problem.

SCM : min oy + Z ci(sq) (4a)
ieEN
s.t. y+fy~Zsi:6 (4b)
ieN
si >0, VieN, y>0. (4c)

wheres; and¢; are tenant’s energy reduction and corresponding cost, respectively.

The objective inSCM can be interpreted as the tenants’ cost plus the colo op&raiost. Note that the internal payment
transfer between the colo operator and tenants cancelgja@sdnot impact the social cost. Also, note that payment fr@m.SE
to the colo operator is not included in the social cost objeckince it is independent of how the operator obtains theuat of
o0 load reduction. Additionally, we do not include the optiohignoring the event and taking the penalty, since the pasafor
lack of participation are typically extreme. Finally, thadrangian multiplier of{{4b) can be interpreted as the $agitmal price
p*, i.e., given this price as reward for energy reduction, gaclant will individually reduce their energy by, that corresponds
to the social cost minimization solution ifl (4).

Before moving to the analysis, in order to simplify notafieve suppress the PUf by, without loss of generality, setting
~ = 1. This is equivalent to a change of notatigph= y/v, &' = §/, anda’ = o, i.e., translating the diesel generation, unit

cost of diesel generation, and EDR energy reduction targettheir respective equivalent amounts in terms of seraergy.

A. Price-Taking Tenants

When tenants are price-taking, they maximize their neitytivhich is the difference between the payment they recaind

the cost of energy reduction, given the assumption that toessider their action does not impact the price.

Pr(bn,p) = pSn(bn,p) — cn(Sn(bn,p)) (5a)
=0 — by —cn (65— 22). (5b)

P

Here, the price-taking assumption implies that the vaeiabis considered to be as is. The market equilibrium for pradary

tenants is thus defined as follows.
Definition 1. A triple (b, p,y) is a (price-taking) market equilibrium if each tenant maizies its payoff defined i), market

is cleared by setting price according to(2), and the amount of on-site generation is decided@yi.e.,

p et @)
(N—1)0+y
y = argmin(é — y) - p(b,y) + ay. (8)

0<y<s

1) Market Equilibrium CharacterizationThe key to our analysis is the observation that the equilibrcan be charac-
terized by an optimization problem. Once we have this opi@tion, we can use it to characterize the efficiency of theliegum
outcome. This approach parallels that usedin [18]; howekeroptimization obtained has a different structure dulecal diesel
generation. Additionally, though we use an optimizatiorcharacterize the equilibrium, the game is not a potentiaiegga

Our first result highlights that, given any choice for oresifeneration, a unique market equilibrium exists for theués)

and can be characterized via a simple optimization.



Proposition 1. Under Assumptiofil1, when tenants are price-taking, for amsite generation leved < y < §, there exists
a market equilibrium, i.e., a vectds’ = (b%,...,b%) > 0 and a scalarp > 0 that satisfies(2), and the resulting allocation

sn = S(bn, p) is the optimal solution of the following

min Z ci(s:) (9a)
s iEN

s.t. Z si = (0 —y), (9b)
iEN

5 >0, VieN. (9c)

This result is a key tool for understanding the overall madcome. Intuitively, the operator runningoloEDR is more
likely (than the social optimal) to use on-site generatisince this reduces the price paid to tenants. The followirgp@sition
quantifies this statement.

Proposition 2. Under Assumptiofi]1, it is optimal for price-taking tenamtsuse on-site generation if and only if

(Enbn)
a < m,ﬁ (10)

However, when the operator is profit maximizing, it will twn on-site generation if and only if

N (Sabn)

CSNIN=-1s

(11)

This proposition is an important building block because thest interesting case to consider is when it is optimal to use
some on-site generation and some tenant load shedding} ixey™ > 0. Otherwise the EDR demand should be entirely fulfilled
by tenants, and the analysis reduces to the case of an inedshand, as studied in_[18]. Thus, subsequently, we make th
following assumption, which ensures that on-site genemais valuable.

Assumption 2. The unit cost of on-site generation is cheap enough that ptienal on-site generation is non-zero, i.a.satisfies
(10).
Note that, when Assumptidd 2 holds, by first-order optinyatibndition of [3) we have

y=y/ B2 v (12)

and so the market clearing price for the tenants given @ng@heration is

en bi ienbi
p= Z’LEN — (E ENb )Oé‘ (13)
(N-1)¥5+y No

Using these allows us to prove a complete characterizafidimeomarket equilibrium under price-taking tenants. Thisdrem

is the key to our analysis of market efficiency.

Theorem 3. When Assumptiorig 1 ab#l 2 hold there is a unique market equitibi.e., a vectob’ = (b%,... b)) >0, y* >0

and a scalarp’ > 0 that satisfies6)-(8), and the resulting allocatioris’, ') where s, = S(b%,p") is the optimal solution of

5We adopt the convention th%l =0 and § = +oo whenz > 0. Therefore, whenV = 1, unless the bid is 0, the condition is always satisfied.



the following problem

. « 2
min ; cn(sn) + gars(y + (N —1)9) (14a)
s.t. Z Sn =0 —1, (14b)
50 >0, Vn, y>0. (14c)

2) Bounding Efficiency LossiVe now use Theorel 3 to bound the efficiency loss due to sicavedpavior in the market.
Denote the socially optimal on-site generationydy the optimal price that leads to the optimal allocationvi € A by p*, and
let y* andp’ be the allocation under the price-taking assumption.

Our first result highlights that, due to the cost-minimizimehavior of the operator, the equilibrium outcome uses roarsite
generation and pays a lower price to the tenants than thalsmaiimal.

Proposition 4. Suppose that Assumptiofs 1 ddd 2 hold. When tenants aretpkicey, the operator runningColoEDR uses
more on-site generation and pays a lower price for power atidun to its tenants than the social optimal. Specifically,> y*
and Ypt <p' <p*.

Now, we move to more detailed comparisons. There are thre@aoents of market efficiency that we consider: social welfa
operator cost, and tenant cost.

First, let us consider the social cost.

Theorem 5. Suppose that Assumptions 1 did 2 hold. (séfy") be the allocation when tenants are price-taking, &sd, y*)
be the optimal allocation. Then the welfare loss is boundgdds,, c.(sh) + oy’ <>, en(sh) + ay™ + ad/2N.

Importantly, this theorem highlights that the market eguilim is quite efficient, especially if the number of tersmig large
(the efficiency loss decays to zero @$1/N)). However, the market could maintain good overall socialfave at the expense
of either the operator or the tenants. The following ressittsw this is not true.

Let costo(p,y) be the operator’s cost, i.e.,
costo(p,y) = p(6 — y) + ay. (15)

Then, we have the following results.

Theorem 6. Suppose that Assumptidils 1 did 2 are satisfied. The costmbpetator with price-taking tenants is smaller than

the cost in the socially optimal case. Further, we hawet,(p*, y*) — ad/N < costo(p’,y") < costo(p*,y™).

B. Price-Anticipating Tenants

In contrast to the price-taking model, price-anticipatiegants realize that they can change the market price by bius,
i.e., thatp is set according td (13), and adjust their bids accordinglgarly, this additional strategic behavior can lead tgéar
efficiency loss. But, in this section, we show that the exéisslis surprisingly small, especially when a large numbeenénts
participate inColoEDR.

Given bids from the other tenants, each price-anticipatamgntn optimizes the following cost over bidding valug

Qn(bna bfn) = p(b)Sn(b7wp) - Cn(Sn(bnap))
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where we useb_,, to denote the vector of bids of tenants other thgni.e., b_, = (b1,...,bn—1,bn41,...,bnx). Thus,
substituting [(1) and{13), we have
(Enbn)aé bn N§
Qulbnib=) =y =y vV o

Note that the payoff functio®,, is similar to the payoff functior, in the price-taking case, except that the tenants antiipat
that the colo operator will set the prigeaccording top = p(b,y) from (I3).
Definition 2. A triple (b,p,y) is a (price-anticipating) market equilibrium if each teriamaximizes its payoff defined {@8),

the market is cleared by setting the pripeaccording to(2) and the amount of on-site generation is decided@y i.e.,

>, bn
= _——=n ~ 18
P=IN 1o 1y (18)
y = argmin(é — y) - p(b,y) + ay. (19)
0<y<s

Note that our analysis in this section requires one addititechnical assumption about the tenant cost functions.
Assumption 3. The marginal cost of all the tenants at 0 is greater thgg, i.e., ‘ﬁaCTT;(O) > 5x V.

This assumption is quite mild, especially if the number ofat®s N is large. Intuitively, it says that the unit cost of on-site
generation is competitive with the cost of tenants redutivegr server energy.

1) Market Equilibrium CharacterizationOur analysis of market equilibria proceeds along paraitedd to the price-
taking case. We again show that there exists a unique equitiband, furthermore, that the tenants and operator behlmave
equilibrium as if they were solving an optimization problehthe same form as the aggregate cost minimizafion (4), bttt w
“modified” cost functions.

Theorem 7. Suppose that Assumptibi]L-3 are satisfied, then there existsque equilibrium of the game defined by
(Q1,-..,Qn) satisfying@7)(@3). For such an equilibrium, the vecta® defined bys: = S(p(b®), by) is the unique optimal

solution to the following optimization:

min Y én(sa) + ﬁ(y + (N - 1)5)? (20a)
st Y sp=06-y (20b)
y>0, s,>0, n=1,...,N, (20c)
where, fors,, > 0,
. 1 e 1 [ Oten(2) o\’ Oten(2) za
en(sn) =5 (C"(S") +osn QN) T3 /O \/< 92 2N> T2 M (1)

and fors, <0, én(sn)=0.
Although the form ofé, (s, ) looks complicated, there is a simple linear approximatiwat gives useful intuition.

Lemma 8. Suppose that Assumptibif]L-3 are satisfied. For all modifistiGan € 1,..., N, for any0 < s, < 6,

a
7L7L<A7LTL<TLTL naS AT
cn(sn) < én(sn) < cn(sn) +s 5N

Furthermore, when the left or right derivatives &f) is defined, it can be bounded by

O cn(sn) _ 0 ¢é(sn) _ 0Té(sn) _ 0T cnlsn) @
< < < &
0Sn - 08, —  0Sn 0Sn + 2N
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The form of Lemmd&18 shows that the difference between the firddtost function in[{21) and the true cost diminishes\Vas
increases, and this is the key observation that underliesusequent results upper bounding the efficiency loSSaddEDR.

2) Bounding Efficiency Lossive now use Theoref 7 to bound the efficiency loss due to sicabvegpavior. Note that, by
comparing to both the socially optimal and the price-takinggcomes, we can understand the impact of both strategiavimeh
by the operator and the tenants.

Our first result focuses on comparing the price-anticigatind price-taking equilibrium outcomes. It highlights ttipaice-

anticipating behavior leads to tenants receiving high&repwhile providing less load shedding.

Theorem 9. Suppose Assumpti@ii1-3 hold. Lpt, y*) be the equilibrium price and on-site generation when tesame price-

taking, and(p®, y*) be those when tenants are price-anticipating, then we hgve; y* < y*+§/2 and p* < p® < p'+a/2N.

Next, combining Theoref]9 and Propositigh 4 yields the felhg comparison between the price-anticipating and slycial

optimal outcomes.

Corollary 10. Suppose Assumptidd[1-3 hold. When tenants are price-paticg, an operator runningColoEDR uses more
on-site generation and pays lower market price than in thgadly optimal case, i.e.y® > y* and %p* <p* <p .

Now, we move to more detailed comparisons. There are thre@aoents of market efficiency that we consider: social welfa
operator cost, and tenant cost.

First, let us consider the social cost.

Theorem 11. Suppose that Assumptibli1l-3 hold. (&%, y*) be the allocation when tenants are price-anticipating, st y*)
be the optimal allocation. The welfare loss is bounded By; cn (s7,) + ay® < > ca(sy) + ay™ + ad/N.

Similarly to the price-taking case, the efficiency loss ie trice-anticipating case decays to zero¥d/N), only with a
larger constant. Also, as in the case of price-taking tenamt again see that neither the tenants nor the operaterssffnificant
efficiency loss.

Theorem 12. Suppose that Assumptibii 11-3 hold. The cost of colo operatgrrice-anticipating tenants is smaller than the cost

in the socially optimal case. Further, we have

- ad .
costo(p”,y") — NS costo(p®, y®) < costo(p™,y"),

)
costo(p®,y”) — % < costo(p, y") < costo(p®, y*)

Finally, let us end by considering the amount of on-site gaiien used in equilibrium. Here, in the worst-case, thaldgium
on-site generation for price-anticipating tenants can dbirarily worse than the socially optimal, i.e., the sdigiaptimal can

use no on-site generation while the equilibrium outcomes usdy on-site generation.

Theorem 13. Suppose that Assumpti@i{11-3 hold. For any- 0, N > 1, there exist cost functions, ..., cy, such that the

on-site generation in the market equilibrium compared te ¢iptimal is given by® —y* > § — e.

This is a particularly disappointing result since a key gofithe mechanism is to obtain load shedding from the tenants.
However, the proof emphasizes that this is unlikely to odoypractice. In particular, the worst-case scenario is thate exists
a dominant (monopoly) tenant, which is unlikely in a muéiiraint colo, that has a cost function asymptotically linedh wnit

cost roughly matching the on-site generation prceVe confirm this in a case study in Sectlon VI.
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C. Discussion

The main results for the price-taking and price-anticipgtanalyses are summarized in Table I. Note that simplifiathte

gfor

are presented in the table, to ease interpretation, anchteeested reader should refer to the theoremdgn_§IV-A &R

the tightest bounds. Also, note that the benchmark for s@oist we consider is an ideal, but not achievable, mechanism

Tenants Price Ratio| Colo Saving| Welfare Loss
Price-taking (2=, 1] | [0, ad/N] | [0, ad/2N]
Price-anticipating [Y, 1] | [0, ad/N] [0, ad/N]
TABLE 1

PERFORMANCE GUARANTEE OFCOIOEDR COMPARED TO THE SOCIAL OPTIMAL ALLOCATION.

To summarize the results in Talle | briefly, note first tatloEDR always benefits the operator, since the price paid to
tenants to reduce energy is always less than the socialijnalpprice, and the total cost incurred by operator for epeegluction
is also less than that of the social optimal. Secon@iyiloEDR also gives the tenants approximately the social optimairany,
since the operator’'s additional benefit is bounded abovexdyN. This naturally means that the loss in payment for tenants
compared to the social optimal is aled /N, which approaches 0 as grows. Third, regardless of tenants being price-taking or
price-anticipatingColoEDR is approximately socially cost-minimizing as the numbeiteants grows.

However, whileColoEDR is good in terms of operator, tenant, and social cost, it mayuse the most environmentally
friendly form of load reduction: in the worst case, the uppeund on the extra on-site generation tiatloEDR uses is not
decreasing withV. However, the analysis highlights that this worst-caseumcevhen there exists a dominant tenant with unit
cost of energy reduction that is consistently just below ¢bet of diesel over a large range of energy reduction. As asec
study in shows, this is unlikely to occur in practice. $ploEDR can be expected to use an environmentally friendly mix

in most realistic situations.

V. PRICING TENANT LOAD SHEDDING IN VOLUNTARY EDR

We now turn from mandatory EDR to voluntary EDR and show how dahalysis and design @oloEDR can be extended.
Under voluntary EDR, a colo operator is offered a certain pensation rate for load reduction and can cut any amountsesfyg
at will without any obligation. Voluntary EDR often supplementsnei@ory EDR, and both are widely adopted in practicée [25],
[31]. Since the colo operator can freely decide on the amofiahergy to cut based on the compensation [31], the mtnodu
energy reduction responses from tenantsiliy elastic, differing from mandatory EDR where the total egyereduction (including
diesel generation if necessary) needs to satisfy a constrai

In the following, we formulate the problem and general&adoEDR for the voluntary EDR setting. Furthermore, we illustrate

that the efficiency analysis, though more complicated, llgdsathat of mandatory EDR.

A. Problem Formulation

During a voluntary EDR event, the LSE offers a rewardwofor each unit of energy reduction (or diesel generation if
applicable). In our setting, the colo operator aims at méiing its profit through extracting loads from tenants ugiagameterized
supply function bidding, as considered for mandatory EDR.

A key difference with the case of mandatory EDR is that, sitie reduction is voluntary, diesel generation need not be
considered. In particular, if the reward offered the the LfSEreduction is larger than the cost of diesel, then the ajoercan
contribute its whole diesel capacity and, if the reward isaken than the cost of diesel, no diesel need be used. Conhpare
the mandatory EDR setting, operator need to use more diesergtion when tenants’ bids are high in order to meet thel fixe
reduction targeb; in the voluntary EDR case, the operator can simply redueeDR contribution by tenants when their bids are

high. Thus, the optimization of diesel generation by theratme is separable from the optimization of tenant redunctio
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This yields a situation where the net profit (from tenant otidun) received by the colo operator is:
w-d—p-d (22)

wherep is the unit price the colo operator pays to the tenants taisaliunits of reduction in aggregate, which arises from
tenants where tenatithas reduction capacitp;.

a) An overview ofColoEDR: It is straightforward to adapEoloEDR to this setting. We outline its operation in four
steps below, which parallel the steps in the case of mand&DR.
1) The colo operator receives the voluntary EDR reductiécepr and broadcasts the supply functistb,, p) to tenants according

to
b;
Si(bi,p) = Di — 2 (23)

where D; is the capacity of tenantfor reduction determined exogenously.
2) Participating tenants respond by placing their digsn order to maximize their own payoff;

3) The colo operator decides the total amount of reductiomftenantsd and market clearing price to maximize its utility.

Given the bidsb = (b1, ..., by), if the operator decides to offet amount of energy reduction to the utility, then the market
clearing pricep will be
_ Z?:1 bi
P Yima Di—d @

Hence to maximize the operator’s profit, the operator wibabsed such that

2@71 b; )
d= argmax (u—p)d=|uv— =———]d. 25
ogdggzyzl Di( P) < > Di—d (25)
It follows from the first order optimality of (25) that
N (i b)) (i, Di)

d= ; D; \/ ” , (26)

which gives that the price set by a profit maximizing operatdr be
Ll @)

D;

1=1
4) Voluntary EDR is exercisedin € N/, tenantn shedsS(b,, p), and receive®S(b,, p) reward.

b) Discussion:The key difference in the operation GoloEDR for mandatory EDR and voluntary EDR is in the form
of the supply function used. In particular, we allow hetenogjty in the supply function for tenants in terms of theipaeity
D,,. Recall, that in the case of mandatory EDR the desired reduciapacityd was used. This difference stems from the fact
that the reduction target is flexible for voluntary demansbmnse and creates significant challenges — both in ternffi@éecy,
since it allows the chance of market power to emerge becdusapacity differences, and for analysis, since it adds icenable

complexity.

B. Efficiency Analysis of£oloEDR for Voluntary EDR

Given the adaptation o€oloEDR to the voluntary EDR setting, it is natural to ask how the @fficy of the mechanism
changes when the operator has flexibility in the amount oparse to provide to an EDR signal. Intuitively, the increbse

flexibility leads to the possibility of more inefficiency, bhow large is this effect?
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We again quantify efficiency through a comparison with thaeci@aly) optimal outcome. Assuming that each tenant hassa co
c;(+) associated with energy reduction that is convex, incrgasindc; (z) = 0, Vx < 0 (Assumptior ). Then the allocation that

maximizes social utility (the sum of operator’'s and tenaatsity) solves the following problem

Héix ud — Zz:; ci(si) (28a)

subjectto Y s, =d (28b)
i=1

0<s; <Dj. (28¢)

Finally, note that our analysis makes the following natssumptions on the unit price and the marginal cost of each

tenants. Note that they are analogous to Assumjiion 2 andnAsson[3.

Assumption 4. The market clearing price is lower than the price offered by the utility for aay> 0, i.e.,u > %;‘;1;

i=1

Assumption 5. The marginal cost of each tenants satisf?efsg;ﬁ

> Imt yp,
2=0

Before moving to the main results, let us first define sometiwstalLet v, = %, we haved" v, = 1. Here~,
behaves like “market share” of tenamtin the voluntary DR market. In the EDR casg, = 1/N for all n. Furthermore, define

v = max, vn, as the “dominant share” in load reduction among the tenamds D = max,, D,,.

C. Market Equilibrium Characterization

As in the case of mandatory EDR, we consider both the cases-faking and and price-anticipating tenants.
1) Price-taking TenantsGiven other tenants, each price-taking tenardgptimizes the following cost over bidding value

by,

bn
Pr(bn,b-n) = pSn(bn, p) = cn(Sn(bn,p)) = pPDn — bn — cn(Dn — 5)
So, in a price-taking equilibriunib, d, p), we must haveP, (bn;b_,) > P, (bn;b_,) hold for each tenant over all b, > 0.
Also, the market clearing price must satisfy](24) and thaltmduction must satisf{f_(25). Using techniques similath® proof
of Theoren{ B, we can completely characterize the the pakieg equilibrium ofColoEDR in voluntary EDR as follows:
Theorem 14. There exists a unique equilibrium of the game defined By ..., Pn) for ColoEDR. For such an equilibrium,

the vectors® defined bys!, = S(p(b"), %) is the unique optimal solution to the following optimizatio

2
max ud — #ﬁDn — En:cn(sn) (29a)
st. Y sa=d (29b)
d>0,0<8,<Dn, n=1,...,N, (29¢)

2) Price-anticipating TenantsGiven other tenants, each price-anticipating tenardptimizes the following cost over

bidding valueb,,,

- b S D;
“ ; ¢ ( Yimbm u )

Qn(bn,b_rn) = p(b)Sy(bn,p) = cn(Sn(bn,p)) = YnVEmbm

So, in a price-anticipating equilibriuntb, d, p), we must haveQ.,(b,;b_») > Q.(b,;b_,) for all n over all b,. Also, the
market clearing price must satisfy {24) and the total redact must satisfy[(2b).
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Using techniques similar to the proof of TheorEim 7, we canpletaly characterize the the price-anticipating equillitr of
ColoEDR in voluntary EDR as follows.
Theorem 15. There exists a unique equilibrium of the game defined®y, ..., Q~) for ColoEDR. For such an equilibrium,

the vectors® defined bys;, = S(p(b®), b;.) is the unique optimal solution to the following optimizatio

max ud — 3 Z D ; én(sn) (30a)
Z Sn=d (30b)
d>0,0<s,<D,, n=1,...,N, (30c)
where, fors,, > 0,
5 _1l (. amu M B 8+cn( )\ | ,0tcn(z) zu
Cn(sn) =3 (3n B + Cn Sn / +2 92 D, dZ7 (31)

and fors, <0, éu(sn)=0.
Like in the case of mandatory EDR, the above characterizatém be approximated using a modified cost function wihen

is small, i.e., when there are a large number of firms and afisfinave similar market shares.

Lemma 16. For 0 < s,, < D, the modified cost if3]) can be upper and lower bounded by,

YnlU
9

Cn(sn) < én(sn) < Cn(sn) + sn

Furthermore, where the left or right derivatives are define@ have

O cn(sn) _ 0 en(sn) _ 0% én(sn) _ 0Tcn(sn) | vau
< < < Inz
0Sn - 0Sn - 0Sn - 0Sn + 2 (32a)

D. Bounding Efficiency Loss

We now use the characterization results of Thedrein 14 andréhéIb to analyze the social efficiency @0loEDR in the
voluntary EDR setting for both price-taking and price-aipating tenants.

Theorem 17. For price taking tenants, the welfare loss GbloEDR is bounded byud’ — >~ cn(sh) > ud* — > cn(s)) —

zi‘fzn. Moreover, the bound is tight.
Theorem 18. For price anticipating tenants, the welfare loss@IoEDR is bounded byid® —>"  cn(sy) > ud* =Y, cn(sy)—
s (SaDu+ 52).

Theoren1l7 highlights that the price-taking market eqiilitn is efficient when the optimal energy reductighis small. This
is due to the profit maximizing behavior of the operator: wkiem social optimati* is large, the operator has greater opportunity
to raise his profit by lowering the market price.

Comparing Theorefin_18 with Theordm] 17, we can see that whamt®are price-anticipating, the additional welfare loss d
to the price-anticipating behavior of tenants is a functidny,, the market share of the tenants. It is easy to see the aualitio
loss of social utility is minimized wher,, = 1/N for all n, i.e., when the reduction capacity of each tenant is equal.

Additionally, we can obtain tight bounds on the market dlegmprice, energy reduction quantity, and operator’s priofia
similar fashion as our analysis done for the mandatory ED$e esing Theoreln 14 and TheorEm 15. The results are sumoharize
in Table[Il and Tabl&Tll.
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Tenants Price Ratio Colo Extra Profit Welfare Loss
Price-taking | [1 — %5, 1] | [0, ud™®/S.D,] [0, ud**/2%, Dy]
Price-anticipating| [I — %5, 1] | [0, ud™®/S.Dn] | [0, w(SnDuyn +d**/SnDy)/2]

TABLE TI
PERFORMANCE GUARANTEE OFCOIOEDR COMPARED TO THE SOCIAL OPTIMAL ALLOCATION.

Price Markup| Load Reduction| Operator’s cost
[07 U/y/2] [_D/27 O] [07 UD]
TABLE T
PERFORMANCE GUARANTEE OFCOIOEDR WHEN TENANTS ARE PRICEANTICIPATING COMPARED TO THEM BEING PRICETAKING.

E. Market Clearing Price

Proposition 19. When tenants are price-taking, the operator runnibgloEDR uses more on-site generation and pays a lower

price for power reduction to its tenants than the social mti. Specificallyd’ < d* and (1 — Zj*Dn )p* < p' < p*.

By Lemma[I6, we can characterize the the price markup unaesupply function bidding mechanism:

Theorem 20. Let (p, d*) be the equilibrium price and total tenant energy reductidmew tenants are price-taking, ar{g®, d*)
be those when tenants are price-anticipating, themlet max,, v, D = max,, D,,, we haved’ > d* > d' — D/2 and p' <

p* < min(p*,p' + uy/2).

F. Operator’s profit

Let Us(p,d) = (u — p)d be the operator’s when the market clearing price snd the total demand response from tenants
ared. From the price and vdr-quantity bounds provided in the iptev sections, we can give bound on the utility@sloEDR.
Theorem 21. Suppose that AssumptidiisC1[%, 5 hold. The net utility forcthe operator ofColoEDR can be characterized by

0= U,(p*,d*) < Us(p*,d*) < Us(p',d") < ;1, and furthermore U, (p*, d*) < Us(p®,d*) + uD.

5
Table[d] shows that as the optimal reductidh increases, there is more opportunity for the operator tditpbdy reduce
market price and increase his own profit. Tablé Il showshirrtthat, when tenants are price-anticipating, they wilvedithe
market clearing price up, provide less energy reductionraddce the operator’s profit. However, all these additidosées can
be bounded by linear functions of the dominant share of the energy reduction capacity. Héreéss due to price-anticipating

behavior of tenants are minimized; = Dy = --- = Dy.

VI. CASE STuDY

Our goal in this section is to investiga€@oloEDR in a realistic scenario. Given the theoretical results & phior sections,
we know thatColoEDR is efficient for both the operator and tenants when the nurobéenants is large, but that it may use
excessive on-site generation (in the worst case). Thusjrwertant issues to address in the case studyto efficient is the
pricing mechanism in small markets, i.e., wh&his small? What is the impact of the pricing mechanism on t-géneration
in realistic scenariosAdditionally, the case study allows us to better understahdn it is feasible to obtain load shedding from
tenants, i.e.how flexible must tenants be in order to actively participate load shedding program?

We discuss only on mandatory EDR in this section. The resunltee case of voluntary EDR are parallel.

A. Simulation Settings

We use trace-based simulations in our case study. Our dionukkes the tenants’ workload trace and a trace of mangator
EDR signals from PJM as its inputs. It then execuf@doEDR (by emulating the bidding process and tenants’ energy texuc
for EDR), and outputs the resulting equilibrium. The sefinve use for modeling the colocation data center and theteosts

follow.
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Fig. 1. (a) Workload traces(b) Energy reduction for PIM’s EDR on January 7, 2014 [32].

Colocation data center setup.We consider a colocation data center located in Ashburn, Which is a major data center
market served by PJM Interconnectién][32]. By default, ¢hare three participating tenants interested in EDR, thougtvary
the number of participating tenants during the experiments

Each participating tenant has 2,000 servers, and eachrd&sean idle and peak power 850W and250W, respectively. The
default PUE of the colo is set tb.5 (typical for colo), and hence, whenever a tenant reduceshlkwergy, the corresponding
energy reduction at the colo level amounts to 1.5kWh. Thius,haximum possible power reduction is 2.25MW (i.e., 1.5MW
IT plus 0.75 non-IT). We assume that the colo operator cotlr@sextra energy reduction at the colo level as part of tharten
contributions, and rewards the tenants accordingly.

The colo has an on-site diesel generator, which has@8$tkwWh estimated based on typical fuel efficiencyl[44].

For setting the energy reduction target received by the, ook follow the EDR signals issued by PJM Interconnection
on January7, 2014, when many states in eastern U.S. experienced an extreroelyweather and faced electricity production
shortage([3R]. Fig._I(b) shows the total energy reducti@uirement by PJM, which we further normalize and scale doushs
that maximum energy reduction target for our considered P00kWh.

Tenant workloads characteristics.We choose three representative types of workloads forgiaaiting tenants: tenant 1 is
running delay-sensitive workloads (e.g., user-facing setvice), tenant 2 is running delay-moderate workloads,(enterprise’s
internal services), and tenant 3 is running delay-tolevenkload (e.g., back-end processing).

The workload traces for the three participating tenantsewasllected from logs of MSR[35], Wiki([36], and a public
university (anonymous for review), respectively. Hig.)li{ustrates a snapshot of the traces, where the workloegin@malized
with respect to each tenant’s maximum service capacity.

The illustrated results us an average utilization for eactant of 30%, consistent with reported values from realesyst[6].
Our results are not particularly sensitive to this choice.

There are various power management techniques, e.g., liggdtimn/scheduling, that can be used for reducing tehaetser
energy consumption. Here, as a concrete example, we conatgenants dynamically turn on/off servers accordingidokloads
for energy saving subject to SLA[R3]. This power-savinghtiique has been widely studied [13]. [23] and also recergjyliad
in real systems (e.g., Facebook’s AutoScéalg [45]).

When tenants save energy for EDR by turning off some unuseerse their application performance might be affected. We
adopt a simple model based on an M/G/1/Processor-Shariegeing model, as follows. For a tenant with servers each with
a service rate ofs, denote the workload arrival rate by. Whenm servers are shut down, we model the total delay cost as

&m) = X\-B-T-delaym) = —2L—, whereu = —- denotes the normalized workload arrival (i.e., utilizatiwithout
wM

wM ~— M-—m
turning off servers)T is the duration of an EDR event, artis a cost parameter ($/time unit/job). In our simulations, set the

cost parameter for tenant 1, tenant 2 and tenant 3 as 0.1, @A, respectively, which are already higher than thasesidered
in the prior context of turning off servers for energy sav[gg]. Note that we have experimented with a variety of othedeis
as well and the results do not qualitatively change.

We use a standard model for energy usage [6] and take theyerezhgctions as linear in the number of servers shut down,
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Fig. 2. Performance comparison under default settingsodgiout this and later plots, the bars in each cluster arpribe-taking, price-anticipating, socially
optimal, and diesel only (if applicable) outcomes.

i.e.,s = 0-m, wheref is a constant decided by server’s idle power dhdrhen, it yields the following cost function for tenants’s
energy reductiorz(s) = ¢(3) — ¢(0), wherec(-) is defined in the above paragraph. Note that we have expeiahemth a
variety of other forms, and our results are not sensitiveheodetails of this cost function.

Finally, note that tenants typically have delay perforneareguirement which, based on the above queueing modednisiated
as an utilization upper bound. Such translation is also comim real systems (e.g., default policy for auto-scalingual machines
[26]). In our simulation, we capture the performance caistrby setting utilization upper bounds for tenant 1, ternand
tenant 3 as 0.5, 0.6, and 0.8, respectively.

Efficiency benchmarks. Throughout our experiments, we consider the price-takprge-anticipating, and social optimal
outcomes. Additionally, we consider one other benchmdigsel only which is meant to capture common practice today. Under
diesel only, the full EDR response is provided by the on-diesel generatoiThroughout, our results are presented in grouped
bar plots with the bars representing (from left to right) thece-taking, price-anticipating, social optimal, andedil only (if
applicable) outcomes.

While other mechanisms (e.g., direct pricingl[24], auctjéfi]) have been introduced in recent papers, we do not canpar

ColoEDR with them here becaus€oloEDR is already typically indistinguishable from the social iopl cost.

B. Performance Evaluation

We now discuss our main results, shown in Eig. 2.

Social cost.We first compare in Fid. 2(p) the social costs incurred byedffit algorithms. Note thaoloEDR is close to
the social cost optimal under both price-taking and pricgegpating cases even though there are only three paaticip tenants.
Further, the resulting social costs in both the price-tglkdnd price-anticipating scenarios are significantly lotiran that of the
diesel only outcome. This shows a great potential of tehdmtpower reduction for EDR, which is consistent with the qori
literature on owner-operated data center demand resp@hsi24], [43].

Energy reduction contributions. Fig.[2(b] plots EDR energy reduction contributions fromatets and the diesel generator.
As expected from analytic results, both price-taking andepanticipating tenants tend to contribute less to EDRnfzared
to the social optimal) because of their self-interestedsitets. In other words, given self-interested tenants,able operator
needs more diesel generation than the social optimal. Netests, the difference is fairly small, much smaller thaedjoted

by the worst-case analytic results. This highlights thatsivoase results were too pessimistic in this case. Of epuntse must
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remember that all tenant reduction extracted is in-placdie$el generation, and so serves to make the demand respamnse
environmentally friendly.

Benefits for tenants and colocation operatorWWe show in Fig[ 2(d) and Fif. 2(d) that both the tenants andthe operator
can benefit fromColoEDR. Specifically, Fig[2(g) presents net profit (i.e., paymertdm by colo operator minus performance
cost) received by tenants, showing that all participatemgants receive positive net rewards. While price-antimigatenants can
receive higher net rewards than when they are price-takitegextra reward gained is quite small. Similarly, fig. P¢tipws cost
saving for the colo operator, compared to the “diesel on3ec.

Market clearing price. Fig.[2(€) shows the market clearing price. Naturally, wheingiColoEDR to incentivize tenants for
EDR while minimizing the total cost, the colo operator wititrpay the tenants at price higher than its diesel price (shde the
red horizontal line). We also note that the price under theepanticipating case is higher than that under the pa&ay case,
because the price-anticipating tenants are more stratdgigever, the price difference between price-anticigatind price-taking
cases is quite small, which again confirms our analytic tesul

Tenant’ server utilization. Tenants’ server utilizations are shown in Figs.]4(f), P(@)[@(h), respectively. These illustrate that,
while tenants reduce energy for EDR, their server utilaagistill stay within their respective limits (shown via tiesl horizontal
lines), satisfying performance constraints. This is beedenants typically provision their servers based on thdman possible
workloads (plus a certain margin), while in practice theorldoads are usually quite low, resulting in a “slacknedsittallows

for saving energy while still meeting their performanceuiegments.

C. Sensitivity Analysis

To complete our case study, we investigate the sensitiVity@ conclusions discussed above to the settings used.debr e
study, we only show results that are significantly differiran those in Fid.]2.

Impact of the number of tenants. First, we vary the number of participating tenants and sHmwesults in Fig:]3. To make
results comparable, we fix the EDR energy reduction requrgras well as total number of servers: tenant 1, tenant 2earaht
3 are each equally split into multiple smaller tenants, daaving fewer servers. We then aggregate replicas of the sanaat
together for an easy viewing in the figures, e.g., “tenantrithie figures represent the whole group of tenants that asénelot
by splitting the original tenant 1. One interesting obstovais that as more tenants participate in EDR, the markebines
more “competitive”. Hence, each individual tenant can aydyn less net reward, but both the price and the aggregatewatd
become higher (see Fids. 3(b) dnd B(c)). Motivated by this, might suggest a possible trick: a tenant may gain morigyubiy
splitting its servers and pretending as multiple tenamtsrhctice, however, each tenant has only one account (florghietc.)
which requires contracts and base fees, and thus preteadingultiple tenants is not possible in a colo.

Impact of the price of diesel.Fig.[4 illustrates how our result changes as the diesel prcies. Intuitively, as shown in
Fig.[4(@], the social cost (which includes diesel cost asyackenponent) increases with the diesel price. We see frors.[Bii)
and[4(c) that, when diesel price is very low (e @1$/kwh), the colo operator is willing to use more diesel anfirsfa lower

price to tenants. As a result, tenants contribute less to .E&Rthe diesel price increases (e.g., frol@$/kWh to 0.3$/kwWh),
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Fig. 5. Impact of EDR energy reduction target.

the colo operator increases the market price (but stillvedlte diesel price) to encourage tenants to cut more energlgiR.
Nonetheless, tenants’ energy reduction contribution eaimtrease arbitrarily due to their performance constsaiSpecifically,
after the diesel price exceeds 0.4$/kWh, tenants will nettrdoute more to EDR (i.e., almost all their IT energy redomt
capabilities have been exploited), even though the coloabpeincreases the reward. In this case, tenants simpgiveeigher
net rewards without further contributing to EDR, as showrtig.[4(d].

Impact of EDR requirement. Fig.[d varies the EDR energy reduction target, with the maxmreduction ranging from
20% to 120% of the colo’s peak IT power consumption. As the EDR energyicéidn target increases, tenants’ energy reduction
for EDR also increases; after a certain threshold, dieseémgtion becomes the main approach to EDR, while the inereas
tenant’s contribution is diminishing (even though the cofwerator increases the market price), because of tenaatsirmance
requirements that limit their energy reduction capaleiiti

Impact of tenants’ workloads. In Fig.[6(a)f6(b), we vary the tenants’ workload intensitye@sured in terms of the average
server utilization when all servers are active) franf% to 50%, while still keeping the maximum utilization bounds %6%,
60% and80% as the performance requirements for the three tenantssatagy. While it is straightforward that when tenants
have more workloads, they tend to contribute less to EDRaum they need to keep more servers active to deliver a good
performance. Nonetheless, even when their average titlizavithout turning off servers is as high as 50% (which isteigh
in real systems, considering that the average utilizatsoanily around 10-30%_[6]), tenants can still contribute mibvan 20%
of EDR energy reduction undé&€oloEDR, showing again the potential of IT power management for EDR.

Impact of workload prediction error. In practice, tenants may not perfectly estimate their owmkiead arrival rates. To
cope with possible traffic spikes, tenants can either keepe mervers active as a backup or deliberately overestirhateorkload
arrival rate by a certain overestimation factor. We chodee later approach in our simulation. Fjg. &(c)-6(d) showes itsult
under workload prediction errors. We see that both the baoist and market price are fairly robust against tenantg’kisad
over-predictions. For example, the social cost increagdeds thanl0%, even when tenants overestimate their workloadg(5%
(which is already sufficiently high in practice, as shownd8]). Other results (e.g., tenants’ net reward, colo opesatotal cost)

are also only minimally affected, thereby demonstrating ribbustness o€oloEDR against tenants’ workload over-predictions.
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VIl. RELATED WORK

Our work contributes both to the growing literature on dagater demand response, and to the literature studying ysuppl
function equilibria. We discuss each in turn below.

Recently, data center demand response has received a grawiount of attention. A variety of approaches have been
considered, such as optimizing grid operator’s pricingtegies for data centerls [24] and tuning computing (e.gveseontrol
and scheduling) and/or non-computing knobs (e.g., codirsiem) in data centers for various types of demand resgmogeams
[T, [2], [I7], [21], [4Q]. Field tests by LBNL also verify theractical feasibility of data center demand response usiogmbination
of existing power management techniques (e.g., load nidgnaj15]. These studies, however, have all focused on |laxgeer-
operated data centers.

In contrast, to our best knowledge, colocation demand respdas been investigated by only a few previous works. The
first is [33], which proposes a simple mechanism, called iEQ® incentivize tenants’ load reduction. But, iCODE is glyr
based on “best effort” and does not include any energy régtutarget (needed for EDR). More importantly, iCODE is desid
without considering strategic behavior by tenants, andlmicompromised by price-anticipating tenaits| [33]. Modevant to
the current work is[[46], which proposes a VCG-type auctiathanism where colocation participation in EDR programhil&/
the mechanism is approximately truthful, it asks partitigatenants to reveal their private cost information thlylolcomplex
bidding functions. Further, the colocation operator mayfdreed to make arbitrarily high payments to tenants. In i@stf our
proposed solution provides a simple bidding space, ptettants’ private valuation, and ensures that the colmtatperator
does not incur a higher cost for EDR than the case tenantilbotitms. Thus, unlike[[46]ColoEDR benefits both colocation
operator and tenants, giving both parties incentives tpere for EDR.

Finally, it is important to note that our approach builds and adds to, the supply function mechanism literature. Supp
function bidding (c.f. the seminal work by [19]) is frequinused in electricity markets due to its simple bidding laage
and the avoidance of the unbounded payments typical in Mk&rhechanisms. Supply function bidding mechanisms haea be
extensively studied, e.g[.I[3].][5].[10]._[16]. [17]. [38The literature primarily focuses on existence and contjmrtaof supply
function equilibrium, sometimes additionally proving Imals on efficiency loss. Our work is most related(tol [18], whicmsiders
an inelastic demand that must be satisfied via extracting load shedding from woess and proves efficient bounds on supply

function equilibrium. In contrast, our work assumes that dperator has an outside option (diesel) that can be useatisfysthe
inelastic demand. This leads to a multistage game betweerettants and the profit-maximizing operator, a dynamic whias

not been studied previously in the supply function literatu

VIIl. CONCLUSION

In this paper, we focused on “greening” colocation demamsgpaase by designing a pricing mechanism that can extradt loa
reductions from tenants during EDR events. Our mechanBalpEDR, can be used in both mandatory and voluntary EDR

programs and is easy put in place given systems availabl®los ¢coday. The main technical contribution of the work ig th



analysis of theColoEDR mechanism, which is a supply function mechanism for an ielastting, a setting for which efficiency
results have not previously been attained in the supplytifomditerature. Our results highlight th&oloEDR provides provably

near-optimal efficiency guarantees, both when tenants ice-faking and when they are price-anticipating. We algaluate
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ColoEDR using trace-based simulation studies and validate @uddEDR is both beneficial to the colo operator (by reducing

costs), to the environment (by reducing diesel usage), aribet tenants (by providing payments for reductions).

(1
(2]
(3]
(4]

(5]

(6]

[7]
8]

9]
[10]

[11]

[12]

[13]

[14]
[18]

[16]
[17]
[18]
[19]

[20]
[21]

[22]
[23]
[24]
[25]
[26]

[27]
[28]

[29]

IX. REFERENCES
D. Aikema, R. Simmonds, and H. Zareipour. Data centretheancillary services market. I6CC, 2012.
B. Aksanli and T. S. Rosing. Providing regulation seescand managing data center peak power budgefSAIFE, 2014.

E. J. Anderson and X. Hu. Finding supply function equibwith asymmetric firmsOper. Res.56(3):697-711, 2008.

L. L. Andrew, M. Lin, and A. Wierman. Optimality, fairnes and robustness in speed scaling design&aM SIGMETRICS Performance Evaluation Review

volume 38, pages 37-48. ACM, 2010.

R. Baldick, R. Grant, and E. Kahn. Theory and applicata$rinear supply function equilibrium in electricity marise Journal of Regulatory Economics
25(2):143-167, 2004.

L. A. Barroso, J. Clidaras, and U. Hoelzl€he Datacenter as a Computer: An Introduction to the Desifjivarehouse-Scale Machingglorgan & Claypool,
2013.

H. Chen, A. K. Coskun, and M. C. Caramanis. Real-time poeantrol of data centers for providing regulation service CDC, 2013.

Data Center Knowledge. Inside SuperNAP 8: Switch’'s Tiémdata fortress. Feb. 11, 2014,
http://www.datacenterknowledge.com/archives/2014/0side-supernap- 8-switchs-tier-iv-data-fortress

DatacenterMap. Colocation USA, http://www.datacemi@p.com/usa/.

C. J. Day, B. F. Hobbs, and J.-S. Pang. Oligopolistic petition in power networks: a conjectured supply functigpr@ach.Power Systems, IEEE
Transactions on17(3):597-607, 2002.

EnerNOC. Ensuring U.S. grid security and reliability:S. EPA’'s proposed emergency backup generator rule, 2013,
http://www.whitehouse.gov/sites/default/files/omikts/oira2060/206012102012-2.pdf.

X. Fan, W.-D. Weber, and L. A. Barroso. Power provisignifor a warehouse-sized computer. AGM SIGARCH Computer Architecture Newslume 35,
pages 13-23. ACM, 2007.

A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M.Kkzuch. Autoscale: Dynamic, robust capacity managemeaninigti-tier data centersACM Trans.
Comput. Syst.30(4):14:1-14:26, Nov. 2012.

M. Ghamkhari and H. Mohsenian-Rad. Data centers tor @feillary services. IrBmartGridCom2012.

G. Ghatikar, V. Ganti, N. E. Matson, and M. A. Piette. Damd response opportunities and enabling technologiesdfiar centers: Findings from field studies,

2012.

R. Green. Increasing competition in the british elietty spot market.J. of Industrial Economicspages 205-216, 1996.

R. J. Green and D. M. Newbery. Competition in the britedhctricity spot marketJ. of Political Economypages 929-953, 1992.

R. Johari and J. N. Tsitsiklis. Parameterized supplcfion bidding: Equilibrium and efficiencyDperations researchb9(5):1079-1089, 2011.

P. D. Klemperer and M. A. Meyer. Supply function equiitbin oligopoly under uncertaintfgconometrica: Journal of the Econometric Socjgigges
1243-1277, 1989.

S. Li, M. Brocanelli, W. Zhang, and X. Wang. Data centerer control for frequency regulation. RES 2013.

Y. Li, D. Chiu, C. Liu, L. T. Phan, T. Gill, S. Aggarwal, ZZhang, B. T. Loo, D. Maier, and B. McManus. Towards dynamicipg-based collaborative
optimizations for green data centers.I®DEW, 2013.

H. Lim, A. Kansal, and J. Liu. Power budgeting for virtizad data centers. INSENIX ATC 2011.

M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska. Dyn& right-sizing for power-proportional data centers.IEEE Infocom 2011.

Z. Liu, I. Liu, S. Low, and A. Wierman. Pricing data cenemand response. BIGMETRICS2014.

K. Managan. Demand repsonse: A market overview, 201tg;/fenaxisconsulting.com.

Microsoft Azure. How to use the autoscaling applicatiock,
http://azure.microsoft.com/en-us/documentatiorgkesicloud-services-dotnet-autoscaling-applicatidrek/.

A. Misra. Responding before electric emergendieq:Hww.afcom.com/digital-library/pub-type/communigfresponding-before-electric-emergencies/.
A.-H. Mohsenian-Rad and A. Leon-Garcia. Optimal resitlal load control with price prediction in real-time elécity pricing environmentsSmart Grid,
IEEE Transactions on1(2):120-133, 2010.

NRDC. Scaling up energy efficiency across the data centiustry: Evaluating key drivers and barrietssue PaperAug. 2014.


http://www.datacenterknowledge.com/archives/2014/02/11/inside-supernap-8-switchs-tier-iv-data-fortress/
http://www.datacentermap.com/usa/
http://www.whitehouse.gov/sites/default/files/omb/assets/oira_2060/2060_12102012-2.pdf
http://enaxisconsulting.com
http://azure.microsoft.com/en-us/documentation/articles/cloud-services-dotnet-autoscaling-application-block/
http://www.afcom.com/digital-library/pub-type/communique/responding-before-electric-emergencies/

[30]

[31]
[32]
[33]
[34]
[35]
[36]
[37
[38]
[39]

[40]

[41]

[42]
[43]
[44]
[49]
[46]

S. Ong, P. Denholm, and E. Dorihe impacts of commercial electric utility rate structuleraents on the economics of photovoltaic systéasional
Renewable Energy Laboratory, 2010.

PJM. Emergency demand response (load managementymerice report — 2012/2013. Dec. 2012.

PJM RTO! http://www.pjm.com/.

S. Ren and M. A. Islam. Colocation demand response: Why wirn off my servers? INCAC, 2014.

Santa Babara County. Air Pollution Control Districttg//www.ourair.org/do-you-really-need-a-dieselrgeator!.

E. Thereska, A. Donnelly, and D. Narayanan. Sierra: @eueproportional, distributed storage systefach. Rep. MSR-TR-2009-15309.

G. Urdaneta, G. Pierre, and M. Van Steen. Wikipedia \aa#t analysis for decentralized hostir@omputer Networks2009.

J. Verge. Symantec Signs Multi-Megawatt Lease at S@tasa Data Center, 2015, http://www.datacenterknowlextye/.

X. Vives. Strategic supply function competition withiyate information.Econometrica79(6):1919-1966, 2011.

D. Wang, S. Govindan, A. Sivasubramaniam, A. Kansalid, and B. Khessib. Underprovisioning backup power infinasture for datacenters. IASPLOS
2014.

H. Wang, J. Huang, X. Lin, and H. Mohsenian-Rad. Explgrsmart grid and data center interactions for electric pde&d balancingSIGMETRICS
Perform. Eval. Rey41(3):89-94, Jan. 2014.

R. Wang, N. Kandasamy, and C. Nwankpa. Data centers mank response resources in the electricity market: Somienprary results. In
FeedbackComputing012.

A. Wierman, L. L. Andrew, and A. Tang. Power-aware spsedling in processor sharing systemsINFOCOM 2009, IEEEpages 2007-2015. IEEE, 2009.
A. Wierman, Z. Liu, I. Liu, and H. Mohsenian-Rad. Opparities and challenges for data center demand responsédg, 2014.

Wikipedia,| http://en.wikipedia.org/wiki/Diesejeneratcr.

Q. Wu. Making facebook’s software infrastructure mereergy efficient with autoscale, 2014.

L. Zhang, S. Ren, C. Wu, and Z. Li. A truthful incentive aemanism for emergency demand response in colocation datarseININFOCOM, 2015.

23


http://www.pjm.com/
http://www.ourair.org/do-you-really-need-a-diesel-generator/
http://www.datacenterknowledge.com/
http://en.wikipedia.org/wiki/Diesel_generator

24

APPENDIX

A. Proof of Propositiof 11

When tenants are price takers, they maximize the payoub.,p) = pSn(bn,p) — ca(sn) over the bidb,. Note that
b, € [0, pd] as no tenant will bid beyongdd otherwise the payouP, < 0. Henceb = (b1,...,b,) is an equilibrium if and only

if the following condition is satisfied

Tenlon) <0<, < i (A.33a)
+

At least one feasible solution tB](9) exists because it ismizing a continuous function over a compact set. FurtheemBh)

- (@d) satisfy standard constraint qualification, hencetlier Lagrangian

L(s ch (sn) +p((6 —v) an

there exists optimal primal dual pais, 1), such that[(9) and(®c) are satisfied, and

%ﬁn) <, sp>0, (A.34a)
+
ag”f(s”) > sa > 0. (A.34b)

Given the optimal(s, ), let p = u, andb,, = p(d — s,), then [3b) impliegp satisfies[(R), and_(A.3%a)-(A.3Ub) implids (A.33a)
- (A:330), hence an equilibrium exists.

Conversely, if(b, p) is an equilibrium and satisfies[(), the resulting allocatisris optimal to [9). To see this, ii < s,, <
§ — y for all n, (A333)-[A33b) is equivalent td (A3Nd)-(A.34b) if wetse = p, hence(s, i) is primal dual optimal pair for
@. If s, = (6§ —y), thens,, = 0,¥m # n. In this case, we sgi = min{p, 0" c.(s.)/Is.}, and we can check thdt, i) is
the primal dual optimal solution fof9).

B. Proof of Theorerhl3

By Propositio]L, when tenants are price-taking, for gnyhe there is always an equilibrium, and the resulénig always
the optimal allocation to providé — y) energy reduction.

Hence we only need to verify that the on-site generation lgvgthe solution to[{14a)-(1#c). Similar to the proof of Prejpion
[, by AssumptioiR, the first order optimality condition ftvety in (I48)-{T4t) is5(y + (N — 1)é) = p. By Proposition(1L,
p satisfies the relatiori{2), substitute the left-hand-site {2) and solve for, we havey = ,/w — (N —1)6. This is
exactly the on-site generatignthat minimizescost, (b, y) given in [12). Hence the datacenter will always pickhat is optimal

for (I14d)-{14t), together with Propositifh 1, an equiliioni exists, and the resulting allocatids, ) is optimal for [14h){I4c).

C. Proof of Propositiofi 4

Sincey > 0, it suffices to prove that whenever the optimal on-site gati@n is non-zeroy* > 0, y* > y*. From [3), the

Lagrangian ofSCM is
L(S7y7u*7)‘ ch Sn +Oly+llz 6 y ZSn —

n

By constraint qualification and the KKT conditions, assugnyi > 0, then\ = 0, 1™ = «, hence the market clearing price in

the optimal allocation should beg" = a.
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Next, consider the market price for price taking tenantent{13),

t
¢ Dien bi (Bienbdt)a
= = (Zanty A.35
PN _—1Ds+y NG (A-35)

The second equality yields_,_ b = (W=D3+y)* , - gubstitute this back t4(AB5),

t t

t ZieN bi (N-1)+y
= = . A.36
P=N 1oty Ny (A-36)

And note thaty; € [0,4] andp* = «, thus [A36) yields"—p* < p' < p*.

Finally, from [13), the Lagrangian of the price-taking cheterization optimization is,
L(s,y, 1, A) ch (sn) 2N(;(er (N =18 +p" (6 —y) =D sn) = Ay

L . . L i ot chn(si)
By examining the KKT condition and using a similar argumenttte proof of Propositionl1, we hayé = uf, also,T <

te sk * H *
pr<p < 85%;2"). Thus,Vn, s, < si. Sincey =6 — > sn, y* > 3.

D. Proof of Propositior 2

From the proof of Propositionl 4, we see that whgn> 0, \* = 0, andp* = «. Furthermore, we hav®", s, < 4, but
sn = 6 — 2. Hence(N§ — Zzlx) < 6. Conversely, if [ID) holds, thea(N —1)§ < °, b,. But by Propositioriil and12), we
have}" b, = (p"(N —1)d +y). By combining the two equations abowe{N — 1)§ < p*((N —1)d +y*). However, from the
proof in Propositior 1L, we have® < «, hence we must havg" > 0.

On the other hand, when the data center operator is profitmizirig, the cost to the operatoost, (b, y) = W +ay
is a convex function iny over the domainy > 0. By first order condition, the cost is minimized when

y/ _ | N (5§nbn _ (N _ 1)(57 (A37)

theny = ¢’ if and only if ¥ € [0, §]. However,%,,b, = Z,p(§ — sn) = p((N — 1) + y) < a(N§), where the last inequality
is becausey < §, andp < «, since operator always has the option to use on-site gémerat get unit cost of energy reduction
at a. Hence we always havg' < 6. So, if y > 0, by (&37), [I1) must hold, conversely, [{l11) holds, then &.37), y" > 0,

so operator will usey = v/'.

E. Proof of Theorerhl5

Note that(s*,y") is a feasible solution td_(14). By Theordth 3, we hdVe cn(sh) + 5o5 (4" + (N —1)8)* < 3, cn(sh) +
T2~ (y* + (N — 1)§)*. Rearranging, we have

ch + Oéy - <Z Cn +Oéy > %(yt _ y*) (25 _ (yt +y*))
@ ad
=550 ¥ )2 < N

>

F. Proof of Theorem]6

From Propositioi4, we havd—a < p' < p* = o, and0 < y* < §, which yields

costy (p*,y") — costo(p’,y") =p (6 —y") +ay" — (PO —y") + ay’) = (a = p)(6 — ¥")
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>

Substituting the above bounds fpf andy’ gives0 < cost};(p*, y*) — costo(p’, y*) < %2.

G. Proof of Theorerh]7

The proof proceeds in a number of steps. We first show that d@lgefpfunction Q,, is a concave and continuous function
for each firmn. We then establish necessary and sufficient conditiondbfty be an equilibrium; these conditions look similar
to the optimality conditions {A.33a)-(A.3Bb) in the prodf Broposition[1, but for a “modified” cost function defined amting
to (21). We then show the correspondence between thesetiomisdand the optimality conditions for the problein (PU204).

This correspondence establishes existence of an equitiband uniqueness of the resulting allocation.

Step 1:If b is an equilibrium, and Assumptidn 2 is satisfied, at least coerdinate ofb is positive.
By Assumptiol 20 < o < (f," 55 hence at least one coordinatel®imust be positive.
Step 2:The function@,, (b»; b_») is concave and continuous i,, for b, > 0. From [I8) and by plugging(b) into s, in

@, we have

Qn(gnybfn) = \/(Em;ﬁnbmd‘_bn)oqS _Bn — Cn 0 — b—n,\/ N—(S .
N V Em#nbm + bn «@
When 2, 2n,bm + by, > 0, the functionb, //S2nbm + b, is a strictly concave function ob,, (for b, > 0). Sincec, is
assumed to be convex and nondecreasing (and hence corsiniidollows thatQ., (b,,b_,) is concave and continuous i,

for b, > 0.

It is easy to show that fos,, to be positive, we neetl, < b, whereb,, = § <a5 + \/“‘5 L 4Em¢nbm)> .

Step 3tn an equilibrium,0 < b, < by, Vn.

Tenantn would never bid more thah,, givenb_,,. If b, > b,, thenS(p(b),b,) = 6§ — \/ﬁm%& < 0. so the payoff
Qn(bn; b_,,) becomes negative; on the other hagy,(b,;b_,) = 0.

We specify the following condition when marginal cost of gwation is not less than the price:

aicn(sn)

v
" 0sn

<p(b), sn>0. (A.38)

This condition is satisfied when tenants are price-takingthie next step, we show thdi (A]38) also holds in an equilibri
outcome when tenants are price-anticipating.
Step 4:The vectorb is an equilibrium if and only if(A.38) is satisfied, at least one componenthofs positive, and for each,

b. € [0,b,], and the following conditions hold:

. — 1 8+cn(sn) « 1 Ot cn(sn) a \? 0t cn(sn) 2sna
v Sbp, Z|\—F—+ == = —_— - —_—t > , .
it 0<bnsbn, 3 ( 9s. 3N )2 < asn 2v) T as, nNs 2P (A-393)
. — 1 (0 cn(sn) 1 0~ cn(sn) a \? 0~ cn(sn) 2sna
< bn n, =|—F—>+=o = —_— - ——— < . .
if 0<b,<b 3 ( ;. + 2N) + \/( s, oN + ;. N5 p(b) (A.39b)

By Step 2,Q.(b,;b_,) is concave and continuous féy, > 0. By Step 3,b, € [0, b,]. b, must maximizeQ, (b,;b_,) over

0 < b, < b, and satisfy the following first order optimality conditiin

0" Qn(bn;b_y)
Z_wnvm PR <«
b =0,
0~ Qn(bn;b-y) - T
_— 2 > < b, n;
b, >0, if 0<b,<b

if 0<bp<bp;
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Recalling the expression fagi(b) given in [13), we have

2\/21_17 O‘_5_1+872"Tff")$(1_2;ﬁ)§0, it 0< by, < by

2\/W\/7 8% cn S")ﬁ(l_zzlz:bm)zo’ it 0< by <bn.
We now note that by[(13) anf[l(1), we havve? (b) , and ﬁ =(6—sn)\/55-
Substituting these two equations into the above, we have

This is because by Assumptidh 2Np(b) — a > 0 when N > 2. Also, we have2Np(b) — a’=22 > 2Np(b) — a. Hence
(A:38) holds forN > 2.
When N = 1, we can simplify [A.Z0R) further to

1 0 calsn) 1 1 07 cn(sn) 0" cn(sn)
RV I AP > = > .
2p(b)a T Osn  2p(b) — 0, = p(b) 2 2 <a * O0sn ~  Osn

The last inequality is because > %‘ff"), otherwisep(b) > «, but profit maximizing operator will not pay for price more
than o, contradiction. Hence (A.38) must hold for a\l. After multiplying through [A.20R)E(A.40b) by (b) and rearranging,
we have two quadratic inequalities in termsygb). Solving the inequalities lead to two sets of conditiongp@b) that satisfy

the first order optimality conditions, they are:

_ _ 2 _
i 0< b, <Dy, %<w+_>iz¢<w_g) 4 497¢n(sn) sncx < p(b) (A.41a)

0Sn 2N 0Sn 2N 0sn,  2N§
. — 1 (9 cn(sn) ! 1 Ot cn(sn) o\’ 0t cn(sn) sna
n < n =\ — g = s T a3 e — 2 .
if 0<b, <D 3 ( D5, + N + 3 D5, N +4 95, 2NG p(b) (A.41b)

However, only the conditions with plus sign satisfies (A,38g conditions with minus sign violatds (A]38) because&esin

o 8+cn(0) - 0" cn(sn)
2N Osn, 0sn

i10)-[A.414d) corresponds th (A-39&)-(A.39Db).

Conversely, suppose that has at least one strictly positive component, thak b, < b,, and thatb satisfies [[A.38) and

Vsn >0, p(b) <

Hence we discard the conditions with minus sign and note (&

(A393)-[A.39b). Then we may simply reverse the argumepntStep 2,Q.,(b,; b_,) is concave and continuous &, > 0, and

in this case the condition§ (A.394)-(A39b) imply that maximizesQ,,(b,;b_,) over0 < b, < b,. Since we have already
shown that choosing,, > b, is never optimal for firmn, we conclude thab is an equilibrium, and it is easy to check that in
this case conditior {A.38) is satisfied.

Step 5:1f Assumptioi R holds, then the functién(s,,) defined in(21) is continuous, and strictly convex and strictly increasing
over s, > 0, with é(s,) =0 for s, <0.

¢n(sn) Is continuous ors,, > 0 by continuity ofc, and ons, < 0 by definition. We only need to show thé (0) = 0, this is



because when,, = 0, ¢, (sn) = 0,555 = 0, and integrating from 0 ta,, is 0. Hencet,(s,) = 0 for s, < 0.

For s, > 0, we simply compute the directional derivatives@f.

O en(sa) 1 ( o a+cn(sn)) . l\/<i j 8+cn(sn)>2 L0 en(sa) sna

dsn 2N Dsn, 2N dsn dsn NG’
9" én(sn) _ 1 a . 0~ cn(sn) n l o Ot cn(sn) 2 N 28+cn(sn) %.
0sn 2 \ 2N 0sn 2 2N 0sn 0Sn No
Sincec, is strictly increasing and convex, for< s, < s,, we will have
0T é(sn) _ 07¢(5,) _ 0Té(5n)
< < .
0= 0sn < 0sn, —  Osn
This guarantees thai, is strictly increasing and strictly convex ovey, > 0.
Step 6:There exists a unique vecter> 0,y > 0 and at least one scalgp > 0 such that:
1 /0% ¢, (sn) 1 dtcn(sn) a \? Otcn(sn) 28na .
- — — — _ — — _ > n > 0; .
2 ( et av )ty don 2N) T as, o =2f Menz0 (A422)
1 (07 cn(sn) « 1 Otcn(sn) a \? oten (sn) 2sna .
Nt o |+t — o — < >0 :
2 ( Osn 2N> * 2\/( dsn T 2N) T Tas, o =f s> (A.42b)
<5 W (N =1)8) = p; (A.42¢)
D s =(0-y). (A.42d)

The vectors and y is then the unique optimal solution &0a)(20d).
By Step 5, since?, is continuous and strictly over the convex, compact feasibgion for eachn, we know that [[20a)E(20c¢)

have a unique optimal solutiafn y. As in the proof of Propositiohl1, form the Lagrangian

(s,4;p) chsn 2N(S(er(N 1)8)% + p((6 — y) an

By assumptioi2y > 0, and by the fact that,(s,) = 0 for s, < 0, s, > 0. there exists a Lagrange multipligr such
that (s, y, p) satisfy the stationarity conditions which correspondd&df?d)-[A42t) when we expand the definition &f(s.,),
together with the constrainfi (A.4Pd). The fact that- 0 follows by (A428) asy > 0.

Step 7:If s > 0,y > 0 and p > 0 satisfy (A.423d)(A.42d), then the triple(b, p, y) defined byb, = (5 — s,)p is an equilibrium
as defined in(17) and (18).

First observe that with this definition, together with (Ad}and the fact that,, > 0, we haveb,, > 0 for all n. Furthermore, we
can showb,, < by, sinces, > 0, b, < pd, but by [AZ42t){[A42H), we have

p= 15w+ (N =1)8) = 2=(N5 = Y su) (A.43)

Substitute the definitios,, = § — %" into (A.43), we have

o ann Enbna
= — =1/ —. A.44
P=Ns, P N3 (A.44)
Substituting [A44) intdh, < pd, we haveb, < 4/ w, Solving this inequality we havé, < b,,.
Finally, at least one component bf is strictly positive, since otherwise we havg; = s,2 = § for somenl # n2, in which
case¥, s, > 4, which contradicts[{A.42d). (o5, = §, y = 0, contradicting our assumption that> 0.)

By Step 4, to check thab is an equilibrium, we must only check the stationarity ctiods [A-:39&){(A.39b). We simply note

28
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that under the identificatioh, = p(6 — s,), using [A.44) and[{A.42c), we have

Snbn NO o Saba
= T 0 o= e = p(0)

Substitutep(b) into (A:42) will correspond td{A:3%a), and (A.42b) imliA39B) and[[A3B) becausd—2in) < 6+g’;£f‘").

Thus (b, p, y) is an equilibrium.

Step 8:1f (b, p(b),y) is an equilibrium, then there exists a scalar> 0 such that the vectob defined bys, = S(p(b),b,)
satisfies(A.42d)(A.Z224d).

We simply reverse the argument of Step 7. Sibde an equilibrium bids, by[(18) ang, = S(p(b), bn), we haved s, = (6—y),
i.e., [A424d) is satisfied. By Step &, satisfies[[A.39a):(A.39b). Sincg > 0 by Assumptiod ) < s, < § for all n, let

0 cn(sn) | a 1\/ Ofcn(sn)  a \,  Otcn(sn) 2sna
p = max {p(b) < Dsn +2N>+2 s, )T s, wo

In this casep > 0 and0 < b, < b, for all n, so [A39b) implies[[A.42b) by definition gf, and [A42h) holds by (A.39a) and
the fact thatd ™ ¢, (s,) < 0 cn(sn) (by convexity).

Step 9:There exists an equilibriurb, and for any equilibrium that price is greater than margir@aist, the vectos defined by
sn = S(p(b),bs,) is the unique optimal solution ofA.42d)(A.42d).

The conclusion is now straightforward. Existence followsni Steps 6 and 7. Uniqueness of the resulting productiotoveg
and the fact that is an optimal solution to (20a)-(2Dc), follows by Steps 6 &nd

H. Proof of Lemm&l8

We exploit the structure of the modified cast to prove the result. Note that, for all, s, > 0, if we defineG,(sn) =
fsn \/(8+cn(z) _ &)2 + Oten(z) QI\ZI?dZ’ then

0 Oz 2N Oz
8*07 o\’ 1o}
Gr Sn / \/ L W) dz = Cn(sn) - Snﬁ.

irt i ity i ity i i Ten(x) 5 2Ten(0)
First inequality is because > 0, last equality is because by convexity and Assumpfion 3, MEIQT > T 2 5N -

Hence we havé, (sn) = 1 (cn(sn) + sSnax:) + 2Gnlsn) > cn(sn).

On the other hand, notice that < 4, we have:

(s / aﬂ:n _ o)t Pren(z) 2
n) 2N 0z N&§

8+cn a\? a
/ \/ 2N) dzfcn(sn)—t-snm.

Hence we havé, (sn) = 1 (cn(sn) + sn3x:) + 2Gn(sn) < cnlsn) + sn5x. The bounds for the left and right derivatives can

be obtained from taking the left (or right) derivatives a¢ thounds ofG..(sx»).

I. Proof of Theorenf]9

Firstly we will prove one side of the inequality’ < p®, 3" < y*. Recall that by the examinging the Lagrangians of the
optimizations in Propositidil 4 in and TheorEin 7, we have 0~ ¢, (s5)/0sn, p' < 0T cn(sh)/08n, p* > 07 n(5%)/08n, p* <
0" én(sy)/0sn, at the domain where the left or right derivative is definew] g = 2= (y*+ (N —1)4), p* = 25 (y* +(N—1)4).

If y* >y, thenp’ > p®. Also, because the total energy reductibis constant, we hav®_, s, < Y so.
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Hence there exist, > 0 such thats? > s’ for somer € {1,..., N}. Therefore, by strict convexity af, (Assumptior[lL):
dte(sh) 07 en(s)
t < U A A.45
p= 08y < 08y ( )
However, by Lemm&l8 we hav‘?gis” > 37;;7(‘5”. Hence, we have
oy 074(sn) o 07er(sr) (A.46)

P = 0s, - 0s,

Combining [A45%) and[{A.46), we haveé < p“, contradiction. Hence we havg < y*, andp’ < p“.
Next we show the other side of the inequality < p* + 5%, y* < y' + §7 by the previous part, we have, s» < > sb.
Let n = arg max,, (s, — s%), clearly s, > s%, otherwise>_ s, < > s%, contradiction.

If st = s%, thenVm, s, = s%,, andy® = y*, thenp’ = p°.

If st > s, then by strict convexity of,, (assumptiofll), and the fact thef > 0, s, > 0, we have

+a (g0 - t
a C:(Sn) < 8 C;’L('Sn) Spa. (A47)

+a (s + L
Also, by LemmdB, we havé—zln) < & calon) 4 o this gives us

o O0Te,(s2) _ 0ten(s?) «
< < + —. A.
P = 0sn - 0sn 2N (A.48)

Combining [A58) and{AH9), we have’ < p’ + 5% . Hence we have

(%

N§

[e%

Né

(%

5
(y* + (N —1)8) < (yt+(N—1)5)+W7:>y“<yt+§.

J. Proof of Theorerh 13

Given anye > 0, lete’ = %z—:. Consider the following set of cost function:

% S1, if s1 <¢€;
ci(s1) = a(l—f—lf,/é)sl—i—Ch e <s1 <6—¢;
2as1 + O, s1 >0 —¢

whereCy, C2 are constants that make continum@, thenc; is piece-wise linear and convex. Alsom # 1, ¢ (sm) = 20Sm.
It is easy to see that; = § — ¢’ andy™ = ¢’ is the optimal allocation.

Let s¢ =¢',y* =85 — &', andVm # 1, s, = 0, we claim that(s*,y*) is the unique optimal solution t6_(204)-(20c). To see
this, letp = a(1 — ¢/(NJ)), then,

« a . a _ ¢ ,a,
0~ ¢ (s1) otei(st) 0% ém(0)
—_— <y —L > —t > . .
951 = P; 95, = P; P p, VYm#1 (A.49b)

where the second inequality is because if weHgt be the term under square root fgrg’;%, then

_ Otcn(sn) « a Sn 2 a? (04 sn)(0 — sn)
I R

5 len(sn) (@ sy
~  Osn 2N N ¢
60y = —ae’ (BNSA=3) and 0y = — 25 (V62 + 3¢/ — 3¢/)



Note thatwggis") =12 g"“") + %)+ L H,. Hence we havé" i) > o cLlei) 4 2t — 5. These conditions correspond
to (A.423){A.424), so we conclude th@t*, y*) is the unique optlmal solution t& (204)=(20c). Henfe—y* = § — 2’ = § —e¢.

K. Proof of Theoreri 11

As (s*,y*) is a feasible solution td(20), by Theorédrh 7, we have

Zén(sZ) 2N5(y +( <ch (st) 2N5(y + (N = 1)8)% (A.50)

Rearranging, we havl’, é,(s%) +ay® — (3, én(sh) +ay”) < & ((y“ —y*)(1 - )) . By Corollary[I0 and the fact
thaty* < 4,y < 8, both terms in the brackets are positive, hence right-h#tel-expression is maximized wheri — 0™ and

y* =4, hence

<Z én(sn) + oy ) <Z n(sn) +ay” ) < 2033 (A.51)

n

However, by Lemmé&l8, we havk, én(sh) < 3, cn(sh) + ox (3 8n) < S, cn(sn) + 22 and Y, én(sh) > 30, cn(sh).
Substituting the above relations info (Al51) and rearnaggive have the desired result.

L. Proof of Theoremh 12

First, we compare the cost by operator between the pridegand price anticipating cases, by definitibnl (15) andresing,
we havecost,(p®, y*) — costo(p’, y") = (p* — p") (6 — ") + (o — p*) (y* — y*). By the fact thatp® = 2 (y* + (N — 1))
(shown in Theorer]9) and the fact tha y* < §, we have

a <%) <p*<a. (A.52)
By the upper bound op* in (A52) and the upper bounds pf, " in Theoren{ P, we have
costo(p®, y*) — costo(p’, y*) > 0. (A.53)
Similarly, using the lower bound gf* in (A52) and the upper bounds of,y* in Theoren{®, we have

costo(p”,y*) — costo(p’,y") < (%) -(0) + <a : %) <g> - %5-

Second, we compare the cost by the operator to the sociahaptsince the energy reduction goéak the same, by Proposition

[ and CorollaryID, we havg' < p* andp® < p*. Hence we haveost,(p’, y") < costo(p®, y*) < costo(p*,y™). Furthermore,

costo(p”,y") — costo(p',y") = ad — (p'(6 —y") + ay’)

~a-6-1)=a (L) - < . (a54)

Lastly by [AE3) and[[A5H), we haveost(p*,y*) — cost(p®, y*) < cost(p*,y*) — cost(p’, y") < 2.

M. Proof Sketch of Theoren]14

Theo proof is similar to that of Theorelh 3, which uses Prajms{l, note that in the VDR case, we can chadgé in the
proof of TheoreniB td:,, D,,, and interpret the variablg as>,, D,, — d, a asw and~, as1/N in the proof of Theorerfl]3.
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N. Proof Sketch of Theoreml15

Theo proof is similar to that of Theoreld 7. note that in the Vd&se, we can chang®'s in the proof of Theoreni]3 to
%, Dy, and interpret the variablg as>,, D,, — d, a asw and~, as1/N in the proof of Theorerfl]7.

O. Proof of Lemm&_16

For the bound on the magnitude of the modified cost, we exfeitstructure of the modified co8t, to prove the result.

Note that, for alln, s, > 0, if we defineG., (s,) = [~ \/(% - ”g“) +22ml) v then

dte, ?
n(sn) / \/ CL ?) %) dz = cn(sn) — sn%.
0

. . L . . ten(2) 8% ¢, (0) n
First inequality is because > 0, last equality is because by convexity and Assumpfion 5, mﬁT > =2 .

Hence we havé, (sn) = % (cn(sn) + sns) + 2Gn(sn) > cn(sn).

On the other hand, notice that < D,,, we have:

Otcr(sn)  uvm 2 Ot cn(sn) @
n - a5 27 n d = n n e
(s / \/ © Osn 2 > * Osn Tnudz = cn(sn) + 2N

Hence we havé,, (sn) = 3 (cn(sn) + Snsx) + 2Gnl(sn) < cnlsn) + sn 2=, The bounds for the left and right derivatives can

be obtained from taking the left (or right) derivatives a¢ thounds ofG..(sx»).

P. Proof of Theorerh 17

We can combine[{26) witf{27) to eliminate thg> ", b; term to get a relation between market price and the vdr-iyant

decided by the profit maximizing operator:
u
p= (3D —d (A55)
ST

By the characterization theorem, we havé" — —ud _ > en(sh) <ud — ud® >, en(sh). Rearranging, we

2>, Dn 2>, Dn
have
. d*2 dtz)
ud” — zn:cn(sn) < ud — ch 22”D
t t uzn d?
Sud —;Cn(sn)+m

where the last inequality is due to the fact tat> 0.

Q. Proof of Theorerh 18

2

By Theoren{Ib, we haved® — # —> . En(sy) > ud® — T* — >, ¢n(sy) Using Lemmd_Ik, and rearranging, we have
- ch<sz>
>ud” —ch sn) —%—Zsz%
>ud” —ch Sn) —M—ZD%
=ud* = > ca(s, ——ZD (1 + vn).
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where the first inequality is becausg(sy,) < ¢.(sy), andé.(sy,) < ca(sy) + s, 2%, and the second inequality is becuase

sy < Dy

R. Proof of Propositiol_19

The Lagrangian of the welfare maximization probldm] (28) is

L(s, d; p, \, A) = ud — ch +qul—d+ZAsl+ZA ,— 5:).

i=1

By constraint qualification, the optimal primal dual sobuts (s, y; 1) satisfies the KKT conditions

p=u,

0" cn(sn)
0sn,

9" cn(sn)
0sn,

<u*, if0<s, <D,

> ", if 0< s, < Dy

Hence the market clearing price in the optimal allocationu$th be p* = u. Now consider the market clearing price for price

taking tenants, froni{A35), we know that = u — Z < u = p*. Similarly, by Theoreni_14 and looking at the Lagrangian

of 29), we havew < ptforall 0 < sf, < Dy, hence for alln, such thats!, > 0 ands}, < D,,, we have

t SP* < 8+c7l(8:)

9 ca(sh)
<
p = D5 )

0Sn -

hences!, < s for all suchn, on the other hand, &, = 0 or s}, = D,,, we also have, < s, henced’ = >om st < Donsn =

Finally, by the fact that’ < d* and [A55), we have

t

o ud? > g — ud® 1 d* N
b= Zn‘D”L N ZnD" - Zn‘D”L b

S. Proof of Theored 20

Firstly we will prove one side of the inequaligy < p®,d* > d*. We can prove this by contradiction. Suppe&e< d*, then

by (BA58), p* > p®. Also, >_, sh, <X, st
Hence there exist® > 0 such thats? > s for somer € {1,..., N}. Therefore, by the stationarity of the Lagrangian of

(29) and strict convexity o€, (Assumptior(dL):

+ t - a
o< Oer(sy) _ 07 en(sy) (A.56)
08y Sy

However, by the stationarity of the Lagrangian [of1(30) andnb&a[16, we have

Cr(sp T (st
2 . 88(7- : = . 88(7- ) o7
Combining [A4%) and[{A.46), we have < p“, contradiction. Hence we havg < y“, andp® < p°.
Next we show the other side of the inequality < p* + %, d* < d' — 2, by the previous part, we haye, s& < > sb,.
Let n = arg max,, (sh, — s&), clearly s, > s%, otherwise>_ s, < > s%, contradiction.
If sf, =s%, thenVm, s, = 5%, andd’ = d®. By (A59), p’ = p°.
If sf, > s%, then by stationary condition of the Lagrangian [of](29) atrittsconvexity of c,, (assumptiori1l), and the fact

that s2 > 0, s, > 0, we have

E

0 en(s%) < 0" cn(sh

0Sn Sn

) <yt (A.58)



Also, by Lemmd_1b and stationary condition of Lagrangian3)( we have definition of

o 0%en(sh) _ 9 en(sh) | mu
< < —. .
p= 0sn, - 0sn * 2 (A-59)

Combining [A58) and[{A59), we have’ < p* + 2% < p' + “L. Substitute the above relation info (Al55), we have

B ud® cu_ ud! " uy
ZnD" Zn D"L 2 '
D
d* > d"' — =
> 5

the last inequality is because = max,, D,, = (}_,, Dn)7.
T. Proof of Theorerh 21
Firstly, by theoreni_204* < d*, andp® > p*, hencel,(p®,d*) < U,(p*,d"). Furthermore,

Us(p',d") — Uo(p®,d*) = (u—p")d" — (u—p*)d"

=(u—p")(d" = d) +d"(p" - p"). (A.60)
By theoreni2D, we have' < d* + D/2, p* < p' + uv/2, and by the fact that® < 3" D, we have

D uy
L(pt, dD) — Uy (p®,d®) < u- = n)— = . .
Us(p',d") — Us(p®,d") <u 2-l-(EnD)2 uD (A.61)
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