CaltechAUTHORS
  A Caltech Library Service

Solar energy generation in three dimensions

Bernardi, Marco and Ferralis, Nicola and Wan, Jin H. and Villalon, Rachelle and Grossman, Jeffrey C. (2012) Solar energy generation in three dimensions. Energy and Environmental Science, 5 (5). pp. 6880-6884. ISSN 1754-5692. doi:10.1039/C2EE21170J. https://resolver.caltech.edu/CaltechAUTHORS:20150925-122511865

[img] PDF - Published Version
See Usage Policy.

384kB
[img] PDF - Submitted Version
See Usage Policy.

16MB
[img] Video (QuickTime) - Supplemental Material
See Usage Policy.

1MB
[img] PDF - Supplemental Material
See Usage Policy.

1MB

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20150925-122511865

Abstract

We formulate, solve computationally and study experimentally the problem of collecting solar energy in three dimensions. We demonstrate that absorbers and reflectors can be combined in the absence of sun tracking to build three-dimensional photovoltaic (3DPV) structures that can generate measured energy densities (energy per base area, kWh/m2) higher by a factor of 2–20 than stationary flat PV panels for the structures considered here, compared to an increase by a factor of 1.3–1.8 for a flat panel with dual-axis sun tracking. The increased energy density is countered by a larger solar cell area per generated energy for 3DPV compared to flat panels (by a factor of 1.5–4 in our conditions), but accompanied by a vast range of improvements. 3DPV structures can mitigate some of the variability inherent to solar PV as they provide a more even source of solar energy generation at all latitudes: they can double the number of peak power generation hours and dramatically reduce the seasonal, latitude and weather variations of solar energy generation compared to a flat panel design. Self-supporting 3D shapes can create new schemes for PV installation and the increased energy density can facilitate the use of cheaper thin film materials in area-limited applications. Our findings suggest that harnessing solar energy in three dimensions can open new avenues towards Terawatt-scale generation.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1039/C2EE21170JDOIArticle
http://pubs.rsc.org/en/Content/ArticleLanding/2012/EE/c2ee21170jPublisherArticle
http://www.rsc.org/suppdata/ee/c2/c2ee21170j/c2ee21170j.movPublisherSupplementary Information
http://www.rsc.org/suppdata/ee/c2/c2ee21170j/c2ee21170j.pdfPublisherSupplementary Information
https://arxiv.org/abs/1112.3266arXivDiscussion Paper
ORCID:
AuthorORCID
Bernardi, Marco0000-0001-7289-9666
Grossman, Jeffrey C.0000-0003-1281-2359
Additional Information:© 2012 Royal Society of Chemistry. Received 20th January 2012, Accepted 21st February 2012. First published on the web 8th March 2012. The authors are grateful to Vladimir Bulovic for many useful discussions. Some of the calculations were carried out at Teragrid computing facilities.
Issue or Number:5
DOI:10.1039/C2EE21170J
Record Number:CaltechAUTHORS:20150925-122511865
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20150925-122511865
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:60528
Collection:CaltechAUTHORS
Deposited By: George Porter
Deposited On:25 Sep 2015 20:09
Last Modified:10 Nov 2021 22:35

Repository Staff Only: item control page