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Materials and Methods

3D glacier velocities

The average 3D velocities were derived from the measurement of the 3D
displacement of the glacier surface between each stereo acquisition. Successive
stereo acquisitions were used to retrieve the 3D displacement between multi-
temporal stereo pairs of Worldview images following the procedure highlighted
in section 4.2 and Fig. 10 of Avouac and Leprince (2015) (33). Briefly
summarized, each image of each stereo-pair was projected on a flat seed
topography, and correlation was applied to associate similar pixels. Correlation
between images acquired at similar times was used to measure the topography
parallax, and then to recover the topography surface using the satellite position
and pointing information. Correlation between multi-temporal images was used
to link the topography at each time, and therefore directly deduce the 3D
displacement vector.

We used four pairs of Worldview images with a ground sampling distance
between 50 and 60 cm (Table S1). Absolute and relative accuracy of image
registration was improved using bundle adjustment. We selected between 100
and 300 tie-points between each image pairs, and satellite ancillary data were
jointly optimized. Satellite roll, pitch, and yaw angles were corrected with order
two polynomials, allowing a maximum ground deviation of 10 m, within
specifications of the Worldview satellite accuracy. On average, we detected a
mean georeferencing error of 4.3 m with standard deviation of + 2.5 m, reduced
to 16 cm + 14 cm after bundle adjustment (statistics over 3000 tie-points
between all image pairs). Tie-points were selected automatically using sub-pixel
correlation, and manual checks were performed to remove tie-points on
potentially moving surfaces.

Image matching of all image pairs was performed using a multi-scale
approach and semi-global matching regularization (34-36). Similarly, we also
used an Li-norm regularization on the disparity gradient from the correlation
maps.

For display of the velocity fields, the 3D velocity vector clouds were

gridded on a 1 m grid using nearest neighborhood. For each point, the total



geometric error budget was estimated as the distance between light rays at the
point of measurement. On the Franz Josef Glacier surface, the 1-o velocity errors
were estimated to be around * 7 cm/day.

We show in Fig. S1 the 3D component of the derived velocity field used to
compute Fig. 1. Finally, the velocity field was projected along the distance to the
sampling station averaged over fixed spatial intervals for comparison with
erosion rates (Fig. S2). Note that the reproducibility of the observed velocities
between 2013 and 2014 indicates that the integration time for averaging the

velocity was sufficiently long.

Water discharge, suspended sediment load and erosion rates

To estimate the erosion rate of the glacier, we continuously monitored water
discharge (i.e., every 5 minute time interval) and suspended load of the glacial
stream using a calibrated automated stream gauge installed 1.2 km away from
the glacier terminus (from November 24, 2013 to April 9, 2014). The results are
shown in Fig. S3, along with precipitation rates measured at the Franz Josef
NIWA weather station. From such measurements, one can compute erosion rates

using the following relationship

Qs(t) = [ pse dA — p, 5

where @ is the sediment load (g s1), ps is the density of the subglacial bedrock
(2700 kg m3 (37)), é is the erosion rate (m s1), A is the area of the glacier (m?),

pp is the density of subglacially stored sediments (kg m-3) and Z—I: is the

volumetric change of sediments within the glacier.

A close analysis of water discharge and suspended sediment load during
rain events reveal classical hysteresis loops (Fig. S4). Such an observation
testifies for a supply-limited system (20), at least for the regions where pipes or
channels run along the bed. This implies that the volumetric change of sediments
is negligible and, therefore, our measured suspended sediment load can be used
as a proxy for glacial erosion. This is further supported by observed erosion rates
of about 10 mm/yr over the 5-month period that closely matches Myr erosion
rates in the area (e.g. 30). Note that Riihimaki et al. (2005) (20) also assumed that

volumetric change is close to zero for the Bench Glacier, Alaska. Given that the
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precipitation rates, water discharge and ice velocities are all an order of
magnitude larger for the Franz Josef Glacier, it is not surprising to infer negligible
volumetric changes.

To quantify spatial variations in erosion rates, we determine the
provenance of the suspended sediments collected at the gauge using Raman
Spectroscopy of Carbonaceous Material (27) (RSCM; see next section). Using Eqn.
(1), we can in turn derive erosion rate as a function of horizontal distance to the

sampling station, x, as follows

fot) Qs(t)/ps

e(x,t) ~ Ax  Ce(x) w(x)

where f(x,t) is the relative frequency of the mineral provenance, Ax (m) is the
bin size used to compute the frequency distribution, C: is the bedrock
concentration of the tracer, i.e., total organic content (26), and w(x) (m) is the
glacier width with horizontal distance. To calculate f(x, t), we use the extensive
bedrock RCSM temperature data (Table S2), which we linearly interpolate within
the catchment (Fig. S5A) and then project the interpolation along the distance to
the sampling station. Temperatures are then converted to distance to the

sampling station using the following equation

T=To+ Ty [1- (atan(*52) 2) /2]

where Ty, Ty, xo, A and are arbitrary parameters optimized using the non-linear
least squares method (using the function Isqnonlin in the Matlab software). The
results are shown in Fig. S5B, where Ty= 333, T; = 243.5, x,= 5005.27, 1=5005.27.

Finally, it is worth noting that the uncertainty on the reconstructed
erosion profile (Fig. S2A) is substantially larger than the geometric corrections

used to reconstruct the one-dimensional profile.

Raman Spectroscopy of Carbonaceous Material (RSCM)

Details on the application of Raman spectroscopy to the study of rock-derived
fossil organic carbon including thermometry are given in Beyssac et al. (2002)
(27) and Beyssac and Lazzeri (2012) (38). Here the approach consists of
comparing the structure of rock-derived fossil organic carbon in the suspended

load of the glacial stream to that of fossil organic carbon in the bedrock. For the
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sake of clarity, we convert the Raman parameters describing the degree of
graphitization into peak metamorphic temperatures using the equations
provided by Beyssac et al. (2002) (27) and Lahfid et al. (2010) (39). RSCM has
already been applied to the study of rock-derived fossil organic carbon in
suspended loads of rivers in the Himalayan (40) and Amazonian systems (41) to
establish global carbon budget of erosion, but not for provenance analysis.

We collected a total of 167 water samples in the glacial stream during the
5-month field campaign. We used a depth-integrated sampler fitted with an
isokinetik nozzle, that allows us to account for the vertical grain size distribution
within the glacial stream. The sample (473.17 mL) was then fitted with a 47 mm
diameter and 0.22 um hydrophilic filter and pressurized at 2.5 bar using a
manual pump. RSCM analyses were performed on 14 samples, which were
carefully chosen to cover a broad range of weather conditions (Movie S1). Raman
analysis of the sediments was measured directly on the sample raw powder
without any chemical or mechanical extraction thus preserving the pristine
structure of fossil organic carbon.

Raman spectra were obtained with point measurements by using a
Renishaw InVia Reflex instrument. This system is equipped with a Leica DMLM
microscope, a grating with 1800 grooves per millimeter, and a charge-coupled
device detector. Spectra were excited using the 514.5 nm emission line of an
argon laser (<1 mW measured at the sample surface) with a circular polarization
thanks to a quarter wavelength plate set in the optical path before the
microscope. We used a long-working distance Leica objective x50 (numerical
aperture of 0.75) yielding a lateral resolution of nearly 1 um. The spectral
resolution of the system is estimated at around 1.5 cm! in the configuration
used. Wavenumber calibration was done using a silicon standard and Ne lamp
emission. On each sample, we collected 200-250 Raman Spectra to have
statistically significant data. The observed Raman spectra were then fitted
following the procedure described in Beyssac and Lazerri (2012) (38), Lahfid et
al. (2010) (39) and Sparkes et al. (2013) (42).

Constraining the erosion law

Our goal is to estimate the parameters K; and / from the erosion law



é =K, |ug|'

where both ug and é are a function of distance to the sampling station. We first

compute the mean and standard deviation of the observed erosion rates,

assuming it follows a lognormal distribution, and ice velocities. We assume a log

normal distribution because erosion rates have a mean value that is low, a large

variance, and cannot be negative, which is typical of lognormal distribution (4.3).
We used two independent methods to constrain K; and I First, we use a

Bayesian approach to construct probability density functions (PDFs) of K, and L.

The quality of fit to the data is estimated through the following likelihood

)
where ¢ is natural logarithm of é, such that

em = In(K,) + U1n (Jug))

function:

1

L = exp (——Z

Em—¢&o
o

2

and o is the standard deviation on the observed erosion rates, on a logarithmic
scale, and m and o stand for modeled and observed erosion. Then, the likelihood
solution is resampled to estimate the PDFs using a standard rejection algorithm.
From these PDFs one can estimate the 90 and 60% confidence interval. The
results are shown in Fig. 3.

Second, we use the non-linear least squares method using the Matlab

software, which led to K;=2.5 10-7 (m/yr)!” and [=2.02.

Glacial flow model
To illustrate the response of glacial erosion to changes in precipitation, we
present the results of a simple thought numerical experiment in which we
progressively increase the accumulation rate. Our goal is not to model the Franz
Josef glacier but to illustrate the impact of changing precipitation on erosion
rates.

To model glacial flow, we first compute the ice thickness, h, by solving the

equation of mass conservation:

(4)

(5)

(6)

(7)



where q is the vertically averaged ice flux (q=hu, where u is the vertically
integrated horizontal ice velocity) and M the surface mass balance. The ice
velocity, u, is the sum of the deformation velocity, uq, and the sliding velocity, us.

The shallow ice approximation (44,45) is used to compute Eqn. 7,

=M= V-[(fa (p@)"h™2 + f; (p@)" WV (h + D"V (h + 2)

where f; is the ice flow-law parameter (1.9 1072* Pa3 s-1), f; is the sliding law
parameter (5.7 1072° Pa-3 m2 s1), p is the density of the ice (910 kg m3), g is the
gravitational acceleration (9.81 m s2), n Glen’s Flow parameter (3), and z the
bedrock topography. Eqn. 8 is solved using the finite difference method. The
model is run until steady state is reached and using a spatial resolution of 200 m.

The sliding velocity, us, is then calculated as follows

ug = f; (pg)"h"HV(h + 2)|" V(R + 2).

The mass balance M, is simply prescribed as a function of elevation with a
maximum accumulation rate, as typically observed in mountain glaciers (e.g. 31)
and in particular the Franz Josef glacier (24). Finally, erosion rate is calculated
using Eqn. (4) and prescribing a bedrock topography that decreases linearly
from 3000 m a.s.l down to sea level over 10 km.

We show in Fig. S6 two simulations in which we impose maximum ice
accumulation rate of 1 m/yr and 7 m/yr, respectively. These simple thought
experiments show that changes in accumulation rate lead to larger variations in

erosion rates when the erosion law is non-linear.

Negligible contribution from hillslopes during the investigation period

The possible contribution of surrounding hillslopes was further investigated by
X-ray diffraction and Total Organic Carbon (TOC) analysis on 16 samples. The
bulk-rock mineralogy of the samples was determined by X-ray diffraction (46).
The results show that clay minerals are far less significant than metamorphic
phyllosilicates. Trace level contents (i.e. < 2 %wt) of biotite-vermiculite mixed
layers (i.e. hydrobiotite) and vermiculite resulting from weathering of biotite are
systematically observed, but reflect a negligible contribution (46,47) from the
hillslopes compared to glacial erosion. Garnet, a constituent mineral of the rocks

metamorphosed >525°C that form hillslopes at the snout of the glacier and

(8)
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immediately adjacent to the sampling site, could not be found in XRD traces of
the suspended sediment.

TOC analysis was carried out with a Rockeval 6. In this technique, bulk
dried samples are heated in an inert atmosphere and, upon pyrolysis, the main
emission products (hydrocarbons, CO;, CO) are quantified by flame-ionization
and infrared detection (48,49). These measurements are used to calculate several
parameters: TOC content (analytical error: +-0.1%), Pyrolized Carbon, Residual
Carbon and Hydrogen Index (mg HC/g TOC). Pyrolized Carbon and Hydrogen
Index reflect the amount of soil organic matter (50), whereas Residual Carbon
values mainly reflect residual fossil graphitic carbon from the erosion of
metamorphic rocks. Here we observe that Residual Carbon components (mean
value: 0.14) are substantially larger than the Pyrolized Carbon components
(mean value: 0.03), indicating that TOC is mainly derived from bedrock. The low
soil-derived TOC inputs therefore confirmed the mineralogical composition of
the suspended sediments, in which soil-derived clay minerals (vermiculite)
represent only a negligible contribution. Importantly, the Hydrogen Index is
inversely proportional to the suspended sediment load (Fig. S7), which implies
that the contribution of modern carbon from the side-slopes is decreasing during
rain events. This suggests that the contribution from soils found on hillslopes is
small compared to glacial erosion over the period of investigation.

If hillslope erosion were dominating through another process, one would
expect it to be maximized where the slopes are highest (Fig. S8). We would then
predominantly see material coming from in between the glacier front and the
sampling station (i.e, where rocks are garnet zone schist and RSCM
temperatures are >525°C). Instead, the suspended sediment load contains only a
very small fraction of material sourced from such high temperature rocks (Movie
S2). Alternatively, sediment supply from hillslopes may be stochastic, as
landsliding is known to be a dominant hillslope erosion process in the Southern
Alps (26,51,52). There were no large landslides or rock avalanches in the valley
during the 5-month field campaign. Visible erosion scars and debris-flow
channels are present on slopes either side of the glacier (between Croz Glacier-
Cape Defiance on the true left and Hende Ridge-Roberts point on the true right).

Fluvial processes during periods of intense rain and sporadic rock falls may



carry material from these slopes onto and underneath the glacier. But the rocks
here are strongly-foliated biotite and garnet zone schist (25), in which RSCM
temperatures are higher than 500°C. If there were large quantities of rocks
derived from these slopes, it would enhance the content of carbonaceous
material that experienced temperatures higher than 500°C in the suspended
sediment. Instead, the majority of this material was sourced from rock
metamorphosed at between 400 and 500°C (Movie S2), being greenschist or
biotite zone schists, that are found where the glacier is most rapidly sliding and
the slopes adjacent to the glacier are of comparatively small extent. Furthermore,

the glacier is clean of debris in that section.

Steady drainage system at Franz Josef
To further contrast the behavior of the Franz Josef glacier with an alpine glacier
that exhibits changes in the drainage system, we compare the Franz Josef
discharge hydrograph with that of the Swiss Haut Glacier d’Arolla, which is
known to see its drainage system to evolve during the melt season (53). As the
subglacial drainage system evolves from a cavity, poorly connected system to a
more efficient channelized system, the hydrograph becomes substantially
different for the Haut Glacier d’Arolla (Fig. S9). In contrast, we observe no change
for the Franz Josef Glacier. This observation further implies that there is no
systematic development of the subglacial drainage system at Franz Josef during
the investigation period.

Finally, Anderson et al. (2014) (29) recently reached similar conclusions
by showing that the Franz Josef glacier remains highly responsive to

precipitation.

Surface velocities dominated by sliding

To assess the assumption that surface velocities are dominated by sliding, we
ran four tests in which we assume that the sliding velocity is 25, 50, 75 and
100 % of the surface velocity (Fig. S10). It shows that this assumption has little
impact on the estimate of the erosion exponent I The fit to data is mostly

accommodated by a change in Kj.
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SOM Tables

Table S1. Worldview stereo-pairs for each date (month.day.year).

Table S2. Bedrock RSCM temperature.

SOM Movies

Movie S1. Upper panel shows erosion rates with distance from the sampling
station for each day shown with the magenta dot in the bottom panel. The middle
panel shows the erosion rate integrated over the glacier. The bottom panel is the
precipitation rate. The x-axis for middle and bottom panels corresponds to the

number of days since November 24, 2013.

Movie S2. Relative frequency of RSCM temperature used to infer the erosion
patterns shown in Movie S1. It shows that most of the measured RSCM

temperature are between 400 and 500°C.
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