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Thermal noise resulting from the mechanical loss of multilayer dielectric coatings is expected to impose
a limit to the sensitivities of precision measurement systems used in fundamental and applied science. In the
case of gravitational wave astronomy, future interferometric gravitational wave detectors are likely to
operate at cryogenic temperatures to reduce such thermal noise and ameliorate thermal loading effects, with
the desirable thermomechanical properties of silicon making it an attractive mirror substrate choice for this
purpose. For use in such a precision instrument, appropriate coatings of low thermal noise are essential.
Amorphous silicon (a-Si) deposited by e-beam and other techniques has been shown to have low
mechanical loss. However, to date, the levels of mechanical and optical loss for a-Si when deposited by ion-
beam sputtering (the technique required to produce amorphous mirrors of the specification for gravitational
wave detector mirrors) are unknown. In this paper results from measurements of the mechanical loss of a
series of IBS a-Si films are presented which show that reductions are possible in coating thermal noise of a
factor of 1.5 at 120 K and 2.1 at 20 K over the current best IBS coatings (alternating stacks of silica and

titania-doped tantala), with further reductions feasible under appropriate heat treatments.
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I. INTRODUCTION

Several long baseline interferometric gravitational wave
detectors in the worldwide network have been upgraded, or
are in operation, and are used in the search for gravitational
radiation emitted from a range of astrophysical bodies
[1-5]. These detectors are designed in such a way that a
passing gravitational wave will induce displacements of
highly reflective mirrors, suspended as pendulums at the
end of each of the interferometer arms. One significant limit
to the sensitivity of such detectors will result from thermal
noise associated with these highly reflective mirror coatings
applied to the fused silica test masses. These are required to
reflect the high-power 1064 nm laser light used to illumi-
nate the instruments [2,6-9]. Precision interferometry is
also commonly used in fundamental and applied science
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to measure optical path changes in high-finesse cavities
for the high-precision frequency-stabilization of lasers
[10-12], in high-resolution optical spectroscopy [13],
optical frequency standards [14] and fundamental quantum
measurements [15]. Consequently, coating thermal noise is
also expected to limit the performance of such applications.

In order to reduce thermal noise in the case of gravita-
tional wave astronomy, there are plans for future detectors
to operate at cryogenic temperatures, including schemes to
upgrade existing detectors using cryogenic cooling to either
20 or 120 K [16,17], by the current construction of
cryogenic detectors such as KAGRA, designed to operate
at 20 K [18,19], or the proposed Einstein Telescope low-
frequency detector at 10 K [20-23]. However, cryogenic
operation will require a change of baseline test-mass
material, because the mechanical loss, and therefore the
thermal noise, of bulk fused silica increases rapidly at
low temperatures to a broad peak at approximately 40 K
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[24-27]. Crystalline silicon is under consideration as an
alternative test-mass material due to its low mechanical loss
and thermoelastic noise at cryogenic temperatures [28-30]
and its favorable thermal properties [31]. Silicon is not
transparent at 1064 nm and, thus, the use of silicon optics
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would require a change in the interferometer laser wave-
length, with wavelengths around 1550 nm currently being
considered.

The power spectral density of coating thermal noise can
be approximated as [8]
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where f is frequency in Hz, T is temperature in Kelvin, Y
and o are the Young’s modulus and Poisson’s ratio of the
substrate, Y’ and ¢’ are the Young’s modulus and Poisson’s
ratio of the coating, ¢ and ¢, are the mechanical loss
values for the coating for strains parallel and perpendicular
to the coating surface, d is the coating thickness and wy, is
the laser beam radius.

In addition to low thermal noise, coatings for use in
gravitational wave detectors are required to have very low
levels of optical absorption and optical scatter loss [32].
The mirror coatings used in such detectors are typically
deposited by ion-beam sputtering [33] since this technique
usually provides the best optical properties (i.e. low
scattering and low absorption). Current mirror coatings
are made from alternating layer stacks of silica and titania-
doped tantala [34]. However, some of the benefit provided
by reducing the temperature at which a gravitational wave
detector operates is reduced by the presence of low-
temperature loss peaks in the mechanical loss of both
silica and titania-doped tantala films [35-37].

Another promising alternative technique to optimized
amorphous ion-beam sputtered coatings, for use in an
interferometric detector operating at 1550 nm, is through
the use of single-crystalline coating materials, grown using
molecular beam epitaxy (MBE). Cole et al. reported
mechanical losses of 2 x 1073 for a multilayer gallium
arsenide/aluminium gallium arsenide coating: a factor of 10
lower than an equivalent silica/tantala coating [38] and
recent measurements of a gallium phosphide/aluminium
gallium phosphide multilayer coating reported similar
mechanical losses of 1.4-3.7x 107 at 12 K, [39].
However, such MBE coatings are not yet fully demon-
strated over the large area required to produce optics for use
in a future gravitational wave detector.

Amorphous silicon (a-Si) is an interesting candidate
as a high-index coating material for low thermal noise
because a-Si films, when heat-treated after being deposited
by electron beam (e-beam) evaporation, magnetron sput-
tering and self-ion implantation, have all been found to
have very low mechanical losses, with losses as low
as 2-6x 107> observed at cryogenic temperatures
(10-100 K) [40,41]—over an order of magnitude lower

|
than the lowest mechanical loss measured on ion-beam
sputtered tantala films [36]. These losses were measured on
the ~5.5 kHz antisymmetric mode of a double paddle
silicon oscillator. Recent work by Liu ef al. [42] reported
that further improvements to the loss of e-beam films can be
made at low temperatures by depositing the coatings with an
elevated substrate temperature. Furthermore, a-Si films
grown using hot-wire chemical vapor deposition
(HWCYVD) to produce hydrogenated a-Si-H were observed
to have losses as low as ~4 x 1077 at 10 K [40,41,43,44].
This is more than 3 orders of magnitude lower than observed
on tantala films at a similar temperature. In addition, the high
refractive index of a-Si (3.5 at 1550 nm [45]) would allow
for a significant reduction in the thickness of a highly
reflective mirror stack, providing an additional reduction in
coating thermal noise.

A highly reflective (HR) multilayer is usually composed
of a stack of alternating layers of high- and low-refractive
index materials. The optical thickness of each layer, 6 = nt
where n is the refractive index and ¢ is the physical
thickness of the layer, is equal to /4 for the wavelength
at which reflectivity is required. The total reflectivity of an
HR coating stack depends on the number of bilayers and
the difference in refractive index between the two materials.
Thus, for example a silica/tantala coating stack
(Ngjica = 1.45, nNgpuaa = 2.1 at 1064 nm) [46] requires
eighteen such bilayers plus a half-wavelength silica pro-
tection layer, and a quarter wavelength tantala transitional
layer between the substrate and the bilayers for a reflec-
tivity of over 99.99995%. A coating of the same reflectivity
composed of a-Si/silica would require fewer bilayers. This
reduces the required number of bilayers to seven and thus
the total thickness of the coating by over 60%, providing a
direct reduction in coating thermal noise.

While the optical absorption of amorphous silicon
(deposited by ion-plating) is typically significantly higher
than required for use in gravitational wave detectors [47],
recent work has suggested the use of a-Si as a replacement
for the lower layers of tantala in a coating stack, where the
light power is so low that the absorption requirements are
significantly relaxed [48,49].
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Here we present, for the first time, measurements of the
mechanical loss of a series of a-Si films deposited by ion-
beam sputtering, and estimate the coating thermal noise in
an a-Si/SiO, multilayer mirror coating.

II. SAMPLE PREPARATION

The a-Si coating were deposited onto silicon cantilever
substrates, the dimensions of which are shown in Fig. 1,
designed with one thick end which is used for mounting the
samples with minimal frictional energy loss in a clamping
structure [50,51]. In addition to being an interesting
substrate material for cryogenic gravitational wave detec-
tors, the low mechanical loss and high thermal conductivity
make silicon a good substrate for use in the studies of thin
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FIG. 1. A schematic diagram of a silicon cantilever. The

cantilever length is parallel to the [110] crystal axis. The coatings
are ion-beam sputtered onto the underside of the flexure.
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film dissipation at low temperature [52]. The mechanical
loss of a thin film can be calculated from the change in the
mechanical dissipation of a silicon cantilever after the
addition of a film to its surface.

The a-Si coatings were deposited by Advanced Thin Films
using ion-beam sputtering, with a crystalline silicon target
[53]. Postdeposition heat treatment is often used to improve
the optical properties of coatings. To investigate the effect of
heat treatment on the mechanical loss of the films, two coated
cantilevers were heat-treated at 300 °C, two at 450 °C, while
four cantilevers underwent no postdeposition heat treatment
(referred to as the “as-deposited” samples). The heat-
treatment temperatures were chosen by the coating vendor,
with 450°C being the highest temperature to which they
recommended treating the a-Si films, where the optical
absorption was observed to be at a minimum [54]. Prior to
coating, thermal oxide layers of approximately 25 nm thick-
ness on each face were grown on the cantilevers to ensure
proper adhesion of the coating [55].

III. EXPERIMENTAL PROCEDURE

When a coating is thin in comparison with the substrate
flexure, the temperature dependence of the mechanical loss

of a thin film, ¢ () oaing- can be measured by comparing
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FIG. 2 (color online). Measured mechanical loss of the 0.51, 1.43, 2.81 and 4.64 kHz bending modes as a function of temperature of a
34 mm long by 5 mm wide by 65.5 um thick silicon cantilever coated with a 500 nm thick as-deposited a-Si film (blue) and after 300 °C
(red) and 450 °C (green) heat treatments. Also measured mechanical losses of a nominally identical silicon cantilever used as a control
(black), plotted together with the calculated thermoelastic loss of the substrate at each of the frequencies (dashed).
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the mechanical loss of the bending resonant modes of a
substrate at a range of temperatures before and after
deposition of the film [56]:

Y1,
#th (¢(0)O)coated - ¢(w0)8ubstrate)a (2)

where o is the angular frequency of the bending mode,
D(@0)coaea 18 the loss factor of the coated cantilever,
D (@0) qupsirate 18 the loss factor of the uncoated reference
cantilever, t, and Y are the thickness and Young’s modulus
(166 GPa [57]) of the substrate, respectively, and 7. and Y.
are the thickness and Young’s modulus of the coating,
respectively. The Young’s modulus of an as-deposited (AD)
a-Si film was measured by nanoindentation to be 147 4
4.7 GPa [58], using the apparatus and techniques described
by Abernathy et al. [59].

The cantilevers were held in a stainless steel clamp
fastened securely to the liquid helium cooled baseplate of
the vacuum chamber of a temperature controlled cryostat
[60]. The bending modes of the sample can be excited in
turn using an electrostatic actuator aligned a few milli-
metres below the cantilever. This dissipation ¢(w,) can
then be found by making a fit of the free exponential decay
of the resonant motion [56]
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FIG. 3 (color online).
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The motion was sensed by illuminating the oscillating
section of the cantilever with a laser beam which was then
reflected onto a split photodiode sensor outside the
cryostat. Several measurements cycles were carried out
on each sample, during which the cantilever temperature
was increased systematically from approximately 10 to
300 K using a Lakeshore Model 336 Cryogenic
Temperature Controller, maintained typically to within
0.1 K of the set point. The temperature of the cantilever
was recorded using a Lakeshore DT-670-SD silicon-diode
sensor mounted inside a small hole on the clamp just below
the fixed end of the cantilever. The samples were removed
and reclamped between temperature cycles. This exper-
imental technique is discussed in greater detail in Martin
et al. [36].

IV. RESULTS AND ANALYSIS

Figure 2 shows the results obtained for silicon cantilevers
coated with 500 nm of amorphous silicon for the resonant
modes at approximately 0.51, 1.43, 2.81 and 4.64 kHz,
measured as deposited and after 300 and 450°C heat
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Coating Mechanical loss of the 0.51, 1.43, 2.81 and 4.64 kHz bending modes as a function of temperature of

500 nm thick films; as-deposited a-Si (blue), 300 °C heat-treated a-Si (red) and 450 °C heat-treated a-Si (green). The dashed line shows
the coating loss of an undoped tantala film heat-treated to 600 °C at each of the resonant frequencies for comparison [36].
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treatments. The difference in loss above 200 K between the
uncoated cantilever and the predicted level of thermoelastic
loss is due to the presence of the additional thermal oxide
layer for better adhesion of the coating.

Figure 3 summarizes the mechanical loss of the a-Si
films as a function of temperature. It is clear that the losses
of these films all are significantly lower than a 600 °C heat-
treated, undoped Ta,O5 coating below 150 K [36]. The loss
of the as-deposited a-Si film is ~3 x 1073 at 10 K, over an
order of magnitude lower than the tantala coating at the
same temperature. The as-deposited a-Si film shows
consistently a broad peak in mechanical loss centered
around ~50 K. There is evidence that heat treatment at
300 and at 450°C suppresses this peak and reduces the
magnitude of the loss at cryogenic temperature by over a
factor of two. At temperatures below 100 K no significant
difference in the loss was observed between the coatings
heat-treated at 300 and 450 °C. There is some evidence that
the higher heat treatment may slightly reduce the loss at
higher temperatures.

A. Investigations of coating mechanical loss
at room temperature

At temperatures above 150 K, the difference in the loss
measured between the coated and uncoated samples
becomes increasingly small due to the presence of the
thermal oxide layer and also the rapid increase of the
thermoelastic loss of the silicon cantilever. As a result, it is
not possible to measure the coating loss with adequate
sensitivity in this temperature range. Thus the results are
focussed below 150 K, which is the temperature range of
interest for cryogenic gravitational wave detectors.

However, amorphous silicon may also be of interest
as a high-index coating material in the upgrades to room-
temperature detectors. Thus coating loss measurements were
carried out at room temperature using fused silica disk
substrates, which have sufficiently low bulk and thermo-
elastic loss at room temperature to provide the required
sensitivity to the coating loss [61]. Details of the silica
substrates, and the method used to suspend them for loss
measurements, are given in [61]. The samples are brought to
resonance using an electrostatic drive, and the ringdown is
measured using ellipsometry. The data is filtered by a lock-in
amplifier (fpey ~ 0.3 Hz) and fit to a damped sinusoid with
minor frequency variations used to account for fluctuating
sample temperature during long ringdowns. From the ring-
down time constant, 7, the sample loss is given by
Dsample = wlof Modes are measured up to 30 kHz. The
sample loss is composed of its constituent losses,

¢ o Esubstrale
sample —
Etotal

E coating
d)substrate + ¢coating ’ (4)

E total

where the energy ratios are calculated using the finite
element software, comMsoLMultiphysics [62], and
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FIG. 4 (color online). Room-temperature coating mechanical
loss of a 500 nm thick a-Si film on a 3 inch diameter by 0.1 inch
thick fused silica disk; as-deposited (blue) and after a 450 °C heat
treatment (green).
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The as-deposited coating was dominated by excess low
frequency losses, visible in Fig. 4, due most likely to
residual stress. The 450 °C annealed sample had a coating
loss of @coqiing = 9.0 £ 0.1 X 1073, which is approximately
a factor of three lower than tantala [63] and a factor of five
lower than both magnetron and e-beam sputtered a-Si
films, as shown in Table I. The 450 °C annealed data shows
the coating mechanical loss is reduced after the heat
treatment and with no notable frequency dependence. A
discrepancy in fitting the drumhead modes was observed,
suggesting a difference in the bulk and shear losses, which
is under investigation.

Assuming structural (frequency-independent)

B. Comparison with other deposited amorphous
silicon films

Liu et al. [40,41,43,44] conducted investigations on the
~5.5 kHz antisymmetric mode of a double paddle silicon
oscillator created using several different deposition tech-
niques. As summarized in Table I, the losses of both
magnetron sputtered and e-beam a-Si films are higher at 10
and 100 K, but similar improvement in the losses were
observed after heat treatment. The losses of the ion-beam
sputtered coatings here are comparable to 28Si* implanted
amorphous silicon films. They also have a level of loss
similar to a series of low-pressure hot-wire chemical vapor
deposited (HWCVD) and plasma-enhanced chemical-
vapor deposition (PECVD) amorphous silicon films grown
in H, diluted silane (a-Si H, : SiH,) at differing deposition
and flow rates in order to vary the hydrogen content.
HWCVD hydrogenated amorphous silicon (a-Si H) films
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TABLE I. Loss of a-Si films at 10, 100 and 300 K deposited
using a variety of different techniques.

Loss of a-Si Film (x10~%)

Film deposition 10 K 100 K 300 K
Magnetron sputtered AD [41] 0.9 2.5 5
Magnetron sputtered 350°C [41] 0.2 1.5 6
e-beam AD [41] 1.5 3 33
e-beam 350°C [41] 0.6 2 53
e-beam (T, 350-400°C) [42] 0.01-0.05 ---
28Si* implantation AD [41] 0.5 1 0.9
28Si* implantation 300°C [41] 0.2 0.8

HWCVD a-Si H [44] 0.005-0.9 0.035-5
HWCVD a-Si H,:SiH, [44] 0.25-04 0.8-1.5

PECVD [44] 0.035-0.4 0.045-8

grown at differing deposition rates to vary the hydrogen
content show a large range in the loss, with a-Si H films
produced with one atomic percentage of hydrogen (1 at.%
H) observed to have levels of loss more than 2 orders of
magnitude smaller than coatings produced by all other
deposition techniques.

C. Calculation of an upper limit of the loss
for the 4.64 kHz resonant mode

It is clear from Fig. 2 that there is a loss peak below 50 K
in the levels of loss of the uncoated cantilever. This is
believed to be due to the thermal oxide layer present on the
cantilevers. This peak is seen on the 4.64 kHz mode to be
similar to the levels of loss measured on the coated samples.
This increase makes it hard to distinguish the loss of the
films from the substrate loss, yielding, on occasion, an un-
physical negative coating loss. It is, however, possible to
calculate an upper limit for the loss of the a-Si films at this
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FIG. 5 (color online). Upper limit of the coating mechanical
loss calculated using thermoelastic loss of the 4.64 kHz resonant
mode as a function of temperature of a 500 nm thick films; as-
deposited a-Si (blue), 300 °C heat-treated a-Si (red) and 450 °C
heat-treated a-Si (green).
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frequency using the predicted level of thermoelastic loss for
such a cantilever, as shown in Fig. 5. This upper limit of the
loss for the different heat treatments is still more than an
order of magnitude better at low temperatures than that of a
600 °C heat-treated tantala film.

V. ARRHENIUS ANALYSIS OF LOSS PEAKS
IN AS-DEPOSITED FILM

On the as-deposited a-Si film a dissipation peak was
observed between 60 and 90 K. Furthermore, the peak
temperatures were found to vary with frequency. This
behavior is characteristic of a thermally activated dissipation
process, similar to those previously seen in tantala [36] and
titania-doped tantala films [63]. Such processes can be
characterized by a rate constant, 7(, and an activation energy,
E,, which are related by the Arrhenius equation [64],

E,
T = 7o EXp (kB—T> s (5)

where 7 is the relaxation time associated with the dissipative
system returning to its equilibrium after being perturbed. The
temperature of the dissipation peak 7'y, at resonant angular
frequency @, is related to the activation energy and rate
constant as follows [64]:

E
T eXp(kBTa k> =1. (6)
pea

Therefore, plotting log @, against 1/T ., should give a
straight line fit, from which the activation energy and rate
constant for the dissipation process can be calculated.
Figure 6 shows this analysis for the peak, observed between
60 and 90 K, on the as-deposited a-Si film. The activation
energy and rate constant calculated from this linear fit, were
found to be (24.9 £4.2) meV and (8.2 +0.5) x 107 s,
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FIG. 6 (color online). Arrhenius plot of the loss peaks at 60—
90 K observed in the as-deposited a-Si film.
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respectively. There is further evidence of a dissipation peak
around 100 K at 5.5 kHz on magnetron sputtered and
e-beam films [40,41].

VI. PREDICTION AND MEASUREMENT
OF THE LOSS OF AN a-Si/SiO, BI-LAYER

In a first step towards estimating the thermal noise in an
a-Si/Si0, coating, measurements of both a single layer of
SiO, and a quarter-wavelength a-Si/SiO, bilayer were
carried out. The measured losses are shown in Fig. 7. Using
a Young’s modulus of 72 GPa for silica, the loss of the
silica film for the four resonant modes can then be
calculated, as shown in Fig. 8.

The loss of such a a-Si/SiO, bilayer film can be
calculated from the single-layer data measured on a silicon
substrate presented in Fig. 7. Assuming that the loss of
these films is independent of thickness, and that no addi-
tional loss is associated with the interfaces in a multilayer
film, the total loss of a quarter wavelength bilayer can be
estimated as
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It can be shown from composite materials theory that the
effective Young’s modulus in an isotropic multilayer coat-
ing consisting of two materials, in this case a-Si and SiO,,
is stated by [65]

y _ Yusitasi T Ysio, Isio,

coating —

(8)

tysi + tsio,

giving, in this case, an effective Young’s modulus of the
bilayer coating of 94.2 GPa. Using the data for the losses of
the a-Si and SiO, films in Fig. 8 it is possible to predict the
loss of an a-Si/SiO, bilayer film, as shown by the dashed
region, where the largest uncertainty comes from the
effective Young’s modulus.

Advanced Thin Films produced a silicon cantilever
coated with a bilayer film comprising of a 112 nm thick
a-Si and a 267 nm thick SiO, layer. The measured
mechanical losses of this coated cantilever are shown in
Fig. 7. The loss of this bilayer coating was then calculated
using the effective Young’s modulus and plotted together,
and in reasonable agreement, with the predicted levels of
loss in Fig. 8.
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FIG. 7 (color online). Measured mechanical loss of the 0.51, 1.43,2.81 and 4.64 kHz bending modes as a function of temperature of a
34 mm long by 5 mm wide by 65.5 pm thick silicon cantilever coated with a 500 nm thick as-deposited a-Si film (blue), SiO, (cyan) and
a 379 nm thick a-Si/SiO, bilayer (magenta).
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FIG. 8 (color online).
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Coating mechanical loss of the 0.51, 1.43, 2.81 and 4.64 kHz bending modes as a function of temperature of a

500 nm thick as-deposited a-Si film (blue) and SiO, (cyan). The dashed line represents the predicted level of loss of a 379 nm thick
a-Si/SiO, bilayer coating, compared with the measured coating loss of such a bilayer (magenta).

VII. ESTIMATION OF THE THERMAL NOISE
OF A MULTILAYER a-Si/SiO, FILM

The measured mechanical loss of the a-Si/SiO, bilayer
film can used to estimate the thermal noise performance of
an a-Si/SiO, mirror coating at low temperature. For a
standard A/4 HR coating, the required layer thicknesses for
operation at 1550 nm can be found using § = nt, as detailed
earlier, to be 112 and 267 nm for amorphous silicon and
silica, respectively. The reflectivity of such a coating is

given by
nsf_nO 2
Roy=|—"] .
o (”sf + nO)

where ng is the refractive index of the substrate and
f = (nasi/nsio,)*", ng here is 1 for the case of incident
light in a vacuum and N is the number of coating layer
pairs. Therefore, the number of bilayers required to give an
equivalent reflectivity to an Advanced LIGO end test mass
(ETM) coating (99.99995%) on a silicon substrate can be
found to be seven. At 295 K the average loss of the a-Si
layers was taken from Fig. 4 and from Martin et al. for the

©)

SiO, layers [37]. The linear spectral density of the
Brownian thermal noise arising from a multilayer
a-Si/Si0, film is shown at 295 and also at 120 and
20 K, as an indication of temperatures at which a future
cryogenic detector may operate, in Fig. 9 [16,17,66]. For
comparison, the Brownian noise of an Advanced LIGO
ETM on a silicon substrate, with the thicknesses adjusted to
operate at 1550 nm, is plotted for 295, 120 and 20 K.
From Fig. 9 it can be seen that at 295 K there is a 30%
improvement in the thermal noise switching from an
Advanced LIGO ETM coating optimized for 1550 nm to
a multilayer a-Si/SiO, film. The linear spectral density of
the coating thermal noise is proportional to the temperature
of the coating, therefore cooling should provide a reduction
in the thermal noise. However, it is also dependent on the
mechanical loss of the constituent coating materials, and
loss peaks have been observed at low temperatures in single
layers of silica [37], titania-doped tantala [67] and in
multilayer doped Ta,05/SiO, films [34]. Consequently,
there is only a 40% improvement in the thermal noise of an
Advanced LIGO ETM coating when cooled from 120 to
20 K. Switching to a-Si as a high-index material results in
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FIG. 9 (color online). Brownian thermal noise for an Advanced
LIGO coating, optimized for 1550 nm, at 295 (dashed green), 120
(dashed blue) and at 20 (dashed red) and for an as-deposited
a-Si/SiO, coating at 295 (green), 120 (blue) and 20 K (red). Note
that the 295 (green) and 120 K (blue) lines overlap. The dashed
black line represents the estimated level of Brownian thermal
noise at 20 K of an a-Si/SiO, coating after a 450°C heat
treatment.

the required total thickness of coating to be much less, but,
even using the levels from the as-deposited a-Si/SiO, film,
the levels of Brownian thermal noise improve over an
Advanced LIGO coating by almost 20% at 120 K, and, with
no low temperature loss peaks evident on the bilayer films,
this is estimated to improve further the thermal noise such
that it is 55% lower than the Advanced LIGO coating
at 20 K.

Our measurements of the loss of s