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ABSTRACT 

This paper discusses Kalman filter design to correct for atmospheric tip/tilt, tip/tilt anisoplanatism and focus 
disturbances in laser guide star multi-conjugate adaptive optics. Model identification, controller design and computation, 
command oversampling and disturbance rejection are discussed via time domain analysis and control performance 
evaluation. End-to-end high-fidelity sky-coverage simulations are presented by Wang and co-authors in a companion 
paper. 
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1. INTRODUCTION  
Much research has been performed in past several years on Linear Quadratic Gaussian (LQG) control for adaptive optics 
(AO) systems to reject atmospheric turbulence and vibration lines [1]-[11]. This paper focuses on Kalman filter design to 
control tip/tilt, tip/tilt anisoplanatism and focus disturbances in laser guide star (LGS) multiconjugate adaptive optics 
(MCAO), based on previous work described in Ref.[11] and Ref.[8]. The main deviations from earlier work reside in 
adopting (i) different disturbance shaping filters, (ii) a model identification strategy now based on fitting empirical 
power spectral densities (PSDs), (iii) a different state vector representation, and (iv) a different state noise covariance 
matrix identification method. The manuscript is organized as follows: Section 2 describes the LQG control model and 
the state-space parameters identification method, Section 3 presents simulation results and Section 4 concludes. 

2. KALMAN FILER DESIGN AND IDENTIFICATION 
2.1 Overview 

Table 1 provides a top-level summary of the off-line steps involved in the computation of the Kalman gain matrix, 
whereas Table 2 describes the online steps. CT, DT, ID and DARE refer respectively to “continuous time”, “discrete 
time”, “identification” and “discrete algebraic Riccati equation”. Further details are provided in Section 2.2. 

CT state-model ID  
 Model formulation 

 Parameter estimation via empirical PSD fitting 
 State-vector covariance matrix computation via CT Lyapunov equation with 

state-noise covariance adjusted to yield the desired disturbance covariance matrix 
DT state-model ID & extension to 
include WFS measurement model 
 Model formulation  
 State-noise covariance matrix computation via routine matrix  algebra 
 Measurement-noise covariance matrix estimation 
Kalman gain matrix computation  
 DT state-vector estimation error covariance matrix estimation from DARE. 
 Kalman gain matrix computation from state-vector error covariance matrix 

Table 1 Tope-level description of the off-line steps involved in the computation of the Kalman gain matrix. 
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State-vector Estimation Stage  
Pseudo open loop measurement computation 

 Innovation computation 
 State estimate update 
 State prediction 
Control Stage 

State estimate temporal up-sampling via prediction 
 Temporal averaging 

Table 2 Tope-level description of the online LQG controller implementation. 

2.2 Turbulence Disturbance Model 

The following 2nd-order stochastic ordinary differential equation (ODE) is assumed to describe each turbulence 
disturbance mode id  ( ,61,i � � ):
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where i�  is white state-noise with variance 2
i

� � . In Laplace space, the associated transfer function (“shaping filter”) is 
given by the following expression: 
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In terms of the PSDs, we have: 
2 2

,model (PSD ) | )( 2 | .
i i idd H s j� �� �� � � (2.3) 

By introducing the following state-vector: 
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 (2.1) is rewritten in state-space form as follows: 
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, ,
i i idd dA B C  are usually referred to respectively as “state matrix”, “input matrix”, and “output matrix”. For each 

disturbance mode id , the state matrix parameters are estimated via least-squares fitting of the model PSD (2.3) to an 
empirical (measured or simulated) PSD:  

� � 2

1, 2, d ,emp d ,model1/ 2
ˆˆˆ ˆ arg min PSD ) PSD, , , ( ( ) .

i iii i i i dg g
�

� � � � �
�

� ���� �� (2.6) 

The 6 disturbance models (2.5) are then concatenated into a single block-diagonal state space model with input ( )t�  , 
internal state ( )dx t  and output ( )d t :
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where 
1 6

Diag( , , ),d d dA AA � �
1 6

Diag( , , ),d d dB BB � �
1 6

Diag( , , ),d d dC CC � �   and ( )t�  is the input 

multivariable white noise with covariance matrix T� �� ��  . Since this state-space model is stable, both its internal 

state ( )dx t  and output ( )d t  are guaranteed to be stationary multivariable stochastic processes. More precisely, the 
covariance matrix of the output of this multivariable shaping filter is given by: 

,
dd d x

T
dC C� �� (2.8) 

where 
dx d

T
dx x� � is the unique semi-positive definite solution of the CT Lyapunov equation: 

0,
d d

T T
x x d dd dA BA B� ��� �� � (2.9) 

where �� is adjusted such that 
d dd

T
xC C�  matches the desired value of d� . The latter can be deduced from either 

theoretical priors, measurements or simulations (in our experiments, the value of d�  was computed from trajectories 
generated through end-to-end simulations).  Note that since d�  is in general not block-diagonal, the same holds for 

dx
�

and �� .
The next step is to discretize the CT disturbance model (2.7) at the low-order natural guide star (NGS) wavefront sensor 
(WFS) sampling period, ngsT , and to augment the DT state vector , ( )d n d ngsx x nT�  with an additional variable needed 

to model the measurement, namely the average value of vector d  over successive intervals [( 1) , [ngs ngsn T nT� , denoted 

nd  and expressed as follows: 

( 1)

(1 ) .
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n
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d d t dt
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� � (2.10) 

The augmented state vector for the DT disturbance plus WFS measurement model is defined as the concatenation of 

,d nx  and nd :

, ,d
n

n

nx
d

x � 	
� 
 �
� 

(2.11) 

and the augmented DT state space model is expressed as follows: 
1 ,n n nx Ax v� � � (2.12) 
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 The input to this stochastic DT model is a DT Gaussian white noise n�  with covariance matrix given by: 

6 12

12 60 12 12

0
0 0

,
ngs

T
aug augA t A t

T

v e e dt�

� �

� �
�

	
� 
 �

� 
� � (2.14) 

where  
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Note that computing A  and v�  from the CT model matrices , , ,d d dA B C ��  involves only routine matrix algebra and 
solving the CT Lyapunov equation (2.9).  
It is convenient to introduce at this point matrices dE  and dE  that extract respectively ,d nx  and nd  from the augmented 
state-space vector, i.e.  

, , .dd n n n ndx dx E E x� � (2.16) 

The Kalman filter is run at the NGS WFS frame rate and directly applied to reconstructed pseudo open loop 
modes (more details are provided below). An important feature of the controller is that the output commands are up-
sampled to the higher frame rate LGS loop sampling frequency and applied to the wavefront correctors at the high LGS 
loop rate. This means that during a single LGS frame, / 1ngs lgsr T T ��  (assumed to be an integer) commands are 

applied, where lgsT  denotes the LGS WFS sampling period. The filter also models the NGS WFS integration latency (1 
NGS frame) and 1 LGS frame of computational latency.  

The measurement model used in conjunction with the state-space model (2.12) is assumed of the following 
form: 

,n
OL
n nd xz E R�� � (2.17) 

where R is the noise-weighted least-squares reconstruction matrix mapping closed loop NGS WFS slopes CL
ns  into 

closed loop modal disturbance coefficients, and n�  denotes the NGS WFS measurement noise at NGS frame n  with 
covariance matrix ��  ( nR�  is thus the propagated noise onto modal coefficients). This pseudo open loop measurement 

vector is in practice obtained from CL
ns as follows: 
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where 1
clipped
nc �  and 

1 jn
r

u
� �

 denote the average LQG controller output clipped command over respectively the time 

interval T [ 1, [ngs n n�  and ( 1) [ , 1[.ngs lgsn T T j j� � � It is important to feedback clipped commands (clipping is 
implemented on the output commands whenever their range exceeds the stroke limit of the correctors) to inform the 
Kalman filter about such events and keep the loop stable [12].  

The innovation is defined as the new information contained in OL
nz  that is not in previous measurements, or 

equivalently the error made in estimating OL
nz  from previous measurements, which is expressed as follows: 

| 1ˆ ,OL OL
n n n ndz z E x �� �� (2.19) 

where   
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and |x y  denotes the expectation of Gaussian variable x  conditioned to Gaussian variable y . The state estimate 
update is expressed as follows: 

| | 1ˆ ˆ ,OL
n n n n nx zKx � �� � � (2.21) 
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The last equality in the first line of (2.22) follows from a fundamental property of the conditional mean and innovation 
and is at the crux of the Kalman filter [13]. K�  denotes the steady-state Kalman gain matrix, and is expressed as 
follows: 

1( ,)Td d
T T

dK E E E R R�
�

� � � �� �� � (2.23) 

where ( )(ˆ ˆ )Tx x x x� � � � �� �� �  denotes the steady-state stave vector estimation error covariance matrix. The 

measurement noise covariance matrix, �� , is computed from an estimate of the NGS WFS signal level during the 

observation and an estimate of the detector read noise. The error covariance matrix �� is computed off-line as the 

solution of a filtering (DARE), and is a nonlinear function of A , dE , v�   and TR R��  . Finally, the state estimate |ˆn nx
is propagated forward in time by the state matrix as follows: 

1| |ˆ ˆ .n n n nx Ax� � (2.24) 

 Equations (2.18), (2.19), (2.21) and (2.24) constitute the Kalman filter recursion, which is initialized with null vectors, 
i.e. 0|0 1|0 0,ˆ ˆx x� �  and 0 1 .0clipped clippedc c� �  The Kalman filter model needs to be updated as conditions change to 
account for changes in measurement noise and turbulence conditions.  

The LQG controller output command is computed during the control stage which follows the above estimation 
stage. The control stage consists of extracting , |ˆd n nx from |ˆn nx  and up-sampling the estimate to the LGS loop frame rate. 
The extraction step is simply expressed as: 

, | |ˆ ˆ ,d n n d n nEx x� (2.25) 

and the up-sampling step is composed of a prediction step: 
( 1)

1 , |,
, 0,ˆ ˆ , 1lgsdA j T

j d n nd n
r

x e rjx�
�

�
� � �� (2.26) 

and an averaging step: 

1 12 2 1
1

1 , |

1 ) ˆ .( lgsdA
d

T
j jn d n n

lgsr r
dC Ie xAu

T
�

� � �
� �

� � (2.27) 

3. SIMULATION RESULTS   

We have compared the performance of the Kalman filter model described in Section 2 to an optimized type1 
integral controller for the 4 sample NGS asterisms described in Ref.[14], for the Thirty Meter Telescope (TMT) Narrow 
Field InfraRed Adaptive Optics System (NFIRAOS) [15], [16]. Sampling periods, signal-to-noise ratio (SNR) and 
measurement noise equivalent angle (NEA) are listed in Table 3.   
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  TTF TT1 TT2 TTF TT1 TT2 
ast1 8 3 8 8 7 1 1.2 
ast2 10 18 6 4 1.8 1.9 4.2 
ast3 9 7 25 3 5 0.4 2.9 
ast4 12 12 52 4 2.9 0.3 4.2 

Table 3 Main NGS WFS parameters. 

The Kalman filter or type1 controllers run at the sampling frequency specified in Table 3, but their commands are up-
sampled to the LGS loop sampling frequency of 800Hz. To simulate the integrator using open-loop slopes, we 
implement the filter corresponding to its equivalent disturbance rejection function, namely: 

1 1 2[ (1 1) ]1 .OL
nn n n nc c

r r
c c g z� � �� � � � � (2.28) 

Command up-sampling for the integrator is implemented using a zero-order hold (ZOH) model. We consider 6 modal 
disturbances: 5 NGS modes consisting of tip, tilt, and 3 plate scale (PS) (i.e. tilt anisoplanatism) modes, plus focus. The 
tip/tilt and PS modes are invisible to the LGS wavefront sensors (WFSs), and projected out from the output of the 
NFIRAOS high-order LGS loop to reduce cross-coupling with the low-order NGS loop, an architecture called “adhoc 
split tomography” (AHST) [17]. Figure 1 compares open loop with LGS compensated RMS values, averaged over a 17 
arcsec x 17 arcsec field of view (FoV). Science-based and NGS gradient-based weightings are considered for the NGS 
removal step on the NFIRAOS high-order LGS loop. It is seen that closing the LGS loop with science weighting reduces 
significantly the PS RMS values over the narrow 17 arcsec x 17 arcsec FoV. 30,000 time steps long time histories (PSDs 
down to 0.027Hz) were obtained using MAOS [18] for the 7-layer Mauna Kea median turbulence profile [14] . Each 
phase screen was sampled at 1/64m to capture high-spatial frequency errors, and had a 512m width (i.e. 32K x 32K 
phase points per screen). The 7 screens are stored to disk (8GB/screen in double precision) and are periodically readout 
as the simulation progresses. The resulting modal PSDs (simulation and model fit) are displayed in Figure 3 and Figure 
3.

Figure 1: RMS disturbance WFE breakdown. 

Figure 2: Tip/tilt and focus PSDs: simulation (solid) and model fit (dashed). 
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Figure 3: Plate scale PSDs: simulation (solid) and model fit (dashed). 

Figure 4: Performance results. 

Command performance results are summarized in Figure 4 and Table 4 for the 37.5s long simulations (30,000 
steps of 1.25ms each). It is seen that LQG outperforms optimized type1 control in all cases and modes considered, which 
is consistent with earlier results [11]. Sample trajectories for the open loop data are displayed in Figure 5 and Figure 6. 
Note that both type1 and LQG controllers upsample their output to 800Hz, and that separate gains were applied to the 
tip/tilt, PS and focus modes for the former.  Finally, sample optimized gains and WFE curves are provided in Figure 7, 
which shows that the LQG controller is very robust against uncertainties in the RMS state noise value. 

 NGS modes NGS modes + focus 
Science weight 20-30 
Gradient weight 23-33 25-35 
Open loop 26-36 28-40 

Table 4 Optimized type1 control incremental WFE (nm RMS in quadrature) compared to LQG control.  

Figure 5: Sample tip/tilt/focus trajectories. 
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Figure 7: Top: optimal type1 modal gains and LQG state noise gain. Bottom: sample WFE cross-sections versus gains. 

4. SUMMARY
We have shown that proper Kalman filter design and tuning can lead to significant performance gains compared to 
standard optimized type1 integral control to reject stochastic turbulence-induced disturbances. For TMT’s first light AO 
system, NFIRAOS, performance gains up to 40nm RMS are predicted for the tip/tilt, tilt anisoplanatism and focus modes 
for the AHST control architecture under median turbulence conditions. Detailed end-to-end Monte Carlo sky coverage 
simulations are presented in a companion paper [19]. Kalman filtering applied to the more optimal minimum variance 
split tomography (MVST) architecture [20] will be evaluated in a follow up publication. 
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