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PDES WITH COMPRESSED SOLUTIONS∗

RUSSEL E. CAFLISCH† , STANLEY J. OSHER‡ , HAYDEN SCHAEFFER§ , AND

GIANG TRAN¶

Abstract. Sparsity plays a central role in recent developments in signal processing, linear algebra,
statistics, optimization, and other fields. In these developments, sparsity is promoted through the
addition of an L1 norm (or related quantity) as a constraint or penalty in a variational principle. We
apply this approach to partial differential equations that come from a variational quantity, either by
minimization (to obtain an elliptic PDE) or by gradient flow (to obtain a parabolic PDE). Also, we
show that some PDEs can be rewritten in an L1 form, such as the divisible sandpile problem and
signum-Gordon. Addition of an L1 term in the variational principle leads to a modified PDE where
a subgradient term appears. It is known that modified PDEs of this form will often have solutions
with compact support, which corresponds to the discrete solution being sparse. We show that this is
advantageous numerically through the use of efficient algorithms for solving L1 based problems.
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1. Introduction
Sparsity has played a central role in recent developments in fields such as signal

processing, linear algebra, statistics, and optimization. Examples include compressed
sensing [12, 17], matrix rank minimization [32], phase retrieval [10], and robust principal
component analysis [11, 16, 31], as well as many others. A key step in these examples
is the use of an L1 norm (or related quantity) as a constraint or penalty term in a
variational formulation. In all of these examples, sparsity is for the coefficients (i.e., only
a small set of coefficients are nonzero) in a well-chosen set of modes for representation
of the corresponding vectors or functions.

The use of sparse techniques in physical sciences and partial differential equations
(PDEs) has been limited, but recent results have included numerical solutions of PDEs
with multiscale oscillatory solutions [33], efficient material models derived from quantum
mechanics calculations [27], “compressed modes” for variational problems in mathemat-
ics and physics [28], and “compressed plane waves” [29]. In the latter two examples,
sparsity is used in a new way, in that the solutions are sparse and localized in space (as
opposed to sparsity of the coefficients in some modal representation). Sparse solutions
with respect to low-rank libraries are used in modeling and approximating dynamical
systems, see, for example, [9].
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Motivated by these works and by the early theoretical framework established in
[5, 6, 7, 8], we investigate PDEs with L1 subdifferential terms. The PDE is either
an elliptic PDE coming from a variational principle or a parabolic PDE coming from a
gradient flow of a convex functional. In either case, the L1 term in the convex functional
leads to a subgradient term in the PDE. Fortunately, the subgradient term has a simple
explicit form, so that the PDEs are amenable to analysis and computation.

The goal of this work is to present fast computational schemes for these modi-
fied PDEs, provide some additional theoretical insights, and show some connections to
known physical equations. Our starting point is the convex functional:

E(u)=

∫
1

2
(∇u) ·M(∇u)−uf+γ|u|dx, (1.1)

where γ≥0, M =M(x) is a symmetric, positive definite matrix as a function of x, and
f =f(x) or f =f(x,t) will be a specified function depending on x or (x,t). Define the
partial differential operator Au=−∇·(M∇u). Minimization of E(u) for f =f(x) leads
to the following elliptic PDE:

Au=f−γp(u), (1.2)

and gradient descent ∂tu=−∂uE(u), starting from initial data g(x), leads to the fol-
lowing parabolic PDE:

ut+Au=f−γp(u)

u(x,0)=g(x),
(1.3)

in which p(u) is a subgradient of ‖u‖L1 , i.e., ‖v‖1≥‖u‖1+〈v−u,p(u)〉, for any u and
v, where 〈 ,〉 denotes the (L1,L∞) pairing.

The paper is divided as follows: in Section 2, we provide the general formulation
of the problem. In Section 3, we review known results and present various properties
of solutions to the modified PDEs. The numerical implementation and simulations are
presented in Section 4 and 5, and we conclude in Section 6.

2. Problem formulation
The problem we consider in this work is to numerically solve the following PDE

ut+Au=f−γp(u)

u(x,0)=g(x),
(2.1)

and to verify theoretical results. The difficulty with such equations is the multivalued
nature of the subgradient term. Fortunately for this type of equation, we can explicitly
identify the subgradient as

p(u)=

⎧⎨⎩sign(u) if |u|>0

argmin
|q|≤1

|f−γq| if u=0. (2.2)

Note that if u=0 and |f(x)|≤γ, then p=f(x)/γ. Equation 2.2 was proved in general
in [4, 5]. It can be shown directly from Equations (1.2) and (1.3), as follows. For u=0
in an open set, the left side of the equations is 0 so that f(x)−γp(u)=0, which is only
possible if f(x)≤γ and p(u)=f(x)/γ. The value of p(u) on a lower dimensional set
does not matter, since the value of the forcing terms on a lower dimensional set does not
affect the solution u of the differential equations. For the elliptic Equation (1.2) one can
also show directly that this identification of p(u) gives u=0 as the unique minimizer of
E(u) (see Appendix).
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3. Various properties
In this section we recall the established existence theory for the elliptic Equation

(1.2) and the parabolic Equation (1.3), and provide some further insights to the behavior
of solutions.

3.1. Review of theoretical results. Equation (1.2) is related to the general
class of elliptic equations:

−Δu=F (u),

where F contains a discontinuous component. The existence and uniqueness of the
solution u are studied in [20, 19, 15]. Solutions also satisfy the standard maximum
and comparison principles given the correct sign of F . The solutions are compactly
supported in both the elliptic and parabolic cases, under some additional conditions
[7, 8]. For the parabolic equations, the solutions are Lipschitz continuous and right
differentiable in time. Furthermore, solutions exhibit finite speed of propagation [8].
More precisely, let S(t) be the support set of u(x,t), then for small times t:

• if u(x,0) does not vanish on ∂S(0) , then

S(t)⊂S(0)+B(c
√

t log(t)),

• if u(x,0) and ∇u(x,0) vanishes on ∂S(0), then

S(t)⊂S(0)+B(c
√
t),

where B(r) is the ball of radius r centered at the origin. In 1D, the constant c is numeri-
cally computed in Section 5.2, and derived analytically in Section 3.2 and Appendix A.1.

At a number of places in the manuscript, we will simplify the presentation by
assuming that x∈R

1 and that M =1, so that the elliptic PDE (1.2) becomes Laplace’s
equation with nonlinear forcing:

uxx=−f+γp(u), (3.1)

and the parabolic PDE (1.3) becomes the heat equation with nonlinear forcing:

ut−uxx=f−γp(u). (3.2)

3.2. A free boundary formula. In 1D, consider the following equation

ut−uxx=

{
f(x)−γ, |x|<a(t)

0, |x|>a(t)

u(x,0)=0,

(3.3)

which is equivalent to Equation (1.3) where the support set is parametrized. For sim-
plicity assume that f(x)=f(|x|) and f is a radially decreasing function with f(|x|)→0
as |x|→∞. Denote a0≥0 such that f(a0)=γ and assume that fx(a0) =0. Then, the
free boundary’s endpoint is governed by (for small time t):

a(t)=a0+a1
√
t+o(

√
t), (3.4)

for some a1≥0 (for the proof, see Appendix A.1. A similar result holds for zero force
and non-zero (finitely supported) initial data.
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3.3. Support size. Since it is known that the solution of Equation (1.2) and (1.3)
is compactly supported, we would like to estimate its size. In fact, by integrating
Equation (1.2) (see Appendix), the support of u satisfies

|supp(u)|≤γ−1

∫
supp(u)

|f |dx. (3.5)

A slight modification of (3.5) shows that for any nonnegative α and β with α+β=1,
we have

|supp(u)|≤ (αγ)−1

∫
(|f |−βγ)+dx. (3.6)

In this inequality, the superscript + denotes the positive part; i.e., (x)+=max(x,0).
For the parabolic case, a similar bound on the support size holds:

|supp(x,t)u(x,t)|≤ (αγ)−1

(∫
|g|dx+

∫∫
(|f |−βγ)+dxdt

)
, (3.7)

for any nonnegative α and β with α+β=1.

3.4. L1 contraction and total variation diminishing. Let u and v be
solutions of Equation (3.2) with initial data g(x) and h(x), respectively. First, note
that for any subgradient p of a convex functional, we have

sign(u−v)(p(u)−p(v))≥0. (3.8)

We wish to show that the solutions are L1 contractive and TVD by computing the
following:

d

dt
||u−v||L1 =

d

dt

∫
|u−v|>0

|u−v|dx

=

∫
|u−v|>0

sign(u−v)(ut−vt)dx

=

∫
|u−v|>0

sign(u−v)(u−v)xx−γ sign(u−v)(p(u)−p(v))dx.

The first term is nonpositive by the divergence theorem and the second term is negative
by Equation (3.8), so we have d

dt ||u−v||L1 ≤0, and thus the modified PDE is an L1

contraction. Moreover, if we take h(x)=g(x+δ) for any δ>0 we have

d

dt
‖u(x,t)−u(x+δ,t)‖L1 ≤0.

Dividing the equation above by δ and taking the supremum over all δ, the following
inequality holds:

d

dt
||u||TV ≤0.

Therefore, Equation (3.2) is TVD.
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3.5. Entropy condition. The L1 contraction and TVD results are directly
analogous to those that are obtained by solving the viscosity regularized nonlinear con-
servation laws:

wε
t = εwε

xx−f(wε)x,

for ε>0. Then by letting ε→0, one recovers the unique inviscid limit, see [21].
We can also easily obtain an “entropy inequality” in the same spirit. Consider the

scaled modified heat equation:

ut= εuxx−γp(u). (3.9)

We deliberately put an ε in front of the diffusion term to emphasize the similarities to
the theory of scalar conservation laws. The following argument holds in more general
cases.

Let K(u) be a convex function of u with subgradient q(u). Multiplying Equa-
tion (3.9) by the subgradient (as in [21]) yields:

d

dt
K(u)≤ ε

d2

dx2
K(u)−γq(u)p(u). (3.10)

For example, if K(u)= |u|, then whenever u =0, we have

|u|t≤ ε |u|xx−γ. (3.11)

We integrate Equation (3.10) over the region S(t), the support set of u(x,t), to get

d

dt

∫
S(t)

K(u)dx≤−γ

∫
S(t)

q(u)p(u)dx, (3.12)

since the spatial gradient is zero along the boundary, as shown in Appendix A.1. By
choosing K(u)= 1

a |u|a for a≥1, Equation (3.12) provides La estimates of the solutions.
Furthermore, if K(u)=(u−c)+ for c>0, then

d

dt

∫
S+
c (t)

(u−c)+dx≤−γ|S+
c (t)|, (3.13)

where S+
c (t) is the set of x for which u(x)>c.

3.6. Regularity. We can show that the solutions of the Laplace’s Equation (3.1)
and of the heat Equation (3.2) are smooth. Let Ω+, Ω−, and Ω0 denote the sets {u>0},
{u<0} and {u=0}, respectively. Then the solution u of the Laplace’s Equation (3.1)
can be represented by

u(x)=

∫
Ω+

G(x−y)(f(y)−γ)dy+

∫
Ω−

G(x−y)(f(y)+γ)dy, (3.14)

and the solution of the heat Equation (3.2) can be written as

u(x,t)=

∫
Ω

G(x−y,t)g(y)dy+

∫ t

0

∫
Ω+(s)

G(x−y,t−s)(f(y)−γ)dyds

+

∫ t

0

∫
Ω−(s)

G(x−y,t−s)(f(y)+γ)dyds, (3.15)
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in which the Green’s function G(x,t) for the heat equation and the Green’s function
G(x) for the Laplace’s equation are given by

G(x)= |x|/2,
G(x,t)=(4πt)−1/2 exp(−x2/4t).

(3.16)

From these formulas, if f is continuous, then one can see that u is C2(x) and C1(t)
away from u=0 and that u is C1(x) everywhere.

3.7. Traveling wave. To demonstrate finite speed of propagation, consider the
1D-traveling wave solution u(x,t)=v(s) for s=x−σt, of the Equation (3.2) with no
forcing term. To be specific, we will assume that v(s)≥0 for s≥0 and v(s)=0 for s≤0.
We see that v must satisfy the ODE

vss+σvs−γ=0, (3.17)

subject to the conditions

v(0)=v′(0)=0. (3.18)

The general solution of Equation (3.17) is

v(s)=

{
γ
σ s+c1e

−σs+c2, s≥0

0, otherwise.
(3.19)

The boundary conditions imply

c1=−c2=
γ

σ2
,

so that the traveling wave solution of Equation (3.2) is

u(x,t)=

{
γ
σ (x−σt)+ γ

σ2

(
e−σ(x−σt)−1

)
, x≥σt

0, otherwise.

We see that in this case we have one sided support.

Remark 3.1. This traveling wave solution is used as a reference solution to compute
the error for our numerical scheme (see Section 5.1). Also, the simple analytic form
shows that solutions with non-trivial support sets are easy to find in the modified PDE.

3.8. An exact solution. We construct the exact solution of Equation (3.1) with
nonnegative force f =(1+x2)−3/2 and γ∈ [0,1]. The exact solution is given explicitly
by:

u=

⎧⎨⎩ −(1+x2)1/2+
1

2
γx2+c, |x|≤a

0, |x|>a

where,

c=
γ+γ−1

2
, a=

√
γ−2−1.

The boundary value a and constant c are determined so that u(±a)=ux(±a)=0. At
the boundary of the support, f(±a)=γ3<γ. These results show that the solution is

nonnegative for nonnegative f , and that having |f(x)|≤γ does not imply p(u(x))= f(x)
γ .
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4. Numerical implementation
Given an elliptic operator A, we would like to solve problems of the form:

Au+∂‖u‖L1 �f (4.1)

or
ut+Au+∂‖u‖L1 �f (4.2)

which corresponds to the elliptic or parabolic equations, respectively. We will present
two methods to do so. The first scheme is semi-implicit (also known as implicit-explicit
or proximal gradient method), where the subgradient term is discretized forward in time
and the diffusion term is lagged. We apply this method to solve the time dependent
equations. The second scheme is the Douglas–Rachford method, which we use to solve
both the elliptic problem and the parabolic problem. Both methods can handle the
multivalued nature of the subgradient ∂‖u‖L1 . In this section, h and τ denote the space
and time steps of the finite difference schemes.

4.1. Implicit-explicit scheme (proximal gradient method). From the
numerical perspective, the multivalued term ∂‖u‖L1 is the main source of difficulties,
since the value is ambiguous. However, an operator of the form I+σ∂F (where F is
convex) has an easy-to-compute inverse. The inverse operator (I+σ∂F )−1, also known
as the resolvent or proximal operator, proxσF (·), can be found by solving the following
optimization:

(I+σ∂F )−1(z)=argmin
v

1

2
||v−z||2L2 +σF (v). (4.3)

For example, if F (u)= ||u||L1 and thus ∂F (u)=∂‖u‖L1 , we have:

(I+σ∂‖·‖L1)−1(z)=argmin
v

1

2
||v−z||2L2 +σ||v||L1

=S(v,σ),

where the shrink operator, S, is defined point-wise as S(v,σ) :=max(|v|−σ,0) v
|v| .

Using the proximal operator, we will write the discretization of Equation (1.3) in a
semi-implicit form. We first discretize Equation (1.3) in time, then to apply the proximal
gradient method, the subdifferential term is evaluated at time step n+1, yielding:

un+1−un+τAun+τγ∂‖un+1‖L1 � τf, (4.4)

where τ >0 is the time step. The resulting iterative scheme is:

un+1=S(un−τAun+τf,τγ). (4.5)

For example, for the heat equation, where A=−Δ is discretized using five-point stencil,
the iterative scheme is:

un+1=S(un+τΔun+τf,τγ), (4.6)

and is convergent given τ ≤ h2

4 . This scheme has the same complexity as the correspond-
ing standard explicit method for PDEs.
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4.2. Alternating direction implicit (Douglas–Rachford) method. The
Douglas–Rachford algorithm for nonlinear multivalued evolution equation was studied
in [26]. Denote Bu :=γ∂‖u‖L1 , the iterative scheme for Equation (1.3) is

un+1=(I+τB)−1
[
(I+τA)−1(I−τB)+τB

]
un, (4.7)

which can be rewritten as:

un+1=(I+τB)−1ũn

ũn+1= ũn+(I+τA)−1(2un+1− ũn)−un+1.
(4.8)

It was shown that the method is unconditionally stable and convergent for all τ >0
[14, 26, 34]. Also, note that the iterates un converge to a solution of the stationary
Equation (1.2). For the sandpile problem [24], which is discussed in Section 5.6, the
operators A and B are chosen specifically as follows:

Au=−Δu−f, Bu=∂‖u‖L1 , (4.9)

so that the operation for un+1 in the iterative process, Equation (4.8), is a shrink
operator. The corresponding proximal operators are

proxτF (z)=(I+τA)−1(z)=(I−τΔ)−1(z+τf)

proxτG(z)=(I+τB)−1(z)=S(z,τ),

where F (z) := 1
2‖∇z‖2L2 −〈f,z〉 and G(z) :=‖z‖L1 . To compute (I−τΔ)−1 numerically,

we use the FFT, where the discrete Laplacian Δhu is viewed as the convolution of u
with the finite difference stencil.

Remark 4.1. Since the shrink operator is the last step of the iterative process, this
method provides a numerically well-defined support set for u, making it easier to locate
the free boundary.

5. Computational simulations
In this section we show convergence of our numerical scheme to known solutions,

approximations to the support set evolution, and numerical solutions for higher dimen-
sion.

5.1. Numerical convergence. In Figure 5.1, we solve Equation (3.2) (with
γ=0.05) using the implicit-explicit scheme Equation (4.6). The initial data is taken
to be the traveling wave profile (Equation (3.19)) with speed σ=2. The numerical
solution has the correct support set and speed of propagation, validating the traveling
wave solution as well as the numerical method.

This is further confirmed in Figure 5.2, where the numerical solution is compared
to the exact solution. To compute the error, we use the following norms:

Errorq(h)=max
n

||un
h−uexact||q,

where q=1,2,∞ and un
h is the solution at tn with space resolution h. The errors in these

three norms are plotted along side the line representing the second order convergence
(dashed line).

To test the stability of these traveling wave solutions, we initialize our numerical
scheme with the traveling wave profile perturbed by uniformly random noise sampled
from [0,0.05]. The time evolution is shown in Figure 5.3. In a short time, the Laplacian
term dominates the evolution, as is expected. The solution gradually smooths down to
a new traveling wave profile and begins to translate at the expected speed. This shows
that the traveling wave solution is an attracting solution, at least locally.
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(a) t=0 (b) t=0.398

(c) t=1.594 (d) t=2.390

Fig. 5.1: Numerical solution starting with an initial traveling wave profile with σ=2 and γ=0.05
computed using 500 grid points.

−6 −5 −4 −3 −2 −1
−18

−16

−14

−12

−10

−8

−6

−4

Fig. 5.2: Convergence analysis using the L1 (dotted line), L2 (dashed line), and L∞ (solid line)
norms in space and L∞ norm in time. The x-axis is the log of the grid resolution h and the y-axis is
the log of the Error. The blue dashed line represents second order convergence.

5.2. One dimensional heat equation. In Figure 5.4, the plot shows the
modified heat Equation (3.2) with zero initial data and force f(x)=2e−5x2

. The solu-
tions evolve upward in time with their support sets marked by red circles. We see that
the computed solutions are indeed compactly supported in space, as the theory states.
The corresponding table provides a least squares fit to estimate the coefficient a1 from
Equation (3.4) under grid refinement. We see that the coefficient a1 approaches the
value 1 quickly within some small approximation error, which is used to verify that our
numerical approximation is valid.

5.3. Two dimensional heat equation. In Figure 5.5, we compute the solution
of Equation (3.2) with γ=2 and f =0. In this case, we apply the parabolic Douglas–
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(a) t=0 (b) t=0.004

(c) t=0.040 (d) t=0.398

(e) t=1.594

Fig. 5.3: Numerical solution starting with an initial traveling wave profile perturbed by uniformly
random noise sampled from [0,0.05] with σ=2 and γ=0.05. This is solved on a grid of 500 points.

Number of grid points Estimate of a1
256 0.948
512 0.979
1024 0.985
2048 0.991
4096 0.995
8192 0.997
16384 0.997

Fig. 5.4: The graph is a 1D simulation of the heat equation with the subgradient term, zero initial

data, and a Gaussian forcing function centered around zero, f(x)=2e−5x2
. The solutions are growing

upward in time and their support sets are marked by red circles. The table shows the estimate of the
coefficient a1 from Equation (3.4) under grid refinement.
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(a) t=0 (b) t=3.2×10−4

(c) t=3.2×10−3 (d) t=1.76×10−2

(e) t=4.8×10−2 (f) t=0.112

Fig. 5.5: Solutions of the initial value problem (with no forcing term) computed on a 500 by 500 grid
with γ=2 at times indicated. The solution smooths out and decays to zero.

Rachford algorithm, which allows for larger time-steps. The initial data is a smoothed
indicator function on the star shaped domain. In Figure 5.6, the corresponding support
set of Figure 5.5 is shown. The support set grows outward to a maximum size and
retracts inward as the solution decays to zero. The solution is identically zero at time
t=0.1152.

5.4. Graph diffusion. In higher dimensions, we can consider the standard
normalized diffusion equation:

ut=Lgu :=−
(
I−D−1/2AD−1/2

)
u

u(x,0)=g(x),
(5.1)

where Lg is the graph Laplacian, A is the adjacency matrix, and D is the degree matrix.
For more on the graph Laplacian, see [13, 35].
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(a) t=0 (b) t=3.2×10−4

(c) t=3.2×10−3 (d) t=1.76×10−2

(e) t=4.8×10−2 (f) t=0.112

Fig. 5.6: Support set of the initial value problem in Figure 5.5. The support set grows outward to a
maximum size and retracts inward as the solution decays to zero.

In Figure 5.7, the points represent the projection of vectors from R
100 and each

point is connected to many others in a non-local fashion. For the initial data, we
concentrate the mass on one point in the far left, specifically, u(xj ,0)= δj,1000 where
δj,k is the Kronecker delta function. As the system evolves governed by Equation (5.1),
the solution becomes strictly positive quickly.

The modified equation is:

ut=−
(
I−D−1/2AD−1/2

)
u−γp(u),

u(x,0)=g(x).
(5.2)

In Figure 5.8, we begin with the same initial condition and see that over time the
support set does not grow past a bounded region if u evolves as in (5.2). Therefore,
numerically we show that the support is of finite size for the case of graph diffusion.
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In Figure 5.8(d), the solution begins to decay to zero which causes its support set to
retract towards the initial support before vanishing.

(a) t=0 (b) t=47.5

(c) t=475 (d) t=1425

Fig. 5.7: Solution of the initial value problem diffusing standard normalized graph Laplacian.

5.5. Signum-Gordon equation. The signum-Gordon equation has an inter-
pretation as an approximation to certain physical models [2, 1, 3]. The equation takes
the form of a second order nonlinear hyperbolic equation:

utt−Δu=−sign(u)

u(x,0)=g1(x)

ut(x,0)=g2(x),

(5.3)

and exhibits both compactly supported traveling waves and oscillatory (stationary)
soliton-like structures. This equation can be derived from the Lagrangian with the
following L1 potential:

L=Kinetic−Potential=
1

2
|ut|2− 1

2
|∇u|2−|u|.

The equation of motion can be derived from the Lagrangian:

utt−Δu=−p(u)

u(x,0)=g1(x)

ut(x,0)=g2(x),

which is the same as Equation (5.3) by replacing the sign(u) term with the subgradient
p(u).
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(a) t=0 (b) t=2.85

(c) t=6.65 (d) t=11.4

Fig. 5.8: Solution of the initial value problem with the subgradient term, γ=5×10−5.

To discretize the problem, we apply the ideas from the proximal gradient method,
by placing p(u) in the future:

un+1−2un+un−1−τ2Δun=−τ2p(un+1),

and thus,

un+1=S(2un−un−1+τ2Δun,τ2).

In Figure 5.9, we plot our numerical approximation to the traveling wave solution
found in [1]. Since the traveling wave profile is also known analytically, we show nu-
merical convergence of our scheme as h→0+ (see Table 5.1). Also, in Figure 5.10, we
show the time evolution of an oscillatory compact soliton-like structure which appears
in [2, 3]. These examples show the range of behaviors that appear via the addition of
an L1 subgradient term.

Grid Size 128 256 512 1024 2048 4096 8192
L2-Error 0.4601 0.2319 0.1133 0.0569 0.0284 0.0143 0.0072

Table 5.1: Error between our numerical solution and the analytic solution of the signum-Gordon
Equation.

5.6. Divisible sandpile. As a model for self-assembly and internal diffusion
limited aggregation, the sandpile problem has received attention recently [30, 24, 18,
22, 23]. The problem is posed discretely, but has the following continuous formulation
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Fig. 5.9: Our numerical approximation to a compact traveling wave solution to the signum-Gordon
equation.

Fig. 5.10: The dynamics of an oscillatory compact solution of the signum-Gordon equation.
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Fig. 5.11: A two-region sandpile problem, where each of the larger squares defines the set Sj , for
j=1,2. The darker blue region has no mass, the lighter blue and yellow region has a mass density of
1, and the red (overlap) region has a density of 2. On the left, the region of positive mass is displayed.

Fig. 5.12: The iterative evolution of our sandpile problem algorithm applied to a flower-shaped region
S on the top left with f =2χS . The final state appears in the bottom right corner.

Fig. 5.13: The iterative evolution of our sandpile problem algorithm applied to the fractal region S
on the top left with f =1.2χS . The final state appears in the bottom right corner.



R. E. CAFLISCH, S. J. OSHER, H. SCHAEFFER, AND G. TRAN 2171

Fig. 5.14: The iterative evolution of our sandpile problem algorithm applied to the fractal region S
on the top left with f =1.5χS . The final state appears in the bottom right corner.

Fig. 5.15: The solution u from Figure 5.14 (bottom right).

for the divisible sandpile problem [24, 18, 25]:

Δu=1−f, if u≥0, (5.4)

where f is some non-negative external force. By multiplying Equation (5.4) with u and
integrating over R2, the associated variational energy is:

min
u

∫
u≥0

1

2
|∇u|2+u−uf dx. (5.5)

There are several choices for relaxing the constraint u≥0, in particular, we use the
following:

min
u

∫
1

2
|∇u|2+ |u|−uf dx. (5.6)

It can be shown (via maximum principle) that for f ≥0 the solution of Equation (5.6)
and Equation (5.5) are the same. The Euler–Lagrange equation for the L1 sandpile
problem is:

Δu=p(u)−f, (5.7)

and is solved numerically via the Douglas–Rachford algorithm (see Equation (4.8)).

Note that if the external force is a finite sum of characteristic functions f =
∑N

j=1αjχSj
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where Sj are compact sets and αj ≥0, then by integrating Equation (5.7) over R
2 we

get:

|supp(u)|=
N∑
j=0

αj |Sj |, (5.8)

since u≥0 and supp(u) is compact. This refers to preservation of mass.
In Figure 5.11, we take f =χS1 +χS2 , where S1 and S2 are the two overlapping

square domains (on the left). The support set of u, given in Figure 5.11 (right), agrees
with direct numerical simulation of the discrete sandpile problem. The direct simulation
follows a topping rule described in [24].

In Figures 5.12–5.14, we take f =αχS where S is the shape given in Figures 5.12–
5.14 (the top left), and α=2.0,1.2 and 1.5, respectively. The support set of u is given
in Figures 5.12–5.14 (the bottom right) with intermediate calculation shown in fig-
ures 5.12–5.14 (the remaining plots). To verify that the solutions from our algorithm
correspond to the correct solutions for the sandpile problem, we use the mass conser-
vation property, Equation (5.8). Unlike direct simulation, our method also calculates
the function u as shown in Figure 5.15. One of the benefits of our approach is that the
solutions can be computed quickly, for example, our method is at least 8 times faster
than direct simulation (76 seconds vs. 652 seconds) at approximating the solution found
in Figure 5.15.

6. Conclusion
By adding the subdifferential of L1 to certain PDEs, we have shown (numerically

and theoretically) various properties of the solutions. These problems arise from physical
models as well as exact relaxation of other PDEs, and could provide useful tools in
computing fast approximations to nonlinear problems with a compactly supported free
boundary. This is all in the spirit of borrowing the key idea from compressed sensing,
that L1 regularization implies sparsity of discrete systems [17], and transferring it to
classical problems in PDE. See [33, 28] for earlier work in this direction.
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the anonymous referees for their valuable comments.

Appendix A.

A.1. Proof of a free boundary formula in Section 3.2. We derive the
short time asymptotic equation for the support set Equation (3.2). First, we provide a
natural boundary condition for the problem.

Flux Condition. Let u(x,t)∈C0(C1(R);(0,T )) and ut∈L∞(C1(R);(0,T )) be a solu-
tion to

ut−uxx=h(x,t,γ). (A.1)

Assume that there exists a positive valued function a∈C1(0,T ) such that h=0 for |x|>
a(t), the initial data g=0 for |x|>a(0), and the exterior mass,

m(t)=

∞∫
a(t)

u(x,t)dx,
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is conserved, then u(a(t),t)=0 and ux(a(t),t)=0.
To derive this condition, consider the heat Equation (A.1). Differentiate the one

sided mass in time yields:

dm

dt
=−u(a(t),t)a′(t)+

∞∫
a(t)

ut(x,t)dx

=−u(a(t),t)a′(t)+

∞∫
a(t)

uxx(x,t)dx

=−u(a(t),t)a′(t)−ux(a(t),t)

=−F (t),

in which F is the flux across the moving boundary x=a(t).
We now can see that if the flux across a moving boundary x=a(t) is zero (i.e. the

mass is conserved), we have

F (t)=u(a(t),t)a′(t)+ux(a(t),t)=0. (A.2)

This is the natural boundary condition for this problem. In the time-dependent region
F ={(x,t) :x>a(t)}, the initial data g, force h and incoming flux F are all zero, so that
the solution is identically zero. In particular, u=ux=0 on x=±a(t).

Next, consider the following equation:

ut−uxx=

{
f(x)−γ, |x|<a(t)

0, |x|>a(t)

u(x,0)=0.

For simplicity assume that f(x)=f(|x|) and f is a radially decreasing function with
f(|x|)→0. Denote a0≥0 such that f(a0)=γ and w.l.o.g. fx(a0) =0. By studying the
exterior mass of Equation (3.3), we want to show that in small time:

a(t)=a0+a1
√
t+o(

√
t),

for some a1≥0.
We look for an increasing function a(t) such that the exterior mass of Equation

(3.3) is zero:

m(t)=

∞∫
a(t)

dx

t∫
0

ds

a(s)∫
−a(s)

G(x−y,t−s)(f(y)−γ)dy.

where we use the Green’s formula for the heat equation, Equation (3.16), to represent
u. Since a(t) is an increasing function, we have

y≤a(s)≤a(t)≤x.

Therefore, for t small, the Green’s function G(x−y,t−s) is sharply peaked near the
point

y=a(t), s= t, x=a(t).
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So we can replace (f(y)−γ) by the first few terms in its Taylor expansion

f(y)−γ=(y−a0)f1+O((y−a0)
2),

in which f1=fx(a0). Also, since G(x−y,t−s) decays exponentially as y→−∞, we
replace the lower limit y=−a(s) by −∞. Now the mass can be approximated by

m(t)=f1

∞∫
a(t)

dx

t∫
0

ds

a(s)∫
−∞

(y−a0)G(x−y,t−s)dy.

Next we show the existence of a1 satisfying the following approximations

a(t)=a0+a1
√
t+o(

√
t), and m(t)=0.

We change the variables to

x=x1

√
t+a0, x1∈ [a1,∞),

y=y1
√
t+a0, y1∈ (−∞,a1

√
s1 ],

s=s1t, s1∈ [0,1],

and

x1=x2a1, x2∈ [1,∞),

y1=y2a1, y2∈ (−∞,
√
s1 ],

and note that G(x−y,t−s)= t−1/2G(x1−y1,1−s1)= t−1/2G(a1(x2−y2),1−s1). Then

m(t)=f1t
2

∞∫
a1

dx1

1∫
0

ds1

a1
√
s1∫

−∞
y1G(x1−y1,1−s1)dy1

=a31f1t
2

∞∫
1

dx2

1∫
0

ds1

√
s1∫

−∞
y2G(a1(x2−y2),1−s1)dy2.

Consider the rescaled masses m̃1(a1)=m(t)/(f1t
2) and m̃2(a1)=m(t)/(a21f1t

2); i.e.,

m̃1(a1)=

∞∫
a1

dx1

1∫
0

ds1

a1
√
s1∫

−∞
y1G(x1−y1,1−s1)dy1,

m̃2(a1)=a1

∞∫
1

dx2

1∫
0

ds1

√
s1∫

−∞
y2G(a1(x2−y2),1−s1)dy2.

As a1→0, m̃1(a1) goes to

m̃1(0)=

∞∫
0

dx1

1∫
0

ds1

0∫
−∞

y1G(x1−y1,1−s1)dy1

with m̃1(0)<0. This shows that m(t)<0 for a1=0.
On the other hand, for a1�1, a1G(a1(x2−y2),1−s1) is approximately the Dirac

delta function at x2=y2, s1=1. At this point, we have y2>0, therefore m̃2(a1)>0.
This shows that m(t)>0 for large values of a1. Thus there exists a positive value a1 so
that m(t)=0.
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A.2. Proof of support size estimate in Section 3.3.
Proof. First, observe that if γ≥max |f |, then the unique solution of Equation (1.2).

is u≡0. Indeed, if u=0, since
f

γ
∈ [−1,1], we can choose p(u)=

f

γ
and Equation (1.2)

is satisfied.
Now, take S=supp(u) and integrating both sides of Equation (1.2) gives us∫

∂S
M∇u ·Nds=−

∫
S
fdx+γ sign(u)|S|, (A.3)

where N is the normal. On ∂S, since u=0, we have ∇u=ωN , for some scalar function
ω :∂S→R. In addition, since u>0 in S and u=0 on ∂S, we have ω≤0. Lastly, by
assumption M is positive definite, the left hand side of Equation (A.3) is non-positive:∫

∂S
M∇u ·Nds=

∫
∂S

ωMN ·Nds≤0.

Therefore,

|supp(u)|≤γ−1

∫
supp(u)

|f |dx.

For the parabolic case, which verifies Equation (3.5), define the time dependent
support set S(t) :=supp(u(x,t)). Differentiating the integral of u over S(t) and using
the boundary conditions (i.e., u=0 on ∂S(t)) yields:

d

dt

∫
S(t)

u(x,t)dx=

∫
S(t)

utdx=

∫
S(t)

∇·M∇u+f−γp(u) dx.

Because of the divergence theorem and the fact that M is positive definite, we have

d

dt

∫
S(t)

|u(x,t)|dx≤
∫
S(t)

|f |dx−γ|S(t)|.

Integrating the expression in time yields the following bound on the support size:

|supp(x,t)u(x,t)|≤γ−1

(∫
S(t)

|g|dx+
∫∫

S(0)

|f |dxdt
)
,

which verifies Equation (3.7) for α=1 and β=0. Extension to other values of α and β
is straightforward.
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[28] V. Ozoliņš, R. Lai, R. Caflisch, and S. Osher, Compressed modes for variational problems in

mathematics and physics, Proceedings of the National Academy of Sciences, 110(46), 18368–
18373, 2013.
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