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Measured and calculated rotationally resolved photoelectron spectra for photoionization of low
rotational levels of theC̃ 1B1 Rydberg state of water are reported. This is the first example of
rotationally resolved photoionization spectra beyond the special cases of H2, high-J levels, and
threshold spectra. These spectra reveal very nonatomiclike behavior and, surprisingly, the influence
of multiple Cooper minima in the photoelectron matrix elements. ©1997 American Institute of
Physics.@S0021-9606~97!02713-X#

High-resolution, energy-dispersive photoelectron spec-
troscopy~PES! has been an important experimental probe of
photoionization processes in atomic and molecular systems.
Such photoelectron analyzers have been used to obtain rota-
tionally resolved spectra for light systems such as H2 ~Ref. 1!
and for highJ levels of heavier diatomics such as NO~Ref.
2! and OH ~Ref. 3!, thus permitting detailed comparisons
between theoretical predictions and experimental observa-
tions. These studies have highlighted important dynamical
features such as angular momentum mixing in the molecular
electronic continuum, parity selection rules, and the effects
of Cooper minima on photoelectron spectra.4,5 While zero-
kinetic-energy~ZEKE! photoelectron spectroscopy6 can pro-
vide subwavenumber resolution in ion rotational distribu-
tions, this technique is restricted to the threshold region and
does not permit studies at photoelectron energies away from
the threshold. Studies at higher photoelectron energies can
clearly display dynamical behavior which may not be appar-
ent from near-threshold studies. This is particularly true of
features arising from Cooper minima.

In this Communication we present the first rotationally
resolved, REMPI~resonance enhanced multiphoton ioniza-
tion! photoelectron spectra for low rotational levels of any
molecule other than H2 at energies significantly above
threshold. Spectra were measured for~2118! REMPI of se-
lected rotational levels of theC̃ 1B1~0,0,0! state of H2O at
about 1 eV above threshold with a kinetic energy resolution
of about 4 meV. Comparison of these experimental results
with calculated ion yield distribution reveals both very non-
atomiclike photoionization dynamics and the influence of
multiple Cooper minima in the photoelectron channels.

Room temperature water vapor at a pressure of

;231025 Torr was photoionized through a~2118! process,
resonant at the two-photon level with selected rotational lev-
els of theC̃ vibrational state. The tunable light used to excite
theC̃ 1B1(0,0,0)state was produced by frequency doubling
the tunable 490 nm light from a homebuilt dye laser/
amplifier~band-width;0.03 cm21!, yielding up to 200mJ of
ultraviolet light. The dye laser was pumped by the third-
harmonic output of a Nd13:YAG laser ~Continuum YG661!
operating at a 10 Hz repetition rate, with a pulse duration of
about 6 ns. An autotracking device~INRAD AT-2! was used
to maintain optimum ultraviolet intensity when the laser
wavelength was scanned. The ultraviolet light was separated
from the visible fundamental using dichroic mirrors and was
focused into the electron spectrometer using a 7.5 cm focal
length lens. Wavelength scans were calibrated using a simul-
taneously acquired optogalvanic reference spectrum of ura-
nium. Typically, 5 mJ of 355 nm light was used to photoion-
ize the C̃ state. This light was obtained from the third-
harmonic beam of the Nd13:YAG laser and was directed to
the magnetic bottle photoelectron spectrometer and focused
into the interaction region using a 20-cm focal length lens.
This photoionizing radiation, which was polarized parallel to
the magnetic field in the photoelectron spectrometer, was
counterpropagated with the 245 nm light from the doubled
dye laser. A high energy density of photoionizing radiation
was required to compete effectively with predissociation of
the C̃ state.7

The magnetic bottle photoelectron spectrometer, which
will be described in detail elsewhere,8 is a modified version
of the instrument described in Ref. 9. Briefly, the photoion-
ization process occurs in a uniform 1 T magnetic field which
is produced by an electromagnet. Photoelectrons spiral out
from the interaction region along the field direction and
travel through a hole in one of the pole faces into a drift tube.
The drift tube has a uniform 1023 T field directed along its
axis, produced by a solenoidal coil. The magnetic field in the
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transition region, determined by the shape of the pole faces,
decreases smoothly from one field value to the other. Elec-
trons with an initial velocity component in the direction of
the drift tube and sufficiently low energy pass adiabatically
~without crossing field lines! from the interaction region into
the drift tube region and thus have their paths redirected
towards the detector without a change in their kinetic ener-
gies. The collection efficiency of the spectrometer is there-
fore roughly 50%. The drift tube can be biased with a retard-
ing voltage to spread out the arrival time of the electrons at
the detector for the kinetic energy range of interest. The pho-
toelectrons are detected with a tandem microchannel plate.
The detector signal for each laser shot is processed by a
transient digitizer and stored on a computer. A typical pho-
toelectron time-of-flight spectrum is acquired by averaging
the data for 5000 laser shots. Tests of this spectrometer on
~3118! photoionization of krypton have demonstrated a reso-
lution of 3.5 meV for 1 eV photoelectrons.

Accurate calibration of time-of-flight instruments such
as the one used in this experiment is difficult; however, if the
full photoelectron spectrum contains several peaks with
known energies that do not differ greatly from those of the
peaks of interest, the spectrum may be calibrated accurately
by a fit of the known energies to the arrival times. This
procedure will be discussed in more detail in a subsequent
paper.7 In the case of this experiment, three known peaks are
provided by nonresonant four-photon ionization of the low-
est three vibrational states of the ground state by the 355 nm
light. Using these peaks, we were able to calibrate the abso-
lute energies of the remaining peaks in the spectra to an
accuracy of about 2 meV. The accuracy of the relative en-
ergy spacings within the photoelectron spectra should be sig-
nificantly better than 1 meV.

In this work, we also present the results ofab initio
calculations of the rotationally resolved photoelectron spec-
trum for photoionization of theC̃ 1B1(3pa1) Rydberg state
leading to theX̃ 2B1 ground state of H2O

1. The wave func-
tion of the C̃ state is obtained using the improved virtual
orbital ~IVO! method,10 and the core orbitals are taken to be
those of the fully relaxed core of the ion. For the final state,
we used the frozen-core Hartree–Fock approximation, in
which the photoelectron orbital is obtained as a solution of a
one-electron Schro¨dinger equation containing the Hartree–
Fock potential of the molecular ion. The photoelectron orbit-
als are obtained numerically using an iterative procedure to
solve the associated Lippmann–Schwinger equation.11,12

These calculations emphasize the importance of the non-
spherical nature of the molecular ion potential and the for-
mation of the Cooper minima in the electronic continuum.

In these calculations, the molecularz axis is chosen to be
theC2 symmetry axis and thex axis is in the plane of the
molecule ~or ion!. Thus, the body-fixed axesx, y, and z
coincide with thea, c, andb axes, respectively. With this
choice and using Hund’s caseb to represent theC̃ Rydberg
and X̃ ionic states of water, the dipole transition matrix ele-
ment can be written as

~ f umu i &5( C@11~21!DN1Dp1 l11#S Nt 1 l

2Kt m l
D

3F S N1 Ni Nt

2K1 Ki Kt
D 1~21!p1SN1 Ni Nt

K1 Ki Kt
D G ,

~1!

with DN5N12Ni andDp5p12pi . In Eq. ~1!, C is re-
lated to the electronic transition dipole moment,13 N1 and
Ni are the total angular momenta~exclusive of spin! for the
ion and Rydberg state of H2O, respectively,K1 andKi are
their projections on thez axis, andp1 andpi are the parities
of their rotational wave functions.Nt denotes the angular
momentum transfer,l an angular momentum component of
the photoelectron matrix element,l its projection along the
molecularz axis, andm the light polarization index in the
molecular frame.

With the symmetry properties of the asymmetric top and
our choice of the molecular axes, it can be shown thatDKa is
even~odd! whenDN1Dp is even~odd!. Using this relation-
ship and Eq.~1!, we obtain the selection rule

DKa1 l5odd, ~2!

and

DKb5m1l, ~3!

with DKa5Ka
12Ka

i and DKb5Kb
12Kb

i , where Ka and
Kb are the projections of the total angular momentum~ex-
cept spin! along thea andb axes, respectively. To obtain the
selection rules for photoionization of theC̃ 1B1(3pa1)
Rydberg state of H2O, we have to determine the value of
m1l. There are three dipole-allowed continuum channels
kb2 , kb1 , andka1 for this ionization process. In this case,
odd l andm are associated with thekb1 andkb2 channels,
whereas evenl andm are associated with theka1 channel.
Therefore,l1m is always even for all allowed transitions.
Hence we have

DKa1DKc5even. ~4!

Equations~2! and ~4! show that only typeb transitions are
allowed. Those transitions withDKa5odd andDKc5odd
are associated with evenl partial waves of the photoelectron
matrix elements and those withDKa5even andDKc5even
with odd l partial waves.

Figure 1 shows the total photoelectron signal from the
~2118! ionization process vs transition energy over part of
the C̃←←X̃ band, acquired by scanning the wavelength of
the dye laser. The transitions to the red of the bandhead at
;80670 cm21 have been observed previously by~211! ion-
ization and identified, as described in Ref. 14. Our measured
transition energies differ from those of Ref. 14 by at most 0.2
cm21. Most of the peaks to the red of the bandhead are
well-resolved; therefore, we were able to excite these selec-
tively and acquire photoelectron spectra corresponding to a
pure or nearly pure population of individual rotational levels
of the C̃ state. In this communication, we report rotationally
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resolved photoelectron spectra for the rotational level 413,
excited from the 414 level of the ground state as indicated by
the arrow in Fig. 1.

Figure 2 shows our calculated rotationally resolved pho-
toelectron spectra along with the measured~2118! REMPI
spectra for photoionization of the 413 rotational level of the
C̃ 1B1(3pa1) Rydberg state of H2O leading to theX̃ 2B1

state of H2O
1. The calculated spectrum is convoluted with a

Gaussian detection function having a full width at half maxi-
mum of 42 cm21. Agreement between the calculated and
measured spectra is very encouraging. These spectra show
only typeb transitions@DKa5even~odd!, DKc5even~odd!#
with the most intense transition being 413←413. On the basis
of the selection rules of Eqs.~2! and~4!, this transition must
arise from odd partial waves of the photoelectron matrix el-
ement. Single-center expansion of the 3pa1 orbital reveals
that it has 14.54%s, 83.55%p, and 1.89%d character. In
view of this strong odd wave character of the 3pa1 orbital,
this intense 413←413 peak in the photoelectron spectrum
must be very molecular in origin and arise from strong
l -mixing in the molecular electronic continuum. Similar be-
havior is also clearly seen in the mixed peak for the 533 and
615 ionic levels. While the other DKa5even and
DKc5even (l5odd! transitions such as 331, 515, and 431
levels are also dominant, they are mixed with other rotational
peaks arising from evenl components of the photoelectron
matrix element.

To provide some insight into the dynamical aspects of
the angular momentum transfer of the photoelectron upon
ionization in this system, we closely examined the photoelec-
tron matrix elements for the electron kinetic energies up to
10 eV. Surprisingly, multiple Cooper minima are seen in
every continuum channel around 2 eV. For example, these
minima exist in thed and f waves of theka1 channel,
p, d, f , andg waves of thekb1 channel, and thef andg
waves of thekb2 channel.

15 These Cooper minima strongly
deplete the contributions of the even and odd waves around 2
eV. The photoelectron energies in our experiment are around
0.87 eV. At this energy, the contributions of the odd~espe-
cially p and f ) waves are much stronger than those of even
waves. Strong partial-wave mixing near threshold is also
clearly seen; this behavior is quite common for systems with
large dipole moments. Further studies on this system are un-
derway to study the influence of these Cooper minima on ion
rotational distributions at energies around 2 eV.

The work at California Institute of Technology was sup-
ported by grants from the Air Force Office of Scientific Re-
search and the Office of Health and Environmental Research
of the U.S. Department of Energy. We also acknowledge use
of the resources of the Jet Propulsion Laboratory/California
Institute of Technology CRAY Y-MP2E/116 Supercom-
puter. The authors wish to acknowledge useful discussions
with Dr. S. T. Pratt. The photoelectron spectrometer at Ar-
gonne National Laboratory had been constructed with sup-
port from the Office of Health and Environmental Research
of the U.S. Department of Energy. W.L. Glab and P.T.
Glynn were partially supported by the Robert A. Welch
Foundation.

1S. L. Anderson, G. D. Kubiak, and R. N. Zare, Chem. Phys. Lett.105, 22
~1984!.

2K. S. Viswanathan, E. Sekreta, and J. P. Reilly, J. Phys. Chem.90, 5658
~1986!.

3E. de Beer, C. A. de Lange, J. A. Stephens, K. Wang, and V. McKoy, J.
Chem. Phys.95, 714 ~1991!.

4See the review article, S.T. Pratt, Rep. Prog. Phys.58, 821 ~1995!.
5K. Wang and V. McKoy, Annu. Rev. Phys. Chem.46, 275 ~1995!.

FIG. 1. A portion of the ~2118! photoionization spectrum of the
C̃~0,0,0!←←X̃~0,0,0! transition. The arrow indicates the transition:
413←←414 .

FIG. 2. ~a! measured and~b! calculated rotationally resolved photoelectron
spectra for photoionization of the 413 rotational level of theC̃

1B1~0,0,0!
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