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Abstract 
This note gives a necessary and sufficient condition that a compressible, 
isotropic elastic material should admit non-trivial states of finite anti-plane 
shear. 

One of the simplest classes of deformations of solids is that of anti-plane shear, in 
which each particle of a cylindrical body undergoes a displacement parallel to the 
generators of the cylinder and independent of the axial position of the particle. 
Problems involving deformations of this kind are often helpful in the study of 
qualitative effects whose analogues in more elaborate deformations such as plane 
strain may be much Jess accessible because of technical complexities. Because of 
their utility in this respect, anti-plane shear fields have proved to be especially 
instructive in crack problems of the type arising in fracture mechanics. (Examples 
may be found in the references given in [6]). 

In the linearized theory of elasticity, non-trivial equilibrium fields of anti-plane 
shear are possible in the absence of body forces for any homogeneous, isotropic 
material. In contrast, the exact theory of anti-plane shear in finite elasticity is 
marred slightly by the fact that not all such materials have this property. This 
inference is implicit in the work of Adkins [I] for incompressible elastic materials. 
(See Section 2.20 of [4] for a summary of the analysis in [!].) Much of his study, 
which appears to have been the first detailed investigation of anti-plane shear in 
finite elastostatics, is limited to the so-called Mooney material which does admit 
non-trivial states of anti-plane shear and which is of especial interest in the theory 
of rubber elasticity. 

In [6] a necessary and sufficient condition that an incompressible, isotropic elastic 
material should sustain non-trivial states of finite anti-plane shear was given in terms 
of the strain energy density characteristic of the material. In this note an analogous 
condition is established for compressible materials. 
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Consider a homogeneous, isotropic elastic body which in its unstressed, un­
deformed state occupies a cylindrical region ~ whose generators are parallel to the 
.xs-axis of a rectangular cartesian coordinate system. A deformation in which a 
particle with coordinatest x( in the undeformed state has coordinates 
Yi = y,(x1 x2, xa) in the deformed configuration is called an anti-plane shear if 

(I) 

where the out-of-plane displacement u is regarded as a function on a cross-section 
!1J of&£. The deformation gradient matrix F associated with (1) is given by 

( 
1 0 0) 

F = (y(,;) = 0 1 0 , 
U,1 U,z 1 

while the left Cauchy-Green deformation matrix is 

0 U,1 ) 
1 U,z , 

u,2 1 +1Vul2 

where yr is the transpose of F, and 

1Vul2 = U,cr.U•cr.· 

The fundamental invariants of G are defined by 

11 = Tr G, 12 = ![(Tr G)2 -Tr(G2)], ls = det G; 

for the anti-plane shear (1) they take the form 

11 =12 = 3+1Vul2, ls= 1. 

(2) 

(3) 

(4) 

(5) 

(6) 

The stress-deformation relation for a compressible, homogeneous, isotropic 
elastic material is given in terms of the strain energy W = W(J1, 12, 1:J per unit 
undeformed volume which is characteristic of the particular material considered. 
If a represents the matrix of components of nominal-or Piola-stress (force per 
unit undeformed area), one has for any deformation (see equations (43A.3), (47.8), 

and (86.9) of [7D: 

_ aw . aw aw _
1 a - 2 al

1 
F + 2 alz (11 1- G) F + 21s ala (FT) , (7) 

where (FT)-1 is the inverse of yr. 

t Latin subscripts take the values 1, 2, 3, while Greek subscripts have the range l, 2. 
Repeated subscripts are summed over the appropriate range. A subscript preceded by a comma 
designates differentiation with respect to the corresponding x-coordinate. 
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For those special deformations such as (1) which locally preserve volume, one 
has /3 = 1; it is convenient in such a case to introduce the notation 

Wo(J1, I.;) = W(/1, 12, I), 

aw 
p(/1,1.;) = -2fil.(/1,12, 1), 

3 

so that when /3 = 1, (7) may be written in the form 

_ oW0 oW0 _
1 a - 2 

011 
F+2 

012 
(11 1-G)F-p(FT) . 

(8) 

(9) 

(IO) 

This form of the constitutive law-valid only for locally volume-preserving defor­
mations such as (l)-is formally identical with the relation between a and F for an 
incompressible isotropic, homogeneous elastic material with strain energy density 
W0(11, I.;). In the latter case, however, p is an arbitrary hydrostatic pressure and is 
not related a priori to the deformation, whereas at present p is linked to u through 
(9), (6). 

When (2), (3) and (6) are substituted into (10), the resulting components of 
nominal stress are 

(11) 

(12) 

(13) 

oW0 oW0 
0'33 = 2 0/1 +4 012 -p. (14) 

In these formulas pis given by (9), (6), and 11, 12, which occur as the arguments of 
W0, are expressed in terms of u through (6). 

The true (or Cauchy) stress matrix Tis related to a and F through (see equation 
(43A.3) of [7]) 

expressions for the -r,/s in terms of u may be found from this relation and (2), (6) 
and (11)-(14). 

Since body forces are absent, the differential equations of equilibrium are 

a#J = 0 on 92. (15) 
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When (11)-{14) are substituted into (15) and account is taken of the fact that all 
quantities are independent of x3, there follows 

on~, (16) 

[ (awo aWo) J l'M 2 all + aI2 U,p •P = 0 on ;;;u, (17) 

where the abbreviation 

aw. aw. 
q = p-2-o-2(2+1Vul2)_o a11 a12 

(18) 

has been introduced. 
In view of the fact that q is expressed in terms of u through (18), (9) and (6), the 

system (16), (17) actually consists of three differential equations for the single 
unknown function u. Without some restriction on W, one would thus expect that 
only very special solutionst of (17) would also satisfy ( 16). In order to assure that 
all solutions of the axial equilibrium equation (17) will be available for use in the 
analysis of boundary value problems, it is natural to say that a material character­
ized by the strain energy density W(I1, 12 , la) admits non-trivial states of anti-plane 
shear if.for every domain~. every solutiont of(l7) also satisfies (16). The theorem 
which follows furnishes a necessary and sufficient condition on W(J1, / 2, 13) for a 
material to have this property. 

It will be assumed that W(Iv 12, la) is three times continuously differentiable and 
is such that the auxiliary function W0(J1, IJ defined in (8) satisfies the inequality 

d [R(OWo oWo) J 0 
dR oil + a12 I1~It=3+R' > 

(19) 

for all R ~ 0. For a.fixed R ~ 0, (19) assures that the quasilinear partial differential 
equation (17) is elliptic§ at a solution u and at a point (x1, xz) in ~ for which 
I Vu(x1,xz) I= R; it is thus assumed that (17) is elliptic at every point in~ for every 
solution u. 

THEOREM. If the strain energy density W(I1,l2, 13) is such that (19) holds, then the 
associated elastic material admits non-trivial states of anti-plane shear if and only if W 

t One choice of u which satisfies both (16) and (17) for every choice of Wis that corresponding 
to simple shear: u = k,. x,., where the k,. are constants. It can be shown that, apart from an 
additive constant, this is the only out-of-plane displacement field with this property. 

t u is assumed three times continuously differentiable. 
§See [3], pp. 163-164. 
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also satisfies the two conditions 

(20) 

(21) 
for some constant b. 

PROOF. To establish the necessity of (20), (21), suppose first that, for any domain 
!!), every solution u of (17) also satisfies (16), with q given in terms of u by (18), (9) 
and (6). The system (16), (17)-with the relation between q and u deleted-is 
identical with the system which arises in the incompressible case and which was 
treated in detail in [6]. t In particular it was shown in [6]t that if, for every!!), there 
corresponds to each solution u of (17) some function q such that (16) bolds, then 
W0(/1, lJ necessarily satisfies 

oW0 oW0 b-+(b-1)- = 0 for 11 =12~ 3 
011 012 

(22) 

for some constant b. It follows immediately that (22) holds in the present circum­
stances; reference to (8) shows that (22) is identical with (20), and thus the necessity 
of (20) is established. Next, one uses (22), together with (17), to write 

(23) 

where 
(24) 

From (18), (9) and (6) it follows that q is a function of R2 only: q = q(R2). Thus 

(25) 

t See (3.1)--{3.4) of [6]. For present purposes only that special case of the results in [6] is 
needed for which axial prestretch is absent. Thus one is to set,\ = 1 in (3.1), (3.2) of [6]. 

:j: See (3.22), (3.23) of [6] with,\ = 1. Essential use is made of the assumption (19). 
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where the prime indicates differentiation with respect to R2• Combining (23) and 
(25) shows that (16) can be written in the form 

(q'+ ~~)2RR,a = 0 on 2). (26) 

Now by assumption, (16) and therefore (26) are satisfied whenever u is a solution of 
(17). Since it is possible to construct a solution of (17) for which, at a given point of 
2), R =I Vu! takes an arbitrarily prescribed positive value while V R # 0, one 
concludes from (26) that 

(27) 

When q'(R2) is expressed in terms of derivatives of W with respect to the invariants 
by differentiating (18) with respect to R2 and making use of(9) and (6), one obtains 
(21) from (27) immediately. Thus (20) and (21) are indeed necessary. 

To show that they are also sufficient, one merely observes that, if u is a solution of 
(17) for an arbitrary domain 2), and if (20) holds, then a review of the above 
argument shows that (27) implies (16). Since (21) in turn implies (27), (16) is also 
satisfied, and the proof is complete. 

The necessary and sufficient condition of the theorem imposes two restrictions on 
the strain energy density W. In contrast, the corresponding result in [6] for 
incompressible materials consists of only one requirement which, in fact, is formally 
identical with (20). 

It is possible to show that (20), (21) fail to hold for the strain energy density 
proposed by Blatz and Ko [2] in connection with experiments on a highly com­
pressible foam rubber, t and that, apart from degenerate special cases, they fail as 
well for the class of idealized materials-those of harmonic type-introduced by 
John. (See Section 6 of [5].) For the so-called Hadamard materials (see p. 313 of 
[5]) described by a strain energy density of the form W = Al1 + Bl2+ /(13), where A 
and B are constants and f is an essentially arbitrary function, conditions (20), (21) 
are fulfilled if and only if B = 0, in which case b = 0 in (20). 
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