A Caltech Library Service

On the Adequacy of Shell Models for Predicting Stresses and Strains in Thick-Walled Tubes Subjected to Detonation Loading

Bitter, Neal P. and Shepherd, Joseph E. (2013) On the Adequacy of Shell Models for Predicting Stresses and Strains in Thick-Walled Tubes Subjected to Detonation Loading. In: High-Pressure Technology; ASME NDE Division; Rudy Scavuzzo Student Paper Symposium. No.5. American Society of Mechanical Engineers , New Yoark, NY, Art. No. V005T05A019. ISBN 978-0-7918-5569-0.

[img] PDF - Published Version
See Usage Policy.


Use this Persistent URL to link to this item:


This paper analyzes the adequacy of shell models for predicting stresses and strains in thick-walled tubes subjected to detonation loads. Of particular interest are the large axial strains which are produced at the inner and outer surfaces of the tube due to bending along the tube axis. First, comparisons between simple shell theory and a static finite element model are used to show that the axial strain varies proportionally with wall thickness and inversely with the square of the axial wavelength. For small wavelengths, this comparison demonstrates nonlinear behavior and a breakdown of the shell model. Second, a dynamic finite element model is used to evaluate the performance of transient shell equations. This comparison is used to quantify the error of the shell model with increasing wall thickness and show that shell models can be inaccurate near the load front where the axial curvature is high. Finally, the results of these analyses are used to show that the large axial strains which are sometimes observed in experiments cannot be attributed to through-wall bending and appear to be caused instead by non-ideal conditions present in the experiments.

Item Type:Book Section
Related URLs:
URLURL TypeDescription
Shepherd, Joseph E.0000-0003-3181-9310
Additional Information:© 2013 by ASME. This work was motivated by findings of the research program carried out for the Hydrogen in Pipes and Ancillary Vessels (HPAV) study for the Hanford Waste Treatment Plant. Greg Jones of the US Department of Energy, Office of River Protection, Hanford WA, was the technical program manager for the portion of the work done at Caltech. The senior author (JES) benefited from discussions on detonation loading of piping with the members of the HPAV team over the period 2005-2012 while he was associated with the HPAV study. In particular, he would like to acknowledge the very substantial contributions to his understanding of the through-wall bending issue by John Minichiello of Bechtel National Inc, as well as Tom Ligon and David Gross of Dominion Engineering. The present work was funded entirely by the California Institute of Technology; we thank the Office of the Provost and the benefactors of the C.L. “Kelly” Johnson Professorship.
Issue or Number:5
Record Number:CaltechAUTHORS:20151113-153011013
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:62101
Deposited By: Ruth Sustaita
Deposited On:17 Nov 2015 18:38
Last Modified:21 Aug 2020 22:18

Repository Staff Only: item control page