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During the Precambrian era, Earth’s decelerating rota-
tion would have passed a 21-hour period; this rotational
frequency would have been resonant with the semidiurnal
atmospheric tide. Near this point, the atmospheric torque
would have been maximized, being comparable in magnitude
but opposite in direction to the lunar torque, halting Earth’s
angular deceleration, as first detailed by Zahnle and Walker
[1987]. Computational simulations of this scenario indicate
that, depending on the atmospheric Q-factor, a persistent
increase in temperature larger than 10K over a period of
time less than 107 years will break resonance, such as the
deglaciation following a possible ”snowball Earth” near the
end of the Precambrian. The resonance was found to be re-
silient to comparatively high frequency thermal noise. Our
model provides a simulated day length over time that re-
sembles existing paleorotational data, though these are not
thought to be reliable; further data is needed to verify this
hypothesis.

1. Introduction

At some point during the Precambrian, the Earth would
have decelerated such that it had a rotational period of 21
hours, which would have been resonant with the semidiur-
nal atmospheric tide, with its period of 10.5 hours. At this
point, the atmospheric tidal force would have been compa-
rable in magnitude but opposite in sign to the lunar torque,
which could create a stabilizing effect on the day length,
preserving the 21 hour day length until the resonance was
broken, as first discussed in Zahnle and Walker [1987].

The question then arises as to how the Earth broke out
of its resonance-stabilized day length of 21hr to progress to
its current day length of 24hr. In general, any sufficiently
large sudden increase in temperature will shift the resonant
period of the atmosphere by thermal expansion (resulting in
a change of atmospheric column height) to a lower value and
could potentially break resonance. This paper aims to ad-
dress the specific conditions necessary to preserve or break
resonance - namely, how quickly the warmup period must oc-
cur for a given temperature change and set of atmospheric
properties and how stable the system is to thermal noise.

In our model of atmospheric resonance, there are effec-
tively three options as to the importance and outcome of
the constant day length.

First, the Earth could have entered a stable resonant state
which lasted for some extended period of time before be-
ing interrupted, presumably at approximately 650Ma., by
a global temperature increase, such as, for example, the
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deglaciation period following a possible ”snowball Earth”
event. Specifically, the Sturtian or Marinoan glaciations
make a good candidate for this. [Pierrehumbert, et al.
2011; Rooney, et al. , 2014]

Second, the resonant stabilization could have never oc-
curred, as the Q-factor of the atmosphere, defined as 27 -
TS ;?St;lpi:;gger e could have been too low for the mag-
nitude of the atmospheric torque to exceed that of lunar
torque, a necessary condition for the formation of a stabi-
lized day length.

Third, the resonance could have been of no interest, as
atmospheric and temperature fluctuations could have been
too high to allow a stable resonance to form for an extended
period of time.

We discuss the plausibility of each of these scenarios in
greater detail below and ultimately conclude, based on com-
putational simulations, that the first scenario is the most
likely to have occurred.

Existing stromatolite data as compiled in Williams [2000]
put the point of breaking resonanace at sometime between
2Ga and 600Ma, likely toward the much more recent end
of this range. After 600Ma, stromatolite, coral, and bivalve
data indicate that the day length increases to its current
24 hours day length comparatively quickly after a period of
relatively constant day length (though paleorotational data
is nearly absent during most of this range, only available
near the endpoints). However, this data, particularly the
stromatolite data[Panella , 1972], should not be taken too
seriously. [Zahnle and Walker , 1987] Paleontologists Scrut-
ton [1978], and Hofmann [1973] also found these data to be
unreliable and unsuitable for precise quantitative analysis.
Regrettably, no significant additional data has emerged in
the past several decades. Though we do eventually compare
our modeled results to this data as a kind of sanity check,
the data is inconsistent and scant; further and more reliable
data will be needed to test both Zahnle’s and Walker’s hy-
pothesis and our developments on mechanisms of breaking
resonance.

2. Analysis of atmospheric resonance

The details of the atmospheric tide are quite complex, but
the essential features can be appreciated with the following
toy model of the torque.

Given a fluid with column density po and column height
ho under gravitational acceleration g, with Lamb waves of
amplitude h < ho and wavelength A\ > ho, wave speed of
v/ gho, Cartesian spatial coordinates of z, a forced heating
term hy, and a damping factor I' = % (with tg defined as
the total energy over power loss of t%e system, such that
Q = wotq), we first start with the forced wave equation
without drag (we will add this in later):
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We are interested in a heating term of the form F =
Fy cos(2wt + 2kx), with Fy as the average heating per unit
area, w is the angular frequency, and k = 2”2}; at the equa-
tor, with Rq the Earth’s equatorial radius. Tﬂims7 for C) as
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the specific heat at constant pressure and 7y as mean sur-
face temperature, we have ponTodd—tf = Fp cos(2wt + 2kx),
or:

_ Fysin(2wt + 2kx)

hf - 2ponTow (2)

2
Expressing h = Asin(2wt + 2kz) and defining gho = 73, we
obtain via Equation 1 that:
OJFO
=— 3
2p0CpTo (w2 — w?) (3)
At present, w < wo, making A negative, so the positive

peak of Asin(2wt + 2kz) is at 2wt + 2kz = —i. At noon
(t = 0), this occurs spatially at * = — - = =%, or —45°.

This result determines the sign of the torque, as the mass
excess closer to the sun exists such that it is being pulled
in the prograde rotational direction. Note that for period
of time where the length of day is less that the resonant
period of 21hr, that is, for w > wp, the resultant torque of
A will exert a decelerating effect on the earth. However, at
the point of resonance in question, where the lunar torque
is cancelled by the atmospheric torque, w < wp by a small
factor.

Addressing the drag in our model, if we assume that any
excess velocity formed from the tidal acceleration in the at-
mosphere is quickly dissipated into the Earth through sur-
face interactions with a damping factor I', and that this
surface motion is relatively quickly dissipated into the rota-
tional motion of the entire Earth, as given by Hide, et al.
[1996], writing the dissipative Lamb wave forces, we have:

v Oh Ov _ Oh  Ohy
o= 9o T o=t W

from which we obtain:

g o (2w — i) (4(w? — wg) + 2iwT)
poCpTh 16(w? — w2)? + 4w?I?
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In this model, the imaginary component J(A) represents
amplitude which would create a force with angle of 7 with
respect to the sun, and thus does not exert any torque on
the Earth. We need only concern ourselves with the real
part R(A), then. Thus, we have:

K dw(w? — wi) + wl? (6)
zpocpTo 4(UJ2 — UJ(Q))Q + w2F2 ’

Since we know the atmospheric displacement A to be di-
rectly proportional to the torque exerted by said displace-
ment, we can use the fact that the present day accelerative
atmospheric torque, 2.5 x 10*°Nm, is approximately % that
of the present decelerative lunar torque, 4x 102°Nm, as given
in Lambeck [1980], to scale the atmospheric torque along
the curve following R(A), thus solving for the total atmo-
spheric torque Tq¢m (w) as a function of the Earth’s rotational
frequency, as detailed in Figure 1.

Given a sufficiently high atmospheric @ with an initial
day length of much less than 21 hours, we can see that,
near the resonance point in question, as the Earth’s rotation
slows, increasing the length of day, the atmospheric torque
increases until it eventually matches the lunar torque, so
the length of day remains constant at this stable equilib-
rium. While there are two frequencies at which the torques
are balanced, only the higher frequency (shorter day length)
is linearly stable. That is, infinitesimally perturbing the sys-
tem in the low frequency direction about the unstable point
will cause the system to migrate indefinitely to even lower
frequencies (longer day length).

R(A)
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It should be noted that, to the authors’ knowledge, there
is no consensus on a value of @ for the atmosphere; how-
ever, one can reasonably assume it is within the range of
10 — 500, like many physical systems. We ultimately solve
the problems in this paper using all possible values of @
within this range, though for some example calculations in-
volving a specific value of @), we arbitrarily assume Q is a
reasonable value of 100. Ultimately, we establish a critical
(relatively low) threshold, dependent on the lunar torque,
that @ must exceed for resonance to form and this paper to
be relevant - all values of @ sufficiently past this threshold
result in similar conclusions.

3. Estimation of resonance-breaking conditions

Before developing a more complete computational model,
we first detail a less sophisticated analytical solution to ap-
proximate the warming timescale necessary to break reso-
nance. We then verify this with our computational model,
noting that the key features are present, albeit at different
values.

Given some increase in global temperature AT from an
initial ”average” temperature Ty, we would expect a corre-
sponding increase in atmospheric volume, which, since the
atmosphere is horizontally constrained, should result in a
nearly linear increase in the column height of the atmo-
sphere. This, in turn, would change the propagation speed
of an atmospheric Kelvin wave, given by v = 1/gho, and thus
the resonance frequency of the atmosphere. A decrease in
global temperature serves to increase the resonant frequency
(thus decreasing the length of day at which the lunar and
atmospheric torques meet, shifting the curves to the left on
Figure 1), while an increase in global temperature would
decrease this value.

A large, sudden increase in global temperature could shift
the atmospheric torque curves given in Figure 1 sufficiently
far to the left so as to surpass the unstable equilibrium on
the right side of the curve, allowing the Earth to decelerate
past the points near resonance. This change would need to
be sudden enough that the Earth’s rotation could not track
this change, and would need to be sustained at a minimum
of this temperature for some time following the change, so
as to avoid recapture from the atmosphere.

We can see from Figure 1 that very near resonance,
the atmospheric torque can be approximated linearly. We
know that for a steady-state, comparably large tempera-
ture change to preserve resonance throughout a temperature
change, excluding edge effects (assuming a resonant curve
width of zero, to simplify the calculations), the rotational
frequency of the Earth must track the change in resonance

frequency of the atmosphere, so % = 90 Since the reso-

dt dt
nance frequency of the atmosphere wy = g;o, and ho x T
\/gho%

R, )
for To the original temperature. Since, for any real?stic
changes in atmospheric temperature, T ~ Ty, and denoting
the time over which the temperature changes by an amount
AT as t,,, we obtain:

T
doo _dT(t) VIV ATVgho -
dt — dt T(t)Re  twloRe

for temperature T', we can express wo(T') as wo =

Following the amplitude-scaling technique mentioned in
the previous section, we know the angular acceleration of
the Earth to be:
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Torque values for atmospheric torques assuming various @Q-factors compared to lunar torque. Torques are

that of the lunar torque, while the contour of the curve is

determined by the A term derived in section 2. Note that the minimum value of @ required to form a resonance (the value
such that its magnitude exceeds the lunar torque) varies linearly (to a first approximation) with the lunar torque. During
the Precambrian, when the lunar torque was thought to be approximately a fourth of its current value [Zahnle and Walker
, 1987], very low values of @ could have permitted a resonance.

A(wmaaz) _
diw _ Tatm — Tmoon __ Tmoon(lﬁ,A(ﬁ%) 1) (8)
dt Ig - Ig

where wp,q, is the rotational frequency associated with

the global maximum of 7T4tm, and 23% is the current ro-
tational frequency of the earth. Abbreviating A(wmaz) as

Az and A(ﬁ) as Aa4, we obtain that:

Amax
AT\/gho _ Tmoon( 16-Agq 1)
thORGB I@
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Figure 2. The fastest possible stability-preserving
warming time ¢, (the stability-instability barrier such
that any faster change will break resonance) for a given
Q@ with a fixed AT = 10K, as derived in section 3. It
should be noted that the asymptote arising at @ =~ 60 is
a result of no resonance-stabilizing effect occuring, as the
maximum value of 74:,, does not surpass the lunar torque.
As this simple model serves only as an upper bound for
the conditions required to break resonance (as it treats
the length of day interval in Figure 1 where the solar
torque exceeds the lunar torque as having zero width),
this value of @ ~ 60 will also vary in the computational
model, but the asymptote for some low value of @ should
still be present.

Since, for reasonable values of @ (say, @ is somewhere
between 10 — 500), Amqe will scale linearly with @, we need
only attain one value of A,,q, and scale it accordingly with
Q. For example, at @ = 100, Amaez ~ 27.01 - Ag4, and at
Q =200, Apas =~ 53.78 - A24. So our expression becomes:

i ATI@LUO
w .

TOTmoon(%% - 1)

As shown in Figure 2, this expression indicates asymp-
totes for stability-preserving (Q,t,) pairs as Q — 60 and
as t, — 0. For a plausible atmospheric Q-factor of 100,
any significant change in temperature (on the order of 10K)
faster than on the order of 10® years will break resonance if
no other opposing temperature changes follow.

Note that this model simply provides a lower bound on
how fast the temperature must be changed and an upper
bound on the minimum threshold for @ for resonance to
form - the model effectively assumes the curves in Figure 1
have a half-maximum width of zero by using a steady-state
method, and that resonance will be broken if the rate of
change of resonant frequency at all exceeds the angular de-
celeration of the Earth. In reality, the width of the curves
provides a buffer; for example, small changes of resonance
frequency about the mean value of wy will not break reso-
nance, as it will not exceed the width of the curve. Thus,
temperature changes may need to occur significantly faster
than the values shown in Figure 2 to actually break reso-
nance and ) may be allowable at lower values while allowing
resonance to form. These problems are more precisely ad-
dressed with our computational model outlined in the next
section.

(10)

4. Computational model

To determine the allowable timescale for an atmospheric
temperature change to break resonance, a computational
model was implemented in Python to iterate over the exact
solutions to the equations developed in section 2 for a given
(AT, Q,tw) tuple. This would generate a stability regime
diagram depicting stable and resonance-breaking (unstable)
conditions for temperature changes involving each combina-
tion of these values.

At the program’s core is a simulation function which
iterates the Earth’s rotational frequency a over a torque-
scaled version of equation 6 as global temperature rises from
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Figure 3. The stability-instability boundary calculated along varying AT, @, and t,, values. At a given @Q-factor and
warming time (Qo, two), the resulting temperature change ATy represents the maximum stability-preserving temperature
change such that any larger change over the same period of time will break resonance. Higher @Q-factors permit larger
temperature changes per unit time, as the system is more responsive to external torques, and are in a sense ” more resilient”

to atmospheric changes than scenarios with lower values of @, so any point with AT > ATy,

break resonance.

tw < two Or Q < Qo will

It should be noted that, regardless of @ and t,,, there exists a nonzero minimum value of ATy required to break resonance
(5.7 K in the simulation). The existence of an asymptote for very low @ is consistent with Figure 2, as Q) approaches a
value such that the maximum value of the atmospheric torque can no longer exceed the lunar torque.

To — AT to Ty (with Ty being an average global temperature
of 287K, though this precise value is unimportant) over a pe-
riod of ¢, years, simulating the warmup following a period of
low global temperatures, effectively solving the differential
equation for changing resonance frequencies, temperature
values, and varying Q-factors.

A very small step size (50yr) was used to ensure accu-
rate results at very high @ values. The simulation function
returned whether the result was stable (still trapped in a
resonance-stabilizing region) after a warmup period and a
subsequent rest period to allow for w to settle had passed.

To increase computational efficiency, only the stability-
instability boundary was solved for using a multiprocessed
binary search, such that the entire simulation ran in a more
feasible O(n?logn) time.

5. Results - t,, timescale

A regime analysis was performed using the above compu-
tational model to determine which combinations of atmo-
spheric @, total temperature change AT, and warming time
tw resulted in a break of resonance.

As expected, for very fast (small) ¢, temperature
changes greater than a critical threshold ATy ~ 5K will al-

ways break resonance. Similarly, the required ¢,, to preserve
resonance varies inversely with @Q: with lower Q, tempera-
ture changes must take place over a larger period of time, as
the system does not track changes as easily. Additionally,
the simulation results suggest an asymptote for ¢,, slightly
below @ = 30, with @Q-factors below this value prohibiting
resonance from forming in the first place (the solar torque
fails to exceed the lunar torque in Figure 1). This is in
accordance with the results of the approximate analytical
method described in section 3, though the exact value for
the required @ is different, as expected.

The overall timescale for the required t,, to break reso-
nance was smaller than the rough estimation from section
3: for a AT of 10K and a @ of 100, temperature changes
occurring on a timescale faster than 107 years would be suf-
ficient to break resonance, as shown in Figure 3. Note that
the break in resonance is, of course, conditional on the tem-
perature staying near or above this increased temperature
long enough for the Earth’s rotational velocity to decelerate
sufficiently away from the area near resonance - a process
which would also take on the order of 107 years. This would
indicate that, had the rotational velocity and temperature of
the Earth previously reached an equilibrium, virtually any
deglaciation period following a sufficiently lengthy snowball
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event would break resonance, as discussed further in the dis-
cussion section, though resonant recapture from later tem-
perature decreases is possible, as shown in the final figure in
this paper.

6. Results - effects of thermal noise on
resonant stability

In addition to a systematic global climate change follow-
ing a cool-constant-warm pattern, the computational model
outlined in section 4 was also further developed to test the
resilience of the resonance to atmospheric thermal noise -
higher-frequency fluctuations occurring at a variety of am-
plitudes. The temperature was driven sinusoidally across a
very large range of frequencies and amplitudes encompass-
ing all reasonable values for small-scale temperature fluctu-
ations. These results are detailed in Figure 4. It was found
that, for a sinusoidally driven mean atmospheric temper-
ature, the optimal fluctuation period to break resonance -
that is, the frequency whereby the required amplitude to
break resonance is minimized - was on the order of 10000
years. However, the required thermal amplitude was ap-
proximately 25K. At this point, these conditions are not
so much thermal noise as a large global cyclic temperature
change, so the possibility of resonant break due to random
thermal fluctuations was discarded. (Further evidence for
this decision is also provided by the results from the final
figure in this paper.)

10000

20000

30000

Period (yr)

40000

50000

0 7 14 21 2 % a3 50
Amplitude (K)

Figure 4. Regime analysis of sinusoidally driven atmo-
spheric temperature fluctuations across (half-wave) am-
plitude and frequency for an initial phase of zero. Grey
regions indicate resonance-preserving scenarios, while
white regions break resonance. The ”noise” in the dia-
gram, such as the small island of stability in the white re-
gion is due to the fact that breakage also depends weakly
on initial phase of the sinusoidal driver. However, phase
was found not to change the overall shape of the curve,
aside from small changes near the edge, so the resilience
of the atmospheric resonance to realistic thermal noise is
independent of phase.

7. Results - simulated length of day over
time

Finally, we used the model from the above two sections
to create a simulation of Earth’s length of day over time,
starting from 4500Ma. to the present time. Given the plau-
sibility of a snowball event breaking resonance, we simu-
lated a sequence of several snowball events, corresponding
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in time and duration to the three main ”snowball Earth”
events during the late Precambrian. Throughout this time,
random atmospheric noise was also simulated as the sum
of several sinusoidal drivers, with a maximum amplitude of
approximately 5K.

It should be noted that the Earth is remarkably insen-
sitive to this noise, except at resonance. The first simu-
lated "snowball Earth” failed to break resonance due to a
duration of depressed temperature that was too short be-
fore warming up again. The second snowball event seemed
to break resonance, but was recaptured by the third event,
which broke resonance, as shown. The data points at ap-
proximately 2Ga., while unreliable, could very tentatively
be used to establish a lower bound on the formation of this
resonance. More reliable data is, of course, needed to con-
firm this.

8. Discussion

Our model supports the first scenario presented in the in-
troduction - that the Earth entered a resonant state, perhaps
at 2Ga. before present, though this is highly uncertain, as it
depends on an unknown evolution of lunar tidal @ for that
epoch. It then escaped resonance at about 600Ma. (this
value also depends on @), when it was broken by a global
temperature change, presumably the deglaciation following
a snowball event, though any sharp rise in temperature fol-
lowed by a period of comparatively constant temperature
could have broken resonance.

As shown in the second analytical model presented and as
evident in the computational results shown in Figure 3, an
asymptote dependent on lunar torque exists such that there
is a critical value of Q below which resonance will not form.
Near this value, the resonance is quite unstable. Compu-
tationally, this asymptotic value was found to be very low:
Q =~ 15 for the present lunar torque, and even lower for some
estimated Precambrian torques [Zahnle and Walker , 1987],
making resonance formation likely.

The minimum warming time t,, required to break a reso-
nance state was found to be within values that would be
broken by a deglaciation event; assuming @ ~ 100, the
deglaciation period would need to be at most 107 years, eas-
ily accepting the t,, estimates presented by Hofmann and
Schrag [2002]. Snowball events with depressed, relatively
stable temperatures lasting for a period of around 107 years
(also similar timespans as in Hofmann and Schrag [2002])
were found to provide sufficient time for an equilibrium of
w and wp to be reached such that the following deglaciation
breaks resonance, though this value also depends inversely
with the lunar torque.

The mid-Precambrian was lacking in global or near-global
glaciations, with the exception of the Huronian glaciation
ca. 2.4-2.2 Ga., which likely occurred before resonance had
formed. The fact that there is little evidence of any glacia-
tion for almost a billion years prior to the Sturtian glaciation
[Rooney, et al. , 2014] lends credence to the idea that the
deglaciation of a ”snowball Earth” was the likely trigger that
broke resonance after allowing it to persist for a length of
time on the order of a billion years.

It should be noted that while a reasonable choice of atmo-
spheric and lunar variables makes this scenario possible and
likely, the paleorotational data available is not sufficient to
confirm the hypotheses of resonance formation or breakage.
Further data is required; it is our hope that this work will
encourage developments in this area.
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Figure 5. Simulated day length (varying choices of ”base”, unscaled, lunar torques colored in various blues and greens)
and temperature values (red) over the lifetime of the Earth, scaled over time along the —6*" power of lunar the orbital
radius. Note that atmospheric thermal noise does not influence the day length value except very near resonance, and
that the resonance effect remain unbroken until two successive simulated snowball Earths at the end of the Precambrian
720Ma. and 640Ma., with the location and duration of these simulated events picked to coincide with recent estimates of
the Sturtian Marinoan glaciations. [Rooney, et al. , 2014] A simulated recapture event can be seen at 870Ma. Approximate
empirical day length data from a compilation in Williams [2000] are overlayed in black (error bars included where present),
and resemble the modeled data, though the reader should not take these to be too reliable, particularly the points prior

to 600Ma.

Appendix A: Source code

All of the code used in this paper is available upon
request from the corresponding author.
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