
Managing Scientific Data with Named Data Networking

Chengyu Fan
Colorado State University

chengyu@cs.colostate.edu

Susmit Shannigrahi
Colorado State University

susmit@cs.colostate.edu

Steve DiBenedetto
Colorado State University

dibenede@cs.colostate.edu
Catherine Olschanowsky

Colorado State University
cathie@cs.colostate.edu

Christos Papadopoulos
Colorado State University

christos@cs.colostate.edu

Harvey Newman
Caltech

newman@hep.caltech.edu

ABSTRACT
Many scientific domains, such as climate science and High
Energy Physics (HEP), have data management requirements
that are not well supported by the IP network architecture.
Named Data Networking (NDN) is a new network architec-
ture whose service model is better aligned with the needs
of data-oriented applications. NDN provides features such
as best-location retrieval, caching, load sharing, and trans-
parent failover that would otherwise be painstakingly (re-
)implemented by each application using point-to-point se-
mantics in an IP network.

We present the first scientific data management applica-
tion designed and implemented on top of NDN. We use this
application to manage climate and HEP data over a dedi-
cated, high-performance, testbed. Our application has two
main components: a UI for dataset discovery queries and
a federation of synchronized name catalogs. We show how
NDN primitives can be used to implement common data
management operations such as publishing, search, efficient
retrieval, and publication access control.

1. INTRODUCTION
Improvements in simulations and data collection over the

last decade have transformed scientific research. The impact
of the resulting data explosion can be seen in domains such
as High Energy Particle Physics (HEP) and climate mod-
eling. However, while scientific communities benefit from
more data, the increased volume also presents new manage-
ment challenges. Consequently, scientific communities must
explore new data management techniques in addition to new
software and hardware designs. Both HEP and Climate re-
search communities use multi-petabyte distributed datasets.
Effective use of this large amount of data requires seemless
publication, simplified but efficient discovery mechanisms,
and fast, reliable transfers.

We argue that many problems faced by today’s data man-
agement applications are caused by the architecture of the
network itself. IP networking uses hosts as the core prim-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

NDM’15 November 15-20 2015, Austin, TX, USA
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN ACM 978-1-4503-4037-3/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2832099.2832100

itive; one must first identify the host responsible for the
desired content or service. As a result, data management
is complicated by needing to keep location state up to date
in the face of changing network dynamics as well as content
entering and leaving the system. This complicates discov-
ery and makes data transfers brittle; a failed node requires
the consumer application to identify an alternative content
source and try to resume. These issues, and others, lead us
to suggest that a new Internet architecture is needed.

Named Data Networking (NDN) [12] is a proposed future
Internet architecture where namedcontent is the first-class
network entity, not the hosts. This model enables appli-
cations to directly fetch data by asking the network for it
by name, instead of first determining the IP address of the
hosting server. Furthermore, NDN data is digitally signed
by its publisher, thus providing provenance for every data
packet. Additionally, NDN routers are stateful [11] and can
make intelligent forwarding decisions based on past measure-
ments. Consequently, every application benefits from NDN
features such as transparent failover and content retrieval
from optimal sources without any additional efforts.

In this work, we present a distributed data management
system based on NDN. Our solution provides seamless access
to scientific data using well defined NDN naming schemes.
We use a data discovery mechanism based on names. Our
system also supports secure dataset publication and retrieval.
Data publishers derive NDN names for their datasets from
real world file names and write them into a synchronized fed-
eration of catalogs. Users may query any catalog instance
and discover datasets by their NDN names. Then, users
can simply ask the network for datasets by name without
needing to first locate the hosting server.

2. CURRENT SCIENTIFIC DATA MANAGE-
MENT SYSTEMS

Sheer size and complexity of scientific data as well as its
distributed nature make data management complex. Cli-
mate datasets are typically generated at geographically dis-
tributed sites, curated, and made available to remote users.
Powerful resources are required to rapidly accommodate all
requests for retrieval, post-processing, visualization, and anal-
ysis of the data. While large super-computing centers can
accommodate such requirements, resources are scarce, and
large amounts of data must be moved to various repositories
to eliminate bottlenecks. High-Energy Physics datasets are
typically generated at a single location and then distributed
around the world via a tiered system. The latter also need
to support distribution of derivative data such as simulation

output.
Scientific communities’ only problem isn’t data volume

or distribution mechanisms. Various data naming schemes,
data formats, and lack of structured metadata makes data
discovery very difficult. First, a scientist needs to know
where data is located and how they are named. This is a
hard problem since most scientific data isn’t indexed either
by search engines or existing scientific data management sys-
tems. Even when data location and names are known, mov-
ing data between repositories often requires advanced plan-
ning and operator intervention. Finally, existing IP network
uses a point-to-point model which requires discovering and
connecting to a host hosting the data. If the host fails dur-
ing retrieval, the system needs to find another host, connect
to it and restart the retrieval.

Since the IP networking protocols don’t provide uniform
frameworks to address these common problems, various com-
munities have designed and developed customized data man-
agement software at significant effort and cost to satisfy their
needs. The climate community uses ESGF [6] for searching
and accessing CMIP5 [10] data. Similarly, HEP community
has developed xrootd [7] for their data. These IP based sys-
tems do not provide an appropriate network service model to
smoothly facilitate data discovery and retrieval operations.
Moreover, much of the functionality of these software is sim-
ilar and could potentially be served by a common infrastruc-
ture. We next describe these two data management systems
and their limitations followed by how NDN can serve as a
substrate for a common data management system, reducing
both complexity and cost.

2.1 Xrootd
Xrootd [7] is a sophisticated data management system cre-

ated by the HEP community that provides scalable discovery
and retrieval capabilities. In xrootd the data resides on mul-
tiple servers organized in a system that dynamically matches
clients with servers that have the desired data. Xrootd’s
architecture is shown in Figure 1. The system consists of
a manager, several data servers and the clients. All data
servers register themselves with the manager. When a client
wishes to open a file the client sends a request to the man-
ager with the desired filename. Upon receiving the request
the manager multicasts the request to all the data servers.
Only those servers that have the desired file respond. The
manager decides which data server should serve the request
and informs the client accordingly. The client then contacts
the server directly.

In the Xrootd system a server can manage resources by
asking clients to delay contacting the server. Furthermore,
clients can be redirected to another server at any time, an
approach that improves fault tolerance. When a server be-
comes unavailable the client launches another search. Xrootd
employs several mechanisms to optimize performance and
minimize resource usage such as multiple independent streams
on a single socket.

Xrootd has several limitations. Its security framework
allows any authentication protocol and channel-based secu-
rity to be used but does not currently provide provenance.
Clients must contact a manager who may be unavailable,
overloaded, or distant, creating a choke point or a central
point of failure. Xrootd’s redirection and fallback mech-
anisms introduce delays, and the algorithms and parame-
ters for failover must be implemented and tuned case by

Figure 1: Xrootd Architecture[1]

case, which becomes difficult in the HEP case where the
data is distributed at sites in all world regions, some with
poor or highly variable network connections. Failover is not
transparent to clients since they are active participants in
remedying failure. Functions such as caching of extracted
data object collections, and dynamic relocation of datasets
are possible, but not implemented automatically due to the
complexity.

2.2 ESGF
The Earth System Grid Federation (ESGF) [6] is a data

management system used by the climate community to dis-
tribute CMIP5 data[10]. ESGF adopts a federated soft-
ware architecture consisting of multiple geographically dis-
tributed nodes that coordinate through a peer-to-peer (P2P)
protocol. Institutions publish data at their local node. Nodes
can join or leave the federation dynamically and the system
synchronizes itself automatically. Each node hosts a set of
services and applications that collectively enable data and
metadata access. There are four types of nodes: secure data
publication and access (Data Node), indexing and metadata
search (Index Node), user authentication and secure delivery
of user attributes (Identity Provider) and data analysis and
visualization (Compute Node). Each node can be configured
to host one or more of these services. Users access the sys-
tem through the ESGF web portals or desktop client that
connects to a local node which distributes the user query
to other nodes in the federation. The local node assembles
the results and return them to clients as scripts containing
hyperlinks, which clients can then invoke to download data
through various tools such as wget, GridFTP[2] or Open-
DAP[4].

ESGF has several limitations as well. Querying different
ESGF nodes with the same set of parameters often gener-
ates different results. Data distributed through ESGF lacks
built-in provenance. Climate community acknowledges the
need to support subsetting operations[5] which isn’t cur-
rently supported. Many retrieval tools associated with ESGF
cannot provide advanced capabilities such as parallel re-
trieval or transparent failover. ESGF uses various technolo-
gies such as OpenID/PKI-based authentication methods and
custom middleware for user authorization and myproxy for
PKI infrastructure. However, configuring and maintaining
such software is burdensome for both users and administra-

tors.

3. NAMED DATA NETWORKING
NDN [12] is a Future Internet Architecture where data

in the network is accessed directly by its name rather than
through the host where it resides. Naming the data allows
the network to participate in operations that were not fea-
sible before. Specifically, the network can participate in dis-
covering and local caching of the data, merging similar re-
quests, intelligent retrieval and more. NDN uses two types
of packets for data transport - Interest and Data. Interest
packets carry data requests; they are sent by consumers and
carry the content name. Any entity that has the data may
reply with one or more Data packets. For scalability, NDN
uses hierarchical name prefixes for routing. Interest packets
are routed towards publishers that advertise prefixes match-
ing the requested data. Interests leave behind breadcrumbs
for data packets to follow on the return, resulting in symmet-
ric routing. In NDN, Data packets have publicly verifiable
built-in signatures. This decouples content from its original
publisher; therefore, content can be received from anyone,
such as a repository, a router cache, or a neighbor, as well as
the original publisher. Due to the pervasive caching in the
network, NDN is able to achieve very efficient distribution,
virtually eliminating hot spots. While NDN helps address-
ing some previous challenges faced by scientific communities,
, many complexities still remain. One example is name dis-
covery; it’s fundamental to any NDN based applications but
isn’t easily implemented using vanilla NDN. Happily, as we
will show in this paper, such functionality is easily added on
top of NDN, taking advantage of many of NDN’s properties.

3.1 Forwarding Strategies
NDN can intelligently use multiple available paths for data

retrieval. Forwarding strategies decide which path(s) to use,
based on per-prefix, user-defined policies. This is a unique
feature of NDN that can greatly benefit scientific applica-
tions.

NDN maintains information about paths in the network in
a new layer called the strategy layer. The strategy layer mon-
itors two-way traffic and changes local forwarding decisions
based on those observations. For instance, if a NDN router
has two paths to the same prefix, a strategy can choose the
least congested one; or a strategy may deploy BitTorrent-
style forwarding for parallel retrieval. Network operators
can configure static or dynamic per name-prefix strategies.
For parallel retrieval a strategy can load balance between
multiple servers using round-robin or weighted round-robin
Interest forwarding. Custom forwarding strategies also help
with failover. In IP, link or server failure means the host-
to-host channel is lost and applications must set up another
channel, which is a costly operation. NDN’s strategy layer
is capable of maintaining multiple viable channels and rank
them according to performance. When a channel fails, the
forwarding strategy simply chooses the next best path. The
switch-over is much faster since it happens in the network
(which has direct knowledge about network conditions) as
opposed to the application (which must estimate network
conditions).

3.2 Advantages of NDN for Climate and HEP
Data

Naming the data enables the network to take a much
more active role in data management by making it aware of
all data locations, enabling informed decisions about direct-
ing Interests, thus effectively implementing anycast. Named
data also allows the network to merge and satisfy similar In-
terests, effectively implementing multicast. It allows caches
popular data in the network to satisfy future Interests far
more efficiently than end-to-end retrieval and eliminate po-
tential hotspots.

NDN pushes functionality currently implemented at higher
layers to the network layer. At first this might seem as in-
creasing network complexity, but these functionality is more
effectively implemented at the network layer. Higher layer
implementations result in a more complex systems since they
require state only known to the network. At higher layers
applications either have to consult the network to determine
the required state, or must deduce it via external measure-
ments. Take for example the selection of the best server
out of a pool of available servers. Applications either have
to create complex monitoring protocols for a highly dynamic
environment, or run experiments in order to dynamically de-
termine the best server (a good such example is the server
selection in Netflix). Neither is necessary in NDN, which is
aware of all feasible paths and maintains state information
about each of them at the strategy layer.

NDN natively supports other common application-level
requirements such as data prefix announcement. NDN an-
nounces hierarchical names directly into the network, so
once a namespace has been defined by a community and
a prefix has been assigned to an organization (operations
that are similar to the DNS allocation we do today), all
datasets named under that prefix are automatically pub-
lished. This has two positive implications: (a) announcing
a dataset name into the network is now a low-effort task -
one simply needs to name the dataset appropriately, and (b)
there are now strong incentives to follow the naming scheme
from the start.

NDN provides provenance and integrity via mandatory
digital signing. A NDN user will never accept corrupt, fake,
or forged data. This decoupling of the content from the host
enables caching anywhere, which in turn drastically reduces
the distribution and retransmission costs of popular data.
NDN is also in a better position to mitigate DoS attacks at
all layers. Symmetric routing means that NDN routers can
correlate Interests with replies and determine when Interests
receive no response, which may indicate a deliberate attack
or overload, and respond by choosing an alternate route or
deploying pushback.

We believe that the capabilities provided by NDN are of
use to the majority of scientific data management systems.
Liberating such systems from (re-)implementing common
functionality leads to simplified systems that focus on imple-
menting domain specific differences rather than the similar-
ities. As the number of datasets increases, however, discov-
ery in NDN becomes inefficient. The solution is to build a
searchable, replicated data name catalog that substantially
speeds up discovery. As it turns out, the advantages of NDN
are essential in simplifying the implementation of such a cat-
alog. In the next section we describe a distributed highly
scalable,federated catalog system that supports publishing,
access control and name discovery.

Figure 2: The Catalog Architecture

4. A SCALABLE NDN NAME DISCOVERY
SYSTEM

We now present a distributed catalog system built on top
of NDN that facilitates scientific data discovery. Our design
is independent of data types or specific namespaces, we only
require the published names to be hierarchical. We assume
these NDN names, while not required, are under the juris-
diction of some specific entity, such as CMIP5. Inspired by
the similarly named effort, we will use the prefix /CMIP5
for illustration and brevity. We consider CMIP5 to be the
effort providing the catalog and use NDN dataset names in-
spired by their Naming specification [9]. We make no claim
that the NDN names we use in this paper should be the fi-
nal names but simply use them as illustrative examples. We
build our system as a distribute federation of multiple inde-
pendent catalogs. We use appropriate forwarding strategies
in NDN to ensure that publishers and clients reach the clos-
est or the least congested instance when making requests.
They don’t have to stick with that instance, the catalog al-
lows them to move between instances even in the middle of
a query. Also, the system allows publishers to publish data
into any catalog instance using their NDN publishing key -
no other form of authentication is required.

The catalog architecture is shown in Figure 2. The various
steps are numbered and we will describe them shortly. First,
we define some terminology; A publisher is the entity that
owns the data and wants to publish it. A consumer is the
user who wants to retrieve the data. The catalog is the
system providing the service. A data-storage node offers
persistent NDN-based storage.

4.1 Publishing
We assume a distributed publishing model where publish-

ers are various institutions that own datasets and wish to
publish them under the same /CMIP5 prefix. The owner of
/CMIP5 prefix delegates publisher keys to each institution.
This publisher key enables each institution to publish names
under a prefix such as </CMIP5/.../institution>/. In our
example, all catalog instances serving CMIP5 names will
operate under the same namespace, e.g., /CMIP5/catalog
. We want to emphasize that the catalog holds only names
of datasets, not the actual data. The actual data is stored
in the repositories operated by the publisher. Figure 3 de-
scribes the publication protocol. When a catalog is launched,
it registers a prefix with the local NFD. We defined the reg-
istration prefix to be /CMIP5/catalog/publish. For pub-
lication. a publisher encapsulates and signs a list of NDN

Figure 3: Data Publication

names along with associated actions such as “add” or “re-
move” in one or more NDN data packets. The publisher
then sends an Interest to the nearest catalog communicat-
ing its intention to update the catalog database. This is
the typical way in NDN uses to upload information to a
server - the publisher asks the server to pull newly available
data. Upon receiving this Interest the catalog replies with
an acknowledgment. There are several reasons for sending
an acknowledgment rather than immediately asking for the
data; the update may be big, and if the catalog is currently
busy it may not want to pull the data immediately. With-
out an acknowledgement, this would result in the publisher
timing out and trying again. An acknowledgment can carry
back an estimate for when the catalog will retrieve the data,
allowing the publisher to retry on an informed timeout. An
acknowledgment also erases state in the network, thus sav-
ing router resources. We mentioned that the catalog pulls a
set of instructions by the publisher. These instructions may
include anything that the protocol supports, which, in our
system, a list of new dataset names to be added or removed
from the catalog. We implement these instructions in JSON
format described below.

{

"add" : [

"/publisherA/file/1",

"/publisherA/file/2",

"/publisherA/file/3",

],

"remove" : [

"/publisherA/file/4",

"/publisherA/file/5",

]

}

4.1.1 Access Control
As we mentioned earlier, catalogs make use of the digital

signatures provided by NDN to enforce access control for
publishers. NDN distributes keys for these digital signatures
are distributed by default. NDN doesn’t dictate how the
signatures are distributed; they may be distributed through
a PKI, web-of-trust mechanisms, or anything else agreed
upon by the applications. When an Interest initiates a pull
for instructions from a publisher, the catalog will fetch the
instructions but not accept them if they are not correctly
signed. This forms a first line of defense against illegitimate

Figure 4: Valid vs. Invalid Catalog Instructions

Figure 5: An example of digest tree used in catalog
federation

[13]

publishers from making changes to the catalog. Although we
have not implemented this, the catalog may also maintain a
list of approved publishers distributed out of band. The next
line of defense is designed to prevent publishers from making
unauthorized changes to catalog entries. We assume that the
policy in place is to allow a publisher to make changes only to
entries published under the publisher’s prefix; a publisher in
CSU is only allowed to make changes to datasets under the
prefix /CMIP5/CSU/. This process is depicted in Figure 4.

4.1.2 Catalog Federation
A single centralized catalog instance can easily become

a bottleneck when subjected to large number of queries or
publication requests. Moreover, it becomes a single point of
failure and introduces increased latency for distant clients.
To make the catalog scalable, we have adopted a federated
architecture of several catalogs running a synchronization
protocol. The catalog instances in the federation announce
a single prefix; this allows the network to route queries to
the most appropriate instance as determined by the NDN
strategy. Depending on the strategy queries may go to the
nearest catalog instance or the least congested one. We use
a synchronization protocol called ChronoSync [13] to en-
sure consistency. Chronosync is a digest tree-based state
exchange protocol. As shown in Figure 5, the state is calcu-
lated based on the published content and its sequence num-
ber. When a new content is published, a new state is cal-
culated and sync messages are propagated to other nodes.
A multicast namespace /ndn/broadcast/sync is reserved to
exchange sync messages. In our application, the sync mes-
sages are simply the instruction messages described in the
previous section. Whenever a catalog instance receives such
a message it validates the payload and applies the updates
to its local database. It then propagates the sync message

to other catalog instances. A periodic database snapshot is
generated to serve as recovery state in case of failure or a
database restart.

4.2 Name Discovery

Figure 6: Data Retrieval over Catalog

In this section, we describe consumers’ interaction with
the catalog federation for discovering NDN names. The
message exchanges between consumers and the catalog are
shown in (Figure 6). Our catalog design doesn’t restrict con-
sumers to a specific catalog instance. Since the query name
captures all the necessary parameters, all catalogs will gen-
erate consistent results for a given query.

When the query Interest arrives the catalog responds with
an ACK. The ACK name contains the catalog ID, the query
parameters, and the local database version (/CMIP5/catalog
/query/<catalog-id>/<query-params>/<version>). The fresh-
ness time for the ACK is set to 0, which means it will not
be cached in NDN routers. This ensures consumers receive
responses not from a cached response but a live catalog in-
stance. After the ACK is sent, the catalog converts the
query parameters into an appropriate SQL string and issues
a SQL request to retrieve the results. The query results con-
tain a list of names. They are packetized and published into
the memory storage under /CMIP5/catalog/query-results
namespace. As soon as the ACK arrives, the consumer con-
structs the corresponding query-result content names by re-
placing“query”with“query-results”(/CMIP5/catalog/query-
results/<catalog-id>/<query-params>/<version>). Cur-
rently, NDN strategy directs queries consistently to the same
catalog instance. Note that query-results packets are cacheable
and therefore same query Interests don’t trigger multiple
database queries which also protects the catalog from DoS
attacks.

4.3 User Interface (UI)
We have implemented a Web UI loosely based on the

ESFG UI to help consumers discover and download datasets.
The UI is shown in Figure 7. Users discover datasets in two
ways: (a) by specifying a set of filters, or (b) typing the
name prefix directly. The filters are selected from names-
pace components and return all dataset names that matches
the selected components. To help users type a name prefix

Figure 7: Data Discovery UI

directly, the UI provides name auto-completion as users type
in the search box.

4.4 Catalog Federation deployment over NDN-
SCI testbed

Figure 8: NDN Science Testbed

We maintain a seven node NDN testbed with high-end
servers connected with 10Gbps links. This testbed allows
us to deploy and test NDN applications. To demonstrate
NDN’s features that we described in earlier sections, we
have developed a prototype application [3] that implements
those functionality. The application has two main compo-
nents - an UI and a backend catalog. This testbed currently
hosts four synchronized catalog instances and one instance
of the UI. Since the front-end is not tied to a specific cata-
log instance, the number of catalogs and front-ends does not
need to match. The deployed catalog federation currently
supports data publication, publisher verification, name syn-
chronization, user queries and data retrieval.

4.5 Evaluation
In our deployment, we have used real CMIP5 datasets

from ESGF. We took about 38K netcdf files and translated
the file names into NDN names. For the translation, we

had to parse actual filenames, metadata and user configu-
rations. We translated and inserted these 38K NDN names
into one of the catalog instances. The process of transla-
tion and insertion took a few seconds. Once the names were
inserted, the catalog instances exchanged and synchronized
the names. Since we are not synchronizing the actual data
but only the names, the operation is fairly lightweight, also
needing only a few seconds. Once the names are synchro-
nized, users are able to query any catalog instance. While
cost of a certain query depends on the network communica-
tion delay as well as database look-up time, simple queries
from our UI were satisfied in tens of milliseconds.

5. FUTURE WORK
We want to expand this work on several ways. Our first

goal is to demonstrate NDN’s plugin support for different
forwarding strategies that optimize data retrieval through-
put. One example strategy can be parallel data transfer
from multiple sources. We also want to understand which
strategies will be most beneficial for various communities.

We plan to implement transparent query routing to any
available catalog instance in case of a mid-query catalog fail-
ure. When a catalog instance fails, the query results Inter-
ests are redirected to other available instances. Since all
catalog instances are synchronized and the query name in
our protocol captures all the necessary query parameters,
catalogs should be able to generate and return the same
results. This approach avoids maintaining state between a
consumer and a specific catalog instance. In this protocol, all
catalog instances listen for Interests under the same names-
pace, /CMIP5/catalog. Upon receiving a query Interest, a
catalog instance generates the results, packetizes them and
sequentially publishes them into a memory storage under
/CMIP5/catalog/<query-params>/<version>. In case the
catalog fails after generating the results, subsequent Inter-
ests will be rerouted to another catalog. The new catalog
may take some time to regenerate query results, thus caus-
ing the consumer to retry. This does not result in additional

traffic since the catalog is aware of queries in progress and
will satisfy any retransmissions as soon as possible. Further-
more, generated results are reusable when a consumer issues
the same query.

We also plan to show how modern network management
tools such as SDN or ESNet’s OSCARS can be combined
with NDN. Scientific data transfers consume large amounts
of bandwidth and can disrupt other network flows. In use
cases such as HEP with deadlines for the delivery of high pri-
ority large datasets or LSST with real-time image delivery,
there are specific QoS requirements such as dedicated band-
width for a certain amount of time across multiple network
domains. To address these issues, scientific traffic is often
transferred over dedicated networks such as ESNet and In-
ternet2. However, dedicated network paths do not reduce
data management complexities. NDN, on the other hand,
can provide intelligence at the network layer but it cannot
control underlying network parameters such as bandwidth
or network topology. We propose to interface ESNet’s high
speed layer 2 circuit reservation system, OSCARS[8], with
NDN. We can also achieve the same functionality by com-
bining NDN with Software Defined Networking (SDN). This
hybrid approach will allow us to have dedicated high speed
paths identified by special NDN namespaces. NDN will rec-
ognize these pre-established high speed paths or create them
dynamically when large scientific data need to be trans-
ferred. High speed paths combined with NDN’s advanced
features such as parallel retrieval and transparent failover
will make scientific data transfers faster and less complex to
manage.

6. CONCLUSIONS
In this paper we presented the design of an NDN federated

catalog system to enable scientific datasets discovery. While
we used real world climate data as the driving example, we
also argued that NDN names provide a common substrate.
Specifically, the catalog application need only concern itself
with the addition/remove of names rather than heavyweight
dataset synchronization or even services. Consequently, our
catalog design can support the needs of any community that
is able to define and use consistent naming schemes. This
design also avoids managing dataset replication and service
hosting issues. The catalog need not keep track of what
data or service is hosted where. Instead, the NDN network
itself ensures that users requests will be routed to the op-
timal source without complicating any future applications
that may be developed.

As we continue to experiment with different data commu-
nities, such as HEP, there is no need to change the catalog
system. Each catalogs process is simply configured with
the naming schema for the community it wishes to support.
Multiple catalogs can even coexist on the same hardware.
Similarly, our query UI is also dynamically populated during
during its start up, thus updating its search fields appropri-
ately.

To summarize, we have demonstrated how an intelligent
network layer can make data management easier for scien-
tific communities as long as they converge on common nam-
ing schemes. We presented a design for reusable distributed
federated catalog system that facilitates NDN name discov-
ery. Finally, we discuss a real-life deployment of the catalog
along with the complementing UI and also provide some
coarse-grained evaluation of the deployed system.

7. ADDITIONAL AUTHORS
Additional Authors: Edmund Yeh (Northeastern Uni-

versity, Email:eyeh@ece.neu.edu) and Jean-Roch Vlimant
(CERN, Email:vlimant@cern.ch) and Azher Amin (Cal-
tech, Email:azher@hep.caltech.edu) and Dorian Kcira (CERN,
Email:dkcira@cern.ch) and Iosif Legrand (Caltech, Email:
Iosif.Legrand@cern.ch) and Ramiro Voicu (Caltech,
Email:Ramiro.Voicu@cern.ch) and David Randall (CSU,
Email:randall@atmos.colostate.edu) and Kelley Wittmeyer
(CSU, Email:kelley@atmos.colostate.edu) and Mark Bran-
son (CSU, Email:mark@atmos.colostate.edu) and Don Da-
zlich (CSU, Email:dazlich@atmos.colostate.edu).

8. REFERENCES
[1] A. Hanushevsky, Potential Data Access Architectures

using xrootd.
http://xrootd.org/presentations/OSGAHM 1103.
Plenary.pptx.

[2] Globus, www.globus.org.

[3] ndn-atmos,
https://github.com/named-data/ndn-atmos.

[4] openDAP, www.opendap.org.

[5] 4th annual Earth System Grid Federation and
Ultrascale Visualization Climate Data Analysis Tools
face-to-face conference report. Technical Report
LLNL-TR-666753, Lawrence Livermore National
Laboratory, Livermore, CA, 2014.

[6] L. Cinquini, D. Crichton, C. Mattmann, J. Harney,
G. Shipman, F. Wang, R. Ananthakrishnan, N. Miller,
S. Denvil, M. Morgan, et al. The earth system grid
federation: An open infrastructure for access to
distributed geospatial data. Future Generation
Computer Systems, 36:400–417, 2014.

[7] A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky.
Xrootd-a highly scalable architecture for data access.
WSEAS Transactions on Computers, 1(4.3), 2005.

[8] C. Guok, D. Robertson, M. Thompson, J. Lee,
B. Tierney, and W. Johnston. Intra and interdomain
circuit provisioning using the oscars reservation
system. In Broadband Communications, Networks and
Systems, 2006. BROADNETS 2006. 3rd International
Conference on, pages 1–8. IEEE, 2006.

[9] K. E. Taylor, V. Balaji, S. Hankin, M. Juckes,
B. Lawrence, and S. Pascoe. Cmip5 data reference
syntax (drs) and controlled vocabularies, 2010.

[10] K. E. Taylor, R. J. Stouffer, and G. A. Meehl. An
overview of cmip5 and the experiment design. Bulletin
of the American Meteorological Society, 93(4):485–498,
2012.

[11] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang,
and L. Zhang. A case for stateful forwarding plane.
Computer Communications, 36(7):779–791, 2013.

[12] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson,
P. Crowley, C. Papadopoulos, L. Wang, B. Zhang,
et al. Named data networking. ACM SIGCOMM
Computer Communication Review, 44(3):66–73, 2014.

[13] Z. Zhu and A. Afanasyev. Let’s chronosync:
Decentralized dataset state synchronization in named
data networking. In Network Protocols (ICNP), 2013
21st IEEE International Conference on, pages 1–10.
IEEE, 2013.

