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Abstract

As animals move through the world in search of resources, they change course in reaction to
both external sensory cues and internally-generated programs. Elucidating the functional logic
of complex search algorithms is challenging because the observable actions of the animal
cannot be unambiguously assigned to externally- or internally-triggered events. We present a
technique that addresses this challenge by assessing quantitatively the contribution of external
stimuli and internal processes. We apply this technique to the analysis of rapid turns
(“saccades”) of freely flying Drosophila melanogaster. We show that a single scalar feature
computed from the visual stimulus experienced by the animal is sufficient to explain a majority
(93%) of the turning decisions. We automatically estimate this scalar value from the observable
trajectory, without any assumption regarding the sensory processing. A posteriori, we show
that the estimated feature field is consistent with previous results measured in other
experimental conditions. The remaining turning decisions, not explained by this feature of the
visual input, may be attributed to a combination of deterministic processes based on
unobservable internal states and purely stochastic behavior. We cannot distinguish these
contributions using external observations alone, but we are able to provide a quantitative
bound of their relative importance with respect to stimulus-triggered decisions. Our results
suggest that comparatively few saccades in free-flying conditions are a result of an intrinsic
spontaneous process, contrary to previous suggestions. We discuss how this technique could be
generalized for use in other systems and employed as a tool for classifying effects into sensory,
decision, and motor categories when used to analyze data from genetic behavioral screens.

Author summary

Researchers have spent considerable effort studying how specific sensory stimuli elicit
behavioral responses and how other behaviors may arise independent of external inputs in
conditions of sensory deprivation. Yet an animal in its natural context, such as searching for
food or mates, turns both in response to external stimuli and intrinsic, possibly stochastic,
decisions. We show how to estimate the contribution of vision and internal causes on the
observable behavior of freely flying Drosophila. We developed a dimensionality reduction
scheme that finds a one-dimensional feature of the visual stimulus that best predicts turning
decisions. This visual feature extraction is consistent with previous literature on visually elicited
fly turning and predicts a large majority of turns in the tested environment. The rarity of
stimulus-independent events suggests that fly behavior is more deterministic than previously
suggested and that, more generally, animal search strategies may be dominated by responses
to stimuli with only modest contributions from internal causes.
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Introduction

Active movement is one of the defining features of animals, and the use of locomotion to
search for resources within the environment is likely among the most ancient of behaviors.
Observations on motile organisms, ranging in scale from bacteria to whales, indicate that
search patterns are structured by a combination of internal processes and external cues [1,2].
Sensory systems enable organisms to detect favorable objects at a great distance [3-5] and
they use this ability to localize resources by either directed motion (taxis) or changes in
locomotor statistics (kinesis). Prior research suggests that, in the absence of external cues, the
animal behavior is generated by internal processes, and that the overall animal fitness is
sensitive to the exact characteristics of this internal process (e.g., Levy statistics) [6—18]; it has
also been questioned whether observed large-scale statistics can give any insight on an internal
process that generated the behavior, and whether the internal processes can dominate over
stimuli-elicited behavior [19-22]. As for the internal processes, these can be divided into truly
stochastic sources, and deterministic results of a deliberate, but unobservable, internal
mechanism based on internal metabolic/neural states. When observing an intact motile
organism, it is not easy to determine which components of its locomotion behavior are
triggered by internal processes versus external cues, yet such classification is essential for
deciphering the underlying logic of its movement and search behavior. The task is further
complicated by the fact that an external observer might not be able to distinguish between
truly stochastic processes and the deterministic results of a deliberate, but unobservable,
internal mechanism. For example, software pseudo-random number generators produce
strictly deterministic sequences, which appear to be random to an external observer who does
not have access to the internal state of the system [23]. A major goal of both cell biology and
neuroscience is explaining the molecular and cellular bases of these three qualitatively different
processes (sensory-driven, purely stochastic, and deterministically based on internal states).

If the salient features of the external world are known, it is possible to gain insight into sensory-
driven behaviors through the use of sensory-response correlation [24]. The analysis of the
internally-driven processes is much more challenging. Given uncertainty in measurement and
the inability to perfectly reproduce experimental conditions from trial to trial, variability in the
results of behavioral experiments has often been treated as a limit on our ability to measure
stimulus-driven behavior. In this view, variability in responses from trial to trial reflects
irrelevant components of behavior, which are averaged until the mean---interpreted as the
response the animal ideally would have produced---becomes clear [25]. From the opposite
perspective, many researchers have attempted to artificially remove all relevant sensory input
to an animal and measure behaviors in conditions of sensory deprivation to reveal intrinsic
properties, especially the statistical distributions of behaviors [26—28]. Although focusing in
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isolation on either the stochastic [9,29,26] or the sensory components [30] of search behavior
have provided key insights, neither of these extremes is sufficient to capture the full range of
processes at play as an animal moves under natural conditions. Attempts to investigate the
interaction of internal and external processes include studies of bacteria [31] and nematode
worms [32,33], organisms for whom chemicals provide the most salient cues for food search.
For larger animals with image-forming eyes, vision may provide another essential cue in search
algorithms, because vision is the only sense which allows to perceive remote parts of the
environment. Often vision cannot be considered separately from the mechanics of locomotion
[34].

Flies are a model of computational efficiency and robustness, to date not equaled by artificial
systems, which often seek to imitate nature [35,36]. Much is known about fly vision [37,38].
Since the pioneering work of Kennedy [39] and Mittelstadt [40], the behavioral responses of
flies to experimenter-defined visual stimuli have been extensively investigated.
Electrophysiological recordings have complemented and extended our knowledge of
phenomena such as the neural basis of motion detection [41-44] and other key aspects of
sensory processing, such as receptive field tuning [45]. However, there are many challenges in
the identification of neural processing and how it produces complex behavior, especially as
regards the characterization of “discrete” behaviors, such as the rapid turns (“saccades”) of
Drosophila, which are the object of this study. In fact, many studies which offered complete
characterization of the animal response are limited to “continuous” behavior, for which they
provide linear (or “linearized”) models [46—49]; this allows using techniques such as linear
system identification.

Identifying the neural causes for “discrete” behavior involves solving a different set of
problems. Firstly, there are the problems of segmentation and classification of behaviors
(including the definition of what “behavior” and “a behavior” are), for which it is often
necessary the use of nonlinear machine learning methods [50]. Then, there is the problem of
building models that can correlate the stimulus with the behavior(s). While it is possible to
postulate models that also integrate well with our understanding of lower-level behavior
[51,52], it is not clear how such methods can be identified from the data. On the practical side,
it is evident that discrete decisions, such as turning decisions, are meant to guide exploration
and therefore should be investigated in naturalistic situations. This poses practical problems of
tracking the animal position in a large environment, and it also precludes (at the current level of
technology) the uses of direct neural recording. In fact, comparatively few attempts have been
made to correlate parameters of visual stimulus with behavioral responses in unrestrained
conditions [53-56].
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In this work, we present an analysis that can quantitatively discriminate the effect of visual
stimulus as opposed to internal processes in the generation of saccades in the fruit fly. Our
conclusions are that visual stimulus has a dominant role. One important message of our work is
that it is very difficult to identify models of complex behavior that can explain everything, often
because insufficient data can be collected. Therefore, it is important to “search for simplicity”
[57], for example by framing the problem as dimensionality reduction, and to use models that
a posteriori can justify their assumptions. While we describe this analysis for visual processing
in Drosophila, our goal is to construct a general method that can be used for other sensory
systems, other animal species, or in the context of genetic screens.

Methods

Fly care and experimental treatment

Flies from the laboratory stock derived from 200 wild-caught females were reared on a 16h:8h
light dark cycle under standard laboratory conditions. Three day old adult female flies were
anesthetized with cold and individually housed within centrifuge tubes containing a moist
tissue paper. Flies were starved (but provided with water) in the tubes for four to six hours
before being released into the flight arena. Most flies would immediately begin flying, and we
terminated tracking after the fly landed. We then removed each fly with a wand attachment of
a vacuum cleaner before introducing another fly. Thus, each recorded trajectory is derived from
a fly’s initial experience exploring the novel environment.

The flight arena was a 2 meter diameter, 80cm high cylinder (see Figure 1A). 10cm x 10cm red
and green gel filters (Roscolux) were attached to the arena in a regular checkerboard
arrangement and provided a high contrast visual stimulus to flies near the wall. One meter from
the wall (i.e., at the center of the arena), the angular wavelength of this pattern was ~11°, and
consequently would be twice the inter-ommatidial spacing of a ~5.5° in Drosophila [58]. The
particular red and green filters were chosen to have similar infrared transmission to facilitate
tracking using cameras outfitted with long (IR) pass filters. The arena was illuminated from
outside with a circular array of eight 750W Fresnel stage lights pointing towards the arena
center. These lights provided both visible and infrared light for fly visual responses and machine
vision tracking, respectively.

Fly tracking

A detailed description of our tracking system may be found in [59]. Briefly, we used 11 cameras
(6 monochrome Pt. Grey Firefly MV USB cameras and 5 monochrome Basler A602f cameras)
with wide-angle lenses and infrared pass, visible cut filters (R72, Hoya Filters) to view the
interior volume of the flight chamber. The cameras were positioned so that a fly within the
tracking volume was viewed by 2 or more cameras at any given time, enabling a 3D estimate of
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its position (Figure 1Bi). The cameras were first calibrated to compensate for image warping
non-linearities (deviations from the pinhole model) and then the extrinsic and intrinsic
parameters describing the pinhole model were found. Flies were tracked with an extended
Kalman filter (EKF), in which the motion model was a linear constant velocity model, and fly
maneuvering is captured by the stochastic component of the Kalman filter. Because tracking
updates occurred at a high rate (60 fps) relative to fly maneuvering, we found this simplification
to work well in practice. The 3D estimate of the fly position is recovered by triangulation from
the 2D tracking data of each camera, and taking into account the relative uncertainty of each
observations.

Saccade detection

Many species of flies, including Drosophila, exhibit rapid changes in heading as they fly, termed
“saccades” [53]. Between saccades, flies tend to maintain an approximately straight course, and
saccades account for at least 80% of the total net change in heading during flight [60]. There is
little doubt that saccades can be triggered by visual stimuli, but the degree to which visual
feedback plays a role in determining the velocity, duration, and amplitude of the resulting turn
is unclear. Experiments using a magnetic tether, which permits free rotation about the yaw axis,
suggest that flies do not respond to visual feedback during a saccade [61]. On the other hand,
Stewart et al. [56] have observed a rebound effect after saccades in free flight, which they
suggest is consistent with active optomotor feedback during the maneuver. This discrepancy is
not of direct interest here, however, as we deal exclusively with the decision of initiating a
saccade.

To analyze saccades within a flight trajectory, one should choose a detection algorithm that,
given the trajectory data, returns a series of saccade events, possibly with other attributes such
as direction, amplitude, velocity, etc. In the past, several detection algorithms have been
proposed, each one implicitly using a slightly different definition of saccade, and each one able
to compensate for different sources of noise. In practice, large saccades are such distinct events
that all algorithms agree with respect to most classifications, but different algorithms may
disagree on detection of small saccades. We make sure that our results are robust to the choice
of the algorithm, by using two distinct algorithms based on different principles. The two
algorithms are described in detail in Text S1 and their source code is available on line. Briefly,
the Geometric Saccade Detector (GSD) detects saccades from the x-y planar trajectory. The
Angular-Velocity based Saccade Detector (AVSD) works primarily by considering the smoothed
angular heading rather than the planar position. Unless otherwise noted, the statistics shown
through the paper are derived using GSD, which is a posteriori shown to be better suited for
these particular experimental conditions and equipment. Alternative figures showing the same
statistics obtained from the AVSD algorithm are available as part of Text S1.
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Capturing behavior determinism and randomness using rate-variant Poisson processes

Figure 2A illustrates the conceptual approach of our analysis. We denote by x(t) the animal’s
physical spatial configuration (its position and velocity in a fixed reference frame). The
stimulus y(t) is the set of all sensory cues perceived by the animal, and it is a function of both
the spatial configuration x(t) and the appearance of the world W. Whereas x(t) is a concrete
variable that we can possibly measure, the stimulus y(t) and the world W are placeholders for
things that, in general, are unknown. The actions u(t) (e.g. saccades in our case) are the
external manifestations of the internal neural processing, which depend both on the
instantaneous stimulus as well as on &(t), another placeholder variable that represents the
animal’s internal state (metabolic states, neural states, etc.), and which has dynamics of its
own. We assume that it is possible to observe the spatial configuration x(t) as well as infer the
actions u(t) from the observations, but that the internal state é(t) is not observable.

We make a distinction between obtaining a functional model of an animal’s behavior and
identifying the underlying neural processes. Obtaining a functional description of behavior
means obtaining a model that can predict the actions u(t) given the spatial configuration x(t)
and a description of the world W. In principle, we can do this by observing an animal’s behavior
with enough samples of x(t), W and u(t). In general, however, there are a variety of neural
models that could produce the same functional model. For example, many behaviors appear to
be well-localized in time, suggesting an “action potential” neural model, but the underlying
neural model can have very different properties [62] (in other words, the microscopic
explanation might be quite different than what the macroscopic observations suggest). The
model that we now describe and that we will identify should be interpreted as a purely
functional model, which can inform the search for neural models, to make sure that they are
compatible with the externally observable free flight behavior.

Figure 2B shows the particular model that we use in this paper. It is a particular form of the
general model discussed above (Figure 2A). In this model, we propose that the animal’s actions
u(t) can be summarized by the saccade events. We divide the saccade events in two classes:
left and right saccades. In principle, one would want to consider additional attributes of the
saccades, such as speed, duration, and amplitude. The analysis might also be expanded to
consider other easily identifiable events [63]. However, limiting ourselves to a binary
characterization of saccades allows us to model the behavior generation as Poisson processes,
which offers relatively easy inference. We model saccade generation using rate-variant Poisson
processes, i.e., we assume that, for each class of events, internal and external factors influence
a time-varying event rate according to a quantitative relation that we will attempt to identify.

The most important assumption of our method (which can and will be verified a posteriori) is
that, for the purpose of generating the behavior, the high-dimensional output y(t) can be
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compressed down to a low dimensional “feature” z(t). This assumption is implicit in many
other previous studies, and it is informed by the knowledge of the underlying neurobiology: the
first level of sensory processing in flies and other animals consists in taking a very high-
dimensional sensory stream and computing the few behaviorally-relevant features from it. Our
only assumption is that this low-dimensional feature exists - we do not assume that we know
this feature. However, we can attempt to automatically identify this feature from the
observable data. It is important to note that we do not assume to know how this feature is
computed from the stimulus. Indeed, the advantage of our method is that it allows identifying
this feature based only on the observable behavior, without postulating anything on the
sensory processing.

Figure 2B also shows explicitly that, in addition to the feature-dependent pathway in our
model, other unmodeled processing influences the behavior. The effect of this unmodeled
processing will be quantitatively estimated as well. The saccade events are assumed to be
generated by a set of interacting Poisson process with variable rate r;(t),i € {L, R}. The index i
stands for either one of the two classes of events (L: left, R: right). The variable rate r;(t) is
assumed to depend both on the stimulus y(t) and the internal state £(t), thus incorporating
both random and deterministic effects. We write 7;(t) as the sum of three factors:

r(0) = fi(z(®) + i (£@®) + 7%, (1)

where the term f;(z) is the contribution of the external stimulus through the feature z; the
term 1/ (€) is the contribution of the internal state &; and the term % represents the
contribution of a purely random stochastic process that does not depend either on an internal
state or the stimulus. By omitting some of the terms in the equation above, one can recover
many other simpler models. For example, purely random behavior is obtained by

setting 7;(t) = rf.

The Poisson processes interact by inhibition. If any process generates an event, then any event
generated from that process or any other process for a period of length A is ignored. This is
meant to model a feature of many fixed action patterns that, once initiated, must run to
completion before a different motor program can be initiated.

Finally, Figure 2B shows another variable c(t), which we call “reduced configuration”. We
define c(t) as the subset of the spatial configuration variables that actually influence the
stimulus, for a particular class of environments W*. In general, for a freely flying animal, x(t) is
at least a 12 dimensional quantity, including the 6 degrees of freedom for position/orientation
and the corresponding 6 for velocities (additional degrees of freedom in the animal spatial
configuration would be derived from the positions of body joints, such as the neck and wing



251
252
253
254
255

256
257
258
259
260
261
262

263

264
265
266
267
268

269
270
271
272
273
274
275
276
277
278
279
280
281

282
283
284
285

positions). For particular environments, however, the stimulus is only dependent on a subset of
x(t). For example, if the environment is distant enough, then the visual stimulus does not
depend on the forward velocity. Therefore, even though the spatial configuration x(t) is at
least 12-dimensional, actually the stimulus depends on a smaller variable c(t), i.e., the reduced
configuration.

We will show that it is possible to identify all unknowns in this model. In particular, we will
identify how the feature z depends on the reduced configuration ¢, and how the rates depend
on the feature. Remarkably, it is possible to do this without assumptions on how the feature z
is computed from the stimulus y or how the stimulus y depends on the reduced configuration
c. We only assume to be able to observe the reduced configuration c(t) and the generated
saccade events. Before describing the method, we first discuss how this model based on rate-
variant Poisson processes allows us to represent different functional models.

Predictions of different functional models

In Figure 3 we illustrate the predictions of four qualitatively different functional models in terms
of the observed statistics. On the left side we show the functional model, and on the right we
show the expected observed event rates f;(z) as a function of the feature z. This exercise
assumes that we know how to estimate the feature, which we will show later. Here we describe
what we would expect to find, before embarking on the actual computation of z.

Figure 3A shows a “hard threshold” model, based on the computation of a single feature z,
which is then thresholded to obtain the event rate. A Poisson process then generates the
events based on this time variant rate. The “stochastic trigger” in the figure masks the fact that
there are two processes generating two classes of events, and that these processes are
interacting (see discussion above), which is not relevant to the present discussion. If the
absolute value of the feature is below a threshold, no event is generated; otherwise, saccades
to the left and right are generated at a fixed rate. A large fixed rate would mean that the model
is practically deterministic, with a large stimulus feature z resulting in a behavioral event with
only rare failures. On the right side of the figure, we show the observed event rates as a
function of the feature z. For this simple model, the observed rates as a function of the feature
are straight steps. We remark that our analysis does not assume necessarily that the feature
exhibits a hard threshold as in this simple model. We choose this shape merely because it
allows visualizing the effect of different sources of noise.

In particular, we are interested in understanding the implications of a noise source that acts on
the computation of the feature (sensory noise) compared to noise that generates behavior in a
parallel process independent of the stimulus-computed feature (decision-making or motor
noise).
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Figure 3B shows the effect of measurement noise on the hard threshold model. Random
fluctuations in the feature turn the hard threshold into a soft threshold.

Figure 3C shows the effect of adding a spontaneous generation process in parallel to the
feature pathway. This has the effect of raising the predicted event rate by a constant value, as
the parallel process is independent of the feature. A parallel generation process that depended
on an unobservable internal state would have the same expected statistics if the internal state
is uncorrelated with the feature. This means that a constant baseline event rate that is
independent of the feature must be interpreted as the joint contribution of a purely stochastic
spontaneous event generation together with a deterministic response based on internal states.

It is also important to consider the effect of another unmodeled feature z’ on the event rate
statistics, if we only model the dependence of one feature z. This stems primarily from practical
concerns, because the dimensionality of the feature that it is possible to identify depends
primarily on the amount of data available. Therefore, once the dimensionality of the feature is
fixed, we need a way to judge whether that dimension is sufficient to describe the behavior.

Figure 3D augments the model of Figure 3A with an additional pathway that uses a different
feature z'. In such a case, if we plot the rates versus the feature, we will not find a clear
functional dependency, indicating that the feature z is no longer sufficient to explain the event
rates. Conversely, if we find a clear functional dependency, then we can say that the feature z is
sufficient to capture the influence of the sensory stimulus on the behavior. This does not imply
that z is the only behaviorally relevant feature of the stimulus, because there could be other
features that are relevant for other behaviors not considered in the analysis.

Our identification algorithm, described in the next section, recovers the best one-dimensional
feature z that explains the event rates. This permits constructing a function in which the
experimental event rate is plotted against the feature curve. However, we anticipate that the
experimental results, being dependent on experimental data, will have error bars both for
dependent and independent variables. Strictly speaking, even if one finds a one-dimensional
feature that uncovers a deterministic dependency between feature and rates compatible with
the error bars, it is not possible to conclude that there is only one feature, because the effect of
a second feature might be masked by the measurement noise. In this sense, our claims that one
feature is sufficient is an application of parsimony.

In summary, we can identify the contributions of several qualitative factors by plotting the
event generation rates as a function of z. Measurement noise will soften the curve (e.g., a hard
threshold is turned into a soft threshold). A parallel purely stochastic event generation process
has the same effect of a deterministic process based on an internal state uncorrelated with the
feature, namely it raises the curve by a fixed baseline rate independent of z. If another
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unmodeled feature z’ influences the behavior, there is not a strict functional dependence
between the rates and the feature z.

Identification of the feature z

We devised a procedure that obtains an estimate of the best one-dimensional feature of the
input that predicts the observed event rates. We explain here the basic idea, and provide
details in Text S1. Intuitively, the feature and event rates can be obtained from the spatial
statistics of the observed behavioral output. With respect to the discussion so far, the main
conceptual step consists in translating the problem from the time to the space domain. So far,
we have written the feature z(t) as a time-varying quantity. We have also assumed that z(t)
depends on the stimulus y(t), and that the stimulus depends on the animal spatial
configuration x(t), or more precisely, on the reduced configuration c(t). Therefore, we rewrite
our model writing z(c) instead of z(t). The quantity z(c) is a spatial field that we interpret as
the feature computed from the typical stimulus experienced at the reduced configuration c. We
will fit a model of the kind:

r(c) = fiz(e) +7), i€{LR} (2)

where 7;(c) is the average event rate for the i-th class (L: left, R: right) observed at the reduced
configuration c; f;(z) denotes the event generation rates for left and right saccades as a
function of the feature, and ;¥ is constant term that we call baseline event rate.

Note the differences with respect to the previous model (Eq. 1). First, we have written the rates
as a function of the reduced spatial configuration instead of time. Moreover, we do not model
explicitly the contribution of the internal state. As argued above, given that we cannot measure
the unobservable internal states £(t), we cannot distinguish between a purely stochastic
contribution and the contribution of an internal state

Therefore, the constant term 7;° will be an estimate of the joint contribution of the two terms
that we cannot distinguish:

i’ =rf +E{r'(£(0)}, (3)

where E{ }indicates the expected value taken over the whole trajectory.

We summarize here the three main phases for estimating z(c) from the behavioral data, while
leaving the details to Text S1. First, the reduced configuration space c(t) is discretized into
spatial cells with a resolution that depends on the amount of data available. For each of these
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cells, basic statistics are computed, such as the average time spent in each cell, as well as the
observed event rates in the cell. One advantage of the algorithm is that these spatial statistics,
averaged over the whole trajectory, are intrinsically robust to measurement noise and
uncertainty in the event detection algorithm. Next, the event generation rates 1;(c) are
computed from the observed rates. Because we assume that the Poisson processes interact
with each other, and therefore the statistics of each process cannot be processed separately,
and appropriate steps are required to take into account the interaction.

Once the average event generation rates r; (¢), rz(c) are estimated, then we find the feature
field z(c) that explains both event generation rates, in the sense that there exist two functions
f1 and fx such that the constraint described by equation (2) holds. Writing the constraint
explicitly for each cell c*, and letting z* = z(c*) the value of the feature to estimate, we can
see that we have a system of constraints of the kind:

{TL(CR )= fLZ*)+ 1

fork =1, ..., #cell
(@) = fo(25) +70. T cells)

The generated event rates 17, (¢ ) and 73 (c*) on the left side have already been estimated,
while both the feature value z* and f; and fz have to be estimated. The constants r,> and ¥
can be incorporated as part of f; and f. Note that this can be interpreted as a dimensionality
reduction problem, because we have to find one cause (the feature z) that explains two effects
(left and right event rates) at the same time.

In our case, we solve a relatively simple instance of the problem in which z is assumed to be a
scalar function. Therefore, the constraints can be algebraically manipulated to obtain a closed
form solution, which also takes into account the uncertainty in all the data and provide error
bars for the estimated feature. The details are given in Text S1. Our approach is very generic,
and can be extended to scenarios with more than 2 behaviors and more than 1 feature.

The feature z should be considered a dimensionless quantity of arbitrary scale. In fact, the
equations that define it have multiple solutions. For example, suppose that (z, f;, fz) is one
solution of the system of equations given by (Eq. 2). If @ is any invertible function, then one can
verify that (a(z), a1(f), a‘l(fR)) is a solution as well. Therefore, once we have obtained a
solution for z, we can rescale it using any function a that we find convenient. In the following,
we choose the rescaling function such that z is uniformly distributed in the interval [—1, +1].

Results

Event statistics and estimated feature

We tracked 88 flies for a total of 5130 seconds or approximately 1.4 hours. Of the total
recorded time, we considered only the 4814 seconds of data in which the flight speed exceeded
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5 centimeters per second. This threshold on the linear velocity allowed working on tracks for
which saccades were easier to detect. We detected a total of 6613 saccades with this criterion,
giving an average saccade rate of 1.37 saccades per second.

We chose a reduced configuration c(t) that is two-dimensional. This follows from considering
only planar motion (which reduces the effective degrees of freedom to 3), and using the
symmetry of the circular arena (which reduces the degrees of freedom to 2). An implied
assumption (which can be verified a posteriori) is that the fly’s response is not dependent on
the variables not considered in the analysis; for example, even though it is known that flies [64]
and other insects [65] use gaze to stabilize vision, there is no gaze variable in our model. This is
because the resolution of our measurements is not enough to observe directly the relative pose
of head and body, in terms of pitch, roll, or yaw. All components of the spatial configuration
that are theoretically relevant for the stimulus, but cannot be measured, are “hidden” states
whose contribution is lumped into the constant term in (2).

The two-dimensional reduced configuration can be parameterized in different ways, the results
being independent of the particular parameterization. The primary parameterization that we
use for computation uses (d, ¢) for coordinates: d is the distance to the wall and ¢ is the angle
that the fly heading forms with respect to the axis of the arena (Figure 1Ci). We chose this
parameterization because it corresponds to two behaviorally relevant variables. We preferred
the axis angle ¢ over other potentially valid representations for the heading (e.g., approach
angle) because the representation is not singular, as ¢ € [—180 deg, +180 deg] for any value
of d.

We compute all statistics in the (d, ¢) space, but we also use another choice of coordinates to
visualize the same data. We rotate the original (x, y, 8) configuration of the fly around the
center of the arena, such that the new coordinates are (x’, y’, +90deg). These “fly-centric”
coordinates are displayed using a top-down view of the arena, in which the fly always points up
(Figure 1Cii).

The reduced configuration c(t) was discretized in a grid with sides of 36 cells (for ¢) and 20
cells (for d) (Figure 1Di). The angle ¢ was discretized in 36 cells of equal size 10 deg. The
distance d was discretized in 20 unequal intervals (note the unequal y axis in Figure 1Dj).
Intervals for d are smaller at the center of the arena and larger near the border, in such a way
that each annulus of radius 1 — d and width A d had the same area. To compensate for the
sparseness of the data, each cell extends 50% into the neighbor’s area. Although these choices
were somewhat arbitrary, we obtain qualitatively similar results if we vary the number of the
cells.
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Figure 1D shows the distribution of time spent at each point of the arena, and Figure 1E shows
the distribution of the detected saccades using the GSD algorithm (see Text S1 for figures using
the saccades detected by the alternative AVSD algorithm). As clearly evident in Figure 1Eii, most
of the detected saccades correspond to the fly avoiding the walls on the left or on the right.
However, those are the configurations where the flies spent more time (Figure 1D). Therefore,
we need to normalize this data to see the behavioral patterns.

Figure 4A shows the estimated saccade generation function r;(c) across the reduced
configuration space. These rates are obtained by first computing the observed generation rates
m;(c) by averaging the number of saccades (Figure 1E) by the time spent in each cell (Figure
1D). Then the rates r;(¢) are obtained from m;(c) by correcting for an estimated inhibition
interval A = 0.1 s. Panels B and C show the data separately for left and right saccades (r;, and
1R). The most evident phenomenon is that the fly tends to turn left when the wall is on the right
(and vice versa), however, there are many saccades of the opposite direction initiated, even
when the turning would orient the fly towards the wall rather than away from it. This is the
phenomenon that we want the feature z(c) to explain: we want to find the best spatial scalar
value z(c) such that both r; (¢) and rz(c) can be written as a function of z. Figure 5Ai-ii shows
the estimated feature z(c) as a function of the reduced configuration c. This is the
unidimensional feature that best explains both the left and saccade rates. The estimated
feature using the alternative saccade detector is qualitatively similar (Figure S1). We now have
the spatial feature z(c) as well as the rates r(c) as a function of the reduced configuration ¢
and can now plot r as a function of z (using ¢ as an implicit variable). This is shown in Figure 5B,
which shows, for each cell k, the value of r;(c*) as a function of z(c*). Figure 5Bi shows the
data as a scatter plot, while Figure 5Bii shows the error bars on the estimated rates r;(c) at the
95% significance level.

Predictive power of the estimated feature

The data in Figure 5B indicate the predictive power of the feature. If the feature was perfectly
predictive of the event rates, then r;(c) would be a function of z(c). In this case, taking into
account the error bounds on the rates, it is possible to find two functions f;, fz that predict the
event rates in approximately 93% of the environment. More specifically, given a generic cell
corresponding to the spatial configuration c*, we find that the predicted event rates f; (c*)
and f(c*) are compatible with the observed rates 7, (c) and 1 (c) at the 95% level of
significance. In practice, this means that the data in Figure 5B can be explained by two smooth
curves (f;, and fz) that intersect 93% of the confidence intervals corresponding to each spatial
configuration. In the remaining cells (51 of 720 cells), the rates cannot be predicted by this
feature alone. Further inspection (data not shown) reveals that such points correspond to
configurations with the fly pointing directly against the wall at a small distance (<0.3 m). Note
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that being able to predict the rates from the feature does not mean that one is able to predict
the direction of each single saccade event. For example, in the middle of the arena the
probability of left and right saccade is 50%, and this percentage is perfectly predicted by the
feature; however, it is impossible to predict the direction of the single saccade better than
chance.

Bounds on the contributions of random process and internal states

As explained before, using only external observations of the animal spatial configuration, we
cannot distinguish among the contribution of a purely random endogenous saccade generation
process, a deterministic process based on an internal state, any unmodeled features computed
from the stimulus, and any unobservable spatial configuration that we cannot observe due to
the limited resolution of our instruments. These contributions are lumped together in a
baseline saccade rate. By examining the curves in Figure 5Bi we can estimate a baseline event
rate rg of about ~0.4 saccades/sec. By comparing with a maximum estimated event rate of

~4 saccades/sec, we can estimate that roughly 90% of the saccades are stimulus-driven in the
regions of maximum stimulus. This value depends on the geometry and texture of this
particular arena (e.g., it would be different if the arena was larger or smaller). However, we
predict that the baseline rate of ~0.4 saccades/sec that we measure at the center of the arena
should be independent of the geometry, as the size and textures of this arena were chosen
such that the fly cannot perceive significant visual contrast from the center.

We can make some informed guesses for the contribution of the various possible processes by
considering circumstantial evidence from other experiments. In tethered flight experiments,
deliberately performed in the absence of salient visual stimuli, spontaneous saccade rates are
on the order of ~0.3 saccades/sec [66]. If we assume that these values obtained in tethered
experiments are a good approximation of an assumed spontaneous generation process in free-
flight, then we can account for approximately 75% of the unexplained 0.4 saccades/sec as the
joint contribution of a random process and unobservable internal states. This leaves roughly
25% of unexplained data, which could possibly be explained by estimating an additional feature
Z'(c), perhaps dependent on components of the spatial configuration that we cannot observe,
such as the gaze direction. The contribution of a hypothetical feature z' is therefore very small
with respect to the contribution of the estimated z, as z’ could possibly explain about 0.1
saccades/sec versus the 4 saccades/sec explained by z.

We conclude that the saccade behavior of Drosophila that depends on external visual stimulus
appears to depend for the most part on only a one-dimensional feature of the stimulus. These
conclusions must be limited to the particular experimental condition, as we cannot exclude that
more complex environments would elicit more complex responses that require a higher
dimensional feature to be explained. However, even in our relatively simple flight environment,
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our analysis implies that the vast majority of saccades we observed are stimulus-driven and are
not due to an internal, stimulus-independent search algorithm (e.g. Levy flights), as has been
suggested for Drosophila and many other species [6—18].

Approximating the feature field using known parametric structures for visual processing
We have been able to compute the feature field z from the observable fly trajectory, without
any assumptions on the fly visual processing. Nevertheless, it is interesting to test whether this
independently identified feature is compatible with existing models of the first stages of visual
processing in flies. In particular, we test the hypothesis of whether the identified feature can be
expressed as a linear function of the perceived optic flow.

We assume the following generative model for z:
z(t) = a(J OF(8,)A(6)d0), (4)

where OF (6, t) is the optic flow, or angular velocity, at the retinal angle 6 at time t, and A(0) is
a retinal input kernel. The value 8 = 0 corresponds to the animal’s center front visual field.

The function a is an arbitrary nonlinear function that we include in the model, because the
identification procedure allows us to know z only up to a monotone transformation (i.e., if z(c)
is a solution of the constraints system, then also a(z(c)) is a valid solution). We can
characterize the optimal A(@) as the solution of an optimization problem:

A*(8) = argming E(4, a), (5)
where the error function E is given by:
E(A a) = Xi[z(c*) — a( [ OF(6,c*)A(0)d0))>. (6)

In this last expression, OF(6, c¥) is the typical optic flow that the animal experiences at the
reduced configuration c¥. By solving this optimization problem, we try to best approximate the
estimated feature over the whole environment, assuming it can be expressed as a linear
function of the optic flow.

Unfortunately, we found that this optimization problem is ill posed given our data. In particular,
Z is known only at a discrete set of values ¢ (720 cells --- the density of these is constrained by
the finite amount of data that we have), and it is quite noisy, whereas the unknowns (4, a) are
of high dimension. Given that the resolution of the fly’s visual system is around ~5deg, it makes
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sense to use at least 70 numbers (~330/5) for representing A. Furthermore, a can be any
monotonic nonlinear function.

We tried to improve the results by penalizing large values and large spatial variations of A
(measured either by the spatial derivatives d4/36 or 32A/36?2 ). The modified error function
is:

m 2
E'=EA4,a)+8[ |%A(6)| de, (7)

form = 0,1, 2 and different values of 5. In general, by varying m and 8, we found a multitude
of solutions, all very different from each other, having approximately the same predictive
power (Figure 6). We noticed that for increasing regularization values the estimated linear
kernel tended to be shaped as an harmonic function, as illustrated by the kernel obtained by
regularizing the second derivative (m = 2) and using a large value of 8 (8 = 10%), shown in
Figure 6D. This kernel is still asymmetric. If we impose that the kernel must be symmetric, we
find that the best approximation using one harmonic is:

A(0) x cos(0) + 0.2. (8)

This kernel and relative feature field is shown in Figure 6E, and it is a good approximation of the
feature estimated from the data.

We conclude that the identified feature can be expressed as a simple function of the optic flow.
However, while obtaining the behaviorally relevant feature z from the external observations
alone is a well-posed mathematical problem, finding the function that maps the stimulus y to
the feature z is an ill-posed problem, because the set of possible models is of very high
dimension compared with the data that we have. Note that these issues are already evident
when considering only linear functions of the optic flow, and would be even more pressing if
we were to add other nonlinear components to the model that are known to exist in the neural
circuits of the fly.

Most of the estimated kernels obtained using some form of regularization share a particular
feature: A(6) is never O for 8 corresponding to the back of the animal, but has opposite sign in
the front of the animal (Figure 6B,C,D,E). Further investigation shows that these non-zero
values in the caudal region are responsible for the two small side lobes that appear in the
feature field when plotted in fly-centric coordinates. If the kernel is set to zero in the back,
these side lobes disappear. This is apparent by comparing the feature field in Figure 6F
(corresponding to the kernel max {cos(6) + 0.2, 0}) with that in Figure 6E. These results
suggest that the optic flow in the back of the animal influences the fly’s turning decisions. This
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response cannot be interpreted as pure obstacle avoidance, given that flies tend to fly forward
and obstacles in the back are not expected to represent a threat for collision. For convex
environments, the saccades initiated from this response would tend to align the fly’s course in
parallel to the environment boundaries and the overall result is to follow walls rather than
completely avoid them (similar behavior has been observed in bees [67]). Such a visuo-motor
system might provide a functional advantage with respect to the balance of collision avoidance
and object search. An animal that balances attraction and obstacle avoidance would tend to
remain relatively close to interesting visual features, whereas an animal whose primary reflex is
to fly away from visual features would tend to find itself in large open areas, far from potential
landmarks or food sources. The only way of quantitatively verifying this attraction-deflection
hypothesis would be to obtain data from experiments within larger environments with more
varied visual features. These results are also compatible with the observation in previous
experiments on tethered flies that the optomotor response can be written as the function of a
kernel in which the rear and front visual fields give opposite contributions [68], suggesting that
a similar visual feature might be used for both behaviors.

Discussion

In this paper, we introduced a novel method to obtain an estimate of a low-dimensional feature
of the stimulus that best predicts the observable behavioral event generation rates. The feature
can be obtained from observable quantities, such as the recording of the trajectory of the
animal, without any assumption on the nature of the stimulus and its underlying neural
processing. Using this method, we have concluded that most of the saccade events generated
by fruit flies exploring a structured laboratory environment are induced by visual stimuli, and
that the instantaneous stimulus can be compressed down to a one-dimensional feature, while
still being predictive of the event rates in ~93% of the environment. Using this method, it is not
possible to distinguish between the contribution of an endogenous random process and a
deterministic contribution dependent on an unobservable state. However, we can bound the
contributions of these two terms in a baseline saccade rate that we estimate at 0.4
saccades/sec, roughly a tenth of the maximum rate. The strength of this method is that the
feature z can be estimated working backwards from an animal’s actions, rather than forward by
postulating a model for the stimulus y(t) and guessing what is the relevant feature. Once we
know z, as a second step, it is possible to attempt to fit a parametric representation of neural
processing to find the forward function from y to z, based on other assumptions about sensory
processing, though this is not guaranteed to be a well posed problem, as one must optimize
over all plausible models compatible with the animal’s biology. In this particular case, we have
shown that the feature z responsible for turning decisions in Drosophila can be written as a
linear function of the optic flow, and that the particular linear kernel we obtain is compatible
with that identified in tethered conditions, for a particular choice of regularization penalty to
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make the problem well posed. Conversely, finding z from the behavioral data is a well posed
and intuitive problem, because it can be understood as a dimensionality reduction problem
(find the one feature that explains multiple behaviors).

The main advantage of this approach, compared with previous methods, is that it can be
applied to freely moving animals, and thus permits asking about responses to naturally
important stimuli. Moreover, it does not need any assumption of linearity between some
aspect of the stimulus and response, a precondition strongly needed in techniques such as
reverse correlation [48]. Even advanced reverse correlation techniques in single sensory
neurons [69] are not easy to generalize into models of network functionality that could be used
to predict behavior.

In the future, this method could be applied to different behaviors of the fruit fly and other
animals [70]. The formalization is quite generic, though some generalizations are possible. The
algorithm documented in Text S1 assumes that the feature is one-dimensional in order to
obtain a closed-form solution. To identify a feature of higher dimension, this must be
generalized, for example by using one of the various more computationally expensive
dimensionality reduction algorithms in machine learning (e.g., [71]). In any case, the rate-
variant interacting Poisson process model seems apt for modeling many other behaviors (e.g.,
landing, taking off) that can be reliably localized in time (i.e., they have a clear beginning and
end), and that can be caused by both external and internal causes.

Thinking in terms of the feature z as a proxy of the stimulus can potentially be useful in
understanding how different sensory modalities contribute to the same behavior. The feature is
independent of the sensory modality because it is just a function of the animal configuration,
and it is a proxy of the typical stimulus perceived at the location, so it could be used to study,
for example, the influence of olfaction instead of visual processing on turning behavior, or their
interaction, which has been the object of much research [72-75][56]. Note, however, that we
do have the strong assumption that the stimulus is a constant function of the configuration, so
the framework cannot be easily extended to time-varying stimuli.

This approach might also be useful to study different behaviors at the same time. Drosophila
has a large repertoire of behaviors/reflexes which are stimulus-triggered, such as landing, take-
off, chasing mates, and escaping from small targets. In this case, we focused on saccades, and
we found the feature z encoding the relevant function of the stimulus for saccade decisions. If
one repeated the analysis for a different behavior (e.g., landing), there would likely be another
feature z"/, that would be different from z. However, if this was repeated for all fly behaviors,
one would find that at some point the new identified features would be redundant; for
example, in the case of vision, the number of features is upper bounded by the number of
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upstream signals towards the lobula. Ultimately, this exercise might provide a prediction of
whether two behaviors are likely to share the same neural pathways.

Potentially, this technique could help in quantifying the behavioral differences of different
genotypes. This model makes a distinction between the feature z and the event generation rate
functions f;. Whereas z is assumed to be correlated with computed percepts, f; might be
correlated more with the motor functions. This distinction could be used to obtain insight
regarding the function of genetic manipulations such as a screen in which populations of
neurons are “silenced” with a hyperpolarizing ion channel or synaptic release blockade. For
example, if a modified animal gives the same feature z but modified rate functions f;, it would
be evidence that the silenced neurons are involved with motor generation rather than with
stimulus processing. Consequently, with a large-scale screen [76,77], it might be possible to
obtain a classification of phenotypes into sensory, decision making, and motor deficits.
Similarly, we could use this feature to quantitatively compare the properties of different
species.

Another interesting but more substantial extension of this work would be to expand the
mathematical formalism to incorporate measurements of neuronal activity into the internal
processing structure. This is now done in freely moving worms [78,79,32] and zebrafish [80]; in
adult flies, most neural recording during behavior is being done on fixed flies [81-83,42].

Supporting Information

The following supplementary materials are available:

1. Text S1: Mathematical details of the identification technique and implementation details
of the saccade detection algorithms (PDF)
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Figure 1. Data collection, saccade detection, reduced coordinate space, time histogram,
number of saccades histogram. Panel A shows the experimental setup: the fly is tracked in a
circular arena of 1m radius. The retro-illuminated checkerboard pattern gives a uniform
stimulus to the fly. Panel B-i shows some of the trajectories recorded in the arena. The
trajectory can be interpreted as a mix of smooth turns and rapid turns, called "saccades", which
are responsible for most of the total angular displacement of the animal. We wrote software to
detect these saccades events, based on two different algorithms, documented in the
Supplemental Materials. In this paper, we only consider these discrete saccade events (Panel B-
ii). Panel C shows the two coordinate systems we use in this paper. We take advantage of the
circular symmetry of the environment, along with a hypothesis of planarity, to reduce the
degrees of freedom to 2. Panel C-i shows the choice of the axis-angle/distance from the wall
coordinates. Panel C-ii shows the “fly-centric view”. The fly configuration is reduced to 2 spatial
coordinates by rotating the configuration so that the animal points “up” with respect to the
diagram. We remark that all the results in this paper do not depend on the choice of
coordinates. Panel D shows a density plot of TX, which is the time spent at each configuration
cK. Panel E shows the number of saccades (both left and right) detected at each configuration.

Figure 2. General reference models for the animal behavior and decision making. Panel A
illustrates the nomenclature that we use in this paper: x(t) is the animal configuration
(position/velocity), which ultimately depends on the past history of the animal decisions, the
body dynamics, and environmental effects, here abstractly represented by the variable W. The
stimulus y(t) perceived by the animal is a function of the animal configuration x(t) and the
geometry/textures of the environment. In the most general terms, the actions of the animals,
u(t), are generated on the basis of the instantaneous stimulus y(t) as well as the internal state
&(t), which includes, for our purposes, everything which is not observable, including metabolic
and neural states. Panel B illustrates the specialization of the model that we postulate. The
decisions of the animals are represented by series of observable events belonging to a fixed set
of classes; in our case these are left and right body saccades. The events are assumed to be
generated by a set of interacting rate-variant Poisson processes. The instantaneous rates 7;(t)
depend on several factors, including the unobservable states, and the external stimulus. The
main hypothesis of this paper is that the contribution of the stimulus on the rate can be written
as a function of a low-dimensional feature z(t) computed from the stimulus. The inference
problem in this paper consists in identifying the functions f; that best explain the rates as a
function of the stimulus (r;(t) = f;(z(t))). The diagram also shows the impact of other
unmodeled neural processing based on internal states, acting as a disturbance in the model.
We do not infer a functional description of this modeling, but we are able to bound its
contribution and show that it is small with respect to the stimulus-induced contribution. The
diagram also shows the reduced configuration c(t), the subset of x(t) on which the stimulus
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actually depends. The reduced configuration depends on the particular experimental settings;
in our case, we postulate that in a circular arena the stimulus is dependent on only two degrees
of freedom. This is a hypothesis that can be verified a posteriori.

Figure 3. Simple models of decision making processes and relative experimental predictions.
This figure shows, on the left, several simplified saccade generation schemes, and their
prediction in terms of the observed statistics. All models assume that the visual stimulus y(t) is
processed as to extract a one-dimensional feature z(t) on which the animal decisions are
based. The models presented are meant to represent a sample of qualitatively different
functional models of behavior generations, and not necessarily biologically plausible models of
neural computation. Panel A-i shows a “hard threshold” model: if the feature z(t) is below a
threshold, no event is generated, otherwise, the event is generated stochastically with a certain
rate. Panel A-ii shows what would be the prediction of the model if we were to plot the saccade
generation rate (an observable quantity) as a function of the feature z(t), assuming we knew
how to compute z. Panel B shows the same model, but with noise affecting the computation of
the feature. The effect on the observed rate would be to transform the hard threshold in a soft
threshold. Panel C shows a model in which there is a parallel saccade generation mechanism,
which generates saccades randomly independently of the stimulus. The effect of this on the
measured rate is to raise uniformly the curves. Also the contribution of some internal
processing based on internal neural states which were not a function of the instantantaneous
stimulus would have the same effect on the rate statistics. Panel D shows the case where the
behavior depends also on some other feature of the stimulus z’ in addition to z. In this case, if
we plotted the rates as a function of z, ignoring the dependency on z', we would see that it is
not possible for z to explain the rates by itself. Therefore, once we have identified the curves
f1, fr, and the feature z, we are able to identify the contribution of a random generation
process (or based on an internal state) as a uniform baseline saccade rate; and we can infer
whether another feature is necessary to explain the behavior by the vertical spread of the
rates.

Figure 4. Estimated saccade generation rates. This picture shows basic statistics of the
processed data. Panel A shows the estimated saccade rate in polar coordinates (i) and fly-
centered spatial coordinates (ii), indicated in the text as *. This density is obtained by taking
the raw number of saccades in each cell n* (Figure 1, Panel E), normalizing by the time spent in
each cell T* (Figure 1, Panel D), and then compensating for the interacting nature of the
Poisson processes. Panels B-C show the rates for left and right saccades (r¥ and rk,
respectively), which we plot in red in Panel B (left saccades) and in blue in panel C (right
saccades). Note that the left and right saccade ratios appear roughly symmetric.
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Figure 5. The estimated decision feature z. Panel A shows the estimated one dimensional
feature z. This is the best one dimensional spatial feature that explains the left and right
saccade rates. It is a dimensionless quantity, which we normalize in the interval [-1, +1]. Panel
B-i shows, for each cell k, the rates r{"' as a function of the estimated feature z¥; Panel B-ii
shows the same data, but with error bars corresponding to 95% confidence intervals (the bars
are not symmetric because the posterior distribution of the estimated rates is not Gaussian; see
Supplemental Materials for details). The single feature z is sufficient to predict the rate in
~939% of the environment, in the sense that ~93% of the rates can be considered (with the
error bars) as lying on the same curve; these curves are the functions f; and fp discussed
previously that allow predicting the rates from the feature. The remaining ~7% of data that
this model cannot fit correspond to configurations with the fly pointing directly against the wall
at a small distance (<0.3 m).

Figure 6. Receptive fields of wide-field motion detection consistent with the feature z. These
pictures show several receptive fields of wide field motion sensitive cells, the spatial feature
that they compute, as well as a comparison with the feature z identified from the data. The
pictures in first column show the kernel A(0); the pictures in the second column show the
corresponding feature field. The panels A through D show the kernels obtained as solutions of
an optimization problem, respectively by solving a linear least-squares problem (panel A), and
three different regularization problems: by penalizing the norm of the solution (panel B), by
penalizing the norm of the spatial derivative (panel C), and by penalizing the curvature of the
solution (panel D). Note all solutions are asymmetric due to the noise in the data. Panel E shows
the kernel cos(0) + 0.2, which is the closest harmonic function to the regularized solution in
panel D. Panel F shows the result obtained by setting to zero this kernel in the back of the field
of view. This shows that the contribution of the back of the field of view is necessary to
recreate the small sidelobes of the estimated feature field.

Figure S1. The estimated decision feature z (results obtained with alternative detection
algorithm). This figure shows the equivalent results of Figure 5 using the AVSD algorithm for
saccade detection instead of GSD. Compared with Figure 5, the graphs are similar in many
respects. Panel A shows the estimated one dimensional feature z as a function of the reduced
configuration. Note that there are only two areas, corresponding to positive and negative z,
instead of four, as in Figure 5A. Panel B shows the observed event rates as a function of the
estimated feature. Compared to Figure 5B, in this case the estimated feature z* is slightly less
predictive of the rates ‘ri". This means that the events detected by the AVSD algorithm cannot
be correlated with the stimulus as well as those detected by AVSD. This suggests that, for this
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982  particular data, the GSD algorithm is able to better detect behaviorally relevant events in the
983  trajectory data.
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1. PROBLEM FORMALIZATION

There are 5 kinds of objects in our analysis: states, stimuli, features, events,
and models.

states
states States can be both observable and unobservable. This distinction

is largely practical in nature, and dependent on the technology
available at the moment.
Examples of observable states: position/velocity of the animal.
Examples of unobservable states: metabolic states, neural states.
stimuli ~ These are all the sensory cues available to the animal for decision .
making. Stimuli are a function of the states. In this work, stimuli bemhi‘,ég‘i?l
are abstract entities: they are assumed to exist, as a function of the
states, but they are never computationally manipulated.
Examples of stimuli: perceived luminance at each photoreceptor, per-
ceived odor traces, perceived acceleration.
features We define “features” as the behaviorally-relevant low-dimensional
functions of the stimuli that are used for decision making. The ex-
istence of these features is postulated. The theoretical justification
to investigate low-dimensional functions of the stimuli is that, while the stim-
uli are very high-dimensional, the decisions are usually very low-dimensional.
Therefore, only a low-dimensional feature of the stimuli can possibly con-
tribute to behaviors.
Example of feature: left/right optic flow imbalance.
(behavioral) events Behavioral events (or simply: events) are the external
manifestations of decision making that we can observe. Our for-
mulation applies to behaviors that can be clearly identified in
time.
Examples of events: start of a saccades, landing, taking off.
(behavioral) models These are generative models that explain the observed
events, as a function of the external stimuli and the internal states.

FIGURE
1.1.

1.1. Behavioral pathway of interest in this work. Naturally, a complete understanding
of animal behavior can only be attained by considering all possible stimuli and all ob-
servable behaviors. However, the complexity of a model that can be reliably identified is
bounded by the amount, diversity, and quality of the data that can be collected. There-
fore, in practice, one can only consider a limited “behavioral pathway” that interests only
a subset of the stimuli and a subset of the behaviors. We limit our analysis to the visual
stimulus, which is a function of the animal position, and we take discrete body saccade
events as the observable manifestation of behavior.

Whether the particular stimulus considered (visual stimulus) is sufficient to build a
model for the chosen behavior is something that is not justified a priori, but rather will
have to be confirmed a posteriori by the analysis.

1.2. Observable states. We call x(t) € X the observable animal configuration, which in-
cludes the position and linear/angular velocity in 3D space, and X the configuration space.
The space X has dimension 12 (6 degrees of freedom for position/orientation, plus corre-
sponding velocities).

An estimate of x(t) is provided by our tracking software. While the observations are
occasionally very noisy, we assume that x(t) is observable, and we do not model the noise
on x in this analysis. In the following, it will be clear that this does not impact the analysis
much, as the method is very robust to bounded noise on x(t).

The tracking system provides data at 60Hz. We ignore this time discretization and
assume for convenience that t € R.
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TABLE 1. Symbols used in this paper

Symbol meaning

te R Time index.

x(t) € X Observable configuration (position and velocity).
é(t) Unobservable states.

y(t) Perceived stimuli.

C Reduced configuration space

c(t) eC Reduced configuration at time ¢.

ri(t) Instantaneous event generation rates.

A Inhibition interval.

i€ {L,R} Index over event classes.

Detected events of the i-th class (i € {L, R}).
Index over discrete events in time

bi(t) Detected events as a series of impulses in time.

fi Event generation rate function.

S(t—1t) Impulse function centered at f.

{CIK, Partition of C in K cells.

k€ [1,K] Index over cells.

kecC Center of k-th cell.

nk Number of detected events in k-th cell.

n* Total number of detected events in k-th cell.

mi‘ Measured event rate in the k-th cell.

rk Average event generation rate for i-th behavior in k-th cell.
r = {1, Vector containing all event generation rates over cells.

zZk Feature associated to k-th cell.

z={ZF}K Vector containing all feature values over cells.

order Function computing the order of each element in a vector.
aob Composition of the functions a and b.

Diff(R) Diffeomorphisms of IR; set of strictly monotone functions.
N(u,0) Gaussian distribution with mean y and standard deviation ¢
Unif(a, b) Uniform distribution on the interval [a, b].

1.3. Unobservable states. We call (t) the set of all other states that are behaviorally rel-
evant but not observable:

Z(t) £ all behaviorally relevant states \  x(t).

These unobservable states include:

e unobservable kinematic properties (e.g., angle of fly neck);
e metabolic states that influence behavior (e.g., hunger);
e other unmodeled properties of the environment (residual odor traces, etc.).

1.4. Behavioral events. The observable behavioral events that we consider are the so-
called “body saccades”, or just “saccades”. These are the moments where a fly turns
rapidly in the horizontal plane.

There are two classes of events: left (L) and right (R) saccades. We limit our analysis to
only the saccade direction; in principle, there are many observable properties of a saccade
that would be interesting to analyze (top angular velocity, amplitude, etc.); those are left
for future work.

The index “i” will be used to index over event classes: i € {L, R}. Every time we write
a formula with the generic index i, it is understood that i € {L, R}.



DISCRIMINATING EXTERNAL AND INTERNAL CAUSES FOR HEADING CHANGES IN FREELY FLYING DROSOPHILA

0214 . . . . . . . . .
0215 The criterion for defining a saccade and the algorithms for detecting it are discussed in
0216 Section 7. Here, we assume that we have a procedure that, given a trajectory x(t), returns
0217
0218
0219 1

0220 detected left saccades: ti, 2., t]L, ...
0221
0222

a series of detected saccade events, represented by their initiation times {#.}:

detected right saccades: t}{, ..., t%, ...

0223 The index “j” is an index over the sequence of events.

0224 .

0295 We assume that these events are observable (i.e. we detect all saccades perfectly). In
0226 practice, we found that our saccade detection algorithms give false positives or false nega-
giig tives on less than 1% of the data against a subset of the data manually annotated; this error
0229 can be neglected for our analysis, because all the statistics that we compute are essentially
0230 averages over spatial patches, therefore robust to random failures of the detection proce-
0231 dure.

gigi We also introduce the variables by (t), br(t). These variables are an alternative repre-
0234 sentation of the event sequences as trains of impulses:

0235 .
0236 bi(t) =) _6(t—t)).
0237 7

0238

0239 Here, 6(t — t) is the impulse centered at time t. This notation will be convenient for further
0240 manipulations.

0241

0242 1.5. Stimulus and reduced configuration. We call y(t) the set of all external stimuli per-
giﬁ ceived by the animal at time t. We assume that y(t) is a function & of the animal configu-
0245 ration x(f), corrupted by a noise process v(t):

i y(£) = h(x(t),v(t)).

giiz In our case, y(t) would be the luminance perceived on the retina, plus odor traces, and
0250 other sensory cues depending on position. The stimulus is also a function of the environ-
0251 ment shape/textures/etc, which in the paper is indicated as “W”. However, because the
0252 environment is considered fixed, we omit it from the formulation.

8§gi We do not assume that y(t) is observable, nor we are interested in estimating it; rather,
0255 we use this variable only as theoretical device to formalize our intuition of environment
0256 symmetry. We say that an environment has a symmetry if there exist two distinct points
0257 x1, Xy € X such that

0258

0259 h(x1,v) = h(x2,v).

0260 If this is the case, then it makes sense to compress the state x(t) € X, to a smaller, minimal
822; representation c(t) € C. We call c(t) the reduced configuration, and C the reduced configu-
0263 ration space. We assume that C is given, along with a projection map 7 : X — C, which
0264 maps the point x(t) to 7t(x(t)) = c(t) € C. In other words, the map 7 extracts from the
8222 whole state x(t) the variables that are necessary to determine the stimulus. Moreover, we
0267 assume that c(t) is a minimal representation, in the sense that, for all points x1, x3:

gizg mt(x1) = 1t(x2) & h(x1,v) = h(x,v).

82;(1) In other words, c(t) is sufficient to compute the stimulus (if one knew the function k), and
07 it cannot be further reduced to an even smaller representation.

0273 In our particular case, we have a circular symmetry, as the environment is a circular
0274 arena with uniform patterns on the walls. If one assumes X to describe position, orienta-
82;2 tion and linear/angular velocity of the animal, the circular symmetry allows to decrease
0277 by 1 the number of degrees of freedom of the data, by projecting the 12-D space X to a 11-
0278 D space. The reduced configuration stimulus depends on the details of each experiment
gigz and on the experimenter’s assumptions. For example, even if the arena was circular, the
0281 symmetry would not be valid if there were non symmetric patterns on the walls.

0282 We consider the reduced configuration space and the projection map as other model-

0283

125 ing choices whose validity must be justified a posteriori. Our assumptions regarding the

reduced configuration space are explained in Section 2.5.
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0285
0286 2. MODELING ASSUMPTIONS

gigg This section introduces all modeling assumptions of our analysis and the implied ap-

0289 proximations.
0290

0291 2.1. Behavioral events are generated by time-variant interacting Poisson processes. We
0292 model the generation of observable events as a set of interacting Poisson processes with
gigi time-variant rates r;(¢) and inhibition interval A:
gizz {bi(t) ieqr,ry ~ InteractingPoisson ({r;(t) }ie(r,r}, A)-
0297 This means that, once any process generates one event at time ¢, no other event can be
- generated in the interval [t, t + A], from the same or another process. A Poisson process
0300 with time-variant rate is sometimes called a Cox process [1].
0301 , o e L
0302 2.1.1. Interpretation of the inhibition interval A. The inhibition time is meant to model the
0303 fact that we consider instantaneous events that correspond to the initiation of a motor
gigi program, and one motor program must complete before another can be initiated.
0306 2.2. The event generation rates depend on the instantaneous stimulus, unobservable
gzg; states, and endogenous random process. We assume that event generation rate r;(t) can
0309 be written as the sum of three terms rZ-S, rf, rlR, which model the contributions of the
0310 stimulus, the unobservable states, and an endogenous random process:
0311
E R

0312 (2.1) ()= () + @)+ -
0313 ~— —— ~—~—
0314 instantaneous unobservable endogeneous
8213 stimulus states random process
0317 contribution contribution contribution
0318
0319 2.3. The high-dimensional stimulus y can be compressed down to a smaller feature z.
032(1’ The term 7 (y) models the contribution of the stimulus to the event generation. We
giiz assume that this contribution can be written as a function of a low-dimensional fea-
0323 ture z € Z of the stimulus y:

S
o4 ) = filz ().
0326 We call the functions f; the event generation rates functions.
0327
0328 2.4. The feature has monotone effect on the two behaviors. We introduce another con-
0329 straint on the two functions fr, f; that allows to obtain a closed-form solution to the iden-

0330 tification problem. This assumption is very specific to the particular problem studied. We
0331

0332 assume that:

- e The function f; is monotonically increasing:

o (2.2) filz1) > fu(z2) & 21 > 7.
0336

0337 e The function fg is monotonically decreasing:

0338

0339 (2.3) fR(Zl) > fR(Zz) < 21 < 2.

0340
0341
0342
0343

These assumptions can be verified a posteriori after fitting the data.

2.5. Choice of the reduced configuration space C. Choosing the reduced configuration

0344 space C is a critical step of the analysis. There is a clear tradeoff: if the C space is too small,
0345 then we cannot represent the variability of behavior. If it is too large, then the data that
0346 we have will not be dense enough to have accurate statistics. This is the reason we do not
ggg use directly the values of x(t).

0349 In our case, we project the original 12 degrees of freedom space X to only two. The
0350 original degrees of freedom are, position (3), attitude (3), linear velocity (3), and angular

0351
0352
0353 (1) The altitude can be ignored (removes 1 dof for the z position, and the correspond-

0354 ing 1 dof for velocity).
0% (2) As for the attitude, only the yaw is relevant (removes 2 dof).

velocity (3). We make the following assumptions:
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0356

0357 (3) The angular velocity is ignored; the saccades start when the fly is flying approxi-
0358 mately straight (removes 3 dof) .

0359 (4) The fly has negligible sideway velocity (removes 1 dof).

8;2(1) (5) The linear forward velocity is not relevant (removes 1 dof).

0362 These assumptions bring the degrees of freedom from 12 to 3. The circular symmetry
0363 . . .

0364 of the arena allows to further reduce the analysis to a 2D space. There is no particular
0365 algorithmic complication if the space has more than 2 dimensions. Given the amount of
0366 data we have, a 2D space allows the recorded trajectories to fill the space densely enough
822; to compute the statistics necessary.

0369 Note that the particular parametrization of the space C does not matter. In the paper we
0370 use two different parametrizations to display the results.

0371
0372

0373 2.6. From time-variant to timeless spatial quantities. In the following, it will be conve-

0374 nient to write the rates ¥ as a function of the configuration rather than as function of
0375 time. This is possible because we have assumed that y(t) is a function of the reduced
82;? configuration ¢(t) € C.

0378 Consequently, also the feature z is a function of the reduced configuration. We call -y :
gigg C — Z the function that assigns a value of the feature to each reduced configuration:

0381 _

0382 2= 700);

giﬁi 2.7. Reduced model identified. While we assume (2.1) as the true model for the rate r;,
0385 we will identify a reduced model that lumps together the contributions of the unobserv-
822? able states and the endogenous random process. We cannot distinguish the contributions
0388 of rf and rR because we cannot access the unobservable states. However, we can show
0389 that we can still identify the stimulus-dependent term 7} by averaging over the trajecto-
0390 ries.

0391 _ .

0392 We will identify the model:

i (24) €)= fz@)  + o

0395 N et

0396 instantaneous unobservable states

0397 feature +endogeneous process

0398 contribution average contribution

0399
0400

0401 where ry lumps together the contribution unobservable states and endogenous process.

0402 To arrive at (2.4) from (2.1), we just need to average over time. Fix a point ¢, and let C,
0403 be a small area containing c.. Define E.;)cc {- - - } as the average of a quantity limited to
gjg: those times in which ¢(t) € C,. Then, by averaging the observed instantaneous rate in C,,
0406 we obtain
0407 c N
s E.pec Ari(t)} = Eepec fi(z(e))} +Eepyec, {ri (§(1)} + 17
0410 Define r;(c.) = E()cc, {ri(t)} to be the average rates around the point c..
gﬁ; If we assume that the feature is a continuous function of the configuration and that the
0413 neighborhood C, is small enough, then we can approximate:
0414
0415 Ec(t)ec*{fi(z(c))} ~ fi(z(cx))-
0416
0417 If we assume that the unobservable states are uncorrelated with the external configura-
gig tion, then the value of the expectation E)cc, {rE(Z(t))} does not depend on the config-
0420 uration Ci:

E E =
oizt Ecec {ri (1)} = B{ri(E(0))} =77
0423 Therefore, by defining
0424 R . -E
0425 }"0 = rl + rl

0426 we arrive at (2.4).



DISCRIMINATING EXTERNAL AND INTERNAL CAUSES FOR HEADING CHANGES IN FREELY FLYING DROSOPHILA

0427

0428 3. OBSERVABILITY ANALYSIS

gﬁz Our first step towards identification of the model is an observability analysis. We first
0431 give some remarks on the dimensionality of the feature that we can identify; then we
0432 show that, fixed the dimensionality, the problem is still underconstrained because there

0433
0434
0435
0436

are multiple solutions that satisfy the constraints.

3.1. Dimensionality of the feature. We can show that the dimension of the feature z such

0437 that the problem is well posed is bounded by the dimension of the reduced configuration
0438 space C and the number of event classes.

0439

0440 Proposition 1. For the identification problem to be well-posed, we must have

0441

0442 dim(Z) < min{dim(C), neyents }-

0443

0444 In particular, for two event classes and a two-dimensional configuration space, we can only esti-
0445 mate a one-dimensional feature.

0446

0447 Proof. Our sets of constraints is

0448

0449 z = 7(c),

0450 .

0451 7’1'5<C) = fi(’Y(C)), i=1,..., Nevents
0452

0453 Geometrically, we have that the function v maps C to Z, and then the function f = {f;}
0454 maps Z to IR events:

0455 ¥ 7

0456 C—>7—"— ]Rnevents.

giig For the estimation problem to be well posed, we need to have the hourglass structure

gigg dim(C) > dim(Z) < dim(IR"ee),

0461 otherwise there are some trivial solutions.

0462

0463 (1) In the case

0464 dim(C) = dim(Z) < dim(R"ewns),

0465

0466 we can choose v = Identity and f;(z) = r?(c) as a trivial solution.

0467 (2) In the case

o dim(C) > dim(Z) = dim(R"==),

0470 we can choose f; = Identity, z(c) = {r?(c)} as a trivial solution.

0471

0472 U
3‘4‘;2 3.2. Observability. The model is not fully observable, in the sense that we can find mul-
0475 tiple solutions for the parameters that fit the data equally well. This is formalized in the
0476 followi ition.

oo ollowing proposition

ggg Proposition 2. Suppose that the configuration space is discretized in K cells, each with center c* €
0480 C. Let the bold vectors r, rr € RE represent event generation rates associated to different animal
0481 configurations (r; = {r¥}, where k ranges over configuration), and similarly let z = {zX} be the
gi:ﬁ feature associated to the configurations ¢ = {c*}. Assume that the model postulated so far holds
0484 exactly. Then we can write the constraints in vector form as:

0485

0486 (3.1) . = fi(z),

0487 —

0488 rr = fr(z),

0489 (3.2) z = 7v(c).

0490

0491 Assume that the rates vy, rr and the reduced configurations c are observable, and that the func-
0492 tions fr, fr,y are unknown a priori. Then it is possible to estimate z only up to a monotone
0493 transformation, in the sense that it is not possible to distinguish between a solution zy and a so-
0494 . . . . .

0495 lution zp, if zq = a(zy) where & : R — R is a strictly monotone function. Consequently, one
0496 cannot distinguish between the event generation rate functions (fr, fr) and (froa™!, froa™1),

“w_

0497 where “o” denotes function compositions.
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0498

0499 Proof. A “solution” of the system is a tuple (fi, fr,7, z) for which the constraints (3.1)-
0500 (3.2) hold. If the system of constraints was completely observable, there could be only
0501 one solution. However, suppose s = (f1, fr, 7, z) is a solution, and consider an invertible
8§8§ function «, and the solution tuple s* defined as
0504 O (fr o
0505 § (fL'fR/’Y ’Zz )
0506 = (froa™!, froa a0y, a(z)).
0507
0508 One can verify that, assuming s is a solution, s* is another solution of the system, because
0509 it respects the constraints (3.1)—(3.2):
0510
o1 o= fu(z) = fula(a(2)) = filz"),

-1
0513 r = fr(z) = frla(a(2))) = fr(z"),
0514 [ _ AN
2 = a(z) = a(1(c) = 1*(c).
0516 O
0517
0518 This is the formal way to show that there is an ambiguity. A more intuitive way to
8;3 see the same thing is by rewriting (3.1)—(3.2) in a slightly different way. Knowing + is
0521 equivalent to knowing z, so we can write the constraints in terms of - only:
0522
0523 (33) re = fuly(e)),
0524 e = fr(v(c)).
0525
0526 Intuitively, we have “2 equations for 3 variables”; because y always appears composed
0527 together with f and fg, it cannot be observed independently.
0528
0529 3.3. Interpretation of the unobservability. If the reduced feature is defined only up to
gggg a monotone transformation, then it should not be thought as a physical quantity, or as a
0532 measure of physiological activity. In fact, we cannot associate a meaningful measurement
0533 unit to it. Rather, the feature represents an ordering of the configurations (in fact, the order
gggg is what is conserved by any monotone function). All we can say is whether in a certain
0536 configuration the feature is weaker or stronger than in another.
0537 Still, from the point of view of the analysis and the visualization, it is useful to con-
0538 sider z as a real-valued quantity associated to each configuration. From the point of view
gzzz of the estimation, we cannot distinguish between z and «(z); therefore, we can choose
0541 any particular function « for visualizing the feature. We will choose a function « so that z
0542 varies between —1 and +1 across the environment.

0543
0544
0545
0546
0547

4. ESTIMATION OF EVENT GENERATION RATES

In the first part of the algorithm, we estimate the event generation rates {rf}, wherei €

0548 {L, R}, and k ranges over configurations. This operation is slightly more complicated than
0549 just dividing the number of detected events by time, because the events are generated by
0550 Poisson processes that interact with each other. For example, this means that the rate of
ggg; observed left saccade events depends not only on 7, but also the rate rg: if rg is very high,
0553 then we expect to see fewer left saccade events, as there is more inhibition.

855,:: 4.1. Statistics collected from the data. Divide the reduced configuration space C in cells
0556 {C1,C?,...,Ck,...CK}, possibly overlapping, and each with center c* € C. It is assumed
ggg; that the discretization is small enough to capture the variability of behavior, but large
0559 enough so that the samples are dense enough.

0560 For each cell, we compute the following statistics from the data:

8?2 nf? The number of events of the i-th class detected in the k-th cell.

0561 Tk The time spent in the k-th cell.

8225 If one defines the variable I¥(t) as

e 1 ifc(t) € Ck
0567 k if ¢ ,
I“(t) = , fork € [1,K].
0568 () {0 otherwise. ot 1. K]
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gzgz then the two quantities nf and T* can be written as follows:

0571 L L

0572 n;j = [I°(t)bi(t)dt,

0573

0574 Tk — f Ik(t)dt

0575

0576 We define also the following auxiliary statistics:

0577

0578 nk The total number of events detected in the cell:

0579

0580 nk = Zni‘ = nlz + nll{g

0581 ;

0582

0583 mi‘ The measured event rates, given by

0584

0585 k

0586 mt = ﬂ

0587 ! Tk

0588

0589 m* The total event rate m* per cell:

0590

0591 k _ k_ ok k

000 m —Zmi = mj + mp.

0593 !

0594

0595 4.2. Robustness of statistics to measurements noise. These are all the statistics that we
059 need from the data. Note that the position x(t) need to be only accurate enough so that
0597 . . . .

0598 it can be assigned to the correct cell. In particular, we do not need to compute higher
0599 derivatives of x(t), therefore operations like smoothing are not necessary (some smooth-
0600 ing might be necessary to detect the saccade events). Also, misdetection of saccade events

gzgi does not impact much the analysis; a 1% false positive/negative rate only changes the

0603 statistics mi‘ by 1%.
0604
0605

0606 4.3. Measured saccade rates vs. saccade generation rates. Due to the inhibition pe-

0607 riod A > 0, the measured event rates underestimate the event generation rates: m* < rk.
gggg This is true even in the case of 1 process, and the effect is more evident with multiple
0610 processes.

0611
0612

oe1s 4.3.1. Event generation rate estimation for one process without inhibition. Consider first the

0614 case of only one Poisson process b(t), with event generation rate r, and no inhibition
0615 period. Suppose we observe the process for T seconds, counting n events, obtaining the
821? measured rate m = n/T. Then m is the maximum likelihood estimate of r.

0618

0619 4.3.2. Event generation rate estimation for one process with inhibition. However, if there is a
822(1) non-zero inhibition period, A, then the measured rate m underestimates the true rate. For
0622 example, the observed rate m cannot be higher than 1/A, no matter how high the rate r
0623 is, because due to inhibition we can observe at most one event every A seconds.

gzi‘; A better estimate of the rate  can be found as follows:

0626 ., n

0627 r= T—An’

0628

0629 The interpretation is easy: if there were n events, then the process was inhibited for An
822(1) seconds. Therefore, T' = T — nA is the effective time in which the process was active and
0632 could generate events.

0633 The same formula can be written in terms of the measured rate:

0634

0635 b — ”An :1mA ‘

o O ) T-an

0638 Note that ¥ — m as A — 0: if there is no inhibition, the measured rate is the generation

0639
rate.
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0640

0641 4.3.3. Event generation rate estimation for multiple processes with inhibition. Next, consider
0642 the case in which there are multiple processes {b;(t)} inhibiting each other. It is easy to
0643 see that not taking into account the inhibition can strongly skew the estimate. In fact,
ggﬁ imagine that there is one process with very high rate. The rates of the other processes will
0646 be severely underestimated because the frequent process will often inhibit them. Fortu-
0647 nately, also in this case we can easily normalize the rates.

ggiz Suppose we observe a series of processes {b;(t)} over an interval T and we count n;
0650 events for each process. Let n = }_; n; be the total number of events observed. Then we
0651 know that the effective time in which the processes were not inhibited is T — nA (note that
gg§§ according to this model, it does not matter which process inhibits which). Accordingly,
0654 the event generation rates can be estimated as

0655 R n;

0656 4.1 fi=

0657 D CT-ALm

82;2 or, writing it as a function of the measured event rates:

0660 A mi

oe1 (4.2) Fi=1_ AY

822 Note that, as A — 0, r; — m; and the estimate of the rate of one process does not depend
0664 on the measured rates of the others. Also note that the correction factor necessary for one

0665
0666
0667
0668

process depends on the cumulative intensity of all the others.

4.4. Estimation of confidence bounds for the event generation rates. The formulas (4.1)-

0669 (4.2) give the maximum likelihood estimators for the event generation rates. One can
0670 estimate confidence intervals using the method discussed in Guerriero et al. ed[2]. Upper
822 and lower 95% confidence bounds are found as follows:

0673 _ 19 1.96

0674 (4.3) relrd = (1 vn*1>n (1—{—\/”71)1’1

0675 ' . T—AYn " T—AYn

0676

0677

0678 5. FEATURE IDENTIFICATION

0679

0680 At this point, we assume to have an estimate of the event generation rates rf. We write
ggg; again our model with explicit dependence on the cell ck:

0683 koo k

0684 o= fuz),

0685 rk = fr(zh),

0686 k k

0687 Z¢ = ().

0688

0689 Our goal is to find z. Once z is known, then the three functions f, fr, y can be recovered
0690 from these equations. For simplicity, we first assume that we know the event generation
823; rates r;‘ precisely. Sections 5.1 and 5.4 show how to estimate z under this simplifying
0693 assumption. Then, Sections 5.3 and 5.4 show how to take into account the uncertainty
0694 in 7%,

0695 !

0696 5.1. The order(-) function and its properties. We introduce the order(-) function, some-

0697
0698
0699
0700

times also called “rank”.

Definition 3. Define the function order : RX — Perm(K), which takes a vector in RX

0701 and associates to it a permutation of length K, that gives the order of each element in the
0702 sequence.

0703

0704 For example, we would have

0705

0706 order([10,20,30]) = [0,1,2],

0707

0708 and

0709 order([100, 3.14,42]) = [2,0,1].

7o We will need three simple properties of this function.
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0711

w71 Proposition 4. Properties of the order(-) function:

0713 (1) The order of the elements of a vector does not change if a strictly increasing function is
8;1: applied to the vector.

0716 Let a,b € RX, let B : R — R be a strictly increasing function, and let b* = B(a*). Then
g;g order(b) = order(B(a)) = order(a).

0719 . . . o ,

oot (2) Applying a str;(ctly decreasing function zn?erts the ord?r in the ?ector. . .
0721 Let a,w € R, let x : R — R be a strictly decreasing function, and let w* = x(a").
0722 Then

g;ii order(w) = order(x(a)) = K — order(a).

0725 (3) Two vectors with elements in the same order are equivalent up to a increasing function.
8;;? Let x,y € RX and suppose that order(x) = order(y). Then there exists a strictly increas-
728 ing function  : R — R such that y* = p(x¥).

SZ§3 5.2. Estimating the reduced stimulus, assuming that there are no uncertainties. As a
0731 first propaedeutic step, assume that the values of rj are known exactly without uncer-
825 tainty. From the relation r;, = f1(z), the assumption that f} is strictly increasing, and
0734 property (1) of Proposition 4, one obtains that

8;;2 (5.1) order(rL) = order(z).

0737 By applying the order function on both sides of the equality, we were able to simplify f1.

822 from the expressions, because applying a strictly increasing function does not change the

0740 order of the data.

0741 Similarly, from the relation rg = fr(z), the assumption that f is strictly decreasing,
0742 . " .

o3 and property (2) in Proposition 4, one obtains that

0744 (5.2) order(rgr) = K — order(z).

0745

0746 Here, because f is decreasing, the order of the elements is reversed.

0747 At this point, we can use (5.1) and (5.2) to obtain an overdetermined system of equa-

gﬁg tions for order(z). The least square solution is obtained by simply averaging the two

0750 terms:

o2 (5.3) order(z) = estimate of order(z)
0753 1 1
0754 = Eorder(rL) + E(K — order(rRg))

0755
0756
0757
0758

1 1
= Eorder(rL) + Eorder(—rR).

0759 By property (3) of Proposition (4), we know that knowing order(z) is equivalent to
0760 knowing z up to a diffeomorphism:

0761

0762 order(z) = v(z) for some 1y € Diff(R).

g;:i By the observability analysis of the problem (Proposition 2), we know that we can esti-
0765 mate z only up to a diffeomorphism, therefore we are done and use as our estimate of the
0766 feature:

0767 & A

ores 2 = order(z).

0769 Because £ is determined only up to a diffeomorphism, for purely esthetic reasons we can
0770 normalize it in the [—1, +1] range, by setting

0771

0772 der(z) — K/2

0773 (5.4) g = w.

0774 K

0775 Once we know an estimate of z, the shape of the functions f; and fr can be obtained
0776 directly from the relations r; = f1.(z), rr = fr(2).

0777 SR . \ . . .

0778 This simplified procedure is valid only if the values r; are known without uncertainty.
0779 If uncertainty is present, then a slightly more complicated computation is needed, de-

0780

e scribed in the next section. Most of the difficulty arises in understanding how uncertainty

propagates through the order function.
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0782

0783 5.3. Estimating the ranks of a collection of random variables. We now put uncertainty
0784 back in the picture. The values r1, rg are not known precisely; rather, we only have a pos-
0785 terior distribution estimated from the data. Here we want to show that the order function
8;:? is very sensitive to noise, therefore the approximation (5.3) cannot be used directly.

0788 We want to solve the following problem: given a collection of K random variables X =
0789 {X*}K_| with known probability distribution , estimate order(X).

EZZ? There are several unsatisfactory ways to solve this problem. One could just use the
0792 mean of the distributions to estimate the relative order:

o (5.5) order(X) = order(E{X}).

8;3? However, this estimate is not satisfactory because it does not take into account the vari-
0797 ance of the variables. An example of this situation is shown in the panels of Fig. 5.1. In
g;zz this figure, we simulate a collection of random variables X = {X*}, where each random
0800 variable has a uniform distribution over an interval of length 0.1 with center exp(—0.02k):
0801

0802 X* ~ Uniform (exp(—0.02k) — 0.05,exp(—0.02k) + 0.05)

0803

0804 The probability distribution of the variables is represented in Fig. 5.1a. The result of com-
gggi puting (5.5) is shown in Fig. 5.1b. The plot is a straight line because the means of the
0807 variables are already ordered by k.

0808 Fig. 5.1c shows two realizations x1, x; of the random variables X, while Fig. 5.1d shows
0809 the order of the realizations order(x;) and order(x;). As one can see, the order of the
8212 variables changes dramatically, especially for large k, where the means of consecutive
0812 variables are very similar. This shows that applying the order operation to r as in (5.3) is
0813 not a sensible way to estimate order(r) if the data is noisy.

8212 A reasonable estimate of order(X), along with error bounds, can be obtained by simu-
0816 lation. Suppose that the distribution of X is known:

0817

0818 p(X* = x) = OF(x),

0819

0820 with @ a known probability distribution. Then one can compute the distribution of
0821 order(X) simply by drawing samples of X from the known distribution and computing
gzg the observed order. More in detail, one computes a set of n samples x1, x, ..., x,, all with
0824 the same distribution: x; = sample(0®). Then the distribution of order(X) can be approx-
0825 imated by the samples {order(x;)}. In particular, we can derive mean and confidence

0826
0827
0828

bounds. This method is summarized as Algorithm 1.

0829 Remark 5. This method is very simple and requires only the ability to draw samples from
0830 the distribution of X. For completeness, we briefly mention the analytical difficulties to
0831

0832

gzgi Algorithm 1 OrderBySampling

0835 Input:

ggg? © = {®"}X | The probability distributions of K random variables X = {X*}X_|
0838 such that Xk ~ @k.

0839 Parameters:

0840 N Number of simulations.

0841

0812 Output:

0843 ¥ = {Y*}K |: An estimate of the probability distribution of order(X).

gzig Algorithm:

0846 function ¥ = OrderBySampling(®, N):

gzg (1) Forjin1,...,N:

0849 (a) Draw the sample x; ~ ©.

0850 (b) Compute o; = order(x;)

0851

0852 (2) Compute the density ¥¥ as the observed distribution of {o;-‘}}(\’:l.
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obtaining a more analytical solution. (Skipping this remark does not impact understand-
ing of the rest of this document). The reader will have noticed that we did not give an
analytical characterization of the distribution of order(X). In theory, the distribution of
order(X) can be thought as a sum of binomial distributions. In fact, we have:

order(X*) = number of variables in {X/ }]K:lsuch that X* > XJ
K
= ) b
j=1
where bj is a binomial variable defined as
b =41 if X/ > X,
70 i X< XK
The problem is that the variables bj; are not independent. Therefore all the convenient the-
oretical results about sums of independent binomials cannot be used. Assuming that the
distribution of X is uni-modal, one can expect the distribution of order(X) to be uni-modal
as well, and if the number of variables K is large enough, a Gaussian approximation could

be appropriate. For example, Fig. 5.1 shows the distribution of order(X1?), order(X*°), and
order(X*).

5.4. Estimating the reduced stimulus, taking into account the uncertainty in . We now
refine the procedure in Section 5.4 taking into account the uncertainty in r. Let @, ®% be
the posterior distributions of r’i, r’f{ estimated from the data:

p(rli | bL) = ®k/
p(rk | br) = Ok.

Using Algorithm 1, we can estimate the distribution of order(r¥ ), order(r% ); call the result-
ing distributions ® and ®k.

p(order®(rp) | by) = ®¥ = OrderBySampling(®¥),
p(order*(rg) | br) = ®% = OrderBySampling(®%).

From (5.1) and (5.2) we can compute the corresponding probability distributions of order(z),
which we call T¥ and T%:

(5.6) I} (m) = p(order’(z) = m | bL) = @] (m),
(5.7) ¥ (m) = p(order*(z) = m | bg) = @& (K —m).
We use a Gaussian approximation for these densities:

(5.8) rp = Nt

(5.9) Tk =~ N(uk og").

Assuming a non-informative prior on order®(z):
p(order*(z) = m) = 1/K,
we can find the posterior distribution of order(z) by fusing together (5.8)-(5.9), obtaining

(5.10) order’(z) ~ N (uF,0%%), with
ko L 1) ML, MR
f e arg) rd)
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Normalize the feature distribution in the [—1, +1] range:

k
o _ W -K/2
(5.11) uo= -
k
F - B
ro= T

This gives the best estimate for the feature z*.

At this point we can estimate the functions f, fr directly using the relations

r'i = fL(zk) and r'f{ = fR(zk).
Note that the shape of f1, fr can be visualized directly by plotting the points (¥, %) and
(zk, r]f{), along with confidence intervals (for both r’i, r’f{ and z), and it is not strictly nec-
essary to impose some parametric form.
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(A) Distribution of X* (B) Order of the mean
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FIGURE 5.1. Synthetic data used to illustrate the properties of the order
function and the order estimation procedure of Algorithm 1.
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6. ALGORITHM SUMMARY

This is a summary of the identification algorithm.

Input:
x(t) € X Recorded configuration.
t? The series of detected events, where i € {L, R} ranges over behaviors
and j ranges over events.
Parameters:
7t : X = C Projection map from the configuration space to the reduced configura-
tion space.
{C*}K | Partition of the reduced configuration space C in cells: C = UK_ CK.
Output:
{zF}K | Reconstructed feature over the reduced configuration space.
fr, fr Reconstructed event generation rate functions.
Procedure:

(1) Compute the reduced configuration c¢(t) using the projection 7 :
c(t) = m(x(t)).
(2) Define the variable I¥(t) as 1 if the animal is in the k-th cell at time ¢:
; k
F0= 1) o+ TSR]
Compute the permanence time in each cell:
T = [ I*(t)dt,  forke[1,...,K].
(3) Define b;(t) as a series of impulses centered at the observed events tf: :

bi(t) =Y 6(t—t), ie{LR}.
]

Count the number of events observed in each cell:
nk = [ I*(t)b(t)dt,  forie {L,R}, k € [1,K].
k k

(4) Compute the observed event rates mj, my:
k
mk = o forie{L,R}, ke [1K].

(5) Estimate the inhibition interval A from the inter-event statistics.
(6) Estimate the event generation rates using

k
k m;

= 4444444144444,’
! 1—A E::i771k

1

fori € {L,R}, k € [1,K].

Let the bold symbol r; indicate the set of values for all cells:

ri = {rf}is
(7) Deterministic approximation:
(a) Compute an estimate of order(z) using (5.3).
(b) Compute the normalized feature using (5.4).
(c) Having estimated z* and r¥, 7%, fit the functions f1, fr directly from the
relations ¥ = f;(zX); and & = fr(z").
(8) Method taking into account the uncertainty of the data:
(a) Compute 95% confidence intervals [d‘, ?ﬁ‘] for rf-‘ using (4.3):

[, 7] = (1—196/\/"5‘7—1)71? <1+1.96/\/n£.<7_1)n§< |

LisTi TEoAY W 1 ToAL

Take ©F = Unif([rf, 7¥]) as an approximation of p(r¥|b;).
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(b) Estimate the probability distribution ® = p(order*(r;)|b;) using the
p y i p &
method described as Algorithm 1:

{®F}K_ | = OrderBySampling({@F}X_)).

(c) Compute the distributions I = p(order*(z)) from ®F using (5.6)~(5.7).

(d) Approximate I'* as a Normal distribution A (u¥, 02¥) using mean and
variance.

(e) Compute the posterior distribution N (u*, 0?¥) for zF using (5.10).

(f) Normalize the values of the feature in the [—1,+1] range using (5.11)
obtaining N (7, &), which is our final estimate for zF.

(g) Having estimated z* and r¥, 7% (both with appropriate confidence bounds),
estimate f1, fg directly from the relations ¥ = £ (z¥); and & = fr(zF).

7. DETAILS OF SACCADE DETECTION ALGORITHMS

The Python source code for both algorithms is available online at
http://github.com/AndreaCensi/geometric_saccade_detector
The Kalman filter /smoother implementation are available as part of Flydra.

7.1. Geometric saccade detector (GSD). The geometric saccade detector (GSD) algorithm
works using x, y tracking data, rather than using angular velocity. This makes it most use-
ful for noisy data, as it does not need to derive the data twice (once to obtain the linear
velocity, and again to obtain the angular velocity). However, it cannot be used for tethered
experiments, for which the x, y data is not available.
The algorithm can be summarized as follows:
(1) Obtain the trajectory p(k) = (x(k),y(k)).
We use the trajectory returned by Flydra which has been processed with a causal
Kalman filter. The algorithm is robust enough to be used on noisy data; so we do
not use smoothing.
(2) Consider separately each instant k.
(a) Translate the coordinate frame, such that p(k) = (0,0) becomes the origin.
(b) Fix an interval A and consider the samples in [k — A,k — 1] U [k + 1,k + A].
A is a parameter which, for our data, is set to A = 5 time steps (~ 0.07s).
(c) Compute the polar coordinates of the samples with respect to the origin:

a(k) = arctan2(y(k), x(k))

(d) Compute the average orientations before and after:

. 1 k+A
Opefore (k) A o (k)
k=k-+1
- 1 k—1
Gafter(k) A Z a(k)
k=k—A

In these computations, we consider that angles are defined modulo 360°.
(e) Similarly, compute the dispersion ¢,ofore (k) , Oy ftar (K)-
(f) Define the amplitude of a potential saccade as

A(k) = Gafter(k) - Gbefore(k)

and the “score” of a saccade as

S(E) = Ubefore(k> + ‘Tafter(k>'

(3) Mark potential saccades as the points where

S(k) > Smin = 20°


http://github.com/AndreaCensi/geometric_saccade_detector
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1208

1209 and

1210 A(k) > Amin = 20°.

1212 (4) At this point, we have a sequence S(k) that describes the likelihood that there
Ei is a saccade at time k. To segment the data, examine each point k in decreasing
1215 order of S, and mark the points in the interval [k — A, k 4+ A] as unavailable as well.
1216 Repeat until all points are marked unavailable.

1217
1218

219 7.2. Angular-velocity based saccade detector (AVSD). The AVSD algorithm operates us-

1220 ing the angular velocity. The advantage of this algorithm is that it can be used also for

1221 tethered data, where only the animal heading is available. However, if one starts with x, y

ﬁii data, then one must derive the data twice to obtain the angular velocity.

124 The algorithm can be summarized as follows:

ﬁig (1) Obtain the angular velocity w(k).

1227 In our case, this is done using a Kalman smoother on the position data, then

1228 deriving once to obtain the translational velocity, obtain the angular heading as

ﬁig the planar direction of the velocity vector, then derive again to obtain the angular

1231 velocity.

1232 (2) Define saccades as the intervals where |w (k)| > Wmin.

ﬁii In our case, set wmin = 300deg/s.

1235

1236 8. GUIDE TO THE EXPERIMENTAL RESULTS

1237

1238 8.1. Configuration space. The Flydra tracking system tracks the position and velocity of

o flies in the cylindrical Mamarama arena. The arena has height 0.8m and radius 1m. The

o1 data is returned at a temporal resolution of 60Hz, with spatial noise on the order of 0.5cm.

1242 Much of the complexity of the saccade detection algorithm (explained in Section 7) is due

1243 to handling this limited resolution. However, for the sake of simplicity, we are going to

Eﬁ ignore these issues in this section. We then consider the data to be a continuous signal.

1246 We define the following quantities:

ﬁg p(t) € R® Position of the animal with respect to a fixed coordinate frame.

1249 v(t) € R® Linear velocity.

1250 R(t) € SO(3) Attitude (represented as a rotation matrix).

- w(t) € R® Angular velocity.

igi These quantities constitute the original observable configuration x(f) of dimension 12:

s x(t) = {p(t), o(8), R(t) w(1)).

ﬁg; 8.2. Reduced configuration space. As explained in Section 2.5, we project down the data

1259 to a reduced configuration space C of dimension 2. This is done in two steps. In the first

1260 step, we only assume that the planar configuration of the animal is relevant. This reduced

EZ; the configuration to (p1(t), p2(t), 6(t)), where p; and p, are the planar components of the

1263 position, and 6 is the planar orientation. This reduces the dimension from 12 to 3. By an

1264 arbitrary choice of reference frame, we let p; = 0, po = 0 correspond to the center of the

e arena.

1267 The second step consists in taking into account the symmetry of the environment. Due

1268 to the circular symmetry of the environment, we assume that the animal perceives ap-

Egz proximately the same stimulus if its planar configuration is rotated around the center of

1271 the arena. Therefore, the two variables that contribute to the stimulus are the distance

1272 from the center and the animal orientation.

E;i More formally, we choose as reduced configuration space the two variables d, ¢ defined
as follows:

1275

1276
1277 d = 1‘\/?’%"‘]9%/

1278 p = 00— arctan2(pz, P1)
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1279

1280 The angle ¢, which we call axis angle, is the angle that the animal heading forms with the
1281 axis that joins the animal position to the arena center. These are the two quantities that
1282 are invariant to a rotation around the center of the arena.

EZZ The reduced configuration is defined as ¢ = (d, ¢) € C. The bounds of the domain C

1285 are as follows:
1286

1287 d € [0.15,1m],

ESS ¢ € [—180deg, 180deg].

1290 We express angles in degrees. Note that all the operations on ¢ are to be executed modulo
1291 360deg (¢ = 180 and ¢ = —180 are the same point).

1292 .

1293 For the distance d, we have:

ﬁg: 1 fly at the center of the arena

129 d=40.15 limit for reliable data

ﬁg; 0 fly landed on the wall.

1?33 We censor the data at around d > 0.15. Albeit the tracking system returns data in the
1301 whole domain of the arena, it is sometimes unreliable at d < 0.15, as sometimes the
1302 tracking cannot be obtained with full quality, notwithstanding the use of 11 cameras. In

ggi the interval d > 0.15, the data is always very reliable and of homogeneous quality.

1305 For the axis angle, we have
1306

1307 —180° fly pointing directly away from the wall

o —90° closest point on the wall is at the left

1310 =140 fly pointing towards the closest point on the wall

gg +90° closest point on the wall is at the right

1313 +180° fly pointing directly away from the wall

1314

1315 Fig. 8.1a shows an example plot in these coordinate. Note that the discretization for d is
1316 not uniform in [0, 1], but it is chosen such that each cell in the ¢, d space corresponds to
Eg an equal area in the py, p2, 0 space.

Ez 8.3. Fly-centric coordinate space. The ¢ = (¢,d) space is the space where we collect
1321 statistics and do all of our computations. For visualizing the results in a more intuitive
1322 way, we use also another representation, which is just a change of coordinate, shown
1323 . . . : “_ 13 ” : : a .04

1324 in Fig. 8.1b. In this representation we use two “aligned” spatial coordinates x*,y?. The
1325 animal always points “up”.

1326 More formally, in these coordinates the dynamics of the animal is given by:

1327

1328 d _, _

1329 Ex (t) = 0,

1330 d

1331 L

1332 Frid (t) > o

1333 . . . .
L3 The change of coordinates is given by:

1335 [ X } _ [cos(—Q) —sin(—0) ] [ 1 ]

1336 Y sin(—0)  cos(—0) p2

1337
iggz This means that the original configuration (p1, p2, 6) is rotated around the arena center to
1340 obtain the configuration (x“,y*,0).

1341

1342 8.4. On the choice of coordinates. When going from the configuration (¢, d) to (x%,y?),
1343 there is a singularity at the center of the arena. Uniform cells in the (¢,d) domain appear
gﬁ as elongated “pizza slices” in the (x*,y*) domain. This appears as a slight artifact when
1346 the cells obtained in the (¢, d) domain are plotted in the (x?, y?) domain.

1347 Note that all the operations done in the analysis are invariant to the choice of the coordi-

1348

a6 nates. However, once chosen one or the other, one cannot avoid a singularity in the change

of coordinates when converting between the two systems. Our rationale for choosing the
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(¢,d) domain is that these variables are behaviorally relevant even for environments with
different geometry (e.g., rectangular). This should make future comparisons with experi-
ments with different environment easier.

8.5. Nuisances in the analysis. Finally, we summarize all the approximations/limitations
of this analysis, which should be kept in mind when interpreting the results; Fig. 8.2 con-
tains a diagrams highlighting some of the factors.

(1) There might be unobservable states that influence behaviors. The contribution of
these states appears as a baseline event rate not explained by the feature.

(2) The reduced configuration space C might be too small to be a proxy for the true
configuration. If this is true, then the estimated features cannot be predictive of all
events.

For example, we ignore the altitude and the velocity of the fly.

(3) The dimension of the feature identified is bounded by the number of event classes
considered. To identify a feature of dimension 7, one needs at least n + 1 events.
Therefore, the stimulus might contain more behaviorally-relevant information than
what is revealed just by the feature identified from the particular event classes con-
sidered.

(4) There are measurements errors:

(A) Axis angle (¢) / distance from

wall (d) plot.
E 070 169.38
~ 0.60
T o0
= 7 pointing pointing
g 0/away from towards away from
= the wall the wall
)
2 0.30
)
2 6.70
T 0.20

-180° -90° 0 +90° 180°
axis angle ¢

(B) Fly-centric view (x?/y“ plot).

FIGURE 8.1. Explanation of the two kinds of plots used.
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e The state x(t) is noisily observed, and the noise is not negligible with respect
to the partition of C.
e The events are not exactly detected.
The analysis is generally robust to this kind of noises, but still they are unmod-
eled phenomena.

States are
Not all unobservable observable isil
relevant states states states noisily
are observable. noise|] observed.

stimuli
the influence of 4
unobservable states ; o - o Due to limited data, only
is a disturbance in identified non-identified| some of the features can
the analysis features features | be reliably identified.
v
behavioral
models

\ 4

unobservable observable
events events

Behaviors are
noisily observed.

There might be unobservable fotee

behaviors that could
discriminate additional features.

FIGURE 8.2. Nuisances in the analysis
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9. COMPLETE PLOTS (GEOMETRIC SACCADE DETECTOR)

The next pages show the complete statistics using the events detected by the GSD al-

gorithm.

Time
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(s)
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speed

(m/s)

Number
of
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distance from wall d (m)

distance from wall d (m)

FIGURE 9.1. Time spent in each cell
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FIGURE 9.2. Mean speed (whole trajectory)
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FIGURE 9.3. Number of detected saccades (both left and right)
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of right
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GURE 9.4. Number of detected left saccades
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FIGURE 9.5. Number of detected right saccades
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FIGURE 9.6. Observed saccade rate (both left and right)
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FIGURE 9.13. Estimated feature
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FIGURE 9.16. Observed saccade rates as a function of the estimated feature
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10. COMPLETE PLOTS (ANGULAR-VELOCITY BASED DETECTOR)

The next pages show the complete statistics using the events detected by the AVSD

algorithm.
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FIGURE 10.11. Estimated feature
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FIGURE 10.12. Uncertainty of estimated feature
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FIGURE 10.13. Observed saccade rates as a function of the estimated feature
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FIGURE 10.14. Observed saccade rates as a function of the estimated feature
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FIGURE 10.15. Estimated event generation rates as a function of the estimated feature
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