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INTRODUCTION

The first comprehensive series of lectures covering the scien-
tific fundamentals and technology of jet propulsion were given at the
Guggenheim Aeronautical Laboratory, California Institute of Technol=
ogy, under the direction of Professor Theodore von Kérma'n, during
the academic year 1943-44. This course was sponsored by the Air
Technical Service Command of the Army Air Force with the enlightened
encouragement of General H. H. Arnold. The lectures were a direct
outgrowth of the early investigations by Dr. von Karman and Dr.
Frank J. Malina who, together with Mr, J. W. Parsons and Mr. E,
Forman, carried out extensive work on solid propellant rockets,
leading eventually to the founding of the Jet Propulsion Laboratory.

Through Dr. von Karman's extensive influence, through the
excellent book '"Jet Propulsion' edited by Dr. H. S. Tsien, and
through the dispersion of the dozen original lecturers throughout the
world, these lectures deeply influenced the orientation and content of
virtually all subsequent instruction in America and Europe. The
depth and accuracy of Dr. von Karman's insight are borne out by the
fact that the ensuing 20 years have not altered the general pattern of
the courses although the propulsion technology has advanced so dra=-
matically. The subjects of nuclear propulsion, electrical propulsion,
and energy conversion have assums=d substantial importance but will
influence space exploration only a few years hence.

Instruction of the Jet Propulsion Sciences at the California In-
stitute of Technology was given additional impetus by the establish-

ment of the Daniel and Florence Guggenheim Jet Propulsion Center in
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1949 and the appointment of Dr., H., S. Tsien as the Goddard Professor
of Jet Propulsion, a chair which he held until 1955. During this period
the instruction was expanded in scope and extensive research activity
was undertaken. Professor W. D. Rannie, successor to the Goddard
Professorship, has subsequently amplified and changed emphasis of
the instruction in rocket flight mechanics, propulsion technology, and
propulsion chemistry until it has taken the present form of three
courses, each covering a complete academic year.

The present lectures cover a few topics from the courses cur=
rently given at the California Institute of Technology. The notes con-
sist in a small selection of information from certain areas that are
more easily presented in written form than in lectures. Nuclear pro=-
pulsion, electrical propulsion, and power conversion will be covered
only in the lectures.

The notes themselves have been collected from material usually
employed in the Cal Tech courses. Chapter I, Mechanics of Rocket
Propulsion, was taken from unpublished notes of Professor W. D. Ran-
nie which he employs as introductory material in his lectures on rocket
propulsion technology. Chapter II, Elementary Theory of the Rocket
Nozzle, was adapted from some early notes by Professor H. S. Tsien
and augmented by recent material by the author on heterogeneous flow
in nozzles. Chapter III, Combustion Thermodynamics and Chemical
Propellants contains material from the excellent little book, '""Elements
of Chemical Thermodynamics, ' by L. K. Nash (Addison-Wesley Pub-
lishing Co. ) and detailed material on chemical equilibrium calculations

in nozzle flow (including tables) borrowed from the well known book by
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my colleague, Professor S. S. Penner, '"Chemistry Problems in Jet
Propulsion'" (Pergamon Press). The course in propulsion chemistry
has been given from *this book at Cal Tech for many years by Profes-
sor Penner,

Chapter IV, Solid Propellant Rocket Motors, and Chapter V,
Liquid Propellant Rocket Motors, are based on material from ''Jet
Propulsion, " edited by H. S. Tsien and a considerable amount of ma=
terial (including figures) from the extensive book, '""Rocket Propulsion, "
by Barrere, Jaumotte, de Veubeke, and Vandenkerckhove (Elsevier
Publishing Co. ). This book is an appropriate source for the present
notes, inasmuch as that book was deeply influenced not only by Pro=~
fessor von Karman himself but through the training in jet propulsion

that Mr. Vandenkerckhove received at Cal Tech.



1. MECHANICS OF ROCKET PROPULSION

The Rocket in Gravity-Free Space

Let m be the mass of a rocket at any instant t, and v the
velocity at that instant. The mass m includes unexpended propel-
lant. Relative to a stationary coordinate system, the momentum of
the rocket is mv . Let a mass of propellant Amp be ejected oppo-

site to the direction of velocity of the rocket.

o m»m — v

V-/

CcC-v-Aar :

VAV

There are no external forces acting on the system, since gravity and
drag are neglected; hence, the total momentum of rocket and propel-
lant is the same after ejection as before. At time t + At , the rocket
of mass m-Am_ has velocity v+Av , and the ejected mass /_\.mp

has velocity ¢ -v-Av in the opposite direction, as shown in the fig~

ure.

The equation of conservation of momentum is

(m-Amp)(v+Av) - Amp(c-v-/_\v) = mv,

which can be simplified to

mAv = cAm
D
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This equation is exact; that is, does not require that Amp or Av be

small. However, in conventional rockets, the ejection of propellant

is continuous, so Av is replaced by %{-dt and Amp by —idr% dt in

the finite difference equation above, which becomes

dv _ dm _
m—d'f = -C—-——dt = F . (1-1)

Here, F is defined as the rocket thrust, since m %‘-:- is the force re=-
quired to give an acceleration dv/dt to the mass m .

This equation is of fundamental importance, and it is worth
while to derive it in a different way. Suppose that a force F acts on
the mass Amp between times t and t+ At separating the mass of
propellant and accelerating it relative to the rocket. The total im-

ptt+ At _ _
pulse applied to Amp is ¢ Fdt = FAt, say, where F is the

average force. The propellant, initially with velocity v , is ejected

backward with velocity c-Av relative to the rocket, so the change of

=8 | ===

momentum is A-mp(c-Av) , and equating to the total impulse

Amp(c-Av) = FAt.,

From Newton's Law, the force on the rocket is an equal and opposite
reaction, and equating the momentum gain of the rocket of mass
m = Amp to the total impulse
(m-Amp)Av = FAL
and hence

mav = cArnp = T‘At+AmpAv .

The equality on the left is the same as that derived previously; the
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force F reduces to the thrust F defined in Eq. (l. 1) when the in-
crements are infinitesimal so that the second order term Amp- Av
can be neglected in comparison with the other terms.
Equation (1. 1) can be written in the form

dvz_c.(_l..n_l
m

and integrated to give the velocity increment
m

vevy = [ eim, (1.2)
J :

where m is the initial mass and e the initial velocity. If the

rocket starts from rest (vo = 0) and the mass at burnout is my the
velocity at burnout, Vp is given by
m
o
_ dm
Vb = f 3l —rn— . (l. 3)
m

For a fixed propellant mass m _-m the burnout velocity is clearly

b ?
a maximum when c¢ is as large as possible. Generally, the exhaust
velocity of a given rocket and propellant combination cannot exceed
some maximum value because of limitations of the propellant and mo-
tor. Equation (1. 3) shows that vy will decrease if the motor is run
so ¢ is at any time less than this maximum value. Hence, ¢ can be
considered a constant throughout the burning period for any particular
rocket, since this represents the operation that gives the largest
value of Uy

With the simplification that ¢ is constant, the integra.l in Eq.

(1. 3) can be evaluated to give
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My Wo
v, = cin—— = c 4n (1. 4)
b my Wb

where WO/Wb is the "weight ratio'" replacing the mass ratio. Itis

convenient to introduce a weight breakdown for discussion of Eq. (1. 4).

Deafine
Wo = initial gross weight
W_ = propellant weight
P (1. 5)
W _ = structural weight

s

w

1 payload weight
The structural weight ws includes the rocket motor, propellant
tanks, controls, and all supporting structure; that is, everything re=-
quired for the rocket operationexcept propellant and payload. In a
two=stage rocket, the payload W1 includes the second rocket, with
associated tanks and propellant, and the second-stage payload. The
relations W0 = WP + Ws + W

and W, = Ws + W1 must hold with the

1 b

definitions above. Two dimensionless weight ratios are useful; these

are defined as

a W1/W0 » the payload weight ratio,

(1. 6)

B WS/(WP+WS) , the structural weight ratio.

From the definitions

W, =W_+W, =8(W -W,)=[B+(1-B)alW _,

and substituting into Eg. (1. 4),

Vb = Can-i—_-B-)' . . (1.7)

The magnitude of the thrust does not enter into this expression for



burnout velocity.

The Sounding Rocket

The findings in the previous section show that neither the time
of burning nor the magnitude of the thrust influences the burnout ve-
locity. It is clear that this cannot be true for a rocket in the gravity
field of the Earth, for instance, and it is of considerable important to
determine the deterioration of burnout velocity resulting from gravity.
The simplest quantitative demonstration of these effects can be shown
for a sounding rocket, that is, a rocket in vertical flight from the
Earth's surface. Air resistance, the decrease of acceleration of
gravity with height, and the effect of the Earth's rotation are neglected
in the first analysis.

The equation of motion of a rocket in vertical flight in a con-
stant gravity field g is

§=-c—=-g, (1.8)

where m is the mass of the rocket at any time, and y is the height
above the Earth's surface. If the exhaust velocity c¢ is constant,

this equation can be integrated once

mO
y = cin— - gt, (1. 9)

where the constant of integration is evaluated from the conditions

y =0 and m = m at t =0 . Integrating again with respectto t,
t
a mo i .2
y = cJtn—ert--ggt s _ (1. 10)
0

where y =0 when t=0. If ty is the time at burnout, the burnout
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velocity and height are

(o]
= Loy .
v, = e tnz2-ey,
{1:11)
o 1 2
yb = C‘Js{,n___dt..igtb

0

Since part of the work done on the rocket appears as potential
energy in the Earth's gravity field, it seems most appropriate to com=
pare total burnout energies rather than burnout velocities as in
gravity-free flight. The total burnout energy in the constant gravity
field is made up of the potential energy gYy and the kinetic energy
%jbz » each per unit mass. Daznoting by LA the velocity at y = 0 that
corresponds to the same total energy, and by H_ the maximum
height that the rocket would reach in the flight following burnout, we
have
2

1 .
v = gH = %Yb + gy - (1. 12)

Substituting from Eqgs. (1. 11) and rearranging,

B b

VOZ = c2<Ln.——°-) - 2gc Jp&n?nrp— dt
"y 2 b

and replacing dt by dm/m ,
- 2 "o
2 _ 2 o ; m dm
¥, = & (-Lna;) - 2gc J Ln-r—n-;. = " (1. 13)
"

The first term on the right-hand side of Eq. (1l.13) is the same
as would result from gravity-free flight; the second term is the gravity
correction. The latter term decreases as (-m) increases and ap-

proaches zero as (-ri) becomes very large, i.e., as the thrust be-
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comes large. In actual practice, the magnitude of (-m) is limited by
size of the rocket motor and by acceleration loads on the vehicle.
Clearly, any decrease of (-rmh) below its maximum allowable value
tends to increase the integral on the right of Eq. (l. 13) and hence to
decrease Vo - For best performance, (-m) is a constant.

With (-m) a constant (i.e., thrust constant, since c has al=
ready been assumead constant), the height reached at any time t is
obtained from Eq. (l.10) in the form

m
C ° mo 1 2
= DIy s @ -
Y _(-—n’a—) ‘,r n = dm zgt
m

and the integral can be evaluated to give

m m
o] (o]

cm - m >
Y=m[1- _anrr?-%gt' (1.14)
It is convenient to introduce a dimensionless time variable T defined
as
T = t/tb (1. 15)
and a dimensionless constant y combining the effects of structural

and payload weight ratios defined as

Yy = (l-a)(1-p) = 1 - (mb/mo) . (1. 16)

Then the mass ratio m/mo can be given in the form

m/mo = 1-y7 , {L17)

and since m -m, = (-m)tb :

g glm -m. ) W :
1:b= o b =YFO’ (1. 18)

c (-m)c

where Wo/F is the initial thrust/weight ratio. Substituting these new
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parameters into Eqs. (1.9) and (1. 14), and dividing by ¢ and czlg '

respectively, the velocity and height at any time are
w

vy _ 1 o
o = in I -5 YT
(1. 19)
o 1 1 o 2
i T[YT‘“‘YT“’HT-?-F]‘E + (vr)

The expressions for y/c and gy/c‘2 in Egs. (1.19) are func-
tions of yT and WO/F only. The parameater Wo/F is, of course, al-
ways less than unity. For WOIF close to unity, the terms on the
right of Eq. (119) tend to cancel each other for yT small; hence, it is
convenient to have a table of the functions multiplying the factors
WO/F with sufficient significant figures so cancellation errors do not
become large. Table 1.1 below gives the four required functions of
YT . This table is useful in the approximate calculation of the effect

of aerodynamic drag.

TABLE 1.1

1 1 2

YT in ToyT Y1 = (l=yT){n e s(yT)
0 0 0

« 05 . 05129 . 001271 .001250
.10 + 10535 +» 005175 . 005000
+15 . 1626 .01186 «+ 01125
. 20 « 2231 .02149 . 02000
« 25 . 2876 . 03425 « 03125
.30 . 3567 . 05033 . 04500
.35 . 4308 . 07000 .06125
. 40 . 5108 « 09350 . 08000
. 45 . 5978 ~ 12120 .1012
. 50 .6931 . 1534 . 1250




M=

YT in —— _\I,T YT = (l=yTH¥n g Fer %(y'r)z
« 55 . 7895 « 1907 « 1512
. 60 . 9163 « 2335 . 1800
.65 1. 050 . 2828 o 2112
« T0 1.204 .3388 . 2450
.15 1. 386 . 4034 . 2812
. 80 1. 609 . 4781 .3200
« 85 1. 897 . 5654 s 3612
. 90 2.303 . 6697 . 4050
« 95 2,996 . 8002 . 4512

At burnout, T = 1 in Eq. (1. 19), and hence

oot %
< Y F Y °

(1. 20)

3 ""VYF'[Y‘“'V)’LH ] z( )‘1

The velocity v, corre sponding to total burnout energy is given by

2 w
; . o2lpm LY. 520 oL
¥, = Z.gHm = C ({n l-Y) - 2C - (Ln oy y) 5 (il 21}

and this can be expressed in the more convenient form

w 5

vo = cftn =] - 2] (1. 22)

[

where

en kg )

fly) = : (1. 23)

& t:;)

The variation of f(y) with vy is given in Table 1. 2,

TABLE 1, 2

y |0.4 0.5 0.6 0. 7 0.75 | 0.80 | 0.85 0. 90 0.95

f(y)|.848 | .805| .753 695 | 664 | .625 | .582 | .529 | .456
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It is important to remember that the results above are based on the

assumptions that ¢ and F are constants.

Values of Parameters for Rocket Equations

The equation for the burnout velocity in gravity-free space,

Eq. (1.7), shows that v increases as c¢ increases and as P de-
creases for a fixed payload radio o . In order to increase the burnout
velocity for a fixed payload weight, one may employ a larger rocket
(i.e., decrease o), employ a higher performance propellant (i.e.,
increase c ), or construct a lighter and more efficient structure (i.e.,
decrease P). Further, Eq. (1. 22) shows that L increases as the
initial thrust/weight ratio F/Wo increases. The values of the three
parameters c, B, and F/W0 are not independent, and the optimum
choice to give the highest value of v is not a simple procedure. How=
ever, some general statements can be made concerning the values of
the parameters without detailed discussion of rocket design.

The value of the exhaust velocity ¢ increases as the combus-
tion chamber temperature increases and as the molecular weight of the
exhaust products decreases, as will be shown later. Systematic stud=
ies of the chemical properties of elements and compounds demonstrate
that a fuel of low molecular weight should be combined with an oxidizer
such as oxygen, or better, fluorine, for the highest value of c. There-
fore, hydrogen is the best fuel, and when combined with oxygen or
fluorine, can produce a value of ¢ of about 12, 000 ft/sec. _Our knowl-
edge of theoretical chemistry leaves no doubt that this is very close to

the highest value of c¢ attainable from stable chemical species. The
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light metals have very high heats of reaction but form exhaust prod-
ucts with high molecular weights, and worse, liquid or solid rather
than gaseous form. Chemical compounds for fuels generally give
smaller values of ¢ as the percentage of hydrogen is decreased.

The first liquid propellant rocket to reach an operational sta=
tus was the V-2, with alcohol and liquid oxygen as the propellant com-
bination. This rocket motor developed an exhaust velocity of about
6500 ft/sec. Current large liquid-propellant rockets employ kerosene
and liquid oxygen, and have increased the value of ¢ to about 9000
ft/sec, the increment resulting more from better motor design and
higher chamber pressure than from inherent characteristics of the
propellant. Storable liquid propellants such as hydrazine and nitrogen
tetroxide have obvious operational advantages over the cryogenics
hydrogen and oxygen, but because they are more complicated com-
pounds, the exhaust velocity is not quite as high as with kerosene and
liquid oxygen.

Solid propellants for rockets must have satisfactory structural
characteristics ,and are therefore rather complex chemsical compounds
(e. g. nitroglycerine and nitrocellu_lose).s As a result, the solid propel-
lants usually produce values of the exhaust velocity of 8500 ft/sec or
less. Recently, light mectals have been incorporated into the solid pro=-
pellants, and the value of ¢ has been increased toward 9000 ft/sec.
Very much higher values of c¢ in solid propellants seem unlikely.

The values of the exhaust velocities quoted above are repre-
sentative of the propellants alone, although the precise values will de~

pend on nozzle design and ambient pressure. Strictly, comparison
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should be made only for specified conditions of operation. The value
of ¢ for a given propellant combination can vary by 10 per cent to 15
per cent, depending on chamber pressure, nozzle exit pressure, and
ambient pressure.

Although the exhaust velocity ¢ is the most natural index of
propellant performance, another quantity called the specific impulse,
L o Isp » is widely used. The specific impulse is defined as thrust
divided by mass flow rate of the propellant in the units (pounds thrust)/
(Ib. mass flow per sec.), and hence Isp = c/go » where g, = 32,1740
is the numerical value of the standard gravitational acceleration. The
specific impulse is usually quoted as so many seconds, although a
glance at the definition shows that it is really a velocity with g, @ nu-
mearical conversion factor. In applications, one converts to c =
32,1740 ISp ft/sec , so the confusion in dimensions is not very im-
portant.

The second important parameter is the structural weight ratio
g = WS/(WP+WS). This parameter is inseparable from the mechanical
design details of the rocket, in contrast with the exhaust velocity c ,
which is determined more by intrinsic chemical properties of the pro=-
pellant than by specific rocket design. Hence, it is not possible to pre-
dict a minimum value of f in the way that a maximum value of ¢ can
be predicted. Estimates of weights of components will be made later
in the course; for the moment, representative values taken from re-
cent journals will be quoted. The value of B for each stage of the
present Titanliquid propellant rocket is stated to be 0. 06 ('Missiles

and Rockets, ' Sept. 5, 1960), with the implication that this will be
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improved in later modifications. The very marked improvemsnt since
the V-2 with B = 0. 25 is more striking than the gain in exhaust veloci=
ty. The value of B for the Titan is appropriate for '"conventional"
fuels. No figure for a hydrogen-fueled rocket (e. g. Centaur) is easily
available, but it is certainly higher than 0. 06 because of the large
tanks required for low-density hydrogen. Hence, the gain in burnout
velocity resulting from higher ¢ for hydrogen is partially balanced by
the larger value for B. The value of B for current large, solid-pro-
pellant rockets is stated to be 0. 07 with expectation that it can be de-
creased to 0. 04 ("Missiles and Rockets, ! July 27, 1959, p. 32).

The value of B also depends on the ratio F/WO. As F is in-
creased, the size of the rocket nozzle increases, and hence B in-
creases} further, as F is increased, the acceleration of the vehicle
increases, and a heavier structure may be required. For current
large liquid-propellant rockets, the value of F/W0 seems to be about
1.4 or 1. 5; and for large solid-propellant rockets, F/Wo is in the
range of 2,5 to 3.5, This difference is not surprising; much of the
structural weight of liquid-propellant rockets consists of propellant
tanks which become heavy if the acceleration loads are high, whereas
the cases of solid-propellant rockets are already rather heavy to with-
stand the chamber pressure, and can take appreciable acceleration
loads with no increase in weight.

The minimum velocities at the Earth's surface required for
certain trajectories and orbits are listed in Table 1. 3. Although the
correspondence is not quite exact, the combination of burnout velocity

in gravity-free space, Eq. (1.7), and the gravity correction for a
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TABLE 1.3
Trajectory or Orbit ¥ (ft. /sec. )
Maximum range, 100 miles 4,100
Maximum range, 500 miles 8, 900
Maximum range, 1000 miles 12, 200
Maximum range, 3000 miles 19, 000
Maximum range, 6000 miles 24, 000
Orbit at the Earth's surface 26, 000
Escape from the Earth 36,700
Escape from the solar system 77, 500

sounding rocket, Eq. (1l.22), in the form
1 Wo
v, = cl:ftn 1"Y:|[l - f(\()]

Y = (1-a)(1-B)

=

with

gives an approximation to the values of v, as listed in Table 1. 3.
Substitution of appropriate combinations of ¢, B, and WO/F shows
that only the first few of the trajectories in the table can be accom-=

plished with a single~stage rocket, even with very low payload.

Staged Rockets

The maximum burnout velocity that can be attained with a
single~-stage rocket in gravity-free space is anEl with a negligible
payload. The structural weight ratio can be reduced, in effect, by the
use of step rockets or staging. Suppose that a part of the propellant
of a rocket is put in a second, smaller rocket carried along as the
payload of the first rocket. After burnout of the first rocket, the

structure is disengaged and the second rocket is fired. The propellant
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of the second rocket accelerates a smaller structural mass than it
would if part of the propellant of the first stage, so that a higher ter-
minal velocity for the actual payload is achieved.

For a first quantitative examination of the effect of staging, let
us neglect the effect of gravity and assume that each of the rockets in
the several stages has the same exhaust velocity ¢ and the same
structural weight ratio . Let a, = WI/WO be the payload weight ra=
tio of the first rocket, where W is the initial gross weight, and W,
includes all subsequent rockets beyond the first, as well as the actual
payload. According to Eq. (1.7), the burnout velocity of the first

stage is Vys Savy, where

= 1
Vl = CanTa—l s (1. 24)

assuming that the motion starts from rest. Let WZ be the payload for

the second rocket; W, includes all subsequent rockets beyond the sec=-

2
ond rocket and the actual payload. Define a, = WZ/W1 as the payload
ratio of the second rocket. Since the second rocket has velocity vy
initially, the burnout velocity vy is given by
Y2 % 1
[ [S

= an . (1. 25)

Continuing the process, we have for the last stage, if n is the number
of stages,

¥ Vn.- 1 1

n _
< "¢~ £np+(1-ﬁian : e 200)

Adding up the n equations,

Va - 1
<% 5 Zl nEIIpY b
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The payload ratios Qys QpseserQ are connected by the relation

wl WZ. wn
al,az,---.an . A Sl A Qa o,
o 1 n=1
or

Z‘Lnai = 4na , (1. 28)

where Wn is the actual payload of the entire system, and a is the
overall payload weight ratio.

If o is given, the final burnout velocity L varies with the
choice of ai's as given by Eg. (1. 27). These u,i's are not completely
arbitrary, however, since they must satisfy the condition of Eq. (1. 28).
The values of 0oy that give the maximum S and this maximum are
most easily found by the method of Lagrange multipliers. The condi-
tion that v, in Eg. (1. 27) be an extremum is that

_6;_ f Wi B 50, = 0 (1. 29)
for all Eossible variations t‘So:,i . However, the variations 6(::(,i must

satisfy the condition (from Eq. 1. 28) that
& 1
; a— ay 0, (1. 30)

since a = constant. This last condition is unchanged if an arbitrary
multiplier ) is introduced, i.e., the condition to be satisfied by the
is

variations 60,1

S 1
Za_ a = 0 . (1.31)

Adding Eg. (1.31) to Eq. (l.29), we have, for the condition for an ex~

tremum of LA
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n
B A _
; —ﬁ+(1 =T +—i]5ai =0 (1.32)

again for all possible variations ﬁai "
Only (n-1) of the n variations 6u.1, 60.2, S Gan are arbitra-
ry in Eq. (l1.32) because of the relation (1. 30) that they must satisfy,

Let SCLI, s ey OO be chosen arbitrarily; then the coefficients of

n-1
these in Eq. (1. 32) must all be zero to satisfy the condition for an

extremum. The coefficient of Gan will not be zero in general because
6c.n can be expressed in terms of the other Gai's. However, ) is still

an arbitrary multiplier and is now chosen so the coefficient of 6an is

zero; hence, coefficients of all éai's in Eq. (1.32) are zero, or

1-? - A -
FI-Pla; o i=l,...yn (1.33)

and these n equations along with Eq. (1. 28) are sufficient to deter-
mine the n+l1 unknowns, (11, Qpseees c.n and ). In this particular ex=

ample, solving for a, from Eq. (1. 33)
= AP
4 T mToa-s)

and clearly all ai's are equal; hence, from Eq. (1. 28),

o = o1/n i=1,2,.0.,n (1.34)

and the maximum value of V.. which we will denote by Vn s d8

V. = ncdn . : (1. 35)

n B+(1-B)a /P

When the Liagrange multipliers are introduced in a problem such as
this, the simplest method of demonstrating that Vn is a maximum is

to choose any other set of cxi's for which vy is easily calculated and
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show that v. - V_ .
n n
For n- oo, one can put a = l1-¢ where ¢ is a very small num-
ber; substituting for n in terms of ¢ in Eg. (l.35) and letting ¢ = 0,

the limiting value of Vn is

Lim _ 1
et Vn = C(l-ﬁ)‘{tna

. (1. 36)
This mathematical limit of course is not attainable in practice, be-
cause it is scarcely possible to construct a rocket with an infinite num-
ber of stages, but it does give a useful index of the maximum advan-
tage of staging. For instance, it can be seen immediately that high
burnout velocities cannot be achieved unless o is very small.

The ratio of the maximum burnout velocity Vn to the exhaust
velocity ¢ is shown in Table 1, 4 for various values of ¢ and B. The
table demonstrates clearly that staging is effective only for small
payload ratios. With small payload ratios, however, high burnout ve-
locities are attainable with quite modest values of ¢ and B .

The conditions (1. 33) or (1. 34) for v to be a maximum for
fixed @ are also the conditions that o be a maximum for fixed v,

To show this, one simply interchanges the roles of Eqs. (1.29) and
(1.30), that is, let Eq. (1. 30) be the condition that o be an extremum
and Eq. (1. 29) be the auxiliary condition that Vo is given.

The solution of the staging problem above is particularly sim-
ple because ¢ and B are the same for each stage. In the more gen-
eral problem, with exhaust velocity <5 and structural weight ratio ﬁi
for the ith stage, the procedure is the same. The burnout v;elocity of

the n'® stage in gravity-free space is



TABLE 1. 4

Vn/c for n-Stages in Gravity-Free Space

a

g n 0.2 PR 0.05| 0.02| 0.01 | 0.005| 0.002| 0.001 0
0. 25 1 0.92 | 1,12 | 1,24 | 1.33 | 1.36 | 1.37 | 1.38 | 1.38 1. 3%

oo 1.21 | 1.83 | 2,25 | 2,93 | 3.45 | 3.98 | 4.66 | 5,18 @
1 127 | L.b6 | 1.93 | .14 | 2,22 | 2.26 | 2,28 | 2,29 2,30
2 1.38 | 1.91 | 2.40 | 2,96 | 3.32 | 3.62 |3.93 | 410 4,60
0.10 3 1.40 | 1.97 | 2.52 | 3.20 | 3.67 | 4.11 | 4.62 | 4.98 6.91
4 1.42 | 2,00 | 2.57 | 3.30 | 3.82 | 4.32 | 4.95 | 5.38 9. 21

oo} 1.45 | 2,07 | 2.70 | 3.32 | 4,14 | 4.77 |5.59 | 6.22 o'
1 1,43 | 1,93 | 2,33 | 2.67 | 2.82 | 2.90 |2.96 | 2.98 3.00
2 1.49 | 2,10 | 2.68 | 3.38 | 3.79 | 4.29 |4.76 | 5.05 5.99
0. 05 3 .50 | 2,13 | 2.78 | 3.54 {410 | 465 |5.32 |58.79 8.99
4 1.51 | 2.15 | 2.78 | 3.60 | 4.20 | 4.78 |5.57 | 6.09 11. 98

@ 1.53 | 2,18 | 2.84 | 3.72 | 4.38 | 5.03 |5.90 | 6.56 00

-6]:-
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where the o_i's satisfy Eq. (1. 28) as before. The conditions for L to

be an extremum, corresponding to Egs. (l.33), are readily found to be

1-8,
c =

A &
i .+ e o, 'a_i_ i"‘l,..-,n (1037)

and solving for 0y
)\ﬁi
CX.i =m i e o o S (1. 38)

1

Substituting for oy into QysQprerey @ =a, One obtains a relation for

A in terms of the prescribed parameters ¢y and ﬁi v
A2 (l—ﬁl(l—ﬁz)...(l-ﬁn) e
ErE il = "By b (-39

This last equation is polynomial of the nth degree in )\ and must be
solved numerically. Usually, only one root represents a practical so=
lution; having found this root, the o.i's are determined from Egs. (1. 38).
The problem of the optimum distribution of payload wieght ra-

tios in a multi-stage sounding rocket operating in a constant gravity
field is important, but unfortunately, it is one of considerable diffi-
culty. Suppose that any particular stage has as its initial condition

y = vy and y = Yy where b and y, are given. For constant c and

constant thrust, Eqs. (l. 20) can be extended readily to the new initial

conditions, giving

w
. _ 1 1
Py, = C[Lnﬁ“l?—‘l'v]+v1 {140}
2T'W w.. 2 cv, W
o B 1 1 1 1 2 1 1
Yb‘—g[p—l {Y'“"Wnr\,}-z(p—l) Y}* g T, vty (4



T
where y = (1-a)(1-f) and }.7‘1/Wl is the initial thrust-weight ratio.
The initial energy per unit mass is IE)1 = —lz—vlz-!—gyl , and the burnout

energy per unit mass is E = %frb2+ gyy - The increment of energy of

this particular stage is then
Wy 1
E-E. = % Ln - 2({,1'1 -y>:|+cv {,n———Y (1. 42)

To find the burnout energy of a two-stage rocket with the first stage
fired at y = 0 with zero velocity and the second stage fired immedi-
ately upon burnout of the first stage, let STALL Wo/Fo refer to the
first stage and put c = € Y=Y, in Eq. (l.42) representing the sec-

ond stage. Then
i 1 o
17 %1 (Ln I-y; " F, Yl)

and

2 W
By ™ %‘:12[(*'“‘1-_1\(-1) “F—ZZ(“H Y

and substituting into Eg. (1. 25) above,

- YI)J

_ 1 2 1 o
B, = 29 [(*’n 1_y1 T T, 2("“ “ﬁ)]
2 W
2 1
[('{’nl—y )'F 2(“ 7 ‘Yz]
+ ¢ cl({,n YZ)( "Yl —F—Yl) (1. 43)

gty = (1 - -l-f—é-l- )(1 "1‘1%';) = o . (1. 44)

In these expressions, y, and replace o, and o. as independent
*» 1 Y TeP 1 2 P

where

variables to simplify the form of the expression for E2 .
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When gravity is neglected, i.e., WOIFO = WllF1 =0 in Eq.
(1. 43), the expression for E2 is a perfect square. Then it is clear
that the order of firing of the rockets designated by 1 and 2 does not
matter. With gravity, the expression for E2 is not a perfect square,
and the maximum burnout energy depends on which rocket is used as
the first stage. Frequently one finds in the literature the following
statement === if a two-stage rocket is made up of one 'low performs=-
ance'' stage and one "high performance' stage, the "high performance"
rocket should be in the second stage for maximum burnout energy. If
in the high-performance stage, c is higher and both f and W/F low-
er than in the low-performance stage, a numerical example will con~
vince one of the validity of the statement above. However, one type
of rocket is generally superior to another with respect to one or two
of the parameters c, B, and W/F , rather than all three, and the
choice of optimum arrangement becomes more subtle. The simplest
procedure in a specific example is to solve Eq. (l.44) for Y, and use
this result to plot E2 as a function of Yy from Eq. (1l.43) for the two

possible orders of type of rocket.

Rockets with Energy Sources Other than Chemical

The chemical rockets discussed in the previous sections com-
bine energy source and propellant as a unit. The release of the
stored chemical energy is used through the action of guiding surfaces
of chamber and nozzle to accelerate the propellant, consisting of the
products of the chemical reaction. The characteristics of the prod-

ucts of reaction (specifically low molecular weight) are as important
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in choosing a propellant combination as the magnitude of the energy
stored in the combination (i. e., the chemical heat release).

Mechanical and electrical means of storing energy give very
much smaller energy per unit mass than chemical; but nuclear energy
sources have enormously greater energy per unit mass, and it is only
natural that their applicability to rocket propulsion should be the ob-
ject of intensive study. The energy per unit mass of fissionable nu-
clear fuel is of the order of 10'7 times that of chemical compounds, so
great that the weight of the energy source itself is quite negligible
compared with the weight of the device that converts the energy in a
practical manner into thrust. Because the energy has negligible
weight, the coupling between energy and propellant that is a charac=-
teristic of the chemical system is removed, and the propellant for the
nuclear energy source can be chosen quite independently.

If one considers the possibility of using a fissionable fuel in a
rocket chamber similar to the way in which a chemical fuel is used, a
serious difficulty presents itself, A chemical reaction will proceed
rapidly to completion as soon as the temperature becomes moderately
high, independeltly of external conditions. A nuclear fission reaction,
on the other hand, continues only as long as the unreacted fuel concen-
tration stays above a certain value, the critical concentration. As the
chamber mixture flows out the nozzle, the nuclear reaction is quenched
immediately, although the unreacted fuel concentration is high. In
fact, the rate of discharge of unreacted fuel is so high that such a
rocket would be completely unacceptable.

Clearly, the nuclear rocket must have some means of retain-
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ing the nuclear fuel and allowing only propellant to escape. One
method is to retain the fuel in a solid matrix and let the heat genera-
ted by the fission reaction be transferred to the propellant flowing
through the matrix. The maximum temperature is limited by the al=-
lowable temperature in the solid, and hence is 2000°F or more lower
than the maximum temperature in chemical reactions where walls
can be cooled and are cooler than the propellant rather than hotter.
The effect of the relatively low temperature of the propellant in a nu-
clear rocket is more than balanced by the possibility of using a pro=-
pellant with a low molecular weight (hydrogen). Apparently exhaust
velocities of 20, 000 to 25, 000 ft/sec can be realized. Such exhaust
velocities are sufficiently attractive that an active program for de=
velopment of the nuclear rocket has begun.

Other means of containing the nuclear fuel and at the same
time relieving the temperature limitation of the heat-transfer nuclear
rocket have been considered. One possibility is to establish a strong
vortex or vortices in the rocket chamber to separate heavy fuel from
light propellant by the centrifugal pressure field. Propellant with a
very low concentration of fuel might be discharged, leaving the fuel=-
rich mixture in the rocket chamber, Much more basic investigation
is required before such an arrangement could be considered seriously.

One method of carrying a nuclear reaction reasonably close to
completion is by an explosion. A series of nuclear explosions in some
form of chamber has been suggested as a rocket device. A large
mass of propellant, preferably of low molecular weight, could be

heated and then discharged. The difficulty here is that with the high-
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est densities attainable for fissionable fuel the critical mass corre=-
sponds to the explosive energy of perhaps several kilotons of TNT.
Obviously, the rocket required to fit explosions of this magnitude
would be of enormous size and presents engineering problems of an
entirely different scale than met heretofore in propulsion. The possi-
bility of a controlled thermonuclear device as a rocket cannot be dis-
missed, although it can scarcely be discussed intelligently before a
controlled reaction is achieved.

All of the propulsion devices mentioned above accelerate the
propellant in the same manner as a chemical rocket, that is, by the
action of pressure transmitted through the fluid propellant by the walls
of the rocket chamber and nozzle. If very high propellant tempera=-
tures are required, the walls transmitting the force to the propellant
must be cooled. The problem of wall heating could be alleviated or
even eliminated if the accelerating process could be carried out by
means of body forces acting directly on the propellant, so that no
walls are in contact with the propellant. The only body forces that
are of practical use are electric and magnetic forces. These can be
effective, of course, only if the propellant molecules are electrically
charged. Two principal types of electric propulsion devices are being
investigated extensively.

One of these is the "ion rocket'", in which the propellant is
completely ionized and the positive ions are accelerated by an electric
field to give a high-velocity beam. This positively~-charged beam
must be neutralized after acceleration by adding electrons; otherwise,

the behicle would accumulate a negative charge, and the discharged
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ion beam would return to the vehicle.

Another type of accelerator is based on the body force that
arises when a magnetic field H is impressed at right angles to an
electric current flow j, giving rise to a force proportional to jH and
at right angles to both. To make use of this effect, the propellant
must be electrically conducting, i.e., must be ionized, although elec-
trically neutral, and flow between electrodes that pass a current
through the propellant. A magnetic field at right angles to the current
and to the direction of flow of the propellant produces the required ac-
celeration. Problems may arise in cooling the electrode surfaces that
are in contact with the propellant, It is not possible at the present
time to predict which of the devices above, or of others based on sim-=-
ilar principles, will prove most suitable for propulsion.

Any of the propulsion systems based on electric and magnetic
body forces require electric generating equipment. The total weight
of the system for conversion of nuclear energy to electrical energy
will be approximately proportional to the electrical power output.

The best systems available now or in the very near future have a
weight of 100 1b/h. p. or so; a weight of 10 1b/h.p. can be expected in

a few years from systems under development; and a weight of 1 1b/h. p.
is estimated, rather hopefully, as a possibility in the future. With
electric power systems of such high weight/power ratio, the thrust
that can be produced is a small fraction of the weight of the system,
and take=-off from the surface of the Earth is not possible. The use=-
fulness of the electric power systems for propulsion appears to be

limited to acceleration from a satellite orbit. In a satellite orbit,



L

centrifugal force balances gravity, and a small thrust acting over a
long period of time can produce a large impulse as in gravity-free
space.

The optimum proportioning of propellant and power conversion
system masses in a rocket of this type can be determined relatively
easily. The basic rocket equation for gravity-free space is still ap~-
plicable, i,e,,

_ 1
Avb - c»&np+ Bs ?

(1. 45)

where Avb is the increment of velocity resulting from discharge of

the propellant. If m_ is the total propellant mass and ty the '""burn-
5

ing'" time, the power output of the rocket motor is

m > 2
P = _th.F . -é—c = Wp ———Zztb 3 (1. 46)

since this simply represents the rate at which kinetic energy is dis-
charged in the jet. We assume that initially the rocket weight is made

up of structural weight WS » propellant weight Wp » and payload

weight Wl . As in the earlier definitions,
w w
B = B = 1
w_FWwW_ & W _FW_+W,
P [} s P 1

and we assume that the structural weight consists principally of the
power conversion system, including the propellant accelerator. Then
if the weight of the power conversion system is proportional to the

power output, we can put

2
%4

gty

_ _ K
WS—KP—WP—Z

(1. 47)

and, from the definition of B ,

p = xZ/(1+x2), (1. 48)
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where
2
2 K ¢

x =—Z§E; } (1. 49)

Solving for ¢ and substituting into Eq. (1. 45),

: 2

-‘/ K 14%
o— Av- = an———z - (1' 50)

thb = atx

The expression on the left of Eq. (1. 50) is positive for all
positive values of x ; since it approaches zero as x approaches zero
and also as x approaches infinity, it must have a maximum for some
positive value of x. Hence, for fixed K, a, and tb , there is some
value of x that gives the maximum velocity increment. The condition
for /_\.vb to be a maximum as a function of x is readily found by differ=
entiating the right hand side of Eq. (1. 50). However, the resulting
transcendental equation is not easy to solve, and it is more convenient

to choose a new variable y , defined as

2 2
y = (1+x")/(atx") (1, 51)
then
ay lea _
X = ﬁ' a
and
K _ l-q
—2?‘.; Avb = ——-"Y—l -a iny. (1. 52)

Differentiating with respect to y and equating the result to zero, the
condition for maximum Avb is

2y-1)" (5% - a) = (l-alytny, (1. 53)

and solving for o as a function of y , the condition becomes

2(y=-1) - yiny 5 (1. 54)
yl2(y-1)-tny]
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One can readily show that this is also the condition that a be a maxi-

mum for

K/thb Av, prescribed.

The table below lists the paramae-

ters resulting from various choices for y.

" 1.2 | 1.3 | 1.4 | 1.5 | 1.75 | 2.0 |2.5 |3.0
a .735 | .590 | .506 | .439 | .318 |.235 |.136 |.081
% —2-——1-<~c .774 | .880 | .853| .827 | .763 |.727 |.662 |.613
gty
Z—K—Av .141 | .230 | .288 | .336 | .428 |.503 |.606 |.673
gtb b

As an example, suppose that K = 0.02 lb. /ft. pound = 10 1b/h. p.
and that Avb = 20, 000 ft. /sec. is required. With a payload weight ra=
tio o = 0.506 , t, = 15X 106 sec. ¥ 17 days , c = 57.500 ft. /sec.,
and the average acceleration is 1.3 X 10_2 ft. secz. The effect of
changing a, Avy , and K can be found with the help of the table.

Several types of power conversion systems for electric pro=-
pulsion are being considered. Some consist of a closed-cycle heat
engine with a nuclear reactor as a heat source and a radiator as a
heat sink to produce mechanical power for a light-weight electric
generator., Others are based on direct conversion devices, again with
the reactor as a heat source and a radiator. So far, the direct con-
version schemes have lower efficiency than the heat engines, and
hence require a larger radiator for the same power, but the predicted
overall weights are comparable. The propellant accelerator, particu-
larly for the electrostatic type, will weigh much less than the remain-

der of the power conversion system. Solar power, with direct conver-

sion devices, is much more convenient for production of small electric
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power than the nuclear energy sources, but it does not appear com-
petitive for the relatively large power required for propulsion of
large vehicles,

At first sight, the very small acceleration of a vehicle with an
electric propulsiondevice makes it appear quite inferior to the chemi-
cal rocket, even though the payload ratio can be much higher, as
shown in the example above. However, if very great distances are in=-
volved, as for interplanetary flight, the time of flight will be of the
order of several months, or even years, and there will be little differ-
ence in travel time between a chemical rocket that produces the ve-
locity increment from satellite speed in a few minutes and the electric
propulsion device that requires a few weeks to produce the velocity

increment,
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2. ELEMENTARY THEORY OF THE ROCKET NOZZLE

In its simplest form, the theory of gas flow through a rocket
nozzle may be carried out completely utilizing only the most elemen=-
tary mathematical means. In carrying out the analysis, several ex~-
plicit assumptions will be made which limit the accuracy and applica=
bility of the results., In spite of these, the results are usually quite
close to physical reality. The assumptions are:

1. The combustion process is complete before the gas en=
counters the nozzle; the flow consists of a homogeneous non-reacting
ideal gas.

2. The process is reversible; dissipation arising from shear
within the wall boundary layer and from volume dilatation in the main
stream is neglected.

3. The flow is locally adiabatic; no heat is transferred from
the gas to its surroundings or between adjacent portions of the gas.

4. The flow is one dimensional; all gradients of temperature,
velocity, and pressure normal to the principal direction of flow are
neglected.

The First Lawof Thermodynamics, in a form appropriate for
use here, states that the internal energy of the gas is increased by the
addition of heat and by doing work on the gas. This law may be written

be = bq + 6w, (2. 1)
where &g, b6e, and &w are the heat transferred to the gas, the internal
energy of the gas, and the work done on the gas, respectively. The

symbol & is used, in agreement with the usual convention, to denote

the change in a thermodynamic quantity, the magnitude of which may
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depend upon the details of the process and not just upon the end points.
Under the assumption of a reversible process, the work done on the
gas is = pd(l/p), where p and p are, respectively, the pressure and
density of the gas. Therefore, equation (2. 1) becomsas

6q = de + pd(1l/p) (2. 2)
where d(1/p) is exact and de may be shown to be so. If the gas tem-
perature and density (or its reciprocal V = 1/p) are chosen as the in-
dependent variables, various important partial derivatives may be
computed from equation (2. 2). If the temperature T is allowed to
vary while the specific volume V (or density) is held constant, it is

found that

= =m| +0 = C_. (2.3)

The specific heat at constant volume, CV » is defined as the heat re-
quired to raise the gas temperature one degree while the gas volume
is held constant. The deduction above shows that this heat goes en-
tirely toward increasing the internal energy of the gas.
The enthalpy of a gas is defined to be

h = e+plp, (2. 4)
and the First Lawof Thermodynamics expressed in terms of the en-
thalpy becomes

dq = dh-%dp . (2. 5)

Consider the temperature and the pressure as the independent variables
expressing the state of the gas. This is clearly possible because the
pressure and density are related through the equation of state for a

perfect gas
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p/p = RT (2.6)
where R is the gas constant. If the variations in equations (2. 5) are
carried out holding the pressure constant,

9q _ 0oh

P

The quantity Cp is the specific heat at constant pressure, that is, the
quantity of heat required to raise the temperature of the gas one de-
gree while the pressure is held fixed. According to the above, the
specific heat at constant pressure is equal to increase of enthalpy at
constant pressure. Because the pressure is positive and the density
decreases as heat is added, the specific heat at constant pressure ex-
ceeds the specific heat at constant volume.

If the definition of the enthalpy is utilized in equation (2. 7),

c_ = (2. 8)

where the equation of state has been used in the last step. The term

'gi’l" of equation (2. 8) may be evaluated by considering the tempera-
p

ture and specific volume as the independent variables. Therefore

oV

oe oT de oV - de
C + =T . . (2.9)

g‘%p = 1| o7 tav], T < Sty
The partial derivative g%i - is the one involved in the famous Joule-
Thomson investigation. Although the value of this derivative is not
zero, it becomes smaller as the gas becomes more nearly perfect,
that is, as the state of the gas is removed farther from condensation.
For a perfect gas, that is, one satisfying the equation of state (2. 6)

rigorously, -g%. = 0. Substituting this result back into equation (2.8)
‘T

it follows that
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C = C +R
P v
or, in another form, the gas constant R may be expressed as the dif-

ference between the two values of specific heats
R = Cp--CV . (2.10)
According to the assumptions which have been placed on the
nozzle flow, no heat is transferred to or from cach element of the gas
during the expansion process. Therefore, the nozzle flow is a contin-
uous adiabatic process,and the appropriate form of the First Law of

Thermodynamics is

de + pd(1/p) = 0 . (2. 11)
However, since it has been shown that ae/BTIV = CV and that de/0V T
~ 0, the last equation may be expressed in the form
CvdT +pd(l/p) = 0 . (2. 12)
This relation may be rewritten in terms of the pressure and density
alone, using the equation of state. For writing
_ _ 7 1
dT = dtfg) = glPd(1/p) + - dp] (2.13)

where R is treated as a constant independent of the gas state, equation
(2. 12) becomes

Cy 1, .1 L = Tv . P 3

x [pd(5)+5dpl +pd = = - pd(Z)+g 5dp = 0 . (2.14)
This is a differential equation in which the variables may be separated

(&
_p dp _ dp
e 5 - 3 (2. 15)

-
In all real gases, the values of the specific heats as well as their

ratio Cp/CV, vary with the state of the gas. In many instances, how-
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ever, it is possible to achieve a good approximation by assuming the
specific heats to be constant at appropriate average values. A gas for
which Cv is constant ( and hence Cp is constant because of their re-
lation through the constant R ) is said to be thermally perfect. Then,
calling the ratio of specific heats, y = Cp/CV , equation (2. 15) may be
integrated directly to give

Y log p = log p + constant,
or

pp’ = constant. (2. 16)

The result is the well-known law for the reversible adiabatic or isen-
tropic process, and will apply to each element of the gas as it flows
through the nozzle. By use of the equation of state, the result may be
expressed in terms of the tempe rature and density

T/(p).v'-1 = constant, (2.17)

or, in terms of the temperature and pressure,

g = constant. (2. 18)

From the First Law of Thermodynamics and momentum equation
for the gas, there follows a general integral for adiabatic one-dimen-
sional flow usually known as the energy equation. Under the present
assumptions, the energy equation may bez written

e +%+ 14 = C,T +-vz- = C,T_ = constant , (2. 19)
where T and v are the values of gas temperature and velocity, re-
spectively, at any point of the nozzle. The stagnation temperature and

pressure of the gas are denoted TC and P. and are the values that

would exist within the combustion chamber of the rocket if the gas ve=
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locity vanished identically. The gas temperature depends primarily
upon the nature of the propellant and slightly upon the combustion
chamber pressure, P, - If the state of the gas at the nozzle outlet is
denoted by the subscript e , then the gas states at the nozzle outlet and

the combustion chamber are related as

CT +4w” =0cT . (2. 20)
p e e P c

Solving for the discharge velocity, which will be important in deter=
mining the thrust,
2

Te
Ve = ZCPTC(I —T;) . (2' 21)

Because the gas follows an isentropic process between the combustion
chamber and the nozzle exit, equation (2. 18) may be employed to ex=
press the discharge velocity in terms of the corresponding pressure
ratio. This is appropriate, inasmuch as it is the ambient pressure at

the nozzle exit, which is known in advance. Therefore,

-1 i

(v=1)/v p y=1)/y
v = 2C._T 1_(_3) = 2Y RmT 1_(_3) ]
e P c P. y~1 c P.
(2. 22)
The form of the last result may be modified somewhat by put=-
ting in evidence the molecular weight of the gas. Let M be the mo=-
s
lecular weight of the gas which is flowing through the nozzle, and V
sk
is the volume corresponding to this weight. Then if R 1is the gas
constant for the equation
s %
PV = R T, (2. 23)
*
it is found that R is a universal constant,which is not only independent

%k
of the state, but also of the gas. Clearly V = MV, and consequently

plp = (R/M)T . (2. 24)
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Using this relation in the expression for the nozzle discharge velocity,

it follows that

(y=1)/vy

sk
B 2 R Pe ]
ve =V 5or ¥ L. [‘ . (p—c-) . (2, 23)

It is evident, therefore, that the nozzle discharge velocity is increased
not only by increasing the chamber temperature and increasing the
nozzle pressure ratio, but also by decreasing the molecular weight of
the propellant combustion products.

To proceed further in the calculation of rocket nozzle perform-
ance it is necessary to express the mass of gas flowing through the noz=-
zle in terms of the rocket chambher conditions, the atmospheric pres=-
sure, and the rocket nozzle geometry. In the course of this calculation
it will be necessary to employ the value of the propagation velocity of
a small disturbance in the gas whose state is prescribed in advance.
This value is the so=-called velocity of sound propagation.

Consider a plane disturbance in a fluid body which propagates
with a velocity v . By imposing an equal and opposite velocity to the
fluid, the disturbance may be brought to rest, thereby reducing the
problem to one of steady state. Then, the velocity of the fluid to the
left of the wave is v , while that on the rightis v+dv. If p and p
are corresponding values of the pressure and density to the left of the
wave, the values to the right of the wave are p+ dp and p + dp , re-

spectively. Then, across the wave, the continuity equation reads

d(pv) = 0 (2. 26)
and the momentum equation is
d(pvz) = ~-dp . (2 27T)
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Carrying out the indicated differentiation on the left side of (2. 27) and
taking account of (2, 26), it is seen that
pvdv = ~dp . (2. 28)
Furthermore, the continuity equation states that pdv = = vdp so that
substituting into equation (2. 28),
vidp = ap. (2. 29)
The differentials appearing in equation (2. 29) are takeninthe direction
of flow, and consequently their quotient may be considered the deriva-
tive taken under conditions prevailing along the direction of flow.
hen if the propagation velocity for small disturbances is given the
special notation a ,
2t dp/dp . (2.30)
For the nozzle, the relation becomes particularly simple, inasmuch as
the flow is isentropic, the pressure and density are connected by equa-
tion (2. 16). Then, carrying out the indicated differentiation,

B vE = yrT . (2. 31)

Thus the local sonic velocity depends only upon the temperature of the
gas. The energy equation is conveniently expressed in terms of the

local velocity of sound, for equation (2.19) is just
a + —Z—- v = a 3 (2. 32)

where a, is the velocity of sound in the combustion chamber.
Now the general geometry of the rocket nozzle as well as the
conditions at the nozzle throat may be ascertained from the logarithmic

differential of the continuity equation pva = constant. This gives

S L4t = 0. (2. 33)
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But the momentum relation may be written, for one-dimensional flow,
in the form

ppdyr = -dlp = - R idp = = 285 » (2. 33)
p & dp p

This equation may be solved for dp/p :
dpl/p = - (vav)/a®

and used to eliminate this quantity in equation (2.33). Thus
di (Xi
A 2

a

- 1)%‘—’ (2. 34)

which may be used to investigate the manner in which the nozzle area
must change along its length in order to insure accelerating flow.
There are three cases to be considered: v<a, v>a, and v=a.

I. v<a. When v <a, thatis, when the local velocity of the
gas is subsonic, and when the flow is accelerating, i.e., dv/v >0,
the right side of equation (2. 34) is negative to that dA/A < 0. This is
the familiar circumstance from hydraulics, namezly, that the area of
the nozzle miist decrease to accelerate the fluid.

I. v>a. When v>a, thatis, when the local velocity of the
gas is supersonic, and when dv/v > 0, the right side of equation
(2. 34) is positive so that dA/A > 0, Thus, when the nozzle flow has

become supersonic, it is necessary to diverge the passage in order to

accelerate the gas.

The fact that the initial portion of the nozzle must converge and the
final supersonic portion must diverge leads to the existence of a
throat, that is, a section of smallest cross=sectional area. This cir=

cumstance is covered by case IIL,
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III. v=a. When v =a and when the local acceleration is
finite, the variation of area vanishes, that is, dA/A = 0, However,
the condition dA = 0 implies the throat, that is, the section where the
nozzle changes from converging to diverging. Hence, it may be con~
cluded that, within the approximation of one-dimensional gas dynamics,

the gas is moving at the sonic velocity at the throat.

In summarizing it may be said that to insure accelerating flow

in the nozzle, the following conditions must exist:

dA/A <0 when v <a
dA/A >0 when v>a (2. 35)
dA/A =0 when v = a (throat)

In all rocket applications, the pressure ratio across the nozzle
exceeds that necessary to produce sonic velocity,and consequently the
appropriate nozzles are of the convergent (divergent) type with sonic
velocity at the throat. Because of the existence of a sonic throat, it is
particularly convenient to calculate the mass flowing through the noz-
zle by working at the throat section. If the subscript t is used to de=
note quantities at the throat section, the mass of gas flowing per unit

time, m , is

P . ¢
m = ptatAt = pCaCAt(p—c)(?c) (2.36)

where Pe and a, depend upon chamber conditions and are known. The
velocity and density ratios may be calculated from the energy equation
in the form given by equation (2.32). At the throat the sonic velocity

and the gas velocity both become a so that

t 2



2, y=-1_2 _ 2
a toz—a = a,
or
2 2 2
a, /a.c = et (2. 37)

Furthermore, because the gas temperature is proportional to the
square of the sonic velocity, it is clear that

Tt/TC = 2/(y+1) . (2. 38)

Because the flow is isentropic, the corresponding density ratio fol-

lows from the temperature - density relation, equation (2. 17).

1/(y=1) 1/(y=-1)
I - 2
- (Tc) _ v_ﬂ‘) ) (2. 39)

Now by means of equations (2.37) and (2. 39), the mass flow may be

written in terms of known quantities.

1/(y-1) (y 1)/2(y=1)

(y+1) Pe cAt(y_+'1') . (2. 40)

Because the pressure and temperature in the combustion chamber are

o = pcacAt(y+ 1

known either by direct calculation or measurement, there is a certain
advantage to expressing equation (2. 40) in the form

(y+1)/2(y=1) p P

- _C'_ ) '_C
ol Y(Y+1) a_ At L a_ At (2. 41)

where the quantity ['' is

(y+1)/2(y=-1)
't = (Y+1> . (2. 42)

The thrust of a nozzle under conditions of ideal expansion may
be computed from the known values of exit velocity. Because the dis=

charge velocity is supersonic, the discharge pressure is fixed by the
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chamber conditions and the area ratio and is not necessarily equal to
the surrounding atmospheric pressure. By ideal expansion, it is im=-
plied that the nozzle area ratio is chosen so that the expansion does
take place close to the ambient pressure.

Now the thrust for ideal expansion is just

P p_(y-1)/y1
F = mv =I"_°_A'\/—2Y-RT 1-(_2)
e a, tVy=-1 c P,

but since o \/R'I‘C , it follows directly that

p_(v-1)/v]
F = pcatrl'\/g_l [1 - (P—Z-) ] (2. 43)

The thrust coefficient, defined as C

= F/(PcAt) , may be written as

F
F 2 P (y-l)/y]
CF = ——% = I‘"\/——— [1 . (2. 44)
P ¥~1 (pc)

and is seen to depend only on the nozzle pressure ratio and the proper-
ties of the propellant gas. For the ideally expanded nozzle, the spe-
cific impulse is proportional to the discharge velocity and consequently
may be found from equation (2. 25). Therefore, to obtain a given
thrust, mass of gas required is decreased as the chamber temperature
increases and the molecular weight decreases.

In order to obtain the value of thrust calculated above, it is
necessary to construct the nozzle with a certain outlet area Ae . For
the conditions of ideal expansion the outlet area is determined by the
chamber conditions and the ambient atmospheric pressure or '"back
pressure' against which the gas is discharged. Therefore, there is
no difficulty in calculating the ratio e = Ae/At , the so-called expan-

sion ratio. From continuity considerations it is clear that
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e = AJ/A = (pt/pe)(atlve)- (2. 45)

The density ratio may be written down directly

Py Py B 1/(y-1) p
5 = E:pz = ( —=25) (_.-.) (2. 46)

where the results of equation (2, 39) have been used. Now using the
discharge velocity as calculated in equation (2. 22), the expansion ra-

tio may be written as

1/(y=-1) a

& t
_ s (247
(YH) p\1/Y P (Y=1)/x
c (P_c.) - ( )
The value of at/ac follows from =squation (2. 37) to give
= v+1

p_1/v (y=-1)/y
AN ha|

Now if the parameter I' is defined as

(y+1)/2(y-1)

\/—'(y+1) = TYVY, e

then the formulas for both the thrust coefficient and the expansion ra-

tio may be written

(y 1)/\/
CF —THN Wy [1 - (—-— > (2. 49)

T
[ p_ (v~ 1)/\(]

(—) -G

It should be borne in mind that these expressions have been derived for

(2. 50)

ideal expansion, and therefore, the exit pressure P, is identical with
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the atmospheric pressure P, * When the expansion is non-ideal, the
relation between the expansion ratio and the pressure ratio is not
modified. However, the thrust coefficient is changed due to the differ-
ence between atmospheric pressure and nozzle discharge pressure.

In addition to those mentioned thus far, two additional parame=
ters are used in designating the nozzle or propellant performance.
These are the effective exhaust velocity,

C = F/m, (2.51)
and the characteristic velocity, defined as

c* = (p_A)/m . (2. 52)

When the nozzle is expanded ideally, the effective exhaust velocity is
exactly the actual exhaust velocity Ve However, when the nozzle is
not ideally expanded, and the atmospheric pressure contributes to the
rocket thrust, the effective exhaust velocity is equal to the true ex=
haust velocity of an ideally expanded nozzle using the same gas mass
and giving the same thrust, The characteristic velocity may be ex=
pressed in a somewhat different manner by recalling the mass flow re~

lation, equation (2.41). Then
%
- t =
c = aC/I‘ = TIr -\/RTC, (2. 53)

and hence is a multiple of the chamber sonic velocity, independent of
the nozzle and dependent only upon the propellant used.

There is a simple relation between the characteristic velocity
and the effective exhaust velocity which may be found by expressing
the thrust coefficient

CF = F/(pcAt).



Now substituting for the thrust in terms of the effective exhaust ve-

locity,
C = C
F ipcxt”m !

and the denominator is clearly the characteristic velocity. Therefore,
the thrust coefficient is related to the effective exhaust velocity and

the characteristic velocity simply as

Sk
Cr = C/C . (2. 54)

The following table gives the usual range of values for the va-
rious parameters which have been introduced to describe nozzle and

propellant performance.

Parameter Dzfinition | Dimension | Range of Values
Specific
Impulse, ISp F/mg sec 185 - 425
Effective Ex~-
haust Velocity, C| F/m ft/sec 5900 - 12, 000
Characteristic p A,
Velocity, C* —CE: ft/sec 4500 - 8000
Thrust Coef= F
ficient, CF cht ——— 1.1 = 1.6

Nozzle with Non~Ideal Expansion

The discussion of nozzle flow so far has dealt only with ideally
expanded nozzles, that is, those having the ideal nozzle exit pressure
equal to the atmospheric pressure. Actually, a rocket nozzle spends
most of its useful life operating under conditions of non-ideal expan-

sion,and consequently performance calculation under these conditions
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is of importance. A nozzle for which the ideal exit pressure is less
than the ambient atmospheric pressure is referred to as being over=-
expanded. When the ideal exit pressure exceeds the atmospheric
pressure, it is said to be under-expanded. The thrust for the over=-
and under-expanded rocket nozzles will be developed, and an approxi-
mate calculation of thrust slightly off the ideal operating condition will
be carried out.

When the nozzle is not ideally expanded, the thrust relation
has an additional term accounting for the difference between nozzle
outlet and ambient pressure. By placing the control plane for the mo=
mentum calculation directly at the nozzle outlet the thrust may be com=
puted without considering the expansion or shock wave mechanism by
which nozzle outlet pressure is finally transformed into the ambient
pressure,

If P, is the ideal nozzle exit pressure, P, the atmospheric
pressure, and A.e the nozzle exit area, the thrust (or drag) contributed
by this pressure variation is

A_(p, ~P) - (2. 55)

The entire thrust is then simply

]2 P, (Y-l)/‘(] .
" = pcAtl" -\—(_—l- 1 - .IZ) + Ae(Pe"po) ’ (2" 5 )
and the thrust coefficient is
-1)/y] A_ p_ P
F 2 Pe (v e e o
G = s = T'M-—— {1 - ——) ]'1- (— -—) . (2. 57)
& P i (pc _rt Pc pc)

Inasmuch as the area ratio of a nozzle, rather than the pressure ratio,

Pe/Pc » is usually fixed, it is convenient to express the thrust coeffi-
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cient CF as a function of the area ratio Ae/At and the ratio of cham-
ber pressure to the atmospheric pressure. Then for any nozzle geom=
etry, chamber pressure, and operating altitude, the rocket thrust coef=
ficient may be determined. It is not convenient to express the thrust
coefficient explicitly in these variables; however, the computations are
readily carried out. The only additional developmant required is that
of expressing the pressure ratio Pe/pc in terms of the area ratio

Ae /At . This is easily done by employing the continuity relation

ptatAt = ;:'ew.r’:_}}"x.e 4 (2. 58)

so that
A
T:‘ = %)(i—te), (2. 59)

and only the density and velocity ratios must be determined. From the

isentropic relation

1/y

Py
= i 5 2. 60
() (2. 60)

while the ratio of throat pressure to chamber pressure is simply

P v/ (y=1)
- Rl

Therefore, the density ratio may be written in the form

P p. /v p 1/v 1/(y-1) 1/(y-1),p 1l/vy
"pt;: 5%) '(‘pf) (1) = (1) (5? . (2.61)

The velocity at the nozzle exit is, as shown previously
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p_(y-1)/v]
vy = \/YTZI (YRT ) [1 - (i) ] (2. 62)

and the required velocity ratio is

_as _ __\/ (v 1)/\(] _\/Tl'_\/- )(y 1)/Y]

(2. 63)

The ratio of the nozzle exit area to the nozzle throat area may now be

written using relations (2. 61) and (2. 63) in equation (2.59). This gives

& (pclpe)”Y

\/ [ ( )(v 1)/v]

)(\1+1)/2(v 1)

(y+1
P I/Y_ [, P \(Y-1)/Y]
) V-6

With this relation, the thrust coefficient of equation (2. 57) may be ex=

(2. 64)

pressed in terms of either the pressure ratio pe/pc or the nozzle area
ratio Ae/At = ¢ , and the atmospheric pressure ratio pO/pC « Fo# a
given pressure ratio Po/Pc » the values of thrust coefficient have a
maximum with respect to the area ratio Ae/At . Thus, an optimum
nozzle expansion ratio exists for given chamber and atmospheric
pressures.

The condition for the optimum =pansion ratio may be obtained
from the relation of the pressure ratio Pe/Pc to the nozzle area ratio

A _[A , for if the change of thrust coefficient with pe/pc is calculated,

t >
it follows that



aC P (Y—l)/‘(' A
et W Uil e
Mp /P, - L 1-"-\/Y_'l [l (P ]+ K_t-+

PP, Oe
+( 5 )arpe/pc) ' (2. 65)

Computing the derivative of the first term on the right side,

C 21, ¢ y=LyPey Y (y+1)/2(y-1)
I Y-l 2 (- Y )(pc> ~ - YTZI

2 p_ (v-1)/4T IR 2 P, (y-1)/vy
\/y—.f[l-(i) ) ;:*r[l-(i) ]

Comparing this with the results of equation (2. 64), it is seen that the

first two terms on the right side of equation (2. 65) cancel each other

so that, in general,

8CL/0e = (%) ) (2. 66)

[
It follows obviously that the thrust coefficient has a stationary value at
pe = P - Furthermore, it is a maximum, since the derivative is posi-
tive for values of ¢ below the value satisfying equation (2. 66) and is
negative for greater values of ¢ . The optimum value of the thrust
coefficient then occurs when the theoretical nozzle outlet pressure is
equal to the back pressure.

Suppose now that the values of the chamber pressure and the
ambient pressure are known, and are such that (pe_Po)/Po <<1. By
development about the point of ideal expansion, p_ =p_ , an approxi-

e (o]

mation for performance with slightly non-ideal expansion may be ob=
tained. If the small parameter (pe--po)/pO is denoted by 6 , the de=

velopment will be made in terms of this dimensionless quantity.
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Consider the first term on the right side of equation (2. 57)

This
may be written as

(v=-1)/v
Tt i[ - (P_9+pe-p° ]

(v=1)/v '
]2 P, (Y-l)/Y]
- \/7—1[ -Gy @)

Expanding in powers of 6,

this term may be rewritten in the approxi-
mate form

-
- 2 . po(\"”/? 1 (P /p )(Y LY -lrg L2
~Ti ey 1 (55 (pgw 7y v [0z 8]
, B (y=1)/v
o -1 1

y-1 1 1l y=1 1 2 2 6
N (p )v N YR/ pEnw | & e (86T

-1 (p_‘;) -1

It will be noted that this approximation has been computed to the sec~

ond order in & ; the reason for this will become clear presently. The

second term may also be calculated approximately. For

_2 y(v#1)/2(v-1) llv B
T

Y% [lh(ﬁ)\’ 1)/\1}

(y+1

=,




In terms of the parameter &, this term becomes

y+1

| 6.1 (v=-1)/v
(_2_) L (pO/PC) 6(1+6)'1/Y 3
L 2 [1 (Po)(v-l)fv(l 6)(Y-1)/YJ‘
— (1 -(=— +
y-1 P,

In a manner similar to that employed above, this term may be written

to the second order,
y+1

(v=-1)/y
(__2_)21\'-17 (p /P.) - [1 - Tl ]62
Y+1 ) "1 p_. (y=-1)/y
2 [y Beoy¥ Y (=2) -1
Y=T|" " 'p_ o

(2. 68)
Now, finally substituting the approximate results of equations (2. 67)

and (2. 68) into the expression for the thrust coefficient, it follows that

in 1 y=1 1 2
GL = Gy, = - 5
FOOE p, =D/ ¢ (F_S)(Y—”[Y_l
_._1.[1-(—) J P
= P, °
(2. 69)
where
(v=1)/y
cr. =1 | 2 |i-le i (2.70)
F y-1 P,

Now equation (2. 69) shows several interesting features. First, itis
noted that the first order terms in & cancel so that the deviation from
the Ci, , the thrust coefficient with ideal expansion ratio, is a quantity
of the second order. This result was obvious from the outset inas-
much as the point about which the expansion was made has a maximum
value. Furthermore, the sign of the second order variation is such

that CF never exceeds C!

F’ likewise following from the fact that C]‘?
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is the maximum value of CF for a given chamber pressure and at-
mospheric pressure. It is actually more convenient to express equa~-

tion (2. 69) in terms of the ideal thrust coefficient Ci:. + 4B

2 2
bl SE) e 3t 1 ¥ o A} 6~ 5, {2
Cr-Cr=:3) T {!-"7 oo % iyt oo BT

. wl

o

Heterogeneous Flow in Nozzles

The presence of small solid particles occurring in the exhaust
of rocket motors causes losses of specific impulse up to about 5 per
cent of the value which would obtain if the same material were exhausted
as a vapor. The magnitude of the loss depends, of course, upon the
size of the solid particles and the fraction of exhaust mass flow that oc=-
curs as solid, The loss in rocket motor impulse is due to the facts that
(i) the particle velocity lags behind the velocity of the gas, since the
particles are accelerated by drag forces arising from relative motion
of the gas and particles; (ii) heat is stored in the solid particles, since
they do not cool as rapidly as the gas during the expansion process.

As a consequence of this heat storage and the particle drag forces ex-
erted upon the gas, the gas exit velocity is reduced below that which
would occur without particles. (iii) The relative motion of gas and
particles results in a dissipation that reduces the gas stagnation pres=-
sure below the chamber value.

It is possible to calculate the losses to be expected in any noz-
zle flow of a heterogeneous mixture to a reasonable degree of accuracy.

The error in the calculation is determined largely by the accuracy of

particle drag and heat transfer information and by some uncertainties
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in the transport properties of the gas. For small particles in nozzles
that do not incorporate too abrupt gas acceleration, the problem may
be linearized, assuming the lag to be a small fraction of the gas ve-
locity. Such calculations may be carried out quite directly.

Formulation of the two-phase gas = particle flow problem is
most easily carried out as if the particle cloud behaved as a sort of
fluid with appropriate properties. Then the conservation equations
may be written for each phase or "fluid" which include coupling terms
describing the exchange of momentum and heat between phases and the
dissipation caused by the passage of particles through the viscous gas.
It will simplify further considerations if it is assumed that particles of
only a single size are present in the gas. Thus, if we denote velocity
parallel to the nozzle axis by u, the mass density by p , and designate
quantities associated with the particulate phase by a subscript p , then
the equations of continuity for each phase may be written

puA = m, (2.72)

ppuPA = yrm , (2.73)

where m is the ma ss flow rate of gas through a cross section A, and
»m is the mass flow rate of solid particles. The momentum equation

for each phase may also be written as

M L 2P .
PU + e = FP " (2. 74)
du
B ol 5w B i 2.5
Pp"p Tdx p A2 LAl

where p is the local gas pressure, and the quantity Fp is the force

exerted upon a unit volume of gas by the particles contained within that
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volumea. In particular, it is to be noted that there exists no partial
pressure of the solid phase; in other words, the particles interact with
the fluid and not with each other. If it is assumed that the particles
obey the first~order Stokes drag law, then the force Fp exerted by the

particles upon a unit volume of the gas is

U =11

- - - h— —B——
Fp nP 6mou (up u) ppa )\v : (2. 76)

where np is the number of particles of radius ¢ in a unit volume, and
consequently the effective mass density pp of the solid phase is mnp ’
where m s the mass of a single particle. The gas viscosity u will be
assumed to vary as the square root of gas temperature, T% » so that

the ratio u/a is constant where a denotes the gaseous velocity of sound.
The quantity kv is a characteristic length associated with the velocity
equilibration rate of a single particle, and is defined as

A, = ma/(6bwou) . {Z: T7)

Physically, )\.v is the distance traversed while a particle of mass m
and radius O reduces its relative velocity to e"1 of its initial value
after being injected into a gas stream of viscosity u moving at its son-
ic velocity. We denote )\v the velocity equilibration range and note
that since a/Ju is constant, ?\v is also constant. For rocket motor at=-
mospheres and particle radii of one micron, the values of )“v are of
the magnitude of one centimeter. Since the particle mass m varies as
the particle radius cubed, it follows that Xv varies as the square of the
particle radius.
The First Law of thermodynamics may be written for the gas as
dT d

B = b =
pucP = ugs + (uP u) Fp + Qp (2. 78)
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where QP is the heat transferred per unit volume per second from the
particles to gas, and the term (up-u)FP is the work done on the gas by
the passage of particles through the gas. It is to be noted that
(up-—u)Fp ~ (up-—u)‘2 , and consequently represents a dissipative interac=
tion; the sign remains unchanged regardless of whether the particles or
gas are moving the faster. The value of CP ,» specific heat of the gas
at constant pressure, is assumed constant in the analysis, largely as a
matter of analytical convenience. The heat transfer rate Qp from
particles to gas is approximately calculated as if the Nusselt number
were unity, inasmuch as the particles were assumed to follow the

Stokes drag law. Thus, QP may be written

K, 2 .
- = = 2.7
Qp n, (O' ) 4no (TP T) = PyCH® . ( )

where k is the thermal conductivity of the gas and Tp is the local
temperature of solid particles. The characteristic length )‘T has a
physical significance similar to its counterpart kv , except that in this
case, it is the temperature difference rather than the velocity differ-
ence that is decaying with distance. Specifically, )‘T is defined as

Ap = (cpma.)/(4‘rrok) = 3/2 Pr )\v (2. 80)
and is designated the temperature equilibration range. It is to be
noted that A is directly proportional to Ay o the factor of proportion-
ality being 3/2 Pr, where Pr = cpu/k is the Prandtl number of the
gas, assumed to be a constant in the present analysis. Because of this
proportionality between )‘v and KT ,» the presence of particles in the

gasdynamic flow field adds only one characteristic length to the prob-

lem; in many cases, 3/2 Pr is near enough to unity that )'v and }\T
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may be considered equal.
Returning now to the basic equations, the First Law of thermo=

dynamics for the solid phase may be written

AT
ppupc ?;CE = = QP s (2'81)

where c is the constant specific heat of the solid material, and the in-
dividual solid particles are assumed undeformed by stresses imposed
upon them by the gas. The fact that the particles are not deformed by
the flow accounts for the absence of terms in equation (2. 81) corre-
sponding to volumetric dilatation or dissipation within the solid.
Together with the gaseous equation of state, the preceding re-

lations give a complet analytical description of the one-dimensional
heterogeneous flow. Because it is the intention here to consider the
special circumstances where the differences u—up and T- TP may be
considered small in comparison with u and T respectively, there is
an advantage of introducing the variables

u - uP = u

T - TP E T (2. 82)

1 - (Pp/xp)

n

Ps

in preference to the particle quantities uP - Tp » and pp . A compa-
rable transformation in the equations of continuity, momentum, and
energy may be effected to emphasize the fact that u_ Ts s and Pg

are essentially of much smaller numerical magnitude than u, T, and
unity, respectively. By adding the equations of motion for gaseous and

solid phase, equations (2. 74) and (2. 75), the force Fp acting between

the two phases disappears and, after some rearrangement,
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60 L 9P - s 2.83
(1+x) pu d_+dx = APU —— - (2. 83)

In much the same manner, addition of statements of the First Law for
gaseous and solid phase, equations (2. 78) and (2. 79), eliminates the
heat exchange between the two phases. Moreover, the two momentum
relations, equations (2.74) and (2. 75), may be employed to eliminate
the pressure and inter-phase force. This operation yields a relation
that may be integrated from the rocket chamber to an arbitrary posi=
tion of the nozzle and gives:

c +HeC > >

( 1]:-'+K )(T—TC)+%u = 1+ [cT +uus—;l_-us 13 (2. 84)

where it has been taken into account that u, u_ . and Ts vanish in the
rocket chamber, and that Tc is the common temperature of the gas
and solid phases in the chamber.

Now consider the limiting circumstance where the velocities
and temperatures of the two phases remain exactly equal throughout the

nozzle; this condition will be designated the "equilibrium' flow. Then,

since u, = Ts = 0, equation (2. 83) becomes
du ,dp _
(1+;(,)pu + - Qs (2. 85)

and equation (2. 84) reads

c_tuc 2
(B NT-T )+ 3u” = 0. (2.86)

If appropriate forms of the equations of continuity are used,
(I+x)puA = (l+x)m , (2. 87)
and the equation of state may be rewritten

p = (Mn)pl(y )T (2. 88)
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Equations (2. 85) through (2. 88) are recognized as those describing the
isentropic flow of a gas through a nozzle of mass flow (l+x)m and
cross~sectional area A, where the gas has an effective density

o= (L+x)p, (2. 89)
and effective gas properties

Ep = (cp+xc)/(1+%)

Ev = (cv+nc)/(1+n)

- (2. 90)
R = (e -c,)/(1n)

Y = (cp+n<:)/(cv+nc)

Then clearly the expansion process takes place according to the law
Y-1)/y — ;= ,\Y=1
T/T_ = (p/pc)(Y MY - (st (2.91)

whe re P, and Fc are the pressure and effective density in the rocket
chamber. All familiar relationships for isentropic nozzle flow hold,
then, provided they are written in terms of the effective quantities giv-
en above. Although this condition of "equilibrium'" flow is an artificial
one, so far as actual rocket nozzles are concerned, it does form a
suitable starting place for an approximate performance calculation,
since it is quite nearly correct for any nozzle of reasonable perform-
ance.

Returning now to the problem of heterogeneous nozzle flow under
non-equilibrium conditions, it is worth noting that the equilibrium noz-
zle flow problem is a simple one,because the isentropic integral, equa-
tion (2. 91), renders the momentum equation (2. 85) redundant. With the

aim of utilizing any simplification to the present problem that may ac~
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crue from this, the corresponding manipulations of equations (2. 85)
and (2, 84), together with appropriate equations of state and continuity,

lead to the relationship

3-1)/Y 5 daT

T pc (v _ o 1 8 d

('T—C)(—I;- ) = €Xp 1+K J E - C F- 13 4+ us _i (u-us) dx (2. 92)
0 "p

In the analysis of non-equilibrium heterogeneous flow, it will be con-
venient to work with equations (2. 84) and (2. 92). They do not suffice to
complete the problem, and additional linear combinations of the original
equations are required. From equations (2. 72) and (2. 73), it follows

directly that

putu, = p " (2. 93)

u
s s s

while from equations (2.75) and (2. 72) it is not difficult to show that

au au du
du s

1 B s 1 s
Yap T T dp/dx - " Ps T dp/ax T ap P 350
Y N

where a is the equilibrium speed of sound; that is,

= FET,
and ')Tv is the velocity equilibrium length (equation 2.77) based upon the
equilibrium speed of sound. Similarly, from equations (2.81) and (2. 72),

it follows that

daT  p aT_ ) gR aT_ 1 dT,_
Ydp T ¢ T dp/dx ~ "~ Ps ¢ — dp/dx L dp {295
g B i

where XT is based upon the equilibrium speed of sound and the effective
specific heat Ep . The set of equations (2. 84), (2.87), (2.88), and

(2. 92) through (2. 94) are completely equivalent to the original equations
and they are written explicitly in terms of the quantities u_ s Ts , and

Pg * Moreover, the independent variable has been changed to the gas
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pressure p , and the distribution of pressure along the nozzle axis,
p(x) or its inverse, is assumed to be prescribed.

When the three dependent variables Pg s Ug o and TS are
small, a perturbation solution naturally suggests itself, and the ap-
propriate small quantity in terms of which the solutions should be ex-
panded is IV/L where L is the fixed nozzle length. The state of the
gas may then be written

p = p(o) + (YVIL)p(” 3 (TV/L)ZP(Z) + v

=}
I

T2 AR e S L (2. 96)

T

I

{0) 4 (X, /L) (1) (XV/L)ZT(Z) +...

where each coefficient is a function of the local pressure p. Each of
these variables has a non-vanishing zeroth degree part, and all coef-
ficients in the expansions are of order unity. The variations of the
particle state from that of the gas, Bo & Y and TS » have leading

terms of the first degree

Py = (-fv/L)ps(l) + (X'V/L)Zps(z) +aus

u, = (TV/L)us(” + (TV/L)ZuS(Z) + oue (2. 97)
o (1) , ~+ 2. (2)

T, ()‘V/L)Ts + ()‘v/l‘) TS + eee

The functions giving terms of various order in each variable may be
determined by substituting expressions (2. 96) and (2. 97) into the equa=-
tions (2. 84), (2.87), (2.88), and (2. 92) through (2. 95) and separating
each equation according to the powers of the small parameter ) /L .
In the present analyses, there will be no need to consider more than

the zeroth and first degree terms.
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The functions p(o), u(o), and T(o) are described by the zeroth
order parts of equations (2. 84), (2.88), and (2. 92). Inspection of
these shows immediately that this solution corresponds exactly to the
so=called equilibrium solution described previously by equations
(2.86), (2.88), and (2. 91); to this order of approximation, then, the
gas and particles have the same velocity and temperature. Clearly
then, the solution being employed consists in a perturbation expan=-
sion about the equilibrium flow. Physically, this implies that as
TV/L becomes very small, the actual flow approaches more and more
closely to the equilibrium flow. That is equivalent to saying that when
the equilibration range xv is negligible compared with the nozzle
length, the gas and particles achieve an equilibrium state before a
significant fraction of the nozzle length has been traversed. These
quantities are readily written down in terms of the prescribed pres-

sure distribution along the nozzle.

P(o)/Pc = (p/pc)”V (2. 98)
p = (prp VIV (2. 99)
L . 2T, (1 4 (p/pc)“‘””) (2. 100)

Calculation of the first order terms ps(l), us(l), and TS(”
follows quite directly from equations (2. 93), (2.94), and (2.95). In
equations (2. 94) and (2. 95), the presence of the small quantity Ay in
the denominator of their right hand sides reduces the order of these
terms by one. Consequently, it follows from the zeroth order part of

equation (2. 94) that
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(0) (0)
(1) _ u du d
us = —(.GTa dp (a%) ?

where the new length variable £ = x/L has been introduced. Utilizing
the relationships between the pressure and zeroth order quantities in

the above equation gives the somewhat simpler form

(0)
(1) _
u = -T(P EE‘) (2.101)

Similarly, from the form of the energy relation given by equation (2. 95)

it follows, after some reduction, that

(0)

(1) _ 1 Aep L0 eld
T, = _c:E_( )a (EEE), (2.102)
p Sp Mv
and from equation (2. 93),
(1) 1 1 1d
p M = ?W (5?1%)' (2.103)

From equations (2. 101) and (2. 102), in which us(” and Tc(l) ave de-
termined algebraicly, it is apparent that the order of differential equa-
tions has been reduced by one in each case; that is, the perturbation
employed is a singular one, and hence some ""boundary layer' regions
will be ignored. The physical effect of this fact may be illustrated by
considering a situation where, due to a change in nozzle slope, the
pressure gradient dp/df is discontinuous. Then, according to equa-
tion (2. 101), the particle slip velocity is discontinuous, a circumstance
which is clearly impossible. The exact solution, or the local boundary
layer solution, would smooth this discontinuity into the physically cor-
rect one.

Evaluation of the remaining first order terms may be carried

out from equations (2. 84), (2.88), and (2. 92), noting particularly the
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fact that the right hand sides of both equations (2. 84) and (2. 92) are of

the first order and are known to that order. These two perturbation

relations may be written explicitly as

(1) 2 (1)
T = (0) =
oy + (F-11M (%(Uf) = 75 F(;EC-) (2. 104)
and
g *_ (R
07~ Tix G(pc) L 2050

where the functions on the right hand sides of equations (2. 104) and

(2. 105) are the known functions of the prescribed pressure ratio

F(p/p ) = (n-l)(?-l/ﬂM(o)%%g- (2.106)

and

i W al® (0 s
p P

c
where the possible simplification of the last integral will be post-
poned. Here, we have denoted the gquantity (TT/TV)(C /EP)Z =1n.
The first order perturbation to the equation of state, equation (2. 88),
gives

o100 _ (1), 1(0) 2, 08
Now equation (2. 105) gives directly the first-order gas temperature
perturbation, and equations (2. 104) and (2. 108) may be solved for ve=~

locity and density perturbations directly as

(1)

u _ #n 1 P ) ( )

= F = Gk (2.109)
(0) 1+ 2 (p P

h C M e ¢
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e/l = L 1) Glelp ) - (2. 110)

The first order modifications to equilibrium nozzle flow, due to the
effects of solid particles transported by the gas, is then given by
equations (2. 105), (2.109), (2.110) for the gas flow, and equations
(2.101), (2.102), and (2. 103) for the particle flow where the gas pres=-
sure is a prescribed function of x or of £ .

The required cross-sectional area of a nozzle carrying mass
flow m and providing the required pressure distribution must also be

expressed as a series in powers of xv/L « That is;
A = al0) Lyall) 2,111
(p/p,) (p/p )+ O /LA (p/p ) + ... (2.111)

where the coefficients A(O), A(l), etc., are readily determined from
the equation of continuity, equation (2.72). It will prove most conven-
ient to express the zeroth area in the form pCaCA(O)/rh » since the
chamber conditions are assumead constant and the area may be scaled
up or down depending upon the desired mass flow. This gives, ac-

cording to the well-known relations,

(0) < R AL
a A 1/ (y=1)/v)
P_C_C,___(L)=(_P_) Yffz_(l_(_E_)Y Y) . (2.112)
R Pe Pe ly-l Pc

The ratio of the first area perturbation to the zeroth order area may

be written as
A1) B )
= - .&(6.). + »
A.t ) p u{ )
and consequently, is given in terms of the ¥ and G functions, equa-

tions (2. 106) and (2. 107). Through partial integration of (2. 107) and

ensuing simplification, the expression for A(l)/A(O) may be written
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(1)
5 - | o)

yM
2 P/p, 2
= (0)" A = (0)
1+(y=1)M l1+n(y-1)M 1 da
+ -2 S g (2. 113)
'\FZM(O)Z : M(O)_ C!.Z dE

None of the calculations involved encounter any difficulties in the
neighborhood of the nozzle throat.

The particle velocity lag and particle temperature deviation
cause a general reduction in the specific impulse of a rocket motor.
To calculate this loss to the first order in }\V/L , consider a nozzle of
fixed length L. expanding the gas from a given chamber state P.s TC >

to a prescribed exhaust pressure P, - If the specific impulse

I(O) = ue(o)/g 5 (2.114)

that occurring under conditions of equilibrium flow, is taken as the
reference value, then the fractional loss of impulse caused by the

presence of the particles is

(1)
R S S () PR D %y
o) T LT, T N1
(1)
Ay ull) u,
- e Ty @ 115
(S]

The term associated with the pressure at the nozzle discharge is ab-
sent because nozzles carrying both equilibrium and non-equilibrium
flow are expanded to the local atmosphere pressure. This loss may
be written down explicitly utilizing the values for u(l)/u(o) and

us(l)/u(o) from equations (2. 109) and (2.111), respectively. With
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this substitution,

(0) X 2 "
I —I v " 1 e & 1 1 a
or - T (F(—)-G(—) + —r57 = ,
g { 0 L 1+M_ _ (0)2 pc PC ) ;M 0 Pe E§|e
(\l-—l)Me W
(0) A P
'V v n_1d 1-1 r_1 14d
0T =T T |~ Sod0) B, aE Pe +_2M(0)2 0 P ae
e Pc;
e Lo (0)
Ll [ _u d fa ' d
T 02 J T o0 d VT aE')dp (2.116)
(y-1)M_"" p_ “p YP

where the subscript e has been used to denote the value of the vari-
ables at the nozzle exit; that is, when p = P, - Partial integration of
the second integral in equation (2. 116) and some subsequent simplifi~

cation yield a final convenient form for the fractional impulse loss:

B

(0) X T
AN v, % 1 1+n(y-1)M 1 d
= LIV I — & d . (2.117)
I(Ui L '1+y sz(O)_Z I\Bor PZ d
e e

It should be noted that for most cases of practical interest m =~ 1 ,and
the error introduced into equation (2. 117) by setting =1 is corre=
spondingly small.

Evaluation of the impulse loss from equation (2. 117) presents
no difficulty so long as the pressure distribution along the axis p(§),
or its inverse £(p), is prescribed. Then, writing the Mach number

in terms of the pressure
MO - /G0 YT, (2. 118)

evaluation of equation (2. 117) is,at worst, an elemantary numerical
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integration.

The analysis which has been carried out for a fixed exhaust
pressure can be extended to a nozzle of fixed outlet area rather easily.
The discharge area Ae and the pressure at the nozzle exit are coupled

through the continuity relation. If there were no particle slip, the

(0)

pressure p_ at the outlet of the nozzle satisfies the equation

1
A /p (0) 1N ~ (0) G'”N} ’ 2
—2 = e, 2@ [1- 0, %) . (2.119)

Since the outlet area is fixed, particle slip and the attending non-
equilibrium effects cause the pressure at the outlet to be modified by
an amount proportional to ')TV/L , with the nozzle outlet pressure in the

form

p e
e [ i ' g Fewa * (2.120)
P

Now utilizing equations (2.111), (2.112), and (2. 113), the nozzle out=-

let area parameter may be written to the first order of XV/L as

P2 A Vel G-1/7 (2
—— = o /e ) ' Y {2/G-1) 1-(p_lp WYY
- " 1 1
X 1+(>\V/L)T;;€ [( T )G(Pe/PC)- ARy F(Pe/PC)J
F-1m -1M)

(2. 121)
But p /p_ is expressed by equation (2. 120) so that retaining only the
o' Pe q g

zeroth and first order parts,
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-i
pche P, >1/Y x 1 pe(o) N-1)/¥
" pe{ ) y-1 Pe
rv( p_ >1/7!F2 ¢ p 7 VA
+ — - [
o) SCE) )
— -1
(0) (v-D/vy (1)
g __1_( P. >F7+1_7-1 1_<pe )Y ! j|<pe >

\v/
e,

e e s

o

4N

.

p—t

&%)

n

~

[ 1 p, " 1 P
¥ 1+ '} ) = F< -
14x !< ; > (pc 0)2 pc

Z
- (0) - ( .
Y-1)M_ (v=-1)M_ =

The condition that the outlet arca parameter be unchanged by the flow per-
turbation is simply that the nozzle outlet pressure be modified by an
amount -ﬁ’- pe(l)/pC such that the cocfficient of ')—V/L in equation (2.122)
vanish. This then states that for a nozzle of fixzed mass flow, tliie outlct
area is not modified by the flow perturbation. Explicitly, this gives the

outlet pressure perturbation pe(l)/pC as

0 (©)
1 po( ; 1 Pe
1+ G - i '
(1) — (0) = yne e () c T :
Pe ' _ » ) (v=1)M (v=-1)M
P 1+l{ P =
E B B b (O (y=1)/y
s S O TP - (2. 123)
- P ’
which may then be computed when the functions ¥ and G arc knovn.

Now the thrust of the motor may also be expanded in a pcrturbation

series
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(0) , v (1) (0) o (1)
7 ,;7 u(O)( Pe )+ du(o) )\V Pe
(1+n)m P, d®e/pJ| (o), T P
P, /P,
(0) (07 T (1)
+ by (1)( )4 2 (1)( ) +KV PP Pe (2. 124)
_f 1+x P. T ¢ § 7y (l+ﬂm P, . :
The straightforward calculation of the derivative shows that
(0) A p
du _ e’ c
B75, S S m S
so that the remaining perturbation terms are
3
(1)
= (20,
1+ )m u”
(0) (1) (0)
L1 P u P
= v L U e
T ) T (0)( )+1+;4 lﬁi(p ) o-
Pe u c
(2. 126)

Comparison with equation (2. 115) shows this to be identical with the
result obtained for a fixed outlet pressure. The two are the same,
therefore, up to the first order terms in -)TV/L ,» the accuracy of our

calculation.
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3. COMBUSTION THERMODYNAMICS

AND CHEMICAL PROPELLANTS

Free Energy and Equilibrium

The Helmholtz free energy, or work function, is defined by
the equation
A= £-785 {3.1)
Defined entirely in terms of functions of state, A is also a function of

state. Compare two states of a system held at constant temperature:

A,‘ = E)_—T;SL
Af £( - 70-5,

Subtracting, we find that for any change at constant temperature

AA = AE -T74S (3. 2)

Substituting from the First Law for a reversible change, we have

AAB = Brev - Wiay - TAS

But since A4$8 = i"""/T , it follows that

AA =2 TAS - Wiy - 7AS = = Winayx

from which

3.3
-AA - Winazx : :

For any given change at constant temperature, there is a maximum
extractable work, expressible as the difference of a function of state,
-AA

To find, in terms of A, criteria for determining the direction
of spontaneous reaction, and the situation at equilibrium, we agé.in set
out from equation (3. 2) for any isothermal change. Now, however, we

do not stipulate a reversible change, but substitute for AE the general



Tl

case expressed in the First Principle of Thermodynamics:

AA = AF-TA4S - /7.—w-)—7"as
Stipulating that only PdV work is possible, and that the system is
maintained at constant volume, we reduce w to zero. Hence,
AA - /9- - 7Aa8
For any observable change, TAS >q. Therefore, for every observ-
able change at constant temperature and volume, there is a decrease
of the Helmholtz free energy. The criterion of a spontaneous change
at constant T and V is thus
AA <o (3. 4)
t equilibrium, 748§ = ?‘ , and the criterion of equilibrium in a sys-
tem at constant T and V is
AA =o© (3. 5)
In the special circumstances indicated, spontaneous change al-
ways reduces the capacity of the system to do work, and equilibrium
is reached only when that capacity has been reduced to a minimum,
Here then, we have a function that can represent the changes and
equilibria of chemical systems in much the way that the concept of
mechanical potential energy represents change and equilibrium in
purely mechanical systems. Consider a reaction of the following
type: G+ H=L + M. We construct the curve showing on one side the
total value of A for the reactants G and H; on the other side, the to-
tal value of A for the products L and M; and in between, the values
of A for the various mixtures of G, H, L, and M corresponding to
different degrees of completion of the reaction. The equilibrium com-

is that represented by x , where, in the trough of the curve, the equi=~
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Fig. 3.1. Variation of free energy with composition of reaction mix-
ture.

librium defined by the condition AA = 0 is established where A as-
sumes its minimum value. If the reaction proceeds at a finite rate in
either direction, its progress from any initial condition to equilibrium
is then a matter of ""sliding down to the bottom."

Every system not at equilibrium is potentially capable of de-
livering work, but no system at equilibrium is capable of furnishing
any work whatsoever, The maximum work output recoverable from the
change represented above is given by the vertical drop -- that is, by

initi al‘Aequil , and this same quantity of work is the minimum input
required for the non-spontaneous change in which the initial state of the
system is restored after it has reached equilibrium. In practice, of
course, no change is ever strictly reversible, so that the maximum
work is never recovered in any actual process. But since A is a func-
tion of state, the value ~AA for a given change is always the same.
Although the total energy of system and surroundings remains constant,
every spontaneous change must result in a degradation of energy, an
irrecoverable decrease in the amount of ('"free'') energy available to do

work.
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Substituting from equation (3. 3) into (3. 2),

W",.Mw = - AFE + 748
we obtain the relation of the maximum work output to the decrease in
internal energy. If AS is positive for the given change, the maximum
work output is greater than the reduction in internal energy by the
margin of TAS = ey ? where ey is heat absorbed by the system.
Thus, in the reversible isothermal expansion of an ideal gas, there is
no reduction in internal energy, and the work output is simply equal to
the heat input. On the other hand, if AS is negative for the given
change, the maximum work output is less than the reduction in internal
energy by the margin of TAS = Qpey ? where S is now heat re-
leased by the system. The heat so rejected corresponds to the heat
rejected at exhaust temperature by a Carnot engine, and TAS is there
the measure of the unavailable energy. Thus, for example, if an iso~
thermal reaction at constant volume involves the formation of product
molecules with structures having a degree of organized complexity
greater than that of the reactant molecules, then that reaction has
negative AS and, of any drop in internal energy, only the difference
(-AE 4+ TAS) is extractable as useful work, i.e., recoverable '"free
energy. "

Equilibrium criteria in terms of AA do not fully m=et the re-
quirements of calculations carried out under conditions of constant
temperature and constant pressure. For these conditions, the essen-
tial criterial are better expressed in terms of the Gibbs free energy,
F, defined by the equation

& w A= TS (3.6)
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A development paralleling that which yielded equation (3. 2) yields
here, for a change at constant temperature,
AF = AH- TAS {3.7)
Assuming constant pressure, we can substitute for AH to give

AF = AE+ PAV - 7A4S

whence, in view of equation (3.3), we can conclude that

(3. 8)
~-A4F = Wm‘, -"OAV: W'n‘t

Dismissing the work done against the atmosphere, the maximum ''net
work' obtainable from an isothermal change is then represented by
-AF. In any actual change, the net work recovered will be less than
-AF , but, since F is a function of state, -AF for a given change re-
mains the same however much work is or is not recovered.

Let us now express in terms of F the criteria for direction of
spontaneous reaction and position of equilibrium. At constant temper-
ature and pressure,

AF = Af + pdAdV -74s
Substituting from the First Principle of Thermodynamics for any
change, reversible or irreversible,
AF = (g-w)+ pAV - TAs
When only pAV work is possible, the last equation reduces to
AF = g - 74s
It is now clear that the equilibrium criteria can be re-expressed in
terms of F. The criterion of a spontaneous change at constant T and
p is
AF <« o (3.9

The criterion of equilibrium in a system at constant T and p is
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AF = o (3.10)
No system is at equilibrium if it can undergo a change that reduces its
capacity to do work. Only when a minimum free energy has been at-
tained (dF = 0) is the system at equilibrium,

Returning to equation (3. 7), we see how the direction of the
spontaneous chemical reaction is controlled. Clearly, loss of heat
content (-AH) and increase in entropy (+AS) both tend to produce (-AF)
spontaneous reaction. Four possible situations are indicated in the
table. At sufficiently low temperatures (minimizing the TAS term),
exothermic reactions (-AH) will be spontaneous (-AF); at sufficiently
high temperatures, the TAS term must become dominant. A complex
compound formed from its elements in an exothermic reaction will be

stable at low temperatures even though, since it is a comparatively

AH AS AF

- + - reaction always spontaneous

+ - + reaction never spontaneous

- - ? direction depends on the conditions
+ + ? direction depends on the conditions

highly~ordered structure, the AS term is negative. But, assuming
constant pressure, at high temperatures this compound, like complex
compounds generally, will becoma unstable as the TAS term assumes
control.

As in the case of E and H, only changes in F are thermody-
namically significant, and for convenience, we may arbitrarily assign
zero free energy to the elemants in their standard states at 25°C. For

these we say F298 = 0, and we can then calculate AF? , the free en-
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ergy of formation of one mole of any compound.

Equilibrium State and Equilibrium Constant

It is easily shown that, at constant temperature, the variation
with pressure of the free energy of a mole of the substance j is given

by the equation dfj = vjdpj . If the substance is a perfect gas,

_ d 1y
dF = RT 7

For integration, take the lower limit to be a pressure of one atmos-
phere, for which the gas has its standard free energy, F;) . As the up-

per limit, take the free energy Fj corresponding to any other pressure,

Pj « Then
7 i
AF = 4Fy
7
0 /
/;.
= =9 . 1 [ |

For any number of moles, n., of the ideal gas,

-~

-~ ° )
e B o - T
G = WG e G ey
For the general case of a reaction involving ideal gases, we
represent by nJ. the number of moles of j consumed, and by n, the

number of moles of k formed. For the reaction, we have

AF s Zn b - Sty
For a reaction of the form gG+ hH + 1L + mM , we write
AF = dE smbhy - g/ A%y

The free energy of a mixture of ideal gases is simply the sum of the
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free energies of the component gases, each exerting its own partial
pressure pj . For ideal gases in a reaction mixture, we can then

substitute as follows:
b s [LRSmAt g AL ]

ror[Lbm smbatns - ghre Kb
al w )
7Y et

s AF°% 4+ A?T.[n/

The pressure function has precisely the form of the equilibrium con-
stant for the reaction. Now let us suppose that the reaction has pro-
ceeded to equilibrium. At this point AF = 0, and the pressures of the
gases will be such that the pressure function takes on the value of the
equilibrium constant, with partial pressures expressed in atmos-~

pheres. Thus:

e

, ) AF
0: DF % R7hn Kp or Ankp s - =7

This simple relation has so far been obtained only for the case of re-
actions involving strictly hypothetical ideal gases. In general we find
that a relation of the form of equation (3. 11) can be written for any sub-

stance j in terms of the "activity, " aj , of that substance, Thus,

“~

/.;._. 5"* e;—_{é' “J' (3. 12)

We can now set out from equation (3. 12), as formerly we did from
(3.11), and obtain a general relation just like the above, except that the
equilibrium constant, Ka. » 15 now expressed in terms of activities.
The activity of a substance is a function of its concentration; by dealing
only with ideal gases, it is possible to overlook a complicated function

of concentration which arises from strong molecular interactions. By
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and large, however, with change in concentration, the activity will at
least change in the same direction. Often we can, with no major loss
of accuracy, replace activities by more familiar partial pressure and
mole fraction terms.
Provided that we take care to select the appropriate terms and

units, we find that for any reaction we can write
AF = AF °+ RTAn Z (2. 13}

where Z is some concentration function having the form of the equi-
librium constant for the reaction concerned. Then, for any reaction

at equilibrium, one has

CAFC s RT M A {5 b

Temperature Dependence of the Equilibrium Constant

Although invariant at constant temperature, the equilibrium
constant K does change with changing temperature. By equation (3.7)
AF°® = Am°- 7AS°
from which it is evident that AFO is a function of temperature. This
being so, it follows necessarily that K is also a function of tempera-

ture. Combining the last equation with (3. 14), we have

Lok = - AF° -AH‘ifTas"__ -AH°, As°®
_RT r7T PT 4

Suppose that we compare values of K over a temperature span in which
AHO is constant. The constancy of AHO requires that ACP be negli-
gibly small. Under this condition, ASO mist also be constant. We

then write
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L watd . AEY o AR, a8°
j"’/(:.' A — i K 7, &~

Subtracting the second equation from the first, it follows that

,(‘ _ [
%(K.)' . 4’1?;4 (L - = (3. 15)

This is van't Hoff's law, and it applies excellently to a great many
systems.

Observe that deductions drawn from squation (3. 15) are in
agreement with Le Chatelier's principle. Consider that 'I'2 > Tl x
For an endothermic reaction AH >0, -AH/R <0, the right side of

the last equation is positive, and K, > Kl' That is, the rise of tem-

2
perature favors the endothermic reaction, which has a greater equi—
librium constant at the lower temperature. But beyond such qualita-
tive predictions, (3. 15) provides the means to calculate the change of
equilibrium constant with temperature.

We can then no longer depend on equation (3. 15) for our calcu=-
lation of the change in equilibrium constant over great ranges of tem-
perature. However, we can easily derive an equation on which we can
rely even in these circumsatances.

Observe that, of the terms appearing in equation (3. 14), three

0

vary with temperature: K, AF ", and T itself. Differentiating with

respect to T , we have then

. _d ¥ .,,,K+/?7'-—‘-’~[--/ln/{
= (aF°) = R4 AT

But now we can substitute for d/‘_\.FoldT from the Gibbs-Helmholtz

relation, and so obtain
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L (AaH® AF°) = R + a
= ( ) I K A’Td_’_ In K
Substituting now for AFO, again from equation (3. 14), we find

/ . 4
:]-:/dHo*/?TjﬂK)- /?jﬂ:‘(*ﬁ’ra‘_,_/ﬂf(
A

H° ) 4 o
EL + Rhak = RIK RTE Ink

so that, finally, we have

[~

aH
RT*

0 :
When AH™ is constant, this expression integrates to equation (3. 15).

d "
L= - o = (3. 16)
AT %
When AHO varies, we may express it as a function of temperature and
substitute that function in equation (3. 16).
’ 0 0 0

Given data on ASZQS and AHZ98 ,» we can calculate AF298 for
any reaction. We see now that, given such a value for Angs’ (3. 14)
permits us to calculate the equilibrium constant of the reaction at
25°C. We see further that -- given these data, the value of K, and
data on the heat capacities of the materials concerned -- equation
(3.15) or (3. 16) will permit the calculation of the equilibrium constant

at any temperature. Given purely thermal data, we can calculate the

equilibrium constant of any reaction at any temperature.

Free Energy of Mixing

The internal energy change and the enthalpy change associated
with the mixing of ideal gases at constant temperature and pressure

are zero,

AL & AHM,,,? = o (3.17)

mflm;
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so that the change in free energy due to mixing follows from the defi-

nitions for the free energies

AL > AAM,,,,? g = TAS,,,;,,,.J = /‘?Tdoﬂ.‘/n;f,/- (3.18)

mfxn‘na N

where Xi represents the mole fraction of species i. Equation (3. 18)
gives the change in free energy when different gases (ni moles of com-

ponent i) are mixed at a given temperature and pressure.

Application of Eguilibrium Criteria

Consider the general chemical reaction
”

”
, . . i *
Sy == 3™ (3. 19)
’ ’ .

where \;J.' and vj” represent, respectively, the stoichiometric coeffi-

cients of reactants and products for the chemical species Mj », and n

is now the total number of chemical species involved. Let

’

Ty 2 Lp
Kp = ]7{7-}-),)’ i (3. 20)

” 7

/ , i ﬁ“- ;:..:.
Kp (%) (3. 21)

/

;’,'

n Fiis
/’<¢ = U(M',e)a (3. 22)

/

; = %
K. /7{/\4,-) (3. 23)



n ” ?
s -
Ko = TTome)®™% 5. 24
: % SR
K, T () (3. 25)
n )-'.f’
Ke = TTix0" 7 (3. 26)

/

Ky - /7{)(,-}"“’. (3. 27)

S

n WA
KY . /7'/)£€) re (3. 28)

# 5 7
"7

Ky /7/);)’; (3. 29)

Hezre, pJ. e equilibrium partial pressure, Pj = actual partial pressure,

(Mj e) = equilibrium concentration, (Mj) = actual concentration, n, o
2 ?

equilibrium number of moles, nj = actual number of moles, Xj .
£

equilibrium mole fraction, Xj = actual mole fraction, Yj, . equilibri-
um weight fraction, Yj = actual weight fraction of the chemical species
identified by the symbol Mj . We shall refer to Kv, KC, Kn, KX’ and

KY as equilibrium constants expressed in terms of ratios of pressures,

concentrations, moles, mole fractions, and weight fractions, respec-

tively; the primed quantities will be termed quotients.
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The equilibrium constants and quotients defined in equations

(3. 20) to (3. 29) are related. For ideal gases,

%, e (3. 30)
Mie = BT
Pie V7ie . Tie n,, (3.31)
RT 7 e
X' e ° __“pa‘,e = Nnj.e {9559
by Pr. e MN1,e
and
¢ o @ Wi Pje (3. 33)
I erT

where V is the total volume of the system which is at the total pres-~

sure pn and contains n moles of gas, Wj is the molecular

T, e

weight of species j, and p represents the density of the gas mixture.

Combining equations (3. 30) to (3. 33) with equations (3. 20) to (3. 29),

K (RT)T« ko (D) = 4 (L2)™"

Kp <

i n ,p.'_’;.”
Ky (7o) "= Ky lprr)™ 77005)7 7
(3.34)

and
an

’ s - - e g 1an
), = K(rT)"s K (BE) e xS (5E)

’ dan 2 ahn 3 . ”J.I. %
< 1 ™ g ey [ fny) (5. 343)
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where

n

An < Z/':r':’;,)

A most useful relation is obtained by relating the standard
(Gibbs) free-energy change to the equilibrium constants. For ideal

gases,

arF = & 35y

“ ) 7 '”-)"

’

(3. 35)

The difference between the standard free energies of products and re-
actants will be denoted by the symbol AFO i 1€y

(e)

”n
ar°-= 4:(’}'{':’")54' (3. 36)

from which equation (3. 35) can be written

/s
AF - AF° = RT7 fo A (3.37)

For thermodynamic equilibrium at fixed pressure and temperature,
KP' = KP and AF = 0. Hence

AF° s - @T .t 4 (3. 38)
Equation (3.38) shows the relationtetween the standard free energy
change (i.e., the free energy change at 1 atm) and the equilibrium con-
stant at an arbitrary pressure and temperature. The practical import-
ance of the equilibrium constant KP is the result of the fact that it is
independent of total pressure and can therefore be listed as a unique

function of temperature.
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Equilibrium constants with respect to the elements in their standard states'

T,°K LEW Ky o Kp,a Kp, 4 Ko, s
298.16 | 4.8978 x 1041 | 2.4831 x 10~38 | 2.8340 x 1077 | 1.1143 x 10%° 1.9187 < 1080
300 9.0157x 1091 | 4.2560 % 108 | 31311 x 10~7 | 6.1235% 10" | 4.6559 x (s e
400 5.5335x 10739 | 13459 10-28 | 2.1419x 10~5 | 1.7418 x 102® 1.8323 » |04
500 1.7140% 10723 | 6.9984 % 1021 | 2.6984x 10~ | 7.6913 x 1022 | 4.335] % [0—36
600 3.7239 % 1071 | 4.6452% 10717 | 1.4555x 10~2 | 4.2954 % 10'® 7.8886 % 10-2°
700 4.7315x1071% | 2.5351 x 10~ | 4.8362x 10~2 | 3.8282x 10'® 2.3768 x 102
800 1016210713 | 2.9040 < 10722 | 1.1869% 10~% | 1.9454x 10'® | 5.4828 x 1021
900 6.6681 x 10712 | 1.1700 % 1010 | 23757 x 102 | 3.1405 x 10" 2.2856x 1018
1000 1.9055 x 10720 | 2.2693 x 10—° | 4.1295x 10~2 | 1.1482 x 1010 2.8708 x 1018
1100 2.9703x 10 | 2.5852x 10~* | 6.4834x 102 | 7.6015 x 10° 1.5066 x 10—14
1200 2.9390x 1078 | 1.9715%10~7 | 9.4287x 102 | 7.8759 x 107 4.0926 % 10713
1300 2.0469x 1077 | 1.1052% 10 | 1.2900 % 10~ | 1.1497 x 107 6.7143 x 1012
1400 1.0824x 107% | 4.8596x 10=® | 1.6899x 10~ | 2.2060 x 10° 7.4131 % 10~11
1500 4.5973x10% | 1.7575x10~5 | 2.1324x 10! | 5.254] x 10% 5.9402 < 1010
1600 1.6315x 107® | 54300 10~® | 2.6104 % 101 | 1.4955 x 105 3.6787x 10~*
1700 499111075 | 1.4710x 10~% | 3.1180% 10~' | 4.9204 % 10* 1.8420x 10—*
1800 1.3493 > 10~4 | 3.5752x 10~4 | 3.6495x 10— | 1.8302x 10* 7.7215x 10~%
1900 3.2885x 1074 | 7.923210~% | 4.2004% 10~ | 7.5422 x 10° 2.7861 % 10-7
2000 7.3350x 10~* | '1.6233x 10~3 | 4.7664 x 10~ | 3.3931 x 10? 8.8491 x 1077
2100 1.5174% 1072 | 3.1110 <10~ | 5.3394x 10~ | 1.6458 x 10° 2.5194% 10-¢
2200 2.9383% 1073 | 5.6247x 10~® | 5.9208 x 10~! | 8.5212x 102 6.5283x 10~
2300 5.3753x 107 | 9.6627x 103 | 6.5041 x 10! | 4.6677 x 102 1.5585% 10—®
2400 9.3821x 1073 | 1.5874x 102 | 7.0871 x 10—} | 2.6847 x 102 3.4610x 10-®
2500 1.5574x 102 | 2.5090 % 10~2 | 7.6648 % 10~ | 1.6127 x 10? 7.2161 % 1078
2750 4.7424x 102 | 6.8250x 10~% | 9.0910x [0~! | 5.3272% 10! 3.5917% 104
3000 1.2010% 10~ | 1.5762x 10" | 1.0478 | 2.0999x 10 1.3515% 102
3250 2.6381 < 107 | 3.2048 % 10! | 1.1788 i1 9.5786 4.2678 x 1073
3500 5.1807x 10~% | 5.8993 % 10! | 1.3046 | 4.9295 v L3301 X102
3750 9.3022x 101 F 1.0000 1 1.4218 1 2.7498 | 2.6363x 1072
4000 1.5528 1 1.5933 | 1.5315 1 1.6623 | 5.5361 %102
4250 2.4416 2.4010 | 1.6351 ; 1.0568 1.0668 x 101
4500 3.6521 3.4602 1.7322 7.0307x 107! | 1.9134x 10~}
4750 5.2349 4.8029 1.8229 49181 x 107! | 3.2321x 10!
5000 7.2395 6.4506 1.9067 3.5465x 107! | 5.1874x 101

1 By permission, from NBS Circular 500, Selected Values of Chemical Thermodynamic
Properties, 1 February 1952. The equilibrium constants are defined as follows: K, 1 = polpogh,
v, 3 = Pu/pyt, K, 5 = pon/pogipr,t, Ky, 4 = PHaOI'ﬂllz-_P.Oz‘g Ky, 5 =.p.N/pN’i' The
partial pressures are those of the (ideal) gas, unléss the contrary is indicated explicitly.
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Equilibrium constants with respect to the elements in their standard states'

T.°K Kp.l Kp.? Kp.s K,:.I KJ:. 10
298.16 | 6.5013x 1072 | 3.1470x 10—t | 1.2677 x 10~*% 1.0169x10%* | 1.2331x 10%°
300 8.1283 < 1071 | 3.1605x 101 | 7.4989x 10118 8.4723x 10%? | 4.6559 % 10°®
400 6.9823< 10712 | 3.7766x 10~ | 1.4723x 1078 | 1.3397x 10'® | 3.4356 x 10°!
500 1.6055x 10~ | 4.1534%x 1071 | 9.2683x 107%8 | [.7865x 10'¢ 1.8113 x 1041
600 6.0353x 1078 | 4.4035% 107! | 3.2509x 1073 | 2.1677x 10" | 2.5177 x 10%*
700 8.0612x 107 | 4.5709x 10~ | 2.9992x 10746 | 9.2257x 10'? | 3.1842x 10%?
800 5.6234x107% | 4.6979x 1071 | 1.5959x 10~3% | 8.5507x 10"t | 6.7143 x 10%®
900 2.5486x 1075 | 4.7962x 10~ | 2.7227 x 10~ [ 1.3366x 10'* | 9.2470 x 1032
1000 8.5487x 10~% | 4.8742x 107 | 41687 x 1073° | 3.0061 % 10'® | 4.7534 x 10%°
1100 2.3020x 107% | 49363 x 107 | 1.1092x 10—2¢ | 8.8004 < 10* 6.3387 % 10'#
1200 5.2590% 1074 | 4.9785x 10~ | 7.9068 x 1024 | 3.1499 x 10° 1.7378 x 10%7
1300 1.0554 % 10—3 2.0464x 10721 | 1.3110% 10° 8.2414 % 0®
1400 1.9178 x 102 2.3988 x 107! | 6.1660 x 108 6.0534 x 10"
1500 3.2255x 1073 1.4825x 1077 | 3.1945 % 10® 6.2951 x 10'3
1600 5.0781 x 10—3 5.4828 x 1071% | 1.7960 % 10% 8.6896 < 102
1700 7.5770x 103 1.3183 x 10~ | 1.0708 x 10® 1.5031 x 102
1800 1.0817x 1072 2.2803x 10713 | 6,7422 % 107 3.1623 x 101
1900 1.4873 x 10~2 2.7861 x 10712 | 4.4586 x 107 7.8524 x 101°
2000 1.9815x 10-2 2.7102x 10711 | 3.0641 x 107 2.2387 x 10'°
2100 2.5674x 102 2.1238x 10720 | 2,1827 x 107 7.2028 x 10°
2200 3.2516 % 10~2 1.3671x 10~® | 1.5389x 107 2.5498 x 10°
2300 4.0346x 1072 7.5266x< 10° | 1.1943x 107 9.9426 x 10?
2400 4.9125x 10~ 3.5818x 107® | 9.1348 x 10° 4.1850 x 10%
2500 5.8878 x 10—2 1.5108x10~7 | 7.1532x 10® 1.8915 % 10°
2750 8.7466x 10~ 2 3.4380x 107 | 4.5426< 10° 3.3083 x 107
3000 1.2148 x 10~* 4.6366x 107% | 2.6182x 10° 7.7108 x 108
3250 1.6040 x 1071 4.1812x 10~% | 1.7527x 108 2.2527 % 108
3500 2.0334x 107! 2.7454x< 1073 | 1.1844 x 10¢ 7.8109 x 10%
3750 2.4939x 1071 1.3948 x 10—2 | 9.1496 x 10% 3.1275x 10%
4000 2.9793x 1071 5.7663x 10~* | 6.9375x 10° 1.3880x 10°
4250 3.4839x 1071
4500 4.0085x 107!
4750 4.5188x 107!
5000 5.0405x 10!

1 By permission, from NBS Circular 500, Selected Values of Chemical Thermodynamic
Properties, 1 February 1952. The equilibrium constants are defined as follows: K ¢ =
PNo/pNypogt, K, o = K, ;= pc(e, diamond) /Pc (c, graphite), K,, g = pc(z) and KA, g =
Pc(&)/Pc (c, graphite), A, o = pco/poyt and A, o = pco/pe (e, graphite) Pogt, Ky, 10 = Pcog/Pog,

P, 10 = PCOg/Pc (¢, graphite) POg.
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Equilibrium constants with respect to the elements in théir standard states’

7,°K Ko Ky Kyo1a Kp s
298.16 7.9159 % 108 2.2439 % 10—Y 3.4277x101® 6.9343 < 10~1#
300 6.5826 % 10® 3.9264 x 10—%7 4.6238 x 10™1® 8.8105x 101
400 3.0896 % 10® 2.8774 % 10~% 9.0991 x 104 1.3970 x 1019
500 2.6749 x 10° 2.3496 x 102 1.4060 x 10-10 4.7163x 107"
600 9.9937 x 10* 2.0184x 10717 1.9151 x 108 2.3030x 10~¢
700 8.9578 1.2794 x 1014 6.4908 % 107 3.7282x 10~
800 1.4135 1.5922 % 1012 9.2003 x10°¢ 3.0227x 104
900 3.2501 x 10! 6.7608 x 1011 7.2812% 108 1.5453 %< 102
1000 9.8288x 102 1.3372x 107° 3.8300x 104 5.7161 < 10~?
1100 3.6771x1072 1.5283 % 108 1.4949 x 103 1.6719x 10~2
1200 1.6073 % 102 1.1564 x 10~7 4.6666x 103 4.0992x 102
1300 79177x1073 6.3738x 1077 1.2249x 102 8.7740x 1072
1400 433111073 2.7473x 10~¢ 2.8074x 1072 1.6877x 101
1500 2.5586x 103 9.6962x 10¢ 5.7717x 102 2.9813x 10!
T,°K Kpi1e Kp, 18 Ky 10 Ky, 20
298.16 2.5468 x 10—1* 4.8978 x 10'® 5.3629 % 10° 2.9648 x 10t
300 3.0620 x 10— 12 3.8994 x 10'¢ 3.4206 < 10? 29174 x 10}
400 5.9965x 108 3.6813x10'® 1.8923 % 107 1.7100 x 10*
500 5.7332x 10~ 1.3964 x 100 8.2433 % 10® 1.2050 x 10!
600 1.2086 < 104 3.3450 x 108 1.0044 x 10° 9.4406
700 1.0725 x 103 2.3073 x 107 2.2126 < 10 7.8524
800 5.5373% 1073 3.0825 % 10® 7.0746 < 103 6.7920
900 1.9911 % 10—2 6.4062 % 10° 2.8987 %< 103 6.0534
1000 5.5578 x 10—2 1.8159 % 10° 1.4158 < 10? 5.5208
1100 1.2897x 10! 6.4670 % 10* 7.8705 x 10?2 5.1050
1200 2.6062x 1071 2.7296 % 10% 4.8128%x 102 4.7863
1300 4.7315x 101 1.3131 < 10* 3.1747x 102 4.5186
1400 7.8977x 101 7.0146 % 107 2.2233% 102 4.3152
1500 8.1111x107! 4.0654 %107 1.6297 x 102 4.1400

! By permission, from NBS Circular 500, Selected Values of Chemical Thermodynamic

Properties, 1 February 1952. The equilibrium constants are defined as follows: K, ; =

PCH‘J’pH’. and
Pcang/pc (e, graphite) 2PH,,

fpu 11

Kp,1s =

= pcH,/pc (c, graphite) puy?, K, 13 =  pcymg/pHy and
po1a = Pcrpcigh,

Pur/puregt,

pucV/prgtpeigd, Ky, 1o = pune/pratpnest, K, 20 = pri/puaipigh.

Kp, 16 = p‘/pli ’

» 12
», 18

\
T,°K Kioa ‘ Kpoaz
298.16 | 1.998x10-2 | 3.590x 10—%
300 2,908 %1072 | 6.980x [0~
400 1.319x 10~ 3.512x 10-"
500 1.399 x 10—10 3.719x 1020
600 7.019 x 107 1.789 % 10—24
700 6.095 % 10¢ 4.078 % 10—2!
800 1.767 x 104 1.343 x 1G—18
900 | 2439x103 1.227 x 1018
1000 2.023x 102 4.558 x 1018
1200 4.874 x 101 1.054x 10712
1400 4.812 5.118x 10~1
1600 2.690 % 10 9.528 x 1010
1800 1.034 x 102 9.312x10~*°
2000 3.055 % 102 5.794 x 108
2500 2.177x 103 1.638 x 10~®
3000 8.055x 103 1.427 x 108
3500 2.084 x 10 6.947 x 10~
4000 4.245 % 104 2.290x 104
4500 7.424 % 104 5.804 x 104
5000 1.155x 10 1.225x 103

! From L. G. Cole, M. Farber and G. W. Elverum, Jr., J. Chem. Phys. 20: 586 (1952). The
equilibrium constants are defined as follows: K, 13 = pe/prs, K, 17 = piat prod/pur.
Equilibrium constants involving the intcrhalogens CIF, BrF, IF, BrCl, ICl, and IBr are given

by L. G. Cole and G. W. Elverum, Jr., J. Chem. Phys. 20: 1543 (1952).
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By using the definition of the Gibbs free energy, we obtain
from equation (3. 38) the equivalent relation
AH®- TAS® = - RT.h ki (3.39)
where AHO and ASO represent, respectively, the enthalpy and entropy
changes for reaction (3. 19) at a pressure of 1 atm and any arbitrary
but fixed temperature T. The quantities AHO are readily computed
from the standard heats of formation and heat capacities. Entropy
changes ASO and standard free-energy changes AFO may be computed
similarly by utilizing tables of standard entropies and free energies.
As one example of the application of these thermodynamic re-
lations, consider the calculation of standard enthalpy changes from the
temperature dependence of Kp . Dividing equation (3.38) by T we ob-
tain .
—,—4]_—5 s = Rbukp (3. 40)
and since
Fe s H-T7T5°
it follows that
a. (_Ef) -____°+ / {dH" a(S') (3. 41)
a1 T AT
But from the general thermodynamic relation
dH = TdS + Vdp

it follows that

Q

H*® A5?
A 2
AT AT

< 0 ;
since F, HO, and S0 all refer to (constant) unit pressure. Hence,

F'ﬂ _ Hﬂ
_0‘:;_ ("T-‘) - - K (3. 42)
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For a chemical reaction represented by equation (3. 19)

; "
d 2 oty Feag A [AF°Y. . pd /[
S LN £ () Rk

n
S moad M ar’
z = (% )j)T:"J » = =Ly (3. 43)
or
d JnKp = =~ Abe (3. 44)

A (=) R

Equation (3. 44) shows the relation between the temperature variation
of KP and the enthalpy change for reaction occurring at a pressure of
1 atm. Thus, AHO may be obtained experimentally at any temperature
by measuring the temperature variation of KP at constant pressure.

Another example more directly related to evaluation of chemi-
cal propellants is the calculation of equilibrium composition and par-
tial pressures using equilibrium constants. Consider the following

reaction involving only ideal gases:

a A s a,A, == 4L8,+4 8 (3.45)

Let nO(Al), nO(Az), nO(Bl), and nO(BZ) represent, respectively, the

initial number of moles of A AZ’ Bl’ and B, before equilibrium

1’ 2
has been reached at a given temperature T. When equilibrium is
reached according to (3. 45), the following numbers of moles for each

component will be present:

ne (A) = no°lA.) - a, &

e (A) & W (A) - aa;
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ne(B.,) =« n°(B)+ b, &

ne (B,) = n°(B.)* ba &
since for every blg moles of B1 formed, bzg moles of B2 are

formed, a.lg moles of A, disappear, and a,f moles of A, disappear.

1
From the definitions of Kn and KP , it now follows that

b,
(ﬂ°(3.)"’ b, £ )b' (no(B-l.)" b, ;)

K - (3. 46)
’ (ne (A t)® (oA + ac £)™
and
b+b,~a,-a,
Ke = Ky, i (3. 47)
Ny, e
where

2
Nyo = NYA)+n(A ) +n°(B )+ n°(8.)+ &b+ by-a -a, )
It is evident that for given values of Kn or KP the value of £ can be
calculated readily for given initial concentrations of the various reac-

tants.

Properties of Propellant Materials

Some representative chemicals which have been used or may
be useful for the more important propulsion units are listed in the
table on the following page.

Bipropellant mixtures consisting of a liquid oxidizer and a
liquid reducing material are used extensively in rocket propulsion
work. In general, satisfactory performance cannot be expected be-
tween any oxidizer listed in group (A) and any reducing compound
listed in group (B). Practical utility depends on such factors as ease

and speed of combustion, propellant density, toxicity, coolant charac=-
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A. Oxidizers in bipropellant systems: nitric acid (HNO,), oxygen (O;), ozone (O;), fluorine
(F,), Auorine oxide (F,0), nitrogen tetroxide (N,0,), chlorine trifluoride (CIF,), hydrngcn
peroxide (H,0,), nitrogen trifluoride (NF,), bromine pentafluoride (BrFj).

B. Reducing materials in b|propellan( systems: hydrogen (H,), ammonia (NH,), hydrazine
(N H,), hydrazine hydrate (N,H, - H,0), diborane (B,H,), tetraborane (B,H,,). pentaborane

:H.), borazole (B3N,H,), borimide [B,(NH,),], aluminium borohydride [Al(BH,),],
dlsuloxanc [(SiH,),0], dlsﬂane (Si,H,), trisilane (Si;Hy), gasoline (CsH,; to C;,Hy,), kerosene
(mixture of hyérocarbons with boiling points somewhat higher than gasoline), aniline
(CgHgNH,;), methyl alcohol (CH,OH), ethyl alcohol (C,H;OH), propyl alcohol (C3H,0H),
acetylene (C;H,), ethylene (C,}i.), methane (CH.), other hydrocarbons, other alcohols

t
[R—OH (R = an organic radical)], aldehydes (R—C=0), ketones (R—C—R).
I|
(0]

C. Monopropellants: nitromethane (CH,;NO,), dinitroethane [C,H(NO,),], hydrogen
peroxide (H,0,), hydrazine (N,H,).

D. Gas-generating compounds: hydrazine (N,H,), hydrogen peroxide (H,0,).

E. Water-reactive chemicals: aluminum borohydride [AI(BH,);]. lithium (Li), sodium (Na),
polaslsmm (K), lithium hydride (LiH), sodium hydride (NaH), various alloys containing active
metals

F. Fuels for ramjets: any suitable liquid reducing compound, carbon (C), boron (B),
carbon-metal mixtures.

G. Oxidizers in composite propellants: potassium perchlorate (KCIO,), ammonium nitrate
(NH,NO,).

H. Fuels in composite propellants: polymers (i.e., high molecular weight compounds)
containing mostly carbon and hydrogen.

J. Double-base propellants: homogencous colloidal mixtures of roughly 50 % nitrocellulose
(containing in the neighborhood of 13 % N) with roughly 509, nitroglycerin. In some double-
base propellants the amount of nitroglycerin is reduced to about 209, and such substances as
dinitrotoluene, potassium nitrate, etc., are added to act as stabilizers, plasticizers, flash
suppressors, coloring or darkening agents, etc.

teristics, etc. It is noteworthy that the reducing and oxidizing com-
pounds which have been chosen as liquid propellants generally yield
combustion products of low molecular weight.

A propellant is useful as a monopropellant for rocket applica-

tions if it can be made to burn with the evolution of heat and the pro-
duction of low molecular weight decomposition products. Gas=
generating compounds must have similar properties, although it is
generally desirable to have a maximum production of gases at rela-

tively low temperatures.
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Water-reactive chemicals are substances which react exo-

thermically with water with the production of large volume s of gas.
They are used in such devices as the hydroduct and hydropulse.

Ramjets, which do not carry their own supply of oxidizing
agent, are best powered by the combustion products formed as the re-
sult of chemical reaction between a liquid reducing compound or a
simple metal or nonmetal and atmospheric oxygen or nitrogen.

Composite propellants differ from double-~base propellants by

being more or less heterogeneous. Thus, theyconsist of a non-uniform
mixture of oxidizing and reducing materials. Double~-base propellants,
on the other hand, consist of homogeneously compounded materials,
the discontinuities in physical and chemical properties being of col-
loidal dimensions.

The more important characteristics of desirable propellant
chemicals are summarized in the following table, page 93. The
reasons for emphasizing the listed characteristics are, in some cases,
closely related to the results obtained from a study of the thermody=-
namics of combustion. On the other hand, some of the desirable
Physical characteristics follow rather obviously from handling or
cooling requirements in liquid-fuel rocket engines.

A detailed discussion of performance of selected bipropellant
mixtures requires quantitative calculations on the thermodynamics of
combustion. However, it is possible, even on the gasis of the quali-
tative remarks listed in the tables to draw some useful conclusions
regarding performance. For example, the series of oxidizers

F,, F,0, NF,, O

2? 2 2? C1F3, BrFS
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Desirable properties of propellants used in liquid-fuel rocket engines

(a) Small negative or preferably positive standard heats of formation of the propellants.

(b) The reaction products should have low molecular weights and large negative heats of
formation. If conditions (a) and (b) are met, then the reaction products will consist of low
molecular weight compounds at high temperatures.

(c) The propellants should have large densitics in order to minimize the dcad weight of
storage tanks.

(d) The oxidizers and reducing agents are best handled as liquids. Hence it is desirable to
obtain propellants which arc normally liquid in the operating temperature range of service
units (i.e., from about — 40 to -| 60°C). For substances such as liquid oxygen and hydrogen
special cooling units must be provided. This refrigeration equipment represents added dead
weight, which the propulsion unit must carry, and is warranted only in the case of very high
energy propellant mixtures.

(e) In normal propellant operation the combustion chamber temperatures may get exces-
sively high. Hence it is necessary to provide special cooling equipment for the chamber walls.
Cooling may be accomplished by forced convection involving passage of oxidizer and/or
reducing agent through coils enveloping the chamber. In extreme cascs, this cooling technique
is inadequate and it is necessary to resort to sweat cooling, which is accomplished by passing
a small amount of one or both of the propellants through small passages in the chamber wall,
thus using the heat of vaporization, as well as the specific heat of the oxidizer and/or reducing
agent, in order to cool the chamber wall. It is apparent that successful cooling can be accom- |
plished the more readily the higher the specific heat and the heat of vaporization of the material
involved. Hence it is customary to choose, if possible, at least one of the components of a
bipropellant system with a high specific heat and/or large heat of vaporization.

(f) Since it may be necessary to store the propellants for long periods of time beforc use,
good propellants should have high storage stability, i.c., they must not decompose or change
chemically in any way during storage so that their use as a propellant is impaired.

(g) Since propellants are chemicals which have to be handled by service personnel, it may be
desirable for some applications to use propellants of relatively low toxicity. Actually the art of
propellant design has advanced at the present time to the point where practically every useful
bipropellant component is toxic or represents a handling hazard for other reasons. As the
result of this development, it has become important to educate service personnel on the proper
handling of dangerous chemicals.

(h) For large-scale use it is, of course, imperative that propellants which are readily available
and preferably also of low cost are employed. In practice this last requircment is inessential
since experience has shown that rare and expensive chemicals, which are needed in large
quantities, usually become cheap and readily available in the course of time.

(i) The bipropellant mixture in a liquid-fuel rocket should be spontancously combustible
with minimum time lag. Spontaneously combustible propellants are said to be hypergolic
whereas non-spontaneously combustible propellanis are said to be nonhypergoiic. The time
lag or ignition delay is the period of time preceding steady-state combustion. It is measured
cmpirically and is a function of physical factors such as injection mcthods, motor configuration,
etc., as well as of the chemical constitution of the propellant mixture. Long ignition delays may
lead to the accumulation of large amounts of propellant in the combustion chamber before
vigorous exothermic reaction occurs and initiates steady-state combustion. The accumulation
of excessive amounts of propellant, before steady-state combustion, is usually accompanied
by severe initial shock and very high initial pressures, which may lead to rupture of the com-
bustion chamber.

(i) The reaction products should not be excessively corrosive or form solid deposits, thereby
leading either to increased or decreased nozzle throat diameters. In the former case, steady-
state combustion may cease altogether or else occur at such low pressures as to impair overall
performance. Nozzle plugging, on the other hand, may lead to an excessive increase in chamber
pressure followed by rupture of the combustion chamber.

(k) For application to guided missiles, the exhaust gases should not interfere with the
guidance method which is used. .
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is listed in order of decreasing performance with a given reducing
substance containing predominantly hydrogen. The performance dif-
ferences are readily explained in terms of variation of the term

Tc/ M (T_ = combustion chamber temperature, M = average mo-
lecular weight of combustion products) which is of primary importance
in determining the specific impulse,

For convenience in performance calculations, the physical
properties as well as enthalpy, entropy, and heat capacity of transition,

of selected chemical compounds are summarized in the following

tables.
; Tempera-
Substance Process | Pressure, ture, : 4as, 4Cp,
mm of Hg K kcal/mole | cal/mole-°K | cal/mole-°K
Br, c—l 760 265.9 2.52 9.48 0.9
| —>g 214 298.16 7.34 24.6
C c—g 760 4620 )
CH, c—1 87.7 90.68 0.225 2.48
| —-g 760 111.67 1.955 17.51
C,H, c -1 900 191.7 09 5
(ethyne, | —g 900 191.7 4.2 22
acctylene) |l g 760 189.2 5.1 - 27
CyH, c—+1 0.9 103.97 0.8008 7.702
(ethene, ethylene)| [/ — g 760 - 169.45 3.237 19.10
Tl c—1 0.006| . 89.89 0.6829 7.597 2.2
(ethane) l—g 760 184.53 3.517 19.06 —11.5
CHF, c =1 113
(trifluoro- [ —g 760 189.0 4.4 2.3
methane)
CHyN ) c—1 179.70 1.466 8.16
(methylamine) {—g 760 266.84 6.17 23.1
C,H,N ) c—1 180.97 1.420 7.85 9.81
(dimethylamine) | [ —g 760 ©280.0 6.33 22.6 17.1
C,H.N I 760 354
(2-dimethyl . ’
hydrazine)
CH,0 c—1 154.9
(formaldehyde) l>g 760 2539 5.85 230
CH,0 . O | 175.26 0.757 4.32 4.2
(methanol) l-+g 760 3379 8.43 2495
CH,O. I g 34 298 7.9 26.5
(methyl hydro-
gen peroxide)

!By permission, from NBS Circular 500, Selected Values of Chemical Thermodynamic
Properties, 1 February 1952.
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: Tempera-
Substance Process | Pressure, ture, i 48s, 4Cp,
mm of Hg K kcal/mole | cal/mole-°K | cal/mole-°K

C,H,0 c =1 760 160.71 1.236 7.69 345

(ethylene oxide) | / - g 283.72 6.101 21.50 —-9.7

C,H,O c =i 131.66 1.180 8.96 6.8

(Jimelhylelher) |l —-g 248.34 5.141 20.70 —10.6

C,H;OH c—1 158.6 1.200 1.57 5.70

(ethanol) |l g 760 351.7 9.22 26.22

CH,ON, c 1 405.8 3.60 8.9

(urea)

CH,0,N c —1 244.78 2.319 9.47

(nitromethane) I —g 760 374.0

CH,0,N l—>g 760 255 5.0 19.7

(methyl nitrite)

CH,O,N I+g | 760 339.7 7.8 23.0

(methyl nitrate)

C,H,0,N c—1 183

(nitroethane) Il —+g 17 293 9.1 31

C,H;0,N I—g 760 290.1 6.64 229

(ethyl nitrite)

C,H,0,N c—1 171

(ethyl nitrate) g 760 361.9

C,H,0,N, c 1 250.9 4.5 18

(glycol dinitrate) | [ —+g 19 378

C(NO,), c—! 286

(tetranitro- {—g 760 398.9 9.2 23

methane)

CO |l —+g 760 81.67 1.444 17.68

CO, |l —+g 760 194.68 6.031 30.98

Cl, c—1 172.18 1.531 8.892 2.75
{—g 760 239.11 4.878 204 —8.76

CIF l—+g 760 172.9 5.34 30.88

Cl,0, {—-g 760 354.7 7.88 22.2

F, c—1 55.20 0372 6.74 1.86
l—>g 760 85.24 1.51 17.7 —4.27

F;0 l—g 760 128.3 2.65 20.7

H, c—1 54.0 13.96 0.028 20 1.9
l—g 760 20.39 0.216 10.6

HBr c—1 186.30 0.5751 3.087 1.64
I=g 760 206.44 4210 20.39 —1.37

HCI c, I -1 158.97 0.4760 2.994 2.10
{—g 760 188.13 3.86 20.5 —7.14

HCN |l —>g 760 298.86 6.027 20.17

HF c—l 190.09 1.094 15.756 2.55
g 760 293.1 1.8 6.1 —109

HI c—1
c—g 0.31 298.16 14.88 49.91
c—1 222.37 0.6863 3.086 1.10

HNO,4 c—1 231.57 2.503 10.808 10.55
|l —g 48 293 9.43 32.17

H,0 c =1, 760 273.16 1.4363 5.2581 8.911
{—>g 4.58 273.16 10.767 39.416 —10.184
l—>g 23.75 298.16 10.514 35.263 —9.971
{—-g 760 373.16 9.717 26.040 —10.021
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Tempera-
Substance Process | Pressure, ture, AH, AS, ACp,
mm of Hg ‘K kcal/mole | cal/mole-°K | cal/mole-"K
H;0, c -1 271.2 2.52 9.29
|l —~g 2.1 298.16 13.01 43.64
Iy c—1 386.8 3.74 9.67
IF, c 1 760 276.6 7.37 26.64
N, e, I =1 94 63.15 0.172 2.709
|l —g 760 77.36 1.333 17.231
NH, c —1 45.57 195.42 1.351 6.9133
| —g 760 239.76 5.581 23.277
N,H, c 1 274.7
| —-g 764 386.7 10 259
NH N, c—g 760 407 15.1 37.11
NH,NO, 6V =
c, 1V 760 255 0.13 0.511
o,V =
r'. m 760 305.3 0.38 1.23
o, 1 —
c, I1(6.32 x 10° 336.5 0.20 0.594
c, IT —
o | 760 398.4 . 1.01 2.535
e, 1T =1 760 442.8 1.3 12.94
N,H, - HNO, c—1 316
N,H, NO, c, 1T =1 3439
N,H,-H,0 c - 233
l—-g 118.5 391.7
NH,OH - c—1 306.3
| —+g 22 331
NO c -1 164.4 109.55 0.5495 5.016 6.0
| —g 760 121.42 3.292 27.113 11.8
N,O c -1 658.9 182.34 1.563 8.5719 4.67
|l —g 760 184.68 3.956 21.421
N,O, c 1 162
I —g 760 275 9.4 342
N,O, c 1 139.78 261.96 3.502 13.368 6.12
[l —g 760 294.31 9.110 30.954
N,O; c—g 760 305.6 13.6 44.50
NO,F c =1 107.2
| —»g 760 200.8 4.31 21.46
NO,F c—1 92
I —~g 103 193
(6 )8 c, I =1 1.1 54.39 0.1063 1.95 1.74
|l —>g 760 90.19 1.6299 18.07 —6.00
0O, |l —-g 760 162.65 2.59 15.92
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Performance Evaluation of Chemical Propellants

For frozen chemical composition, the nozzle efflux velocity ¥

may be calculated from the relation
L+ Myt - aHS (3. 48)

where M represents the constant molecular weight of the gas mixture
and AH: is the molar enthalpy change between nozzle entrance and
nozzle exit positions and is independent of pressure for ideal gases.
If the relative concentrations of each component, as well as the nu-
merical values of 'I‘C and Te , are known, then it is a simple matter
to evaluate both M and AHCe . The composition of each constituent
can be calculated by straightforward analysis.

The average molecular weight of a gas mixture of n compo-

nents is given by the relation
n

M - Z)G My (3. 49)

where Xj represents the mole fraction of the jth component whose
molecular weight is Mj . The value of AHCe for frozen chemical

composition is evidently given by the relation
i ”
e
AHC > é /{; (/{,-/721- /7}-(7;)) (3. 50)
or
7

n
e s X
AH - :G/V, C,,,', 4T (3. 51)
e
where Hj (T) represents the molar enthalpy of component j at the tem-

perature T, and CP j represents the corresponding molar heat
?
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capacity. Note that Xj remains constant during frozen chemaical flow.
Equation (3. 50) follows immediately from the expression for the en~
thalpy of an ideal gas mixture.

For adiabatic expansion of one mole of an ideal gas mixture
doing only pressure - volume work, it follows from the First Law of

Thermodynamics that

dE + pdV =o (3. 52)
But

E - Zhg

whence

(3. 53)

dE: SAAE - LAy Gy dT

since Xj is constant for flow without composition change. The equa-

tion of state for one mole of ideal gas mixture is

Pl‘;' Z’YJPT)’ z/};-:/

whence

pdV < RdLT Z,l/?/, ~ VAT = //‘?JT"‘?TJ*F"P)Z/?;' (3. 54)

Introducing equations (3. 53) and (3. 54) into (3. 52), we obtain the re=-

lation
(f'{. (c,;,-u?)a[?'- R7T o Anp (3. 55)

Integration between the limits Te and TC leads to the result
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%

& SN Gy LT = () Pukbt
54

4

where the pressure ratio pclpe is assumed specified. Molar heat

capacities for selected chemical compounds at various temperatures

are tabulated below.

Molar heat capacities Cy, (cal{mole-"K)!

T, °K O4(8) | Hay(g) [ Ny(g) | O(g) H(g) N(g) |C(c, graphite) C(c, diamond)
298.16 | 7.017 | 6.892|6.960 | 5.2364 | 4.9680 | 4.9680 2.066 1.449
300 7.019 | 6.895 | 6.961 | 5.2338 | 4.9680 | 4.9680 2.083 1.466
400 7.194 | 6.974 | 6.991 | 5.1341 | 4.9680 | 4.9680 2.851 2.38
500 7.429 | 6.993 [ 7.070 | 5.0802 | 4.9680 | 4.9680 3.496 3.14
600 7.670 | 7.008 | 7.197 | 5.0486 | 4.9680 | 4.9680 4.03 3.79
700 7.885 | 7.035 | 7.351 | 5.0284 | 4.9680 | 4.9680 4.43 4.29
800 8.064 | 7.078 | 7.512 | 5.0150 | 4.9680 | 4.9680 4.75 4.66
900 8.212 | 7.139 | 7.671 | 5.0055 | 4.9680 | 4.9680 4.98 4.90
1000 8.335 | 7.217 | 7.816 | 4.9988 | 4.9680 | 4.9680 5.14 5.03
1100 8.449 | 7.308 | 7.947 | 4.9936 | 4.9680 | 4.9680 5.27 5.10
1200 8.530 | 7.404 | 8.063 | 4.9894 | 4.9680 | 4.9680 5.42 5.16
1300 8.608 | 7.505 [ 8.165 | 4.9864 | 4.9680 | 4.9680 5.57

1400 8.676 | 7.610 | 8.253 | 4.9838 | 4.9680 | 4.9680 5.67

1500 8.739 | 7.713 [ 8.330 | 4.9819 | 4.9680 | 4.9680 5.76

1600 8.801 | 7.814 | 8.399 | 4.9805 | 4.9680 | 4.9680 5.83

1700 8.859 |7.911 |8.459 | 4.9792 | 4.9680 | 4.9681 5.90

1800 8.917 |8.004 [ 8.512 | 4.9784 | 4.9680 | 4.9683 5.95

1900 8.974 | 8.092 | 8.560 | 4.9778 | 4.9680 | 4.9685 6.00

2000 9.030 | 8.175 | 8.602 | 4.9776 | 4.9680 | 4.9690 6.05

2100 9.085 |8.254 | 8.640 | 4.9778 | 4.9680 | 4.9697 6.10

2200 9.140 | 8.328 | 8.674 | 4.9784 | 4.9680 | 4.9708 6.14

2300 9.195 | 8.398 | 8.705 | 4.9796 | 4.9680 | 4.9724 6.18

2400 9.249 | 8.464 | 8.733 | 4.9812 | 4.9680 | 4.9746 6.22

2500 9.302 | 8.526 | 8.759 | 4.9834 | 4.9680 | 4.9777 6.26

2750 9.431 | 8.667 | 8.815 | 4.9917 | 4.9680 | 4.9900 6.34

3000 9.552 | 8.791 | 8.861 | 5.0041 | 4.9680 | 5.0108 6.42

3250 9.663 |8.899 | 8.900 | 5.0207 | 4.9680 | 5.0426 6.50

3500 9.763 | 8.993 | 8.934 | 5.0411 | 4.9680 | 5.0866 6.57

3750 9.853 | 9.076 | 8.963 | 5.0649 | 4.9680 | 5.1437 6.64

4000 9.933 [9.151 | 8.989 | 5.0914 | 4.9680 | 5.2143 6.72

4250 10.003 [9.220 (9.013 | 5.1199 | 4.9680 | 5.2977

4500 10.063 |9.282 | 9.035 | 5.1495 | 4.9680 | 5.3927

4750 10.115 |9.338 [ 9.056 | 5.1799 | 4.9680 | 5.4977

5000 10.157 | 9.389 | 2.076 | 5.2102 | 4.9680 | 5.6109

! By permission, from NBS, Tables of Selected Values of Chemical Thermodynainic Properties,

Series 111, Volume I, March 1947 to June 1949.

M
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Molar heat capacities Cy, (cal/mole-°"K)*

T, °K C(g) CO(g) | NO(g) | OH(g) | HyO(g) | CO.(g) | CH4(g) | CoHa(g)
298.16 4.9803 6.965 7.137 7.141 8.025 8.874 8.536 10.499
300 4.9801 6.965 7.134 7.139 8.026 8.894 8.552 10.532
400 49747 | 7.013 | 7.162 | 7.074 8.185 9.871 9.736 | 11.973
500 4.9723 7.120 7.289 7.048 8.415 10.662 11.133 12.967
600 4.9709 7.276 7.468 7.053 8.677 11.311 12.546 13.728
700 4.9701 7.451 7.657 7.087 8.959 11.849 13.88 14.366
800 49697 | 7.624 | 7.833 | 7.150 9254 | 12.300 | 15.10 14.933
900 4.9693 7.787 7.990 7.234 9.559 12.678 16.21 15.449
1000 4.9691 7.932 8.126 7.333 9.861 12.995 17.21 15.922
1100 4.9691 8.058 8.243 7.440 10.145 13.26 18.09 16.353
1200 49697 | 8.167 | 8342 | 7.551 | 10.413 | 13.49 18.88 16.744
1300 49705 | 8265 | 8426 | 7.663 | 10.668 | 13.68 19.57 17.099
1400 49725 | 8349 | 8498 | 7.772 | 10.909 | 13.85 20.18 17.418
1500 49747 8.419 8.560 7.875 11.134 13.99 20.71 17.704
1600 49783 8.481 8.614 7.973 11.34 14.1
1700 7.9835 8.536 8.660 8.066 11.53 14.2
1800 4.9899 8.585 8.702 8.152 11.71 14.3
1900 4.9980 8.627 8.738 8.233 11.87 14.4
2000 5.0075 | 8.665 | 8771 | 8308 | 12.01 14.5
2100 5.0189 8.699 8.801 8.378 12.14 14.6
2200 5.0316 8.730 8.828 8.828 12.26 14.6
2300 5.0455 8.758 8.852 8.504 12.37 14.7
2400 5.0607 8.784 8.874 8.561 12.47 14.8
2500 5.0769 8.806 8.895 8.614 12.56 14.8
2750 5.1208 (8.856) 8.941 8.733 12.8 14.9
3000 5.1677 8.898 8.981 8.838 129 15.0
3250 5.2150 8.933 9.017 8.931 13.1 15.1
3500 5.2610 8.963 9.049 9.015 13.2 15.2
3750 5.3043 8.990 9.079 9.092 13.2 15.3
4000 5.3442 9.015 9.107 9.162 13.3 15.3
4250 5.3800 9.038 9.133 9.228 13.4 15.4
4500 54115 9.059 9.158 9.290 13.4 15.5
4750 5.6375 9.078 9.183 9.350 13.5 15.5
5000 5.9351 9.096 9.208 9.406 13.5 15.6
T.°K | Cly(g) | Bry(g) | Ia(g) | Cl(g) | Br(g) I(g) | HCl(g) | HBr(g) | HI(g)
298.16 8.11 8.60 8.81 5.2203 | 4.9680 | 4.9680 6.96 6.96 6.97
300 8.12 8.60 8.82 | 5.2237 | 4.9680 | 4.9680 6.96 6.96 6.97
400 8.44 8.77 8.90 | 5.3705 | 4.9683 | 4.9680 6.97 6.98 7.01
500 8.62 8.86 8.95 | 54363 | 49708 | 4.9680 7.00 7.04 7.11
600 8.74 8.91 8.98 | 54448 | 4.9793 | 4.9680 7.07 7.14 J.25
700 8.82 8.94 9.00 | 54232 | 49973 | 4.9680 7.17 7.27 7.42
800 8.88 8.97 | 9.02 | 5.3887 | 5.0258 | 4.9682 | 7.29 7.42 7.60
900 8.92 8.99 9.04 | 5.3506 | 5.0632 | 4.9688 7.42 7.58 1797
1000 8.96 9.01 9.06 | 5.3133 | 5.1066 | 4.9700 7.56 7.72 7.92
1100 8.99 9.03 9.07 | 5.2788 | 5.1529 | 4.9726 7.69 7.86 8.06
1200 9.02 904 | 909 | 52477 | 5.1192 | 49770 | 7.81 7.99 8.18
1300 9.04 9.05 9.10 | 5.2201 5.2434 | 4.9836 7.93 8.10 8.29
1400 9.06 9.07 9.12 | 5.1958 | 5.2839 | 4.9925 8.04 8.20 8.38
1500 9.08 9.08 9.13 | 5.1745 | 5.3199 | 5.0039 8.14 8.30 8.46
1600 5.1557 | 5.3510 | 5.0178
1700 5.1392 | 5.3771 5.0340
1800 5.1246 | 5.3984 | 5.0521
1900 51117 | 5.4152 | 5.0718
2000 5.1002 | 5.4279 | 5.0928
2100 5.0900 | 5.4369 | 5.1147
2200 50809 | 5.4427 | 5.1371
2300 5.0727 | 5.4458 | 5.1597
2400 5.0654 | 5.4464 | 5.1822
2500 5.0588 | 5.4450 | 5.2045
2750 5.0449 | 5.4347 | 5.2571
3000 5.0339 | 54178 | 5.3039
3250 5.0251 5.3972 | 5.3437
3500 5.0179 | 5.3748 | 5.3762
3750 5.0120 | 5.3518 | 5.4016

5.0070 | 5.3292 | 5.4205
4250 5.0028 | 5.3074 | 5.4337
4500 49993 | 5.2867 | 5.4419
4750 49964 | 5.2672 | 5.4458
5000 4.9941 5.2490 | 5.4462
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Molar heat capacities Cy, (cal[mole-°K)*

T,°K Fy(g) F(g) HF(g)
100 6.957 5.068 6.961
200 7.097 5.403 6.959
298.16 7.487 5.436 6.960
300 7.495 5.435 6.960
400 7.895 5.361 6.961
500 8.200 5.282 6.973
600 8.420 5.220 6.987
700 8.581 5.171 7.015
800 8.702 5.134 7.063
900 8.796 5.108 7.129
1000 8.872 5.084 7.210
1100 8.934 5.067 7.304
1200 8.987 5.053 7.401
1300 9.033 5.042 7.503
1400 9.074 5.033 7.604
1500 9.111 5.025 7.703
1600 9.145 5.019 7.798
1700 92177 5.014 7.886
1800 9.206 5.009 7.974
1900 L 9.230 5.005 8.054
2000 9.262 5.002 8.129
2100 9.287 4.999 8.199
2200 9.313 4.996 8.264
2300 9.337 4.994 8.326
2400 9.361 4.992 8.383
2500 9.384 4.990 8.436
2600 9.407 4.989 8.486
2700 9.426 4.937 8.532
2800 9.453 4.986 8.576
2900 9.474 4.985 8.617
3000 9.496 4.984 8.656
3200 9.539 4.982 8.727
3400 9.580 4.980 8.790
3600 9.622 4.979 8.847
3800 9.664 4.978 8.899
4000 9.705 4.977 8.946
4200 9.745 4.976 8.990
4400 - 9.786 4.975 9.028
4600 9.826 4.975 9.066
4800 9.866 4.974 9.102
5000 9.906 4.974 9.135

!From L. G. Cole, M. Farber, and G. W. Elverum, Jr., J. Chem. Phys. 20: 586 (1952).
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The left hand side of equation (3. 56) can be wrwritten in the

form
=55 -5%%)

which is more suitable for numerical calculation. The corresponding
entropy data are tabulated below.

Molar entropies (cal/mole-°"K)

T,°K | Ou(g) | Hyg) | Ny(g) | O(g) | H(g) | N(g) | Clc, graphite) | C(c, diamond)
298.16 | 49.00 | 31.21 | 45.77 | 38.47 | 27.39 | 36.61 1.361 0.5829
300 49.05 | 31.25 | 45.81 | 38.50 | 27.42 | 36.65 1.374 0.5918
400 51.09 | 33.25 | 47.82 | 39.99 | 28.85 | 38.07 2.081 1.14
500 52.72 | 34.81 | 49.39 | 41.13 | 29.96 | 39.18 2.788 1.76
600 54.10 | 36.08 | 50.69 | 42.05 | 30.87 | 40.09 3.474 2.39
700 55.30 | 37.17 | 51.81 | 42.83 | 31.63 | 40.85 4.127 3.01
800 56.36 | 38.11 | 52.80 | 43.50 | 32.30 | 41.52 4.740 3.61
900 57.32 | 38.95 | 53.69 | 44.09 | 3288 | 42.10 5314 4.18
1000 58.19 | 39.70 | 54.51 | 44.62 | 33.40 | 42.63 5.846 4.70
1100 58.99 | 40.40 | 55.26 | 45.09 | 33.88 | 43.10 6.342 5.18
1200 59.73 | 41.04 | 55.95 | 45.53 | 34.31 | 43.53 6.807 5.63
1300 60.42 | 41.63 | 56.61 | 45.93 | 34.71 | 43.93 7.247. |
1400 61.06 | 42.19 | 57.22 | 46.30 | 35.08 | 44.30 7.663 |
1500 61.66 | 42.72 | 57.79 | 46.64 | 35.42 | 44.64 8.057 |
1600 62.23 | 4322 | 58.33 | 46.96 | 35.74 | 44.96 8.43 =

1700 62.76 | 43.70 | 58.84 | 47.27 | 36.04 | 45.26 8.79

1800 63.27 | 44.15 | 59.32 | 47.55 | 36.32 | 45.55 9.13

1900 63.75 | 44.59 | 59.79 | 47.82 | 36.59 | 45.82 9.45

2000 64.21 | 4501 | 60.23 | 48.07 | 36.84 | 46.07 9.76

2100 64.66 | 45.41 | 60.65 | 48.32 | 37.09 | 46.31 10.05

2200 65.08 | 45.79 | 61.05 | 48.55 | 37.32 | 46.54 10.34

2300 65.49 | 46.16 | 61.44 | 48.77 | 37.54 | 46.76 10.61

2400 65.88 | 46.52 | 61.81 | 48.98 | 37.75 | 46.98 10.88

2500 66.26 | 46.87 | 62.16 | 49.19 | 37.96 | 47.18 11.13

2750 67.15 | 47.69 | 63.00 | 49.66 | 38.43 | 47.65 11.73

3000 67.98 | 48.45 | 63.77 | 50.10 | 38.86 | 48.09 12.29

3250 68.74 | 49.16 | 64.48 | 50.50 | 39.26 | 48.49 12.80

3500 69.46 | 49.82 | 65.14 | 50.87 | 39.63 | 48.87 13.29

3750 70.14 | 50.44 | 65.76 | 51.22 | 39.97 | 49.22 13.74

4000 70.78 | 51.03 | 66.34 | 51.55 | 40.29 | 49.55 14.18

4250 71.38 | 51.59 | 66.88 | 51.86 | 40.59 | 49.87

4500 71.96 | 52.12 | 67.40 | 52.15 | 40.88 | 50.18

4750 72.50 | 52.62 | 67.89 | 52.43 | 41.15 | 50.47

5000 73.02 | 53.10 | 68.35 | 52.69 | 41.40 | 50.76

! By permission, from NBS, Tables of Selected Values of Chemical Thermodynamic Properties,
Series 111, Volume I, March 1947 to June 1949.

For equilibrium flow, the gas efflux velocity may be calculated

from

¢

2 e /\:; i
s A LEH (3. 57)
Me

n

s
¥

where
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Molar entropies (cal/{mole-°K)!

T,°K | OH(g) | NO(g) C(g) CO(g) | COu(g) | HyO(g) | CHy(g) | CyHa(g)
298.16| 43.89 50.34 37.76 47.30 51.06 45.11 44.50 48.00
300 43.93 50.38 37.79 47.34 51.12 45.15 44.55 48.06
400 45.98 52.44 39.22 49.35 53.82 47.49 47.17 51.30
500 47.55 54.05 40.33 50.93 56.11 49.34 49.48 54.09
600 48.84 55.39 41.24 52.24 58.11 50.90 51.64 56.53
700 49.93 56.56 42.01 53.37 59.90 32.21 53.68 58.69
800 50.88 57.59 42.67 54.38 61.51 53.49 55.61 60.65
900 51.72 58.52 43.26 55.29 62.98 54.60 57.45 62.44
1000 52.49 59.37 43.78 56.12 64.33 55.62 59.21 64.10
1100 53.19 60.15 44.25 56.88 65.58 56.56 60.89 65.64
1200 53.85 60.87 44.68 57.59 66.75 57.45 62.50 67.08
1300 54.46 61.54 45.08 58.24 67.84 58.29 64.04 68.43
1400 55.03 62.17 45.45 58.86 68.86 59.08 65.51 69.71
1500 55.57 62.76 45.79 59.44 69.82 59.83 66.93 70.93
1600 56.08 63.32 46.12 59.98 70.72 60.55
1700 56.56 63.84 46.42 60.50 71.58 61.24 |
1800 57.03 64.33 46.70 60.99 72.40 61.90 |
1900 57.07 64.80 46.97 61.45 73.17 62.53
2000 57.89 65.25 47.23 61.90 73.92 63.14
2100 58.30 65.68 47.47 62.32 74.63 63.72
2200 58.66 66.09 47.71 62,77 75.31 64.29
2300 59.07 66.49 47.93 63.11 75.96 64.83
2400 59.43 66.86 48.15 63.49 76.59 65.36
2500 59.78 67.23 48.35 63.85 77.20 65.86
2750 60.61 68.08 48.84 63.69 78.62 67.07
3000 61.37 68.86 49.29 65.46 79.92 68.19
3250 62.09 69.58 49.70 66.17 81.14 69.23
3500 62.75 70.25 50.09 66.84 82.27 70.22
3750 63.38 70.87 50.45 67.46 83.33 71.15
63.97 71.46 50.80 68.04 84.32 72.04
4250 64.53 72.01 51.12 68.59 85.26 72.86
4500 65.06 72.54 51.43 69.10 86.15 73.63
4750 65.57 73.03 51.73 69.59 86.99 74.37
5000 66.05 73.50 52.00 70.06 87.80 75.08
» 'K | Clyg) | Bro(g) | Iy(g) | Cl(g) | Br(g) I(g) | HCl(g) | HBr(g) | HI(g)
29816 53.29 58.64 62.28 39.46 41.81 43.18 44.62 47.44 49.31
300 53.34 58.69 62.33 39.49 41.84 43.21 44.66 47.48 49.36
400 35:72 61.20 64.88 41.01 43.27 44.64 46.66 49.49 51.37
500 57.63 63.16 66.87 42.22 44.37 45.75 48.22 51.05 52.94
600 59.21 64.78 68.51 43.21 45.28 46.66 49.51 52.34 54.25
700 60.56 65.16 69.89 44.05 46.05 47.42 50.60 53.45 55.38
800 61.74 67.36 71.10 44.77 46.72 48.09 51.57 54.43 56.38
500 62.79 68.41 72.16 45.41 47.31 48.67 52.43 55.31 57.29
1000 63.74 69.34 7312 45.97 47.84 49.20 53.22 56.12 58.11
1100 64.59 70.22 73.98 46.47 48.34 49.67 53.95 56.86 58.88
1200 65.38 71.01 74.77 46.93 48.79 50.10 54.62 57.55 59.58
1300 66.10 7173 75.50 47.35 49.21 50.50 55.26 58.20 60.24
1400 66.77 72.40 76.17 47.74 49.60 50.87 55.85 58.80 60.86
1500 67.39 73.03 76.80 48.09 49.96 51.22 56.41 5931 61.44
1600 68.03 73.45 48.43 50.31 51.54 56.81 59.88
1700 68.58 74.00 48.74 50.63 51.84 57.31 60.39
1800 69.10 74.52 49.03 50.94 52.13 57.79 60.87
1900 69.59 75.01 49.31 2123 5241 58.24 61.34
2000 70.06 75.48 49.57 51.51 52.67 58.67 61.78
2100 7051 75.93 49.82 51.77 5292 59.09 62.20
2200 70.94 76.36 50.06 52.03 53.15 59.49 62.61
2300 71.35 76.77 50.28 52.27 53.38 59.87 63.00
2400 71.74 77.16 50.50 52.50 53.60 60.24 63.37
2500 72.12 77.54 50.70 52.72 53.82 60.60 63.73
2750 51.18 53.24 54.31
3000 73.82 79.23 51.62 53.71 54.77 62.20 65.37
3250 52.03 54.15 55.20 |
3500 75.27 80.64 52.40 54.55 55.60 63.58 66.77
3750 52.74 54.92 55.97
4000 76.52 81.89 53.07 55.26 56.32 64.77 67.99
4250 53.37 55.58 56.65
4500 77.63 83.00 53.66 55.89 56.96 65.84 69.08
4750 56.17 57.25
5000 78.63 84.00 54.18 56.44 57.53 66.80 70.06
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Molar entropies (cal{mole-"K)*

T, °K Fiy(g) F(g) HF(g)
100 40.76 32.13 33.97
200 45.60 35.76 38.75
298.16 48.51 37.93 41.53
300 48.55 37.97 41.57
400 50.76 39.52 43.57
500 52.56 40.71 45.13
600 54.08 41.66 46.40
700 55.39 42.46 47.48
§00 56.27 43.15 48.42
900 57.57 43.76 49.25
1000 58.50 44.29 50.01
1100 59.35 44.78 50.70
1200 60.13 45.22 51.34
1300 60.85 45.62 51.94
1400 61.52 45.99 52.50
1500 62.15 46.34 52.93
1600 62.74 46.66 53.52
1700 63.30 46.97 54.00
1800 63.82 47.26 54.45
1900 64.32 47.53 54.89
2000 64.79 47.78 55.30
2100 65.25 48.03 55.68
2200 65.68 48.26 56.08
2300 | 66.09 48.48 56.45
2400 | 66.50 48.69 56.81
2500 66.87 48.90 57.15
2600 67.24 49.09 57.48
2700 67.60 49.28 57.80
2800 67.94 49.46 58.12
2900 68.27 49.64 58.42
3000 68.60 49.81 58.71
3200 69.21 50.13 59.27
3400 69.79 50.43 59.80
3600 70.34 50.71 60.31
3800 70.86 50.98 60.79
4000 71.36 51.24 61.24
4200 71.83 51.48 61.68
4400 72.28 51.73 62.10
4600 72.72 51.93 62.50
4800 73.14 52.15 62.89
5000 73.54 52.35 63.26

M, = 5/];-/@;’1)/\@' (3. 58)
and

/:/e - é’ /?:1 (7e, %) My " (3. 59)

In order to perform numerical calculations, it is convenient to consid=-
er that HC and He represent the absolute molar enthalpies of the gas

mixture referred to T = 298. 16°K as reference point. Thus
P

_~ - 0 i
H, = ZJ,- (7, ﬂ)/ﬁﬂwg * T ) (T J) (3« 60)
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~ [ o )
By = S5 0% r)[AHES 1y () #4079) 6.6n
The factor MC/I\_/Ie in equation (3. 57) corrects the molar enthalpy at
the nozzle exit position to the enthalpy for the same weight of gas mix=-
ture for which ITIC has been computed.

Choosing IT/IC as the fixed weight for which the analysis is to be

carried out, the condition of isentropic flow may be expressed by the

relation
5(72, L) = /if‘ S7e, ) (3.62)
Mo

Here, S{'I: f) is the molar entropy of an ideal gas mixture at tempera-

ture T and pressure p , and substituting for these entropy values

2/?; 7 z‘)/Sj(z-:) - Bhng - A AG (7, 7))

M,
L8 KY o _

Equation (3. 63) can be used to calculate L for any given propellant
system. It should be noted that the use of this equation requires nu-
merical calculation of Xm('];) Po) for each assumed value of T . For
this reason, performance calculations for equilibrium flow are more

laborious to carry out than performance calculations for frozen flow.
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4, SOLID PROPELLANT ROCKET MOTORS

The propellant of a solid rocket motor is stored entirely with-
in the combustion chamber in the form of one or more shaped blocks,
called grains. The main characteristic of a solid-propellant rocket is
its simplicity. The burning time may be from a few seconds or frac-
tions of a second to as long as one or two minutes.

Once the rocket has been ignited the combustion generally pro-
ceeds until all the propellant is burnt; the thrust program is fixed.

It is possible,with suitable grain designs, to obtain a thrust
which increases (progressive burning), remains constant (neutral), or
decreases (regressive) with burning time. With constant-geometry
nozzles, the thrust is approximately proportional to the chamber pres=
sure. The following figure represents a typical record of a near-
constant thrust motor. The time integral of the thrust gives the total

impulse I.

THRUST

| SRS

OA
TIME

OA IGNITION DELAY

AB THRUST BUILD UP TIME

B8C EQUILIBRIUM BURNING TIME

AD EFFECTIVE BURNING TIME (F=05F)

CF TAIL OFF TIME

F dt
EFF. THRUST =
AD

Fig. 4.1. Thrust law: typical recording of a near-constant thrust, to-
gether with some current definitions of durations and thrust values.
The pressure-time diagram would be similar.
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Combustion of Solid Propellants

The combustion of a solid propellant is a progressive phe=
nomenon localized near the surface of the grain; the burning rate r is
defined as the distance travelled per second by the flame front perpen-
dicularly to the surface of the grain. The surfaces on which combus=~
tion must not take place are protected with an inhibiting material.
Burning rates ranging from 0.0l to 10 in/sec, depending upon compo-
sition and pressure, are possible, but usual burning rates lie between
0.04 and 2 in/sec. An empirical relationship giving the burning rate
r of a propellant as a function of the pressure p may be written

r = a+bp . (4. 1)
For a given propellant, a and b are functions of the initial tempera-
ture of the grain and the exponent n is a constant. The constant a is
usually of negligible importance. Then equation (4. 1) is represented
by a straight line in a logarithmic diagram. The burning rate of a
composite propellant is shown in Fig., 4.2 as a function of pressure
for several values of the initial temperature. The burning law written
above is valid only within well specified ranges of pressure and tem-
perature. For instance, below a certain pressure the combustion of a
propellant becomes unstable and may stop completely. Even at normal
operating pressures it is not always possible to represent the burning
rate versus pressure relatinnship by a simple equation of the form
given above. For instance, Fig. 4.3 represents the behavior of a
plateau-burning composite propellant for which r is constant in a
certain range of pressure. An even more complicated case is given

in Fig. 4.4, which represents the burning rate versus pressure rela=-



(cm/sec)

BURNING RATE

SO 100 200 500 1000
PRESSURE  (kg/kem?

Fig. 4. 2. Burning rate of a composite propellant as a function of
pressure for several values of the initial temperature.
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Fig. 4.3. Burning rate versus pressure relationship of a plateau-
burning composite propellant at normal temperature.

o
N

0.1
0.08

@ 0.08— l

10 20 50 100 200
PRESSURE  (kgknd)

URNING RATE

Fig. 4.4. Burning rate versus pressure relationship of a mesa-
burning double-base propellant at normal temperature.
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tionship of a mesa-burning double-base propellant.

As shown in Fig. 4.2, if the initial temperature of the pro-
pellant decreases, the coefficient a diminishes together with the
thrust and chamber pressure of the motor, but the burning time in=
creases. The total impulse of the motor is only slightly smaller than
at normal temperature.

If the initial temperature is too low, the chamber pressure
may be too low to sustain smooth combustion, and intermittent burn-~
ing, called chuffing, may occur. At high initial temperatures the to-
tal impulse rises somewhat, and the increase in chamber pressure
may become important to the design of the chamber.

Figures 4.5 and 4. 6 show the influence of the initial tempera-
ture upon the performance of solid-=propellant motors. The thermal

sensitivity of solid propellants limits the allowable range of exterior

temperature.
e
H 6007,
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16 / 500
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(L] £ 3
b z I
3 z 12 N—fa00 =
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z - :
» -60-40-20 0 20 40 60 o
TIME (sec) PROPELLANT TEMPERATURE
(*C)
Fig. 4.5. Influence of the initial Fig. 4. 6. Influence of the
temperature upon the thrust law initial temperature upon the
of a solid-propellant motor. performance of a solid-

propellant motor.

Experimental data show that the burning rate r increases

above its normal value with an increase in velocity of the combustion
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gases parallel to the burning surface. Some data suggest that a
threshold velocity exists below which the burning rate is unaffected by
gas velocity. This phenomenon plays an important role in high per-
formance designs, and is called erosive burning. It can be roughly
represented by the empirical linear relation

¥iz, = 1+k|V=V_|

where k is the erosion coefficient which is approximately constant
and V the me an flow velocity parallel to the surface. The corrective

term k(V-Vtv) is equal to zero for negative values of (V-V__). The

tv

values of k and Vtv depend upon pressure, propellant temperature,

and the dimensions of the port area.

Le
-~ 1
T Fig. 4.7. Erosive burning: experi-
= mental relationship between the
z % / erosion ratio and the flow velocity.
o i i
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Homogeneous Multi-Base Propellants

In a homogeneous propellant, both oxidant and fuel belong to
the same molecule. Such propellants are often called double-base or
colloidal propellants because they consist generally of colloidal mix=
tures of nitrocellulose and nitroglycerine,

Nitrocellulose (13. 250/0 NZ) is a low=energy compound con-
taining 21. 25 gram=-atoms of carbon, 25.96 g~at. of hydrogen, 36. 63

g-at. of oxygen, and 9. 46 g-at. of nitrogen per kg. It is underoxi-
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dized by 301. 8 g/kg. Nitroglycerine C3H5(NO3)3 » which is a very
high~energy explosive, is overoxidized by 35. 2 g/kg.

The following table gives the composition and performance of
the fairly energetic double-base Ballistite JPN. Its specific impulse
and burning rate are high (Is = 250 sec and r = 2,14 cm/sec at 100
kg/cmz), but its combustion index n and thermal sensitivity T are
both poor,and its lower pressure limit for stable combustion is quite
important (30 to 40 kg/cmz). Owing to the elevated flame temperature,
radiation plays an important role, bringing heat from the hot gases
back to the grain., Carbon black is added in order to absorb radiant
energy which otherwise would have heated the remaining translucent
propellant, If the nitroglycerine content is lowered, the specific im-
pulse decreases together with the burning rate and the flame temper=
ature. For a propellant containing 32 percent of NG, 60 per cent of
NC, and 8 per cent of additives, Is = 228 sec, Tc = 24500K, and r
ranges from 0.5 to 1. 2 cmm/sec at 100 kg/cmz and 15°C.

Part B of the following table gives the composition and per=
formance of the French S. D. whose nitroglycerine content is only 25
per cent.

The properties of double-base propellants are sometimes im=-
proved by adding to the nitrocellulose-nitroglycerine matrix a certain
amount of finely-ground crystals of an inorganic oxidizer like potassi-
um perchlorate or even an explosive compound. High explosives in-
cluding trinitrotoluene and pentaerythritol tetranitrate can burn with-
out detonation at rates comparable to those of propellants. Aluminum,

magnesium, or other metallic powders can also be added.
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A. Composition and Characteristics of JPN3

Composition %
Nitrocellulose (13.25%, Ngz) 51.5
Nitroglycerine 43.0
Diethylphthalate

Potassium sulfate (flash-suppressing agent)
Ethyl centralite (sym.-diethyldiphenylurea)
Carbon black (added)

Wax (added)

oc-—n—l?z
] NN
8 GUIU‘

Characteristics
Burning rate r = 0.089p0-69 exp [0.0038 (Ty—15)] cm/sec
Density g.0p = 1.62 g/cm3
Isobaric combustion
temperature at 100 kg/cm? T, = 3125°K
Molecular weight M = 264
Specific heat ratio ¥ = L215
Temperature of spontaneous ignition 300°K

B. Composition and Characteristics of the French §.D.11

Composition %
Nitrocellulose 66
Nitroglycerine 25
Ethyl centralite 8
Miscellaneous 1
Characteristics
Burning rate r = 0.0055p0-60 exp [0.0032 (T4—20)] cm/sec
Density g.0p = 1.59 g/cm3
Isobaric combustion

temperature at 70 kg/cm? T = 2170°K
Molecular weight M =22
Specific heat ratio y =126

Although the burning mechanism of double-base propellants has
been studied in great detail, there does not exist a completely ade~-
quate quantitative theory.

Duaring combustion, the solid is transformed into gas by py-
rolysis and by chemical reactions. Even if the transformation occurs
through the formation of an intermediate liquid phase, there exists a
certain position, called the burning surface, where gas is being

formed. The mechanism of the solid-phase decomposition is con-
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sidered as the rate-controlling step of propellant burning, and the gas
is being formed at a rate

E
= B - —— 4, 2
PoT Py exp( RT, ) ( )

where pP is the density of the propellant, B the pre-exponential fre~
quency factor, E the activation energy, R'o the universal gas constant
and TS the temperature of the gas at the burning surface.

With double-base propellants, the solid-phase processes, which
take place in a very thin layer about 10-3 to 10"2 cm thick, are highly
exothermic and are completed at a fairly low temperature in the neigh-
borhood of 600°K if the burrﬁng rate is sufficiently slow. They include
the thermal decomposition of nitroglycerine and nitrocellulose and the
reactions between these substances and the stabilizers.

Figure 4.8 represents a model of the flame of a double-base
propellant satisfactory from both the experimental and theoretical
points of view. After the solid-phase decomposition has taken place,
the gas-phase reactions can be divided into three layers: close to the
burning surface, some exothermic reactions take place in the fizz

zone; then, in the preparation or dark zone, activated products are

BURNING

GAS

1ZZ | PREPARATION FLAME
ONE ZONE | ZONE|

TEMPERATURE

Fig. 4.8. Schematic model of the flame of a double~base propellant
with the fizz, preparation, and flame zones.
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formed without heat production; finally, when a sufficient concentration
of activated products is achieved, the final reaction occurs in the
flame zone at the end of which the isobaric combustion temperature is
obtained.

The thickness of the zones diminishes when the pressure in-
creases. At intermediate or low pressures, the thickness of the
preparation zone is much greater than the thickness of the other zones
and the heat transferred from the flame zone towards the surface can
be neglected. Therefore, in that range of pressures, the burning rate
and the surface temperature are determined mainly by the solid phase
decomposition and by the heat evolved within the fizz zone. The pres-
sure dependence of r is very complex and depends strongly upon com-
position and additives which may act as catalysts of the solid-phase and
fizz-zone reactions.

At fairly high pressures, the dark zone almost disappears, and
a significant amount of heat from the flams zone is conducted back to
the burning surface. Therefore, the burning rate increases smoothly
with pressure and, for a given pressure, the compositions having the
highest combustion temperatures exhibit the highest burning rates.

At very low pressures, the thickness of the dark zone increases
very rapidly. The flame-zone reactions become sluggish and may
cease completely while the propellant still continues to react. When
this happens, the chamber pressure drops to atmospheric but the tem-

perature of the surface layers remains relatively high.
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Composite Propellants

In a composite propellant, oxidizer and fuel are separate com-
pounds intimately mixed together., The stoichiometric mixture ratio,
which corresponds roughly to maximum combustion temperature and
specific impulse, is always fairly small; it ranges between 0.5 and
0.05. Figure 4. 9 represents the calculated combustion temperature,
the molecular weight, the specific heat ratio, and the specific impulse
as functions of oxidizer percentage of a typical ammonium perchlorate-
polyester composition at the pressure of 70 kg/cmz. When the oxidizer

content increases towards stoichiometric, the combustion temperature

: 7
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Fig. 4.9. Calculated isobaric combustion temperature, molecular
weight, specific heat ratio, and specific impulse of a typical ammonium
perchlorate-polyester compositezpropellant, as functions of the oxi=-
dizer percentage (p_ = 70 kg/cm”).
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rises sharply, but the increase in specific impulse is more gradual.
The optimum values of T'C and IS are on the fuel-rich side because of
dissociation, the variation of molecular weight, and the specific heat
ratio.

Actual compositions seldom contain more than 80 per cent or
85 per cent of oxidizer because physical properties of the propellant
are provided entirely by the fuel. Mboreover, the susceptibility to
detonation of some propellants increases with the oxidizer content.

The number of available solid oxidizers is fairly limited. They
are generally crystalline inorganic salts like potassium, sodium,
lithium, or ammonium nitrates or perchlorates, but organic com-
pounds like ammonium picrate C6H2(N02)3ONH4 are also used. In
addition to high heat release and low molecular weight of the gaseous
combustion products, the oxidizers must have a high available oxygen
content corresponding to a fairly low stoichiometric ratio. The table
below gives the molecular weight, the percentage of available oxygen,
the heat of formation, the combustion products, and the density of var-

ious inorganic oxidizers.

Auvailable Heat of Products of

Oxidizer M;ﬁ:‘ﬁ” oxygen Jormation complete D;:Lr:;'y
2! % of weight  kcal/mole combustion &

LiClO4 106.397 60.152 —106.00*  LiCl 2.429
NaClOy4 122.454 52.265 — 92.18 NaCl —
KClO4 138.553 46.192 —103.6 Kl 2.52
NH;ClO4 117.497 34.043 — 69.42 No, HCLLH;O  1.95
LiNOg 68.948 58.015 —115.28 Li;O 2.38
NaXNOg3 89.005 47.056 —101.54 NagO 2.261
KNOg3 101.104 39.563 —117.76 K20 2.109
NH4NO3 80.048 19.988 — 87.27 Ng, H,O 1.725
* Other values sometimes quoted are: —110.5 and, more recently, —91.8 kcal/

mole,
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Ammonium perchlorate forms the mainstay of today's high=-
energy composite propellants; with commonly used fuels, it gives
specific impulses between 220 and 250 sec with low combustion in=~
dexes and low temperature sensitivities. The burning rate of that
family of propellants ranges from 0.4 to 2 cmm/sec and even more. In
general, it increases with the oxidizer content, together with specific
impulse and density, but for the same composition it can be adapted
within fairly wide limits by the choice of oxidizer particle size and by
adding suitable catalysts.

For instance, for the same composition (oxidizer 750/0, fuel
250/0), it is possible to increase the burning rate from 0. 575 to 1. 05
cm/sec by varying the particle mesan diamater from zoarse (150u) to
fine (25u). However, very large particles may not burn completely
in the chamber, Catalysts like manganese dioxide, ferric oxide, cop-
per chromite, or many others (CrZOS’ SnOZ, TiOZ, ZnQO) are also
used for increasing r.

The following table gives the performance of two typical am-
monium perchlorate and one ammonium nitrate composite propellants.

A wide variety of fuel-binders may be used ranging from as~-
phalt to polymers like polysulfide, polyester, epoxy, synthetic rub-
bers, polyurethane, polyvinyl, polyacrylate, polyamide, polyethylene,
polystyrene, polysiloxane, polybutadiene, polyisobutylene, and phe-
nolic or cellulosic resins. Depending upon the fuel-binder, the phys-
ical properties of composite propellants can range from hard, tough,
and brittle to soft and resilient. The nature of the fuel-binder has a

strong influence upon the value of the stoichiometric mixture ratio.



CALCULATED CHARACTERISTICS OFf METALLIZED COMPOSITE PROPELLANTS

67.5% NHyClOg 63.75% NHyCIO4 72% NHyClOy 68% NHyClO; 67.5% NHyCIO4 71.25% NH,ClO;
Composition 22.5Y% binder®  21.25% binder ~ 18% binder 179 binder ~ 22.5% binder  23.75% binder
10% Al 15% Al 109, Al 15% Al 10, Mg 59, B**

Isobaric combustion

temperature T, (°K) 3002 3221 3290 3519 2915 2481t
Molecular weight 20.21 18.954 21.813 20.905 20.823 22.508
Specific heat ratio 1.2665 1.2775 1.2500 1.2635 1.2615 1.2475

=811~

9%, of solid matter
in the combustion
products 18.9 27.85 18.85 27.9 16.6 ot

Specific impulsett
(sec) 248.3 253 252.6 254 243.4 241

* The fuel-binder is a polyester whose gross formula is Ca3H23O4.
** This last formulation merely provides an indication of the energetic possibilities of boron; indeed powdered elemental
boron cannot be expected to burn completely37.
t At chamber temperature, BsOj is gaseous: it condenses only within the nozzle.
tt The specific impulse takes into account the loss due to condensed matter in the flow | Indecd,
available data suggest that AlyOj is already condensed at chamber temperature?3. With boron, condensation of BaOs
within the nozzle has been taken into account and equilibrium flow has been assumed in order to compute /,.
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75% NHClOg  80% NHClOy  80% NHyNOg

Comgposition 25%, fuel and 20%, fuel and 20%, fuel and
additives additives additives
Molecular weight 24 25.5 22
Specific heat ratio 1.24 1.22 1.26
Isobaric flame temperature

T: (°K) 2420 2790 1755
Characteristic velocity

¢* (m/sec) 1396 1460 1219
Specific impulse J; at

70 kg/cm? (sec) 224 236 195
Combustion index at

70 kg/cm? 0.4 0.4 0.4
Burning rate at 70 kg/em?

(cm/sec) 0.5-1.5 0.8-2.0 0.2-0.3
Density (g/cm3) 1.66 1.72 1.55
Current temperature sensi-

tivity cocfficient r (°K-1) 0.0012-0.0024  0.0012-0.0024 0.0025

The fuel-=binder does not have a strong influence upon the specific im-
pulse of the propellant if the heat of formation is not too low. Howev=
er, fuels containing a high hydrogen to carbon ratio, perhaps some
nitrogen but little sulphur, must be favored in this respect, but they
often have relatively low stoichiometric ratios.

The performance of composite propellants can be improved by
adding high-energy metallic elements or compounds which give highly
stable but condensed combustion products. In the simplest approach,
powdered metals are added to the main composition. Taking into ac=-
count the correction introduced by the presence of condensed matter in
the exhaust, the gain in specific impulse may be as much as 10 or 15
seconds. The following table gives the calculated performance of an
ammonium perchlorate - polyester formulation boosted with various
percentages of aluminum, magnesium, and boron.

Our understanding of the burning mechanism of composite pro-
pellants is at best of conceptual significance. All proposed descrip-

tions of the process make use of the same fundamental assumption as
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is used for homogeneous propellants, i.e., that the regression rates
of both fuel and oxidizer are governed by equation (4. 2), which ex-
presses the solid-phase decomposition rate as a function of the sur-
face temperature Ts o

For the steady-state burning of a composite solid propellant,
it is reasonable to assumse that the mean linear rates of regression of

the oxidizer and fuel surfaces are very roughly equal:

or

Ef E

B 6 [~ epr—] & B w1 s (4. 3)
£ Ro_rsf 2 Ro_,;o

In general, the pre-exponential factor and the activation energy of the
fuel and of the oxidizer are not equal. It follows that Tso must be dif-
ferent from Tsf . That assumption constitutes the base of the '"two-
temperatures postulate' of the theory of composite propellant burning.

Because of the difference in pyrolysis rates (r versus Ts ), one
constituent gasifies relatively faster, and the slower-burning compo=-
nent is left protruding from the surface. The faster-pyrolizing consti-
tuent is then in contact with a cooler region of the flams than the
slower=burning constituent.

In order to take advantage of this model, some assumptions
must be made upon the process which controls the heat exchange be-
tween the flame and the surface. It appears that two different proces=
ses can be considered: the thermal decomposition of the oxidizer, and
the diffusion flame.

The oxidizer thermal decomposition model has been satisfacto=
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rily developed in the case of an ammonium nitrate propellant in which
the pyrolysis rate of the oxidizer is the faster., Figure 4. 10 repre-
sents the pyrolysis rates of NH4N03 and of a typical fuel as a function
of surface temperature. It is assumed that the regression is com-
pletely governed by the heat exchange between the surface and the

products of the decomposition of NH ,NO

4NO3» acting as a monopropellant.

¥

o Fig. 4.10. Pyrolysis rate of
w NH , NO, and of a typical fuel,
3 as a function of the reciprocal
2001 2 of the surface temperature.
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At the outer boundary of the decomposition zone the temperature is
1250°K, corresponding to the combustion of NH4NO3 alone. If the
surfaces of both fuel and oxidizer were in the same plane, their tem-
peratures would be roughly equal. The regression rate of the oxidizer
would be greater and the fuel would protrude into the higher tempera-
ture layers of the decomposition zone until both rates eventually be=-
came equal. This is a self-regulating process, and the mean burning
rate of the propellant is equal to the regression rate of the oxidizer
alone, since there are always enough oxidizer surfaces to carry on
the flame propagation.

With potassium perchlorate propellants, flame pictures sug-

gest that the oxidizer particles are protruding over the fuel matrix,
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and a model has developed in which heat reaching the surface comes
from the diffusion flamelets at the boundaries of the oxidizer and fuel
vapor. A substantial elaboration of such a model is required to de=-
scribe the propellant behavior. Summerfield has proposed such a
model, in which, as the propellant is heated, fuel vapor pockets are
expelled through the solid surface. This model further involves a
finite chemical time and the effect of high turbulence level.

The situation is different with ammonium perchlorate propel-
HCI1, and

lants in which the decomposition of NH ClO4 into N,, O

+ 2’
Hzo gives a temperature of about 14300K, and the oxidizer thermal
decomposition model may be considered.

If the oxidizer-decomposition model is taken for granted, the
burning rate dependence on pressure can probably be explained, and
the increase in burning rate due to a finer granulation or to the fuel

nature can be viewed as the result of the interaction between the oxi-

dizer and fuel pyrolysis.

Combustion Chamber Equilibrium

Inasmuch as the rate of propellant consumption depends upon
the pressure in the chamber, it is apparent that some relation exists
between the pressure, chamber volume, and rate of propellant con=-
sumption which is fundamental in determining the rocket thrust. Like=-
wise, it is clear that the propellant consumption process may or may
not be stable, depending upon the manner of dependence of burning rate
upon chamber pressure. For example, if the rate of propellant con-

sumption increases very rapidly with pressure, the increase in burn-



-123-
ing rate may cause the pressure in the chamber to rise so rapidly
that the result is catastrophic. Therefore, not only must the equilib=
rium operating conditions be investigated for a solid propellant rocket
of given characteristics, but also the stability of the operation.
The operation of a solid propellant rocket depends upon the
gross conservation of mass in a manner which may be expressed as:
Mass of Propellant Consumed = Gas Stored in Chamber + Gas
Ejected from the Nozzle .
Assuming the flow through the rocket nozzle to be given by the isen-
tropic relations previously developed, each term of this relation may
be expressed in analytic form. The gas ejected from the nozzle is

given by

APe

a
<

Rate of Gas Discharge = I'! (4. 4)

where B, is the pressure in the chamber and a. depends only upon the
propellant co mbustion temperature (i. e., the chamber temperature)
and the gas properties. The rate of gas storage in the combustion

chamber volume may be written

d
I (PCVC) (4. 5)

Rate of Storage
where Pe and Vc are the instantaneous gas density and volume of the
combustion chamber. It is important to note that the flow process is
not steady because of the fact that the combustion chamber volums is
changing throughout the rocket burning period. Finally, the rate of

gas generation is

Rate of Generation = rA p (4. 6)
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where r is the rate of propellant burning at the existing combustion
chamber pressure, iy is the density of the propellant, and AC is the
surface of the propellant which is accessible to combustion. The

above equation may then be written simply in the form

T'A
| tPe
I‘Acpp = —dt(PCVC)+~——~———aC . (4. 7)

Now it is known that under considerable variation of the combustion

chamber pressure, the chamber temperature Tc is very nearly con-

stant. In particular, this value does not vary according to the simple

thermodynamic relations for constant volume. Hence, it will be as=

sumed that RTC = constant, so that the above relation may be written
P'AtpcRTc

_ d
rAc(RTCpC) = d—t(VCRTCpC) t—_— . (4. 8)
\(R.TC

For convenience, an effective '"'pressure' of the propellant may be de-
fined according to the perfect gas law; that is

PP = ppRTC . (4. 9)

This is a fictitious pressure which has no particular physical signifi-

cance, but will serve as a notation. Then, using this pressure,

_ d
A p, = H IV R+ TYRT, Ap, » (4. 10)

where T = IIW I'' . Now because of variation of the volume VC with
time, it is necessary to relate the rate of change of combustion cham-
ber volume to the rate of propellant consumption. If the volume of the
combustion chamber at the start of burning is denoted by VcO , the
volume at any later time may be expressed as the sum of the initial

volume and the volume of propellant consumed during that time. If
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the burning rate is r and the combustion surface is Ac » the rate of
volume increase is simply rAc so that the volume of the combustion

chamber at any time t is
t
VO+IrA dt (4.11)
c C
0

v
c

where the time t = 0 has been chosen as that corresponding to the ini-
tiation of combustion., Using this relation, the derivative in equation

(4. 10) may be simplified to give

3 dPC dVC dPC
d_t(vcpc) - Vc dt +pv at Vc: dt * rAcpc = (4 12)

Upon substitution into equation (4. 9), and collecting terms

dp

C =
VC x = rAC(pp-pC)-T R.TC Atpc. (4. 13)

This is clearly a differential equation for P, » provided that the other
principal variables, Vc 3 Iy and Tc » can be expressled as functions
of the chamber pressure and the time alone. The linear burning rate
has been written previously as a function of the chamber pressure
(equation 4. 1), and consequently, the differential equation for the

chamber pressure of the solid propellant rocket is

P - (4. 14)

¥ o = apcn(pp-pc)AC -Ty/RT_A
The combustion equilibrium will be achieved when the value of

dpc/dt ~ 0, that is, when the chamber pressure is nearly invariant
with time. The term ''mearly invariant'" is used because there will al=-
ways be some long period effects which prevent the pressure from be=-

ing exactly constant. Among these are slow variation of the propellant

grain temperature with time, heating of the combustion chamber itself
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and consequent change in the radiation conditions, etc. However, for
theoretical considerations, it will be quite sufficient to assume that
combustion equilibrium is defined by dpc/dt = 0. This implies that
all transient phenomena and pressure perturbations have died out.

Inspection of the differential equation (4, 14) leads one to won-
der whether any stable equilibrium exists., Bzacause of the dependence
of the burning rate upon the pressure, it appears possible that the
burning rate will increase so rapidly with combustion chamber pres-
sure that no equilibrium will be reached. Reasoning from equation
(4. 14), this observation me ans that as P. increases, the right hand
side of the equation will be positive, indicating a positive value of
dpc/dt. Therefore, the chamber pressure will increase even further
with time, indicating an unstable process. The stability of the calcu-
lated equilibrium operating condition will be investigated subsequently.

Denote by a superscript N the conditions for which equilibrium
is reached, that is de/dt = 0. Then, from equation (4. 14),

:::n X E 3 sk
ap_ Ac(pp P, ) = T/RT_ Atpc . (4. 15)

The stability of this solution may be checked by studying the transient
behavior of the chamber pressure in the neighborhood of this point. If
the process is stable to small disturbances of the combustion chamber
pressure, the assumption of an equilibrium operating point was cor=-
rect. If the process is unstable, the assumption leads to a contradic=-
tion, and no equilibrium operating point exists.

Consider a disturbance in chamber pressure pC‘ where

p':'/pC << 1, so that the instantaneous chamber pressure is



P = p +p t (4. 16)

Inasmuch as the equilibrium pressure P, does not depend upon the
3 sk
time, de/dt = d/dt (pc F+pc‘) = dpc‘/dt . The value of I‘C , and con-

sequently the value of Pp": , is unchanged by the pressure perturbation

o
H3

pc' which has been imposed. Now because pc‘,/p << 1, an approx-

c

imation may be made in calculating the value of pcn which occurs in

the linear burning rate. That is

n n % p. '\n 5 o !
= i ] = n C . g 2 (=

p. = (. +p.) = b (=) ~ . (1+ n _,F> . (417)
Ps P,

Substituting these results into equation (4. 14), it appears that

dp Pt ; "
c s c £ sk . sk s .
V- ~ap, (14n =% )(pp -p_ -p_MA_-T 4 RT_" A (p_ +p_")-
© (4. 18)

This equation may be simplified by noting that equation (4. 15) gives a
general relation among the variables in the equilibrium state. By sub-
tracting equation (4. 15) from (4. 18) and neglecting second and higher

order terms in pc' , it follows that

dp ! - ’ i
p 3k P %k
& i 4 | P v 1
Vc: dE = ELpc [1 +n(p B 1)] Acpc T RTC Atpc - (4. 19)
G

*
Employing equation (4. 15) again, it is seen that T RTC At =
-

sk 3k
ap_ 1Ac(pp -P. ) » so that the differential equation for the pressure

perturbation is just

dp !

) })l
V. c *n _ 1
¢ — ~ ap, AC[-1+(n-1)(;% 1)]pc . (4. 20)
C

*
Now, inasmuch as Vc >0 and certainly ap . nAC >0, the sign of the
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derivative depends entirely upon the signs of pc' and
=1 (n-l){pp*/p: - 1} . In general, the value of the fictitious propel=-
lant pressure, pP , is greatly in excess of the combustion chamber,
its value being numerically of the order of 105 pounds per square inch
because of its high density.

To investigate the stability of the combustion chamber flow
process, consider a small pressure disturbance pc' and, for conven-
ience, consider pc' > 0. Then, for stability

dpc'/dt <0,
for neutral stability

dpc'/dt =0,
and for instability

dp_'/dt> 0.

If the pressure disturbance is considered to be general so that it may

be either positive or negative, the corresponding stability criteria are

Stable: llpc'(dpc'/dt) = 0 ,
Neutral: llpc' (dpc'/dt) = (4. 21)
Unstable: l/pc' (dpc'/dt)> 0 .

The sign of the pressure derivative, and hence the stabilit)gﬁ of the sys-

P
tem, is completely determinzd by the quantity -1+ (n-l)(—BE -1) =k.

Then we have Pe
Stable: k<0,
Neutral: k=0, (4. 22)
Unstable: k>0.

This stability criterion is completely adequate, but is somewhat in-

convenient to apply because it involves the combustion chamber equi=-
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librium conditions as well as the characteristic exponent of the pro-
pellant burning rate. Within the accuracy of approximation and, more
important than that, within the accuracy that the theoretical criterion
may be applied to the actual rocket, it may be said that (pp*/pc’k - 1)~

Sk B
pptlpc . Furthermore, for any value of n significantly different from

unity
|n-1] >> p:/p;
Therefore, the stability parameter is approximately n-1, and the

classification of stable chamber operation may be classified in terms

of the characteristic exponent n alone:

Stable: o<1,
Neutral: el o (4. 23)
Unstable: ne L,

The equilibrium equation (4. 15) holds only when n<1 , since only
under this condition does a stable equilibrium =xist. Fortunately, the
values of n for various solid propellants lie in the range 0.4<n<0.8.
Before returning to the calculation of performance under the
equilibrium conditions, it is of interest to estimate the time required
for the decay of a pressure disturbance in the combustion chamber.
To be practically useable, a chamber - nozzle configuration should be
such that the pressure disturbances decay in a period of time which is
short compared with the duration of rocket burning. To estimate the
rate of decay of a pressure disturbance in the chamber, the differen-
tial equation (4. 20) for the perturbation chamber pressure must be
solved as a function of time. The approximation, discussed in the

* S
last paragraph, will be made that (n--l)(pp /pC -1) >> 1, so that the
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e
right side of equation (4. 20) becomes -I R'I‘c At(l-n)pc' . If, fur-
sk
ther, Vc denotes the combustion chamber volume at the onset of the

disturbance, then the instantaneous chamber volums= is

t
*
v =v¥: Moa*a (4. 24)
¢ c J €
0

where the zero of the tim= scale has now been moved to the time dis-
turbance instigation. It will be assumed that the disturbance is suffi=-
ciently small that the burning rate r is unchanged over the period of
interest. Therefore,

% -
Voss VO owlh B, (4. 25)
C { o4 C

With these approximations, the differential equation (4. 20) becomes

Tt —d-—dpc' ri/rT ¥ AQ1 ' (4. 26)
( 2 +r Ct) I - % t( --n)pc 5 %

which may be easily solved by separation of variables. In fact,

1 o * #
dpc B (1-n)C RTC At d(rAC t)
._ﬁ — oo W ,‘ * -
Pe rA V +rA t
c C [ 64

If at time t = 0 a pressure disturbance pc'0 is introduced into the com-
bustion chamber, then the history of this pressure disturbance is given
by the solution of the differential equation
B 3
* (1=
_h n)I‘{ RT_ /rJ(At/Ac )

p.'lpl = (1+?‘:r) . (4.27)

(e}
C

Consequently, as has already been shown from the stability analysis,
the disturbances die out in time so long as n<1. However, it is fur-
ther seen that they die out more quickly the smaller the value of n.

Likewise, it appears that the ratio of throat area to combustion surface
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*
area is important in this regard. The larger the ratio At/Ac , the
more rapidly will combustion chamber equilibrium be restored. The
condition that the chamber disturbance vanishes in a time which is
short compared with the rocket burning time may be applied to equa-
tion (4. 27) to estimate the permissible values of the variables which

may be used. If the bracketed term of (4. 27) is written as

E-S
rA Vv
peedt o, p ot
v 5 v
{ it (&4

where Vp is the total volume of propellant in the rocket motor, it is
noted that VP/VC* is of the order of 1 over most of the burning time.
Consequently, if the life of the disturbance is very small compared
with the burning time, the right side of (4. 27) may be expanded in a

binomial series and sufficient accuracy obtained with only the linear

term in time. Therefore,

s ~ 1= (1-a)0 2 tL ) (4. 28)

€y VC b

Hence, for this to vanish for values of t such that t/tb <<1, the fol=-
lowing inequality must be satisfied:
E
R Attb
(1en)I 2. 3> 1, (4. 29)

3
v
C

x®
The quantity - RTC A'i:tb is proportional to the volume of gas ejected

from the nozzle, and since this is much greater than the combustion

oo

chamber volume Vc » it is usually possible to satisfy this inequality
if n is not too nearly equal to unity.

Returning now to the question of the actual equilibrium oper-
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ating condition, now that the conditions under which it exists are

understood, equation (4. 15) may be rewritten

alp_-p_) A Li1-n]

= (__L f) . (4. 30)

= BT, %
C

This has not actually been solved for i since it still occurs in the
right hand term. However, the quantity pp--pC is dominated by the
effective propellant pressure pp , and only a small error is made in

approximating this by

1/(1=n) 1/(1-n)
2Py - * 1/(1-n)
P = (=) = tap e ) Kn - I8
r W{RTC t P
Here the area ratio A _ /At has been denoted KN and the definition of
[
e . _ '
the characteristic velocity c ('V"yRTC )/T' has been used. The
E-S

term a.ppc' is entirely determined by the chemical nature of the solid

propellant employed, while the ratio K.. is a matter of physical di-

N
mension and may therefore be varied even for the same propellant.
Furthermore, the exponent 1/(l-n) is rather large for usual values of
n , ranging between 2 and 5. Therefore, the chamber pressure is
quite critically affected by the combustion area - throat area ratio.

It is also of interest to investigate, using the present results,
the effect of varying the nozzle throat area for a given combustion
chamber and propellant. Near the ideal expansion point, the thrust co=-
efficient CF is nearly independent of the chamber pressure p. so long

as the expansion ratio across the nozzle is large. Then the thrust

may be written in the form
A . (4.32)
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Now from equation (4. 31), the chamber pressure is proportional to

a ~(1/(1-n))

¢ when the area of the comhustion surface and the propel-

lant composition are fixed. Then the thrust is proportional to

B AtAt‘(ll(l"n)) - At-(n/(l-n))‘ (4.33)

Therefore, the rocket thrust decreases as the throat area increases,
with a rate depending upon the exponent n. For usual propellants,
the rate of decrease is between At"1 and At-4 . For propellants
having a value of n close to unity, the thrust is extremely sensitive
to the throat area.

For most large rocket motors, the required proportions of
the chamber necessitate large cylindrical combustion surfaces,with
the consequence that the gaseous products of combustion flow in the
chamber passage toward the nozzle, and in doing so may attain ve-
locities of considerable magnitude. A pressure gradient along the
grain results from this flow process, the pressure decreasing from
the front end of the grain (F') to the nozzle end of the grain (N). This
pressure variation along the burning surface causes the grain to burn
more rapidly at the front end.

On the other hand, the erosive effect of gas velocity past the
propellant surface causes an increase in the propellant burning rate.
In the unrestricted burning rocket, the mass of propellant gas flowing
by any cross section increases toward the nozzle end of the grain, and
consequently, the local velocity past the grain is larger toward the
nozzle end than it is toward the front. This variation of gas velocity
causes varying decrees of erosion over the propellant surface; in par-

ticular, it causes the propellant to burn more rapidly at the nozzle



-134-

end. In the simple analysis which follows, it will be assumed that the
burning rate is uniform over the grain surface.

From the nature of the internal ballistic problem for the usual
solid rocket, it is clear that some rather far-reaching assumptions
must be nade before any theoretical analysis may be considered. In
general, it will be assumed that:

1) The process may be described as the one-dimensional, non-
viscous flow of a perfect gas;

2) The effects of pressure and gas velocity on burning rate
cancel each other over the grain so that the burning rate is constant;

3) The calculations may be based upon steady-state flow pro=
cesses.

According to the first assumption, the effects of viscosity in
producing a frictional pressure loss in the combustion chamber pas-
sages and losses in the flow separation at the nozzle end of the grain
will be neglected. This is not a serious restriction so far as exhibit-
ing the physical phenomenon is concerned. The second assumption is,
however, a limitation, inasmuch as experimental results show consid-
erable effect of erosion for long tubular charges. However, the re-
sults will be completely satisfactory for grains of short and medium
length, and not in serious error for long grains. The assumption of
a quasi~stationary analysis is quite adequate so long as the periods of
pressure and velocity variation are long with respect to the stabiliza-
tion time of the chamber - nozzle system. Other specific assumptions
made in the course of analysis will be noted as they are made.

The idea of the following analysis is simply one of relating the
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conditions within the tubular chamber of the rocket to those of an e-
quivalent rocket with uniform pressure along the grain, and then
utilizing the results of the previous analysis. This process will be
divided into two main parts, that of relating the nozzle end pressure
and mass flow to those of the previous analysis, and finally relating
the effective combustion-chamber pressure to the front end pressure
from which the burning rate of the propellant is determined.

Let P. and TC be effective chamber-pressure and stagnation-
gas temperature, respectively. Then from the nozzle analysis, the

mass of gas passing through the nozzle is

w2 (1Y "’RTC)PcAt' (4. 34)

The value of Tc is a known constant of the propellant combustion pro-
cess. However, the effective value of P, is not known. If it is as=-
sumed that the gas flow from the grain port outlet to the nozzle is a
reversible adiabatic process, then the effective value of P, is simply

the stagnation pressure corresponding to the velocity v,. and pressure

N

Py The velocity VN satisfies the relation
2
Veg & ZCPTC(I - TN/TC | R (4. 35)

and because the process is adiabatic and reversible, the pressure ra-

tio PN/pc may be used.
2 _ (v-l)lv)
VN T ZCPTC (1 & (pN/pC) . (4. 36)

Clearly, the mass flow through the grain port is

m (4. 37)

pNvNAP g
where Ap » the port area, is the entire area accessible to the flow at

the nozzle end of the grain. Utilizing the isentropic feature again, the
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density PN ™Y be expressed as

pnlpe = ey/m )Y, (4. 38)
so that the mass flow may be written as
m = MY = p_/RT Ip )Y 4.3
= pCvNAp(PN PC) = (pC R C)VNA'p(pN pc) g (4. 39)

Now employing the value of the velocity at the nozzle end from equa-

tions (4. 36), the mass flow is just

m - Delp (P _ZY_( °N (Y'l)/yj.

RT P. e
\ c

By continuity, this mass is equal to that flowing through the nozzle,

(4. 40)

vt

Pc

described by equation (4. 34) in terms of the effective chamber pres-

sure. Equating these two relations, it follows that

A Py /Y Py (Y-1)/vy
t . 1N S )
A r(pc) -1 {50! (4. 41)

where At/Ap is a known geometric factor. Hence, equation (4. 41)
gives the ratio of the grain nozzle end pressure to the effective cham-
ber pressure, although the relation is implicit.

In any actual design, the pressure ratio pN/pc is not far from
unity, so that within the accuracy of the analysis, certain approxima-
tions may be made. Considering the right side of equation (4. 41), it
is obvious that the value of this expression is determined by the term

1 - (PN/pC)(Y_l)/Y which is very sensitive to the value of the pres-

)(1/‘{)

sure ratio. The term (pN/pC outside the radical will not be in-

fluential in the calculations. By writing
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1

2 2
roa /A . =1

2/y (y=1)/vy
= yi-\{l_ (1+(pN/pc - 1)) 1= (1 w (1= PN/PcD

Each of the terms including the small term (pN/pC - 1) may be ex-

(o /p )Y 2L (1-(pN/pc)“"”’Y)

panded in a binomial series which, retaining only the first power of
the small quantity , becomes
A 2
2 2 5 P o) P p
r (IE)%—_JIL[H_(_N-l)]V—l(l_—N) Bl wen) o (443
P Y ¥ P, Y P, 2,
The pressure ratio pN/pC is then approximately

fp s 1 FZ(A/A)Z (4. 43)
PN/Pe ™ 1= W/ 5y - :

In terms of this nozzle end pressure, the mass rate of flow
from the nozzle, and hence that from the grain port, may be approxi=

mated as

L PrA (4. 44)

Im =~ E)
.‘f RT 1 = (At )Z
g Tz ISTP

where use has been made of equations (4. 34) and (4. 43). If the mass

flow may be expressed in terms of the linear burning rate, r , as

m = rppAC 5 (4. 45)

then, by substitution into equation (4. 44), the pressure at the nozzle

end of the grain is expressed as

rp A +RT. (1 = I0%A JA_)%)
Py B it £ LA - . (4. 46)
N I‘At

Here, pp denotes the propellant density and AC the total combustion

surface of the propellant grain. Eguation (4. 45) is an approximation
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in that the gas being stored in the combustion chamber due to the re-
duction of propellant volume is neglected. The correct expression for
the mass ejected from the nozzle is clearly

m = rA (o -p) (4. 47)

where p is the density of the propellant gas generated by combustion.

The actual value of the nozzle end chamber pressure, Py ?
may not be determined from equation (4. 48) because of the unknown
linear burning rate r. This burning rate is not simply related to the
pressure Py because the burning rate is increased above the expected
value due to the erosive effect of gas velocity past the propellant sur-
face. The only point at which the burning rate can be calculated is at
the front end of the grain where the gas velocity vanishes. Since the
burning rate is assumed constant over the entire grain, the value
found at this point will hold everywhere. Therefore, the pressure Pg
at the front end of the chamhbher must be computed.

The difference of pressure between the two ends of the propel-
lant grain is caused by the continuous production of gas along the flow
passage and the consequent acceleration of the gas along the constant
area passage. In order to investigate this phenomsznon. equations of
continuity and momentum must be developed which apply to a flow of
varying mass. If p and v are the local gas density and velocity, re=-
spectively, then vap would be a constant value were it not for the gas
generated at the combustion surface., However, considering a section
of length dx along the direction of flow between the planes at x and

x+dx , the change of mass flow between these two planes is
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d(pvAp) (4. 48)

This may be expressed in another manner by considering the mass of
gas generated by the burning surface. The mass added to the flow per

unit length is then
Por Ac
L

(4. 49)

Consequently, the gas added to the flow may be set equal to that gen-

erated by burning over the length dx to give

d(prAp) = f"’z_"’q‘ dr (4. 50)

which is the extension of the one-dimensional continuity equation for
systems with mass addition. The momentum relation may be devel-
oped in a similar manner. The momentum change across the two

planes is easily expressed as

d(prids) (4. 51)

which accounts for both the effects of velocity change and mass addi-
tion. This change of momentum is accounted for by the pressure force
between the two faces

- A;o dﬁ (4. 52)
and any component of momentum in the direction of flow possessed by
the combustion gas from the propellant. It will be assumed that the
escape from the propellant surface is such that no mean momentum is

contributed to the gas stream. Then the momentum relation is
d (prtAp) = - Ap dp (4. 53)
It will be assumed further, in good agreement with known results,

that the stagnation temperature of the propellant gas is a fixed quantity
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cpTC and is relatively independent of the pressure or propellant tem-
perature. Then the energy equation which is appropriate to the gas

flow is

ER r ~
Fries-5 - ST (4. 54)

Of the three equations defining the flow {(equations 4. 50, 4. 53, and

4. 54), the first two may be integrated directly starting from the front
end of the propellant grain. At this point, the pressure is Pp» the
velocity of the gas vanishes (VF= 0), and the value of x will be chosen

x=0. Then the continuity equation integrates to
A, = A, £ 4.55
'PV- P ‘FP r ¢ L— ( ° )

expressing the evident fact that the mass of gas flowing by a cross
section taken at the ordinate x is equal to the mass of gas generated
by propellant burning from the point x to the chamber front. The mo-

mentum equation may likewise be integrated to give

J‘N’""Ap tos AP {)",r _ 70) (4. 56)

where advantage has been taken of the fact that the momentum vanishes
at the grain front. Then equation (4. 56) says simply that the entire
gas momentum is generated by the difference between the local pres-
sure and the pressure at the grain front. To summarize, the relations
which will be employed in investigating the distribution of pressure
along the grain face, and in particular, to find the front end pressure,

Py » are

prie = forA. L s, B

§rrd, x An (5 36
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ot A -l S~ (4. 54)

Now from equation (4. 56), the term pvz is just

Fre o= [ 7or - 70) (4.57)

while the local gas density itself may be found by squaring the continu-
ity equation (4. 55) and dividing by the momentum relation (4. 56).

This gives

2
(fprAc) Ey:
pe ontel g o
Ap %= P

The momentum per unit area and the local gas density may now be

employed to eliminate the velocity and density terms from equation

(4. 54), the energy relation. Making this substitution, it is found that

A ¥ - (4. 59)

/ 2 2
Frr)s X e % (fer Q)(E) 515
This expression gives the local pressure p in terms of the pressure at
the front of the grain and known parameters inasmuch as the burning
rate r is determined by the pressure Py - Reasoning in the opposite
manner, this equation may be employed to give the pressure Pp in
terms of a known local pressure. The local pressure which may be
e mployed to this purpose is that at the nozzle end of the grain PN
which occurs when x = L., Making this substitution and collecting terms

in the form of p/py ,» it follows that
F'N

) 1 i (4. 60)
() AE) [ I v wear (12 &) < o

This quadratic is easily solved for the pressure ratio PF/pN to give
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PF / * d 2
il = - — — VE W)
o s | ey (v / e A, (4. 61)

where the choice of sign for the radical is obvious.

This solution is merely formal, however, inasmuch as the pro-
pellant burning rate still depends upon the chamber front pressure.
However, this form has the advantage of allowing an approximation by
means of which the solution to the complete problem may be obtained.
Consider the physical significance of the second term in the radical,
This may be written

() e (22 )’

Pn AN

Now since Py is approximately the chamber pressure, it follows

closely that

so that the above expression may be written approximately

1 5

("P r AC) fpl‘ A( =

LEPwul o oA Ai?q% )
SEYRT. Ay

The quadratic (pprAc)/(pcacAp) has a simple physical significance by
means of which its value may be estinated. The numerator is the

mass of propellant consumed by the combustion process per unit time;
the denominator is the mass which would flow through the propellant
port area A.P if the gas moved with the sonic velocity of the combustion
chamber. Usually the mass flow through the port passage (equal to that
generated by the propellant combustion) is such that a binomial expan-

sion of this radical, retaining only the first order term, is appropriate.

To good accuracy
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% 7 r Y-+, forA tpr A
-;-a—:::-———--t-——- +(__._) e / ) I+ R, ) (4. 62)

(O U o P A

It should be mentioned again that this relation does not give Pp ex-
plicitly in terms of Py and known constants because the burning rate
r still depends upon Pp-

Now the result can actually be put into a convenient form most
easily by referring to the approximate value of the nozzle end pressure
Py which is given by equation (4. 46). By substituting this value of Py
for its equivalent in the denominator of the second right hand term of

the above equation, it follows immediately that

dail
7. 77 A ’ Ay 2
- % [t _______}__f / - - ) A Vi /'r‘e/_:q__fj (4. 63)
T A { 1= E Y0 "

4
Here, terms of order (At/Ap) and higher have been dropped because
At/Ap is not greater than 0. 5 as a rule. It is conventional to use as
parameters the area ratios

KI = AC/Ap
KN = Ac/At

both of which are greatly in excess of unity., The ratio of the front to

(4. 64)

nozzle end pressures may be expressed in terms of these ratios as

z A )
Pw

Clearly, this reduces to the result that Pp = PN~ P, for the restricted
burning rocket since the ratio KI/K'\I is quite small,and its square may
L

be neglected.
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Through application of this relatively simple relation between
the front pressure and nozzle end pressure, the absolute value of the
grain front pressure may be calculated directly. Solving equation
(4. 65) for the nozzle end pressure Py ¢ entering the result in (4. 46),
for Py ? and writing the propellant burning rate as r = a,pFn , it follows

that

7z , 47":"1‘;»4:/:'2—5’/ e _A_{;*/
/fﬂ‘/_;_":_)" Ay £ —a/"//(,,)_ (4. 66)

This may be solved for the grain front pressure, again neglecting

quantities of order (KI/KN)4 and higher;

/“f’r YE!, /\/n/’/*—"/" / /// (4. 67)

Consequently the value of P is now known directly in terms of rocket
and grain geometry and the propellant properties.

The reliability of the performance calculation may be improved
by employing the experimental value of c for the propellant used.
Usually, the experimental value of c - is about 90 per cent of the the-
oretical value, that is, the effective combustion temperature is in the
neighborhood of 80 per cent of the calculated value. Then it is appro-

priate to employ, where experimental values are available,

s [ap,c PIPA’NJ'"// ’/7//:///177

If the effective combustion chamber pressure is defined as
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L
¥ s
/.a/of’ Céx;a A//V./ " (4. 68)

then the pressure at the front end of the propellant grain may be ex-

pressed as a correction to this pressure by writing

o = ;o"/-/ ;:/-;-) j_/ (4. 69)

Aside from the chemical properties of the propellant, the value of pcl

depends upon the nozzle area ratio, while the pressure at the front end
of the chamber depends upon both the nozzle area ratio I’CN and this
internal area ratio KI -

The pressure distribution along the propellant grain may be
calculated from equation (4. 59) using the now known value of Pg - Re-

grouping the terms in equation (4. 59) in the form

bt/ ¢ / ., / ‘f&’lfi E] L7 (4.70)
Sl s fom e N - 5

the resulting quadratic expression may be solved to give

3 (4.71)
I NN T S ‘.‘i‘—’ 2Cp T, fo” }
2 " oves vt v 2 A,.

Bv the same argument used in connection with the simplification of

equation (4. 61), it follows that to a good approximation

L x /- Pr/‘&:i)/“ VAN ){;}(‘“/ (4. 72)

Then, in terms of the effective chamber pressure P » the local pres-

sure on the grain surface is
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Y (K 7[ ‘_Kie—z‘/
Y * [Hz(/-w) KN) /- KN)(L} (4. 73)

<

This result indicates that the local pressure and, in particular, the
pressure at the nozzle end of the grain may or may not fall below the
effective chamber pressure depending upon the value of n, the ex-

ponent in the propellant burning law.
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5. LIQUID PROPELLANT ROCKET MOTORS

Propellants and Propellant Evaluation

A chemical propellant system consists of an oxidizer and a
fuel; the oxidizer consists mainly of atoms such as oxygen, chlorine,
and fluorine; the fuel consists mainly of such atoms as hydrogen,
lithium, beryllium, boron, carbon, sodium, magnesium, aluminum,
and silicon. If the oxidizer and the fuel have no chemical affinity at
normal temperature and can be mixed to form a single liquid, we

have a composite monopropellant. If the fuel and oxidant atoms are

both joined in the same molecule, we have a simple monopropellant

such as propyl nitrate. In this case, the exothermic reaction consists
in a decomposition, such as occurs with hydrogen peroxide or hydra~
zine.

Usually, howeaver, the liquids (oxidizer and fuel) are injected
separately, and such a system constitutes a bipropellant. When the
two components of a bipropellant react immediately upon contact with
one another, the propellant is denoted hypergolic. The most usual
oxidizers available for bipropellants are:

hydrogen peroxide, HZOZ
nitric acid, HNO

3

liquid oxygen, O2

ozone, O3

tetranitromethane, C(NOZ)4
nitrogen peroxide, NZO4

fluorine, FZ,
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oxygen fluoride, FZO
chlorine, Clz
chlorine trifluoride, CIF3

nitrogen trifluoride, F3N
perchloryl fluoride, C103F

fluorazine, NZF4

The fuels that can be used along with these oxidizers are very numer-

ous; they include compounds of:

carbon: saturated and unsaturated hydrocarbons
amines
alcohol

boron: boranes Ban+4

nitrogen: ammonia
hydrazine

hydrides: HLi

organometallics: (C2H5)3A1

Consider first those fuel elements which react with a simple
oxidizer such as oxygen itself, as shown in Fig. 5.1. The elements of
greatest interest are those which occur at the center of the period, the
maximum of energy being obtained from beryllium and aluminum.
Combustion temperatures (Fig. 5. 2) follow virtually the same law,
these same elements yielding the optimum. High temperatures can
also be obtained from certain heavy metals, such as thorium burning
in oxygen (47OOOK) and zirconium (48000K), but the resulting mole-

cules are heavy and the choice is limited to the first, second, and
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Fig. 5.1. Available energy E of the light elements associated with
oxygen (stoich1ometric mixture and element taken at the standard
temperature of 298, 16°K).
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Fig, 15, 2 Adiabat1c combustion temperature (oxidizer: oxygen. p =
1 atm, = 298, 16°K).
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third periods. Comparing the elements with one another by reference
to the available energy gives only a first approximation,and it is bet-
ter to base the comparison on the specific impulse. This is illustrated
by the following table, which compares fluorine-hydrogen and oxygen=-

hydrogen at maximum of performance.

Propellant (liquid) : F2+H2 OZ+H2

Available energy of stoichiometric

mixture (kcal/kg) 3110 3600
Optimum equivalence ratio 3. 33 2.27
Temperature (“K) 3323 2760
Molecular weight 10. 01 9.0
Specific impulse (sec) for p /p_ = 20/1

(equilibrium flow) Sl 364 350

Although the hydrogen-oxygen system has higher available energy

than the hydrogen~fluorine system, its performance is lower. Such
differences are due to dissociation phenomena which depend on the na-
ture of the molecules formed at the end of combustion as in the present
case where water (HZO) is more easily dissociated than hydrofluoric
acid (HF).

The available energy of the (fluorine-lithium) propellant is
higher than that of (fluorine-hydrogen), but calculation indicates the
specific impulse of (FZ+Li) to be lower than that of (F2+H2). This
difference is illustrated in Fig. 5.3. Even though the combustion tem=-
perature is higher for lithium than for hydrogen, which is in accord-
ance with the classification based on available energy, the fact of the

molecular weights being markedly lower in the (F2+H2,) system ihan in
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Fig. 5.3. Comparison between the performance of the propellants
(fluorine-hydrogen) and (fluorine-lithium): p = 20 atm, expansion
ratio = 20/1. 8
the (F2+Li) system explains the result.

This observation serves to stress once again the necessity for
calculating specific impulses when comparing propellants with one
another.

The mixture ratio ¥ or the equivalence ratio é* may modify
the specific impulse. For specific impulse, the optimum lies in the
direction of rich mixtures (‘i’* > 1) and its position depends on the
elements present. The maximum depends strongly on the proportion
of hydrogen in the mixture., On the other hand, the highest tempera-~
ture is obtained close to the stoichiometric mixture, but with @*> 1.z
This fact is shown in Fig. 5.3, which shows that for the propellant
(FZ+H2) the maximum of specific impulse occurs around @* = 3.

In general, the specific impulse increases with the combustion
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pressure, but in order to isolate its significance, it is necessary to
assume a constant expansion ratio, that is, that the nozzle has a cer=-
tain geometric form. In Fig. 5.4, the characteristic velocity is seen
to be insensitive to changes in chamber pressure, for when this pres-
sure is multiplied by two, the characteristic velocity increases by
only one per cent, this due to a slight increase in combustion temper-
ature with pressure.

It has been shown that the specific impulse corresponds to the
product of two terms: the characteristic velocity and the thrust coef-
ficient:

L - %C.‘f

Although the characteristic velocity is not greatly affected by the

(5. 1)

chamber pressure, the thrust coefficient depends more sensitively on
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Fig. 5.4. Variations of the characteristic velocity and specific im-~
pulse as functions of chamber pressure. Propellant F2+H,; expansion
ratio 140/1 (8™ = 1). =

the expansion ratio.

The specific impulse can be appreciably imporved by appro-

priate choice of the expansion ratio or the nozzle geometry. Figure
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5. 5 shows that the specific impulse is increased by over 30 per cent
when the expansion ratio changes from 10 to 100. The gain is due

mainly to recombination during the expansion. To show this effect,
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Fig. 5.5 Variations of specific impulse as a function of the expansion
ratio (stoichiometric mixture; - 20 atm).

two extreme assumptions have been considered, namely frozen and
equilibrium flows. The difference between these becomes marked
when the expansion ratio increases. Therefore, it is necessary to
specify the equivalence ratio and the expansion ratio when evaluating
the specific impulse of high energy propellants.

Although propellants may be compared on the basis of specific
impulse, such classification fails to account for the volume required
by the propellant-powerplant combination. To account for volumetric
requirements, the parameter which should be used for comparison is
the volumetric specific impulse Is 6, where & is the density of the

propellant.
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PERFORMANCE OF THE PROPELLANT (F2+HZ)
iy ™ 20, 4 atm.

P =] o —. 3.8
pe = 1 atm pe = 0.1149 atm pe =1 atm pe = 0.1149 atm

Param-

eters  Frozen lﬁ?—::;n Frozen lgzz";;n Frozen !5;?:“:;’, Frozen lﬁg::r-n

Jy(sec) 312.8 3415 363.4 4207 351.7 3646 411.0 430.7

¢*(m/sec) 2221 2343 2221 2343 2489 2558 2489 2558
Cr 1.381 1.429 1.604 1.761 1.386 1.398 1.619 1.651
4.

3.049  3.987 12.25  21.30 3.154  3.384 13.00 14.24

T.(°K) 2074 3456 1112 2749 1597 1882 884 1075

The performance of different oxidizers will depend on the fuels
associated with them. Figure 5.6 shows how IS and 156 compare
when different oxidizers are used with a fuel containing carbon and
hydrogen, such as kerosene of the general formula CnHZn , or with a
fuel containing nitrogen and hydrogen, such as ammonia. The oxidiz-
ers with a fluorine base give the highest performance, but it should be

remarked that the fluorine~ammonia propellant is better than the
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Fig. 5.6. Comparison between several oxidizers used with two fuels
(frozen flow, p. = 20 atm, pc/pe = 20f1).
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fluorine - kerosene system even though, when the fluorine is replaced
by oxygen, both propellants have about the same specific impulse.
This is due partly to the strong dissociation of molecules based on

fluorine and carbon such as CF4, CZFZ’ CF,, ... so that energy is

3
derived solely from the combination of hydrogen with fluorine.

It is advantageous if the curve of specific impulse as a function
of the equivalence ratio is flat near its maximum, for then any varia-
tions that may occur in the thrust and in the duration of combustion as
the result of possible changes in the mixture ratio will be minimized.
As the oxidizer and fuel have different specific gravities, the maximum
values of IS or of ISB do not coincide with the same values of the mix~
ture ratio. In most cases, the maximum of IS6 , by comparison with
the maximum of Is » occurs closer to the poorer mixtures. It is well
to have available, for each propellant, under standard conditions of
expansion, three curves showing the theoretical varuations of IS , of
155 , and of the temperature at the end of combustion expressed as
functions of ¢ or ™ . Such graphs (similar to that shown in Fig. 5.7)
constitute a characteristic diagram for the propellant.

The comparisons have so far been based on the theoretical
performances of the propellant. Therefore, it is important to know
how closely the results obtained experimentally approach these theo=-
retical performances. Three quality factors may be introduced to aid

in this comparison:

J° *——-—(/Ilz;jﬂp 5 £ , [ (:/¢Xﬁ , £ m/ f" exp
s (C e ( Celpa
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Fig. 5.7. Performance of a propellant.

these being related by the relation

3‘5 = ff’ 'fé
The divergence between the theoretical and experimental specific im-
pulse is measured by the parameter gs ;for the usual propellants,
the parameter E‘F depends mainly on the geometry of the nozzle and
only slightly on the nature of the propellant, This being so, compari-
son between propellants is based in fact upon Eb . Figures 5.8 and

5.9, obtained with the propellants HNO,-U. D. M. H, and OZ—H show

Z.l
that the values of gb lie between 0. 9 and 1.0,
For more energetic propellants or for longer nozzles in which

recombination reactions are possible, it is necessary to base compari-

sons on E‘s . In this case, the recombination modifies the values both
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of gb and of E’F'

The Combustion Chamber

The processes of vaporization, diffusion, heat transfer, com-
bustion, etc. take place successively in the chamber once the propel-
lant has been injected until complete combustion has taken place.
These processes are so complex that it is difficult to follow them in
any detail. On entering the combjstion chamber, the oxidizer and fuel
are suitably atomized and mixed. If the oxidizer and the fuel have no
chemical affinity for each other in the liquid state, atomization and
mixing will be carried out to as high a degree as possible in order to
obtain very rapid vaporization of the liquids and formation of a homo=
geneous gaseous phase ready for combustion. If the oxidizer and fuel,
however, react in the liquid state (hypergolic propellant), this exo-
thermal reaction will be used to vaporize the mixture and to bring
about as quickly as possible the gaseous phase preceding ignition.
Schematic diagrams showing possible processes taking place are
shown in Figs. 5.10 and 5.11. From the quantitative point of view, it
is difficult to determine the time required for each process. It is pos-
sible, however, to determine the characteristic time intervals re=-
quired for certain partial or complete processes, and the characteris-
tic volume necessary for obtaining complete combustion.

Consider the change of specific volume v from the time the
propellant enters the combustion chamber until the burnt gases are ob-

tained. Consider first the case of concentrated combustion, Curve I,

Figure 5. 12.
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Fig. 5.12. Variation of the specific volume in the combustion cham-
ber as a function of time.

At the origin time (point A), the propellant enters the combus-
tion chamber in liquid phase. It is atomized; oxidizer and fuel are
then mixed, and if we assume a certain delay before the chemical phe-
nomena and vaporization take place, the change in volume starts at B.
The increase is at first slow but then becomes more rapid. After
point C, the combustion reactions start and continue until point D, the
nozzle entrance. In this case we can assume:

(1) That the propellant does not burn immediately on entering
the combustion chamber, but only after a certain time interval known
as the ignition delay T, during which the particles of oxidizer and fuel
are suitably mixed and absorb the amount of energy necessary to initi-
ate combustion.

(2) That the gases resulting from combustion stay during a
certain time trg in the combustion chamber until combustion is com-
plete.

The processes undergone by the propellant are thus defined by
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two characteristic times:
- the time TS during which the liquid phase predominates;
- the time trg during which the gaseous phase predominates.

The total residence time is, therefore, equal to:

Z‘I' = 7;""!'7

Consider now the case of distributed combustion, Curve II, Fig.

5.12. We assume that the chemical reaction first starts in the liquid
phase and continues in the gaseous phase when the propellant enters
the chamber. It is no longer possible to distinguish TS and 1:rg H
nevertheless, it is possible to define a time constant due to the com-
bustion TC and a time constant 6 for the chamber. If, for example,
we assume a first-order chemical reaction to take place in the propel-
lant, T is equal to the reciprocal of the specific reaction velocity,
and this time is defined by the tangent to the exponential curve at time
t = 0. The time constant for the chamber is equal to the residence
time of the gaseous mass. It is thus possible in both cases to intro-
duce two characteristic times, '1'i or T for the combustion, and trg
or f for the chamber,

The minimum volume required for satisfactory combustion
must take into account Ty or TC , which we shall refer to by the letter

T , and the residence time trg . To define the minimum volume we

can write

Lh‘
—_— = /f: + //Z(r
clif ;{ TJ < ,} (5. 2)
S
where L 1is the characteristic length:
L* _ Vc _ volume of the chamber (5. 3)
- -l—t - nozzle throat area ' i
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It is, therefore, necessary to know fl('r) and fz(trg) in order to de=-
termine L* , the characteristic velocity c* being known. To a first
approximation, the characteristic time T can be neglected, so that
the residence time trg can be defined as the ratio of the mass of gas
m residing in the chamber to the amount of propellant injected m

per unit time:

rm,
z‘,-; i (5. 4)

According to the elementary theory, the assumption is made that under
steady-state conditions, an average specific mass TJ-C holds for the en-
tire volume Vc of the thrust chamber, including the volume of the
combustion chamber and the volume of the convergent section, and is

equal to the specific mass of the burnt gases. Then

£., = EV‘-‘ 'P‘—-c"'"*

5.5
2 7 7 £ (5. 5)

and we obtain

£ldy) = ;’ ci*""" (5. )

Assuming that y is constant throughout expansion, we obtain

e 4+ _ o[l 2N 5 _ B (5.7)
e wE = ¥ 5o —t— o ST S
fc C ¥ fC fa

(S b
relating the characteristic velocity ¢ , the characteristic length L ,
and the residence time of the gaseous mass trg . Taking the value of
y tobe 1.2, T' = 0. 6485, and assuming Fc =P it follows

* ¥
£
tpy = R S Y = (5. 8)
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s

Thus, for a motor having L. = 2 m and ¢ = 1500 m/sec, trg =
3.17 x 10-3 sec , and usually 2X 10-'3 < trg < Tx l()-'3 sec. The resi-
dence time trg depends on the nature of the propellant and the injection
system. With the aid of chambers having transparent walls, it can be
shown that this residence time varies from 2 to 7 milliseconds, depend-
ing on the type of injector.

To a first approximation, therefore, it is possible, for a given

type of injector and a given propellant, to calculate the volume of the

chamber using the relationship:

; 2 2 W"Z‘_z . 5.9
i - Zl"ﬂ/_’c 7% /{73/% K/?M: R4

where F is the motor thrust and K, K' are constants. In determining
the minimum volume, however, the characteristic times Tt and trg
must both be taken into account according to the relation:

Vi = A C"‘[f,‘m) + % (z‘,-;)‘/ (% 10)

where fl is a function of the injection-pressure drops Apo and ApH
of the oxidizer and the fuel, the chamber pressure P » the nature of
the combustion gases and their temperature, the turbulence, and the
position and arrangement of the oxidizer and fuel jets. Examination
of high-speed films taken in combustion chambers with transparent
walls shows heterogeneous conditions of temperature, composition,
and velocity. There is no flame front in a plane perpendicular to the
axis of the chamber. On the contrary, what is actually seen is a
series of lum’nous trails in the longitudinal direction, which indicates

a stratified flow. It is even possible to detect products of combustion
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proceeding upstream and recirculation behind the injection zone, and
and generally the intensity of the transverse flow is not sufficient to
mix this longitudinal stratification. The intensity of this recirculation
modifies the effective volume of the combustion chamber and thus the
characteristic length necessary for complete combustion.

Instead of a characteristic time, one may consider a charac-
teristic length where the combustion process is observed in each point
x along the axis of the chamber with origin in the plane of injection.

The parameters representing the combustion process are then:

6. a , (x) = Propellant burnt at the abscissa x (5 ;)
m, )

m ; propellant injected

or another parameter which is equivalent to the above:

_ )
F; s _—————

C* o L) {5.12)

characteristic velocity at the abscissa x
characteristic velocity at the end of the combustion chamber

The classical method is to carry out a series of tests using motors of

different length and to measure in each case the characteristic velocity

*
¢ . In this way curves similar to those of Fig. 5.13 are obtained and

they determine the optimum length for the combustion chamber. These
curves are valid for a given propellant and a given injection system,
while the ratio

A .
_ ¢ _ chamber cross-section (5. 13)

Ee Kt - throat area

and the mixture ratio are constant. This optimum length, however,
depends on the mixture ratio. This is indicated in Fig. 5. 14 for the

propellant nitric acid-UDMH. It is possible to define a surface using
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Fig. 5.13. Variation in the characteristic velocity as a function of the
length of the combustion chamber.

the coordinates (L*, c*, 3}*), the top of which determines the geometry
and the optimum operating conditions of the combustion chamber. We
note in particular that the optimum performance shifts towards richer
mixtures when shorter combustion chambers or shorter characteristic
lengths are used. From the practical point of view, therefore, it is

‘necessary to carry out numerous tests in order to decide on the shape

52007
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&
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RS ¥ NITRIC ACID-UOMH.
&9

Fig, 5.14. Characteristic velocity as a function of characteristic
length L* and equivalence ratio (propellant: nitric acid-UDMH).
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of the combustion chamber giving optimum performance.
This length also depends on the nature of the propellant as in-

dicated below for various propellants:

nitric acid-hydrocarbons 2 < L* %< 3 1
nitric acid-UDMH 1l 5 L* <2m
liquid oxygen=-ethyl alcohol 2,5< L>I< <3m
liquid oxygen-kerosene 1.5 < L* < 2.5 m
fluorine-ammonia I = L* < l. 5m

The ratio €. defining the optimum cross-section to be given to the
combustion chamber depends above all on the size of the motor and
decreases as the thrust of the motor increases. In early practice,
motors had values of € between 4 and 15, while current practice
tends toward longer chambers with 1.2 < €. < 4; for instance, €. = 3
to 4 (F =1 ton), B, = 2to3 (F =10 tons), B, ¥ 1.2to 2 (F= 100 tons).
The choice of €. is equivalent to giving a certain value to the flow rate

per unit area:

w . §r / (5. 14)

A [4 _—-ET Cf.c

Rocket Nozzle Cooling

The heat transfer between the combustion gases and the walls
of the chamber and nozzle takes place by convection and by radiation.

Consider a fluid at a high temperature moving along the wall of
a conducting body. At a point of the wall where the velocity and the
temperature of main flow are Vg and Tg , the wall temperature is

T, and the heat flow per unit area is ‘I>c
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If we assume an average specific heat at constant pressure Cp’ the

stagnation temperature Tto corresponding to the total enthalpy is

t

Tt Gt e

LCo
At the wall, the fluid generally has a temperature Tf slightly differ-

ent from the stagnation temperature T The difference between

tot *
Ttot and Tf is taken into account by a coefficient known as the local
recovery factor
-7 - 73
e Lo - —F (5. 16)
Tz0z - 73 Vg Vace

The local heat-<flow rate per unit area is proportional to the tempera-

ture difference (Tf - Tw) so that we can define a local film or convec-

2

4 = (5. 17)
7 - T

Since the fluid is motionless at the wall, the transfer of heat through

tion coefficient

the fluid film next to the wall takes place by thermal conduction.

Fourier's law gives an expression for the thermal flux and the film co-

efficient:
27
ﬁ = ﬁ 2 4 /d=° A,
. = - (5. 18)
7;- T 7; - 7w

k is the thermal conductivity of the fluid at the wall temperature and
y is an ordinate perpendicular to the surface. The study of heat

transfer in rocket nozzles involves the following dimensionless groups:
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X
O

Nusselt number N“ = T
Prandtl number R - Cp
*
Reynolds number /Qe = _.\E_V}£
/“-
Mach number M = Vz
a

where D is a characteristic length, y and p are the absolute viscosity
and the mass density of the fluid, and a is the local velocity of sound.
Analysis and experiments on heat transfer by forced convection
lead to relations of the type
Nw = g (Ko M F)
r = Fa (/3-, M 2‘)
Experimental results show that the recovery factor r depends upon

the Prandtl number,and in the case of a turbulent boundary layer,

AL S o

I (5.19)

The convective heat transfer coefficient h is given by the Nusselt num-

ber; in the case of a flat plate,
a8
I (5. 20)
tv2.0 B Z-0)

The length involved in the Reynolds number is the distance measured

Nu = 00296 Ko

from the leading edge of the plate.

Experimental studies on rocket motors lead to relations of the

type
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0.82_ 062/ 77 )77
Nu s ooz BR2% R4 (E) 21
e

in which the Reynolds number is calculated using the diameter of the
combustion chamber. The Nusselt number is sometimes replaced by

the Stanton number

S, ® B Na 7?"»?,-‘ (5. 22)
? L 1/;

In general, the determination of the heat transfer coefficient in a
rocket motor is an extremely complex problem because the values of
s P Cp, k vary considerably through the boundary layer. For this
reason, average values are often taken between these two extreme
temperatures, for example T = %(Tg+TW) , or use is made of T or
TW . Chemical reactions may also take place in the boundary layer,
and these can modify the temperatures; it may occur that dissociated
species recombine. Generally, the speed of reaction plays a second-
ary part in determining the mass concentrations of the different chem-
ical species and modifies the local film coefficient only slightly. The
heat liberated by recombination reactions appears as an additional
""enthalpy potential''. There may, in some instances, be a catalytic
effect due to the wall which causes local changes in the chemical com~
position. In many cases, the wall material sublimates or ablates
under the effect of the heat transfer; the mass addition leads to a re=-
duced heat transfer rate.

If, as indicated in Fig. 5.15, T is the temperature on the

w4,

wall in contact with the liquid and T 6 is the temperature of the liquid,

1

the heat flow rate per unit area is
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TEMPERATURE

Fig. 5.15. Temperature variation in the boundary layer.

7 (5. 23)
g« Lo Hylrs-7)
where h, is the coolant-liquid film coefficient. The laws determining

L

h, are similar to those for exchange between the gas and the wall, and
we get
08 0,93
Nu = 0023 ~, % (5. 24)

In this expression the values of (, cp, and k are generally calculated

at an average temperature in the liquid boundary layer

e

7 Pzl

The characteristic length D, involved in the Reynolds number and the

L

Nusselt number is defined by

Dy - +Ay (5. 25)
'z
where A{ is the passage area of the liquid and PL is the wetted per-

imeter. Some details of cooling passages are shown in Fig. 5. 16.
Under some conditions, the thermal flux may be such that the

temperature of the wall Tw{ on the liquid side is greater than the
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critical temperature of the liquid at the pressure considered. This
results in local boiling which increases the amount of heat that the
liquid is capable of absorbing. At higher temperatures, a vapor film
is formed in contact with the wall. Near the boiling point, one obtains
results similar to those of Fig. 5. 17, which shows the change in q/A

as a function of (TW -T%). In general, there exist the four conditions

1
represented in Fig. 5. 18 which correspond to:

(1) convection (liquid-wall),

(2) the presence of nuclei in contact with the surface and
brought to the boiling point; the formation of vapor bubbles,

(3) the presence of a partial gaseous film,

(4) the presence of a gaseous film over the entire surface.
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Fig. 5.18. Typical heat-transfer curve.

For liquid-propellant rockets, either the oxidizer or the fuel,
or both, may be employed as cooling agents. The liquid is circulated,
either through a jacket or in a helicoidal channel covering the surface
of the chamber.

The conventional design for a combustion chamber having a
double wall is shown in Fig. 5.19. The liquid enters at the end of the

divergent section and is guided along the wall of the nozzle by means
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of a jacket leaving a passage for the fluid. The passage area is smal-
ler at the throat in order to increase the heat transfer in this region.
The liquid then passes through the cylindrical combustion chamber and

and leaves on the side near the injection system.

t LIQUID COOLANT _

Fig. 5.19. Circulation of the coolant liquid parallel to the hot gases.

More recent designs of regenerative cooling systems use a
bundle of tubes in which the coolant circulates under pressure. Such
a solution is represented schematically in Fig. 5. 20. The cross

section of each tube has two flat parts and two circular parts. Such a

=—— COOLANT

HOT GAS 1A

Q00000

heated surface

600
625

650
675 (°F)
700

ALUMINUM TUBE FINNED ALUMINUM TUBE
Fig. 5.20, Circulation of the coolant liquid parallel to the hot gases
(tube bundles).
cooling system is very efficient since the metal between the gas and
the liquid is very thin. It is difficult to manufacture a combustion

chamber of this type, because it is necessary to weld the tubes in
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such a way that they withstand the pressures and thermal stresses en-
countered. In addition, the cross section of the throat determines the
number of tubes so that it may be necessary to use tubes of varying
cross sections. For the divergent nozzle, a V-shaped arrangement
must be adopted such that it covers the entire surface, this being par-
ticularly important when the area ratio is large. Whatever the case,
it is possible with this method to accommuodate any chamber and noz-
zle shape, and the weight saving over conventional methods is con-
siderable.

Use may also be made of a helicoidal thread or rib to construct
coolant passages. The wire is welded onto the wall, and the diameter
of the wire fixes the distance between the two walls within which the
coolant circulates. If a thread is machined in the wall of the chamber,
the temperature in the metal is not uniform. The thickness of the
thread must be such that it does not disturb the transmission of heat to
the wall and there is no hot spot on the wall at the thread.

The liquid employed in the cooling circuit should not exceed its
boiling point, or at least the temperature of the wall Tw should re-

£

main below a certain value, above which nucleate boiling takes place.

)

We can thus define the limiting temperature (T and for Tw >

£

(¥

wi'g ?

(Tw{;)‘f» , the thermal flux @t increases abruptly; this transition point

is associated with a value of §t equal to @u& » which is the heat flux at

the upper limit of nucleate boiling. This value of éuJL can be used as a
criterion to calculate a cooling efficiency of the propellant. In general,

q’u(, passes through a maximum for a certain pressure and hardly var-

ies when the pressure lies between 0.3 and 0. 7 times the critical
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pressure. It decreases when TL increases, increases with the ve-
locity of the liquid V. A true comparison of the different propellants
cannot be made simply by considering the properties of the liquids.
Bartz has compared them from the theoretical point of view by using
them in a standard motor having the following characteristics: a
thrust of the order of 25 tons (metric), a chamber pressure of 20
kg/cmz, a characteristic length of 100 cm, a throat diameter of 31
cm, a convergent area ratio Ac/At: = 2/1, adivergent area ratio
Ae/At = 7/1, a convergent half-angle of 30°, a divergent half-angle
of 150, and a pressure drop in the cooling system of 5. 25 kg/cmz.
The table on page 176 results from the analysis.

In the process of film cooling and sweat cooling, a liquid or
gaseous film is introduced between the combustion products and the
wall to form a thermal barrier. In the case of the liquid, the film
vaporizes and may play a part in the combustion. In the case of a
fuel, the richness of the mixture in this region reduces the combustion
temperature and hence the thermal flux penetrating the wall., This
film is obtained either by injecting the fuel through carefully situated
orifices in the wall (film cooling) or by using the transpiration of one
of the liquids through the porous material constituting the chamber
wall (sweat cooling). Film cooling has been the most favored, and in
ligquid-propellant rockets, the fuel injection orifices are distributed in
a cross section of the chamber, either near the injection head or in the
convergent section of the nozzle,

In solid-propellant rockets, the nozzle might be protected by a

gaseous film produced from the combustion of a special propellant



Sections J 2 3 4 5 6 7 8 9 10 1 12 13 14
(Twg)2 °K 728 752 883 1065 1155 1079 1005 941 884 830 783 738 698 662
(Twg)a°K 732 727 881 1112 1189 1101 1014 941 880 833 783 740 709 684
@, calfcm? - sec 42.05 46.0 82.12 136.4 157.9 139.1 121.1 106.6 949 855 76.5 68.9 62.7 57.8
@, cal/cm? - sec 58.2 60.7 93.9 145.2 163.9 144.7 126.1 111.1 98.76 88.9 793 71.1 643 58.9
- 7 TABLE 15
1 2 3 4 5 6 7 8 9 10
Coolant liquid Other liquid — priviure T @, P 5 Vi T; Du TR (T
ratio °K  calfem? - sec kgfsec cm m/sec °K calfem®-sec (26.2alm) °K
a RFNA UDMH 0.40 2664 228 71.67  0.277  18.53 355 344 453 390
b Corporal SFNA 0.33 2743 198 26.90 0.182 15.03 390 320 578 454
¢ DETA SFNA 0.33 2671 196 26.0 0.184 17.86 374 281 666 425
d 50An50FA SFNA 0.33 2753 192 27.03 0,183 1524 386 211 633 47
e JPs N204 0.33 2892 192 25.31  0.181  19.32 387 205 627 449
S NHs RFNA 0.45 2347 218 32.07  0.156  22.10 306 207 333 333
g Isopropanol SFNA 0.30 2636 205 25.08 0,189  19.2 370 176 561 418
h NH;3 O; 0.71 2712 255 38.69 0.175  23.77 306 227 333 330
i JPs 02 0.44 3098 235 28.21  0.194  20.45 409 201 627 464
j CIFs NoHs 0.4 3267 228  65.77 0.232  17.62 374 166 399 424
1 = mixture ratio 6 = velocity of the liquid at the throat
2 = 909% of the theoretical value 7 = temperature of the liquid at the throat (inlet temperature 311°K
3 = thermal flux at the throat for all substances except for NHj3, for which we have 273°K)
4 = total coolant flow rate 8 = upper limit of heat flux with nucleate boiling
5 = thickness of the cooling jacket 9 = saturation temperature.

~gLT»
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Fig. 5.21. Cooling systems.
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Fig. 5.22. Wall protection by film cooling.

having a relatively low combustion temperature. The thermal flux @t

to the wall is modified by this mass addition. Fig. 5.23 shows that @t

changes slowly when the flow rate n’lc is low (main flow rate rhm),
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since @t decreases linearly with f = rx'ac/n'rlm up to a certain value of
f of the order of 0. 10; after this, @t remains practically constant.

The effect is greatest in the section near the throat.

° water injection
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Fig. 5.23. Transmission of heat to the wall as a function of the ratio
of the coolant flow to main flow.

These results show that for the film cooling to be efficient, it
is necessary to inject up to 10 per cent of the main fuel flow with a
corresponding decrease in overall specific impulse.

One of the problems which arises when using film cooling is
the stability of the film. Slight disturbances are observed, their
wavelength being of the order of 10 times the thickness of the film, and
these disturbances are independent of the liquid flow. These disturb-
ances decrease when the Reynolds number for the gaseous flow in-
creases. If the velocity of the liquid at the injector exit exceeds a
certain critical value, the wavelength of the disturbances increases

and droplets start to be carried off by the gas flow.
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Consider the sweat-cooled plate represented in Fig. 5.24: the

flow velocity is Vx at temperature Tb ; the gas is injected at ve-

, b
locity Vy, - and is assumed to have the same properties as the main
fluid; the temperature of the wall is TW . The parameter character-
izing these two flows is )\ =(V3,ur//x‘ b) (i?e) B , the Reynolds number
being equal to Vx b‘ x/v . For different values of A , the values for

the film coefficients h and h_ with and without sweat cooling are

A= 0 0. 25 T 0. 375 0.5
h/hC 1 3 0. 282 0. 107

I
(@]
N
Nej
o

For low values of ) , h/hc varies linearly with ) , i.e., with the in-

jection velocity of the fluid in the porous surface.

V, b
1//
b .
0 POROUS WALL _Tw

Einssaxizs o
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Fig. 5.24. Sweat cooling.

Propellant Feed System

It is the task of the feed system to supply the liquid-propellant
motor with the amounts of propellant that it requires at each time. We
shall consider below the two types of feed system; (a) the gas-pressure
system, and (b) the turbopump system.

Gas~pressure systems differ according to the nature of the
gases introduced into the tanks:

(a) The cold gas-pressure system: a neutral gas stored at

high pressure is expanded into the tanks.
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b) The feed system employing the combustion gases of a small
solid-propellant grain;

c) The hot gas-pressure feed system: a small quantity of sol-
id propellant is burnt in a neutral gas under pressure.

The cold gas system is represented schematically in Fig.
5. 25. It consists of a high-pressure tank of volume V, a pressure
regulator, and a check valve at the outlet of which there is a low-
pressure distributor connected to the oxidizer and fuel tanks. This
low pressure forces the liquid into the combustion chamber and, for a
particular pressure in the tanks, a state of equilibrium is established
between the flow through the nozzle throat and the injector discharge
rate. In rockets with a gas-pressure feed system, the high-pressure
tank represents an important item in the weight balance of the missile.
It is, therefore, advisable to reduce its volume to the minimum com-~

patible with satisfactory operation.
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Fig. 5.25. Feed system using pressurized gas.

Although the high-pressure tank may not be too large, it must
have a volume sufficiently great to ensure that the combustion chamber

is properly supplied throughout the entire period of operation. The
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tank pressure must always be high enough, compared with the feed

pressure, not to give rise to oscillations which would result in pres=-

sure instability in the combustion chamber.

In practice, it is difficult to determine the optimum gaseous

volume necessary to ensure proper emptying of the propellant tanks,

and certain assumptions must be made.

We shall make use of the fol-
lowing symbols:

known data

V.. = volume of the oxidizer and fuel tanks V., +V
E TO TH
P, = initial pressure in the high-pressure tank
Ti = initial temperature in the high-pressure tank
Pp = Ppressure in the propellant tanks: feed pressure
unknown

The practical volume V of the high-pressure tank. Let us in-
troduce here the dimensionless variable k = V/VT .

intermediate parameters

Pp Tf final pressure and temperature in the high-pressure
tank,
Wi’ Wf = weight of gas contained in the high-pressure tank at
the beginning and end of operation,
Ty = final gas temperature in the propellant tanks,
W. =

weight of comopressed gas contained in the oxidizer and
fuel tanks at the end of delivery.

Let us now write the gas equations for the following conditions:

initial state of the gas in the high-pressure tank:

70’.1/_— Wy 27



-182-
-- final state of the gas in the high-pressure tank:
BV w Ky
-- final state of the gas in the oxidizer and fuel tanks:
LV = WrR7r
At the end of the feed period, all the gas is distributed between the

feed tank and the oxidizer and fuel tanks:

We = Vs iy

so that we can write

% _};/._ - _7__"’;1// (j,_ i fi) (5. 26)

T 7%
The expansion of the gas in the tank between Py and Py cannot be re-
garded as adiabatic since it exchanges heat with the wall. By intro-

ducing a coefficient for polytropic expansion,

r-/ .
% . /,_72/7(?) . /R)7. (5. 27)
7 % L. S '

and, if a_, denotes the ratio T‘I‘/Ti , the parameter k equals

. 4 «’wﬁﬁ.’%_,,‘..__) (5. 28)
é ) A ( @, P - 1%

where a, and a, are empirical coefficients. Regarding the value of

2

n , there is some difference of opinion between the various authors.
The values for n range between 0.1 and 0.3. Values for a, for dif-

ferent values of the ratio pi/pf are:

P;/P; T 10 7 4 2

a 0: 75 0. 80 0. 87 0.90

- -

e

2. S

Since the operation of the pressure valve must be accurate and free

from instability at the end of the feed period, there is every justifica-
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tion for a safety margin in choosing P - For all values of P; below
200 bglari,, wa ahsll take:
f;- 2 ;?- + /0 é;/ml
A higher value of Ap would require an undesirably large high-pres-
sure tank.
The parameters a, and a, can be found analytically if certain

assumptions are made and new experimeaental parameters are intro-

duced. For an adiabatic process, neglecting the Joule- Thomson effect,

the First Law of Thermodynamics gives

Wi, 75 = Wee, 75+ Woar 75 * 7% V5 (5. 29)

where <, is the specific heat at constant volums. Using the equation

of state,
;ﬂ‘ Ver . 7¢ Ver 77 e + /3
Y] R E rrr
and
fe X . R (B ) x B (5. 30)
Vr Cv - P~ T

The curves represented in Fig. 5. 26 have been calculated nu~
merically; the value of k is given as a function of the feed pressure,
the initial storage temperature Ti being regarded as an auxiliary pa-
rameater. The use of storage pressures lower than 150 kg/cm2 leads
to very large tank volumes, while for values higher than 350 kg/cmz
the advantage of the reduced gas volume hardly compensates for the
increased tank weight.

The turbopump feed system is employed for rockets with a high
thrust and a long burning time, and is therefore of interest when the

volume of the propellant tanks is large. The main advantages of such
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Fig. 5.26. Value of k as a function of p_, for p, = 200 kg/c:m2
(p; = P, + 10 kg/cm” and n = 0. 11). = .

an arrangement are:

(1) good flexibility in operation can be obtained through con-

trolling the pump speed;

(2) high, stable pressures can be obtained, the pressure re-

maining practically constant for a given set of operating conditions;

(3) high power-to-weight ratio and small volume requirements.

Pumps can be classified according to the geometry of the im=-
peller and the path of the fluid., There are three categories of pumps
(Fig. 5.27); centrifugal or radial, mixed flow, and axial. Pumps for
rocket motors are usually of the first or second types.

We introduce the following notation, see Fig. 5. 28:

I

absolute velocity of the fluid

a
w peripheral velocity of the blade
Vr = relative velocity
= angle between Va and Ve at a given point
p = angle between velocity Vr and direction Ve
w = angular velocity = 2N (N = number of revolutions per

sec)
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the cross section at the point considered

5
I

r = radius of the cross section

and denote conditions at the impeller inlet and discharge by the sub-

scripts 1 and 2. The torque T applied to the impeller is

T /Q Va, cova, dm - /; Vi, cRA, A
4, 4

’

|

RADIAL RADIAL

R B

HELICO- CENTRIFUGAL"

(5.31)

(MIXED FLOW)
N
HELICOIDAL AXIAL

Fig. 5.27. Turbopump types.

Fig. 5.28. Diagram showing the operation of a pump.
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and the theoretical power P delivered to the impeller is:

" - . " 5.32

T /4; l§; cosctdm - [ g, Ui, cosat, dm i
AL A'

The power divided by the weight flow rate through the impeller, denot-

ed by the letter ch » is the theoretical head given by Euler's formula:

P / ' £
e = 7;;7;' -';,}'/[lé,_tgzcon%dm-‘é;,ymmd,dw (5.33)

Without losses, the increase in stagnation pressure between the inlet

and the outlet of the pump is
Ap, = Fof "4 (5. 34)
where pp is the mass density of the fluid passing through the pump.

If the velocities are uniform at all points, and if the mass flow in the

impeller is denoted m , we obtain

7 = /G by covn, ~ 72 Ky covx, ] (5.35)

(5. 36)
Woen = Il by, Vay oo, = 4, Va, cn % [

The ratio of experimental and theoretical pressure rises is written

Ap
= real (5. 37)

M
P AI"’theoretr'tca.l

where ﬂp takes into account all losses.

To represent the performance of a pump, the independent vari-
ables normally chosen are the volumetric discharge Q and the angular
velocity of the shaft w = 27N so that the pressure rise Ap , the torque

T , the power P delivered by the motor, and the efficiency rn are ex-
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pressed in the following manner:
Ap = £(Qw)

7 = -f’(Q.w)
P £(Q,w)

i § (@ w)

These characteristics are not independent; if two of them are known,

(5. 38)

the others can be found with the aid of the relations

= Tew
y = ap- @ (5.39)
=

The characteristic curves usually are represented at a constant angu-

lar velocity; Fig. 5.29 shows the curves Ap = f(Q), P = f''(Q), and

= f1Q) .
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Fig. 5.29. Pump characteristics: variations in the power P, pres-

sure rise Ap , and efficiency n as functions of the flow Q (N = 333
revolutions per sec).

For various angular velocities, the pressure-discharge charac-
teristics of a given pump are shown in Fig. 5.30. They may be de-
duced from each other with the aid of rules of similitude. The flow Q

is proportional to N, the head or the pressure rise Ap being propor-
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tional to NZ. The homologous points lie on parabolas corresponding

to constant values of Q/N or to constant efficiencies.

"“ao_1mN ' v, A @ = constant
S lugge gLy N
25T g T 7~
= 7
sl ety
: .
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Fig. 5.30. Pressure-flow characteristics at different speeds.

In the case of a rocket motor with a variable thrust, obtained
by variation of the pump speed, the operating point does not generally
follow a curve of constant efficiency; the locus of the points is a dis~-
tinct curve (A) and the ratio Q/N decreases with the speed.

The fundamental quantities involved in selecting a pump are the
discharge Q , the pressure rise AP, or the head H = Ap/ppg , the
mass density pp » and the shaft speed N or w. The head H is pro-

§ 2 :
portional to erZ and the volumetric flow to wr23 , so that:

M = ¥ win ® (5. 40)
and

Q = f “)53 (5. 41)
Eliminating r, , we get:

2
2

% @
55 {71_} = . ‘;% (5. 42)

If, now, we consider the pump which is geometrically similar to the

one of interest, working at the same operating point, with a discharge
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of 1 rn3/sec and a head of 1 m , the angular velocity of such a pump is

the specific speed wg :

@ = 5;/_‘}/% (5. 43)

For the real pump, therefore, we have

3
e
.
s < o \/o /7/ (5. 44)
or, introducing the shaft speed in revolutions per second,
%

Ne = NV # (5. 45)

If, instead of expressing Q in m3/sec and H in m, we employ gallons

per minute and feet, we obtain
Ns /Bl‘,'lfu‘ A/nl 7’5) = J/ é /V; /ﬂ?f’/ﬁ" ﬂl’l/.s j (5. 46)

The performance of a pump is limited by cavitation, which ap-
pears as soon as the static pressure p at some point falls below the
vapor pressure p_ of the liquid. If this phenomenon is to be avoided,
p>p,; if this condition is not fulfilled, bubbles will form locally and
these collapse abruptly when they reach a region of pressure higher
than P, - In regions of condensation, violent shocks are produced
leading to rapid erosion of the surfaces. It can be noted that for a
given suction pressure the experimental characteristic line suddenly
breaks away from the normal characteristic line and falls rapidly;
this break is associated with cavitation.

If cavitation is to be avoided, the minimum pressure in the
pump p_ . must be greater than or at least equal to the saturated va-

por pressure of the liquid P, that is, p > P, - The minimum

min

pressure is produced in the neighborhood of the leading edges of the
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blades, on their rear face. It is given by the expression:
2

2 Pmin = Afp Y (5. 47)
Z.

where Py is the pressure immediately before entering the impeller
blades, Vr1 is the relative velocity of the fluid at this same point,
and Pp is the mass density of the fluid. The coefficient ) is in prac-
tice between 0. 2 and 0. 4.

For a rocket pump whose geomeatric suction head and suction
pressure loss are negligible, pressure P is related to the suction

ressure
p pS'l.lC

&
Vai
5= fawe = Fp 5 (5. 48)
where Val is the absolute velocity of the fluid just before entry to the

impeller blades. Combining the last two relations, we get:

2
7°su¢‘ Pmin < -—‘{2 /k:,&" /J Vi (5. 49)

Let us try to find the lower limit of suction pressure which can be per~

mitted without the risk of cavitation, and let us call this pressure

(p_. )

saety * Taking into account the necessity of a certain safety margin,

we can write:
[fosac !g ~ P * I:’_:_? (1/;, z"') 79 l) (5. 50)

where ¢ is a factor of safety lying between 1.2 and 1.4. Let us as-

sume that the triangle of inlet velocities has a right angle; then

2 2

V;"a= Vﬁl *V;O

and
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(ﬂwc}j -t !12._{[(;1»,1))4,24)#;,"] (5. 51)

Dividing by the pressure rise of the pump Ap , the preceding relation

gives:
2 2 2
ap * ap i Va. Vaa (5. 52)
The head coefficient is:
. ar
¥ P
For a given pump and similar operating conditions:
Ve, / Va
= constant, ai = constant, -~ constant
Mas Ko K

and hence:
/ﬁsu:)_{ - ff
ap

Introducing the specific speed, which is also a constant for the oper-

= constant =g

ating conditions in similitude;

Tu
Ns = NGRH (5. 53)

p ar _ [ N/@ . 54

.l.
|

and finally

(7%(“)'£- Pr = d'f/”aq /N'/Q (5. 55)

or, in terms of the heads,

41_/2
(Hsucj[ a Hu' (5. 56)
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where (H —HV is often called the required suction head above va-

suc)‘b
por pressure. Replacing the specific speed Ns by the values corre-
sponding to the radial pumps employed in rocket motors, we arrive at

the following formula: .
: 3//\/ /@) 9/\“
(f.nqu s Prrthg Y @ (5. 57)

in which the pressures are expressed in atmospheres and where P is
between 13 and 17, N is the number of shaft revolutions per second,
Q is the volumetric flow rate in m3/sec, and g pp is the specific
weight in kg/rn?). From this relation, we can deduce the maximum

shaft speed when the suction pressure is fixed:

Nm«x =

_F ( Heue - _“‘“_)% (5. 58)
\/é—' )

The power necessary for driving the feed pumps is obtained
from a gas turbine. As represented in Fig. 5.31, an auxiliary com-
bustion chamber is used as a high-pressure gas generator to feed the
turbine. The latter drives the two pumps for the oxidizer and the fuel
either by direct drive between the turbine and the pumps using the
same shaft, or by a gear box if the turbine speed is higher than that of
the pumps. The turbines used in rocket motors are generally of the
impulse type with one or at most two velocity stages. The expansion
of the gases takes place entirely in the nozzle of the gas generator.
The symbols employed are indicated in Fig. 5.32. As for the turbo-

pump, the torque Tt of a turbine is
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Fig. 5.31. Diagram of a turbopump feed system.

GAS GENERATOR

A"VT= Va1 cOSely-V, ocosdh,

Fig. 5.32. Velocity triangles for a turbine.

7;.-/,; Vi, conet, dm, -/a Var cor o, d o, (5. 59)
4 A,

’

and the useful power P supplied by the fluid to the turbine is equal to:

FP=7fw -'//4; /é,cona,dﬁ,-/lé,zlé; coo o, A 7, (5. 60)
A, A,

For an impulse turbine V_, =V . =V , so that
e el e
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e Ve 7’:’7'(1/4/ covex, ~ 1/4‘ caga(,) (5. 61)
7; = /om 7’}7' /’é/ ceva, ~ Var CoxXe ) (5. 62)

where T is the mean radius of the wheel at the level of the blades.
The efficiency N of the wheel is the ratio of the useful power to the

kinetic energy contained in the fluid at the nozzle exit:

< l/e /Va.f Camp X, = ,/d-l C‘Dda.)
Va,*

The turbine efficiency B is equal to the product of the nozzle efficien-

(5.63)

-

i : 2
cy and the efficiency of the wheel. The efficiency of the nozzle is ¢ ;
¢ is the ratio of the actual exhaust velocity to the isentropic exhaust

velocity. Therefore,

2 Ve /Va, coa, ~ Vaz C""e)‘/’a

nw = — (5.64)
? l/ﬂlz
Deafining
Vs _ _
y/ = = velocity coefficient of the moving blades
VY"
and
L e
Vai
the useful power can be written:
, 2 . w/m (5. 65)
P-‘" ?WTI/Q; f// Cﬁﬁ,v)(r‘h’diy\f)
If the moving blades are symmetrical, F"' = 180°- (3.
(5. 66)

P iy Vo § (1+9)(coost, - ¢)
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and the turbine efficiency becomes:
7..._ = &70{{ //1‘ ¢J((Obd,'J) (5. 67)

a function of the second degree in { , whichat ( = 3 cos &, has a

maximum value

c ool o,

i1+ ¢) (5. 68)

T max =
In rocket motors, the value of { usually lies between 0. 2 and 0. 25,

The torque T, depends on the nozzle mass flow of the gas generator
, - (A
. 7% - ( s
C ,
#

where pg is the pressure in the generator, (At)g is the area of the

sk
throat, and c g is the characteristic velocity of the propellant em=
ployed in the generator. The torque T, is thus given by the expres-
sion:

75 (A, 7m
4 ~ L /Va; coox, - Vaz CooX, ) (5. 69)
&
2

'k\l

The term (V cos
o !

tion parameters o

-V cos @,) is determined from the construc-
1 az 2

1 and a, and the operating parameters Val and

\' so that the torque Tt must be controlled by means of the flow,

a2’

i.e., by the pressure pg in the generator chamber.



