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INTRODUCTION 

The first comprehensive series of lectures covering the scien­

tific fundamentals and technology of jet propulsion were given at the 

G·.1ggenheim Aeronautical Laboratory~ California Institute of Technol­

ogy~ under the direction of Professor Theodore von Karmcin, during 

the academi.c year 1943-44. This course was sponsored by the Air 

Technical Service Com:n:md of the Army Air Force with the enlightened 

encouragement of General H. H. Arnold. The lectures were a direct 

outgrowth of the early investigations by Dr. von Kc{rm.{n and Dr. 

Frank J. Malina who, together with M:r. J. W. Parsons and Mr. E. 

Forman, carried out extensive work on solid propellant rockets, 

leading eventually to the founding of the Jet Propulsion Laboratory. 

Through Dr. von Kc{rm~n's extensive influence, through the 

excellent book "Jet Propulsion" edited by D:r. H. S. Tsien, and 

through the dispersion of the dozen original lecturers throughout the 

world, these lectures deeply influenced the orientation and content of 

virtually all subsequent instruction in A:nerica and Europe. The 

depth and accuracy of Dr. von Karman's insight are borne out by the 

fact that the ensuing 20 years have not altered the general pattern of 

the courses although the propulsion technology has advanced so dra­

matically. The subjects of nuclear propulsion, electrical propulsion, 

and energy conversion have assum·ed substantial importance but will 

influence space exploration only a few years hence. 

Instruction of the Jet Propulsion Sciences at the Cal-ifornia In­

stitute of Technology was given additional impetus by the establish­

ment of the Daniel and Florence Guggenheim Jet Propulsion Center in 
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1949 and the appointment of Dr. H. S. Tsien as the Goddard Professor 

of Jet Propulsion. a chair which he held until 1955. During this period 

the instruction was expanded in scope and extensive research activity 

was undertaken. Professor W. D. Rannie, successor to the Goddard 

Professorship, has subsequently amplified and changed emphasis of 

the instruction in rocket flight m e chanics, propulsion technology, and 

propulsion chemistry until it has taken the present form of three 

courses, each covering a complete academic year. 

The present lectures cover a few topics from the courses cur­

rently given at the California Institute of Technology. The notes con­

sist in a small selection of information from certain areas that are 

more easily presented in written form than in lectures. Nuclear pro­

pulsion, electrical propulsion, and power conversion will be covered 

only in the lectures. 

The notes themselves have been collected from material usually 

employed in the Cal Tech courses. Chapter I, Mechanics of Rocket 

Propulsion, was taken from unpublished notes of Professor W. D . Ran­

nie which he employs as introductory material in his lectures on rocket 

propulsion technology. Chapter II, Elementary Theory of the Rocket 

Nozzle, was adapted from some early notes by Professor H. S. T sien 

and augmented by recent material by the author on heterogeneous flow 

in nozzles. Chapter Ill, Combustion Thermodynamics and Chemi.cal 

Propellants contains material from the excellent little book, "Elements 

of Chem~_cal Thermodynamics," by L. K. Nash (A::ldison-Wesley Pub­

lishing Co. ) and detailed material on chemical equilibrium calculations 

in nozzle flow (including tables) borrowed from the well k nown book by 
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my colleague, Professor S. S. Penner, "Chemistry Problems in Jet 

Propulsion" (Pergamon Press). The course in propulsion chemistry 

has been given from :his book at Cal Tech for many years by Profes-

sor Penner. 

Chapter IV, Solid Propellant Rocket Motors, and Chapter V, 

Liquid Propellant Rocket Motors, are based on material from "Jet 

Propulsion, 11 edited by H. S. Tsien and a considerable amount of ma-

terial (including figures) from the extensive book, "Rocket Propulsion, 11 

by Barrere, Jaumatte, de Veubeke, and Vandenkerckhove (Elsevier 

Publishing Co. ). This book is an appropriate source for the present 

notes, inasmuch as that book was deeply influenced not only by Pro-

, ; . 
fessor von Karman h1mself but through the training in jet propulsion 

that M J·. Vandenkerckhove received at Cal Tech. 



1. MECHANICS OF ROCKET PROPULSION 

The Rocket in Gravity-Free Space 

Let m be the mass of a rocket at any instant t , and v the 

velocity at that instant. The mass m includes unexpended propel-

lant. Relative to a stationary coordinate system, the momentum of 

the rocket is mv • Let a mass of propellant 6-m be ejected oppo­
p 

site to the direction of velocity of the rocket. 

L1mp 

-~of------;0 
c-v--AII" 

t 

t+L1f 

There are no external forces acting on the system, since gravity and 

drag are neglected; hence, the total momentum of rocket and propel-

lant is the same after ejection as before. At time t + 6-t , the rocket 

of mass m- 6-m has velocity v + 6-v , and the ejected mass 6-m 
p p 

has velocity c- v- 6-v in the opposite direction, as shown in the fig-

ure. 

The equation of conservation of momentum is 

(m-6-m )(v+6.v ) - 6-m (c-v-6-v) = mv , 
p p 

which can be simplified to 

m.6v = c6.m 
p 
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This equation is exact; that is, does not require that .6.m or .6.v be 
p 

small. However, in conventional rockets, the ejection of propellant 

is continuous, so 
dv dm 

.6.v is replaced by dt dt and .6.mp by - dt dt in 

the finite difference equation above, which becomes 

dv 
m dt = dm 

- c ""dt = F . ( 1. 1) 

Here, F is defined as the rocket thrust, since 
dv 

m dt is the force re-

quired to give an acceleration dv/dt to the mass m. 

This equation is of fundamental importance, and it is worth 

while to derive it in a different way. Suppose that a force F acts on 

the mass .6.m between times t and i + .6.t separating the mass of 
p 

propellant and accelerating it relative to the rocket. The total im-
. 1t+.6.t _ 

pulse applied to .6.mp 1s tj Fdt = F.6.t, say, where F is the 

average force. The propellant, initially with velocity v , is ejected 

backward with velocity c-.6.v relative to the rocket, so the change of 

'"""'"""'-------10 

momentum is .6.:..n (c-.6.v) , and equating to the total impulse 
p 

.6.m (c-.6.v) = F.6.t • 
p 

From Newton's Law, the force on the rocket is an equal and opposite 

reaction, and equating the momentum gain of the rocket of mass 

m - .6.m to the total impulse 
p 

and hence 

(m-.6.m )C:.v = FC:.t 
p 

ml::.v = c.6.m = F.6.t + .6.m .6.v • p p 

The equality on the left is the same as that derived previously; the 
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force F reduces to the thrust F defined in Eq. (1. 1) when the in-

crements are infinitesimal so that the second order term ~m · D.v 
p 

can be neglected in comparison with the other terms. 

Equation ( l. l) can be written in the form 

dv = dm 
- c --m 

and integrated to give the velocity increment 

v - v = 
0 

m 
0 

r 
J 
m 

dm e-­
m 

( 1. 2) 

where m is the initial mass and v the initial velocity. If the 
0 0 

rocket starts from rest (v 
0 

= 0) and the mass at burnout is mb , the 

velocity at burnout, vb , is given by 

m 
0 

I dm e--
m 

( l. 3) 

m 

For a fixed propellant mass m
0 

-mb , the burnout velocity is clearly 

a maximum when c is as large as possible. Generally, the exhaust 

velocity of a given rocket and propellant combination cannot exceed 

some maximum value because of limitations of the propellant and mo-

tor. Equation (1. 3) shows that vb will decrease if the motor is run 

so c is at any time less than this maximum value. Hence, c can be 

considered a constant throughout the burning period for any particular 

rocket, since this represents the operation that gives the largest 

value of vb . 

With the simplification that c is constant, the integral in Eq. 

(l. 3) can be evaluated to give 
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m 
0 

vb = c -tn -­
mb 

w 
0 

= c ~n -w-:-
b 

( 1. 4) 

where W 
0

/Wb is the "weight ratio" replacing the mass ratio. It is 

convenient to introduce a weight breakdown for discussion of Eq. (1. 4). 

D.3fine 

w = initial gross weight 
0 

w = propellant weight 
p ( 1. 5) 

w = structural weight 
s 

wl = payload weight 

The structural weight W includes the rocket motor, propellant 
s 

tanks, controls, and all supporting structure; that is, everything re-

quired for the rocket operatione(cept propellant and payload. In a 

two-stage rocket, the payload W 
1 

includes the second rocket, with 

associated tanks and propellant, and the second-stage payload. The 

relations W 
0 

= W p + W s + W 1 and W b = W s + W 1 must hold with the 

definitions above. Two dimensionless weight ratios are useful; these 

are defined as 

a. = W 
1 
/W 

0 
, the payload weight ratio, 

( 1. 6) 
A = W / (W + W ) , the structural weight ratio. 
t"" s p s 

From the definitions 

and substituting into Eq. ( 1. 4), 

1 
vb = c -tn f3 + ( 1 - M ( 1. 7) 

The magnitude of the thrust does not enter into this expression for 
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burnout velocity. 

The Sounding Rocket 

The findings in the previous section s·how that neither the time 

of burning nor the magnitude of the thrust influences the burnout ve-

locity. It is clear that this cannot be true for a rocket in the gravity 

field of the Earth, for instance, and it is of considerable important to 

determine the deterioration of burnout velocity resulting from gravity. 

The simplest quantitative demonstration of these effects can be shown 

for a sounding rocket, that is, a rocket in vertical flight from the 

Earth's surface. Air resistance, the decrease of acceleration of 

gravity with height, and the effect of the Earth's rotation are neglected 

in the first analysis. 

The equation of motion of a rocket in vertical flight in a con-

stant gravity field g is 

y - - ( 1. 8} 

where m is the mass of the rocket at any tim·e, and y is the height 

above the Earth's surface. If the exhaust velocity c is constant, 

this equation can be integrated once 

m 
0 

y = c tn -- - gt , m 
( 1. 9} 

where the constant of integration is evaluated from the conditions 

y = 0 and m -== m at t = 0 • Integrating again with respect to t , 
0 

t 
..., m 2 

y = c J t n :: d t - !gt (1. 10} 

0 

w here y = 0 when t = 0 If ~ is the time at burnout, the burnout 



velocity and height are 

m 

yb = c -tn m: - g~ 

yb = c l' .tn :o <it -

0 
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(1. 11) 

Since part of the work done on the rocket appears as potential 

energy in the Earth1s gravity field. it seems most appropriate to com-

pare total burnout energies rather than burnout velocities as in 

gravity-free flight. The total burnout energy in the constant gravity 

field is made up of the potential energy gyb and the kinetic energy 

1· 2 . 0 h z:yb , each per urut mass. n.~noting by v 
0 

the velocity at y = t at 

corresponds to the same total energy. and by H the maximum 
m 

height that the rocket would reach in the flight following burnout. we 

have 

( 1. 12) 

Substituting from Eqs. ( 1. 11) and rearranging. 

and replacing dt by dm/m • 

2 
m 

0 

2 
c

2
(-tn ::) 

... dm 
v = - 2gc J -l,n ~ • (-m.> . 

0 mb 
(1. 13) 

mb 

The first term on the right-hand side of Eq. (1. 13) is the same 

as would result from gravity-free flight! the second term is_ the gravity 

correction. The latter term decreases as (-rn) increases and ap-

preaches zero as (-rn) becom.es very large. i.e. • as the thrust be-
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comes large. In actual practice. the magnitude of (-m) is limited by 

size of the rocket motor and by acceleration loads on the vehicle. 

Clearly. any decrease of (-m) below its maximum allowable value 

tends to increase the integral on the right of Eq. ( 1. 13) and hence to 

decrease v 
0 

For best performance. (-m) is a constant. 

With (-m) a constant (i.e. • thrust constant. since c has al-

ready been assumed constant). the height reached at any time t is 

obtained from Eq. (1. 10) in the form 

m 
0 

Y - ~ I tn mmo dm - +gt2 - ,-rn.) c. 

m 

and the integral can be evaluated to give 

Y = ~ [1 -~ -~ tn mo] - 1 t2 ,_m, m m m -zg 
0 0 

(1. 14) 

It is convenient to introduce a dimensionless time variable T defined 

as 

(1. 15) 

and a dimensionless constant '( combining the effects of structural 

and payload weight ratios defined as 

Then the mass ratio m/m can be given in the form 
0 

m/m = 1 - '(T 
0 

= 
g(mo-mb) 

(-m)c 

w 
0 = '( -r 

(1. 16) 

( 1. 17) 

(1. 18) 

where W /F is the initial thrust/weight ratio. Substituting these new 
0 
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2 param·eters into Eqs. ( 1. 9) and ( 1. 14), and dividing by c and c / g , 

respectively, the velocity and height at any time are 

• 1 w 
y - .f., 0 
C - n 1-)'T - Jf""" )'I 

(1. 19) 

, = ~[)'!- (1--y,-).tn 1-~,.]- ~ :o (-y,.)2 

The expressions for y/c and gy/c
2 

in Eqs. (1. 19) are func­

tions of )'T and W /F only. The parameter W /F is 1 of course, al-
o 0 

ways less than unity. For W /F close to unity, the terms on the 
0 

right of Eq. (119) tend to canc el each other for -yT small; hence, it is 

convenient to have a table of the functions multiplying the factors 

W /F with sufficient signific ant figures so cancellation errors do not 
0 

become large. Table 1. 1 below gives the four required functions of 

)'T • This table is useful in the approximate calculation of the effect 

of aerodynamic drag. 

TABLE 1. 1 

1 1 2 
)'T .tn-- 'YT- (1-)'-r).tn -- i()' T) 1-)'T 1-)'1 

0 0 0 

• 05 • 05129 . 001271 • 001250 

• 10 • 1053 5 • 005175 . 005000 

• 15 • 1626 .01186 • 01125 

• 20 • 2231 • 02149 • 02000 

• 25 • 2876 • 03425 • 03125 

• 30 • 3567 • 05033 . 04500 

• 35 • 4308 . 07000 • 06125 

• 40 . 5108 • 09350 • 08000 

• 45 . 5978 • 12120 . 101 2 

• 50 . 6931 • 1534 . 125 0 
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1 1 2 
YT -!-n-- y'T'- (l-yT ).tn -- i(YT) 1-yT 1-yT 

• 55 • 7895 • 1907 . 1512 

. 60 . 9163 . 2335 . 1800 

.65 l. 050 . 2828 . 2112 

• 70 l. 204 . 3388 . 2450 

• 75 l. 386 . 4034 . 2812 

• 80 1. 609 • 4781 • 3200 

• 85 l. 897 . 5654 .3612 

• 90 2. 303 • 6697 • 4050 

. 9 5 2. 996 • 8002 • 4512 

At burnout, '!' = 1 in Eq. ( 1. 19 ), and hence 

( l. 20) 

gy b w [ 1 ] 1 ( w ) 2 
2 - 2- = ~ y- (1-y) .tn -- -- ~ y 

c F 1-y 2 F 

The velocity v corre spending to total burnout energy is given by 
0 

2 2 ( 1 ) 
2 

2 w 0 {, 1 
v 

0 
= 2gH.:n. :: c .{,n 1_y - 2c --y- \.tn 1_y - y) , 

and this can be expressed in the more convenient form 
l 

1] wo 12 
v 0 = c [ .tn 1_y [1 - F f('dJ , 

where 

f(y) = 
2/.tn _1_ - Y\ 
'\ 1-y '/ 

The variation of f(y) with y is given in Table 1. 2. 

TABLE 1. 2 

y o. 4 o. 5 o. 6 o. 7 o. 75 o. 80 o. 85 

f (y) . 848 • 805 • 753 . 695 . 664 • 625 • 582 

0.90 

. 529 

(1.21) 

( 1. 22) 

(1.23) 

0. 95 

. 456 
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It is important to remember that the results above are based on the 

assumptions that c and F are constants . 

Values of Parameters for Rocket Equations 

The equation for the burnout velocity in gravity-free space, 

Eq. (1. 7), shows that vb increases as c increases and as f3 de­

creases for a fixed payload radio a. . In order to increase the burnout 

velocity for a fixed payload weight, one may employ a larger rocket 

(i.e., decrease a.), employ a higher performance propellant (i.e., 

increase c ), or construct a lighter and more efficient structure (i.e., 

decrease 13 ). Further, Eq. (l. 22) shows that v increases as the 
0 

initial thrust/weight ratio F /W increases. The values of the three 
0 

param.eters c , B , and F /W are not independent, and the optimum 
0 

choice to give the highest value of v is not a simple procedure. How­
o 

ever, some general statements can be made concerning the values of 

the parameters without detailed discussion of rocket design. 

The value of the exhaust velocity c increases as the combus-

tion chamher temperature increases and as the molecular weight of the 

exhaust products decreases, as will be shown later. Systematic stud-

ies of the chemical properties of elements and compounds demonstrate 

that a fuel of low molecular weight should be combined with an oxidizer 

such as oxygen, or better, fluorine, for the highest value of c. There-

fore, hydrogen is the best fuel, and when combined with oxygen or 

fluorine, can produce a value of c of about 12, 000 ft/ sec. O ·u.r knowl-

edge of theoretical chemi.stry leaves no doubt that this is very close to 

the highest value of c attainable from stable chem:ical species. The 
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light m ·e tals have very high heats of reaction but form exhaust prod-

ucts with high molecular weights, and worse, liquid or solid rather 

than gaseous form. Chemical compounds for fuels generally give 

smaller values of c as the percentage of hydrogen is decreased. 

The first liquid propellant rocket to reach an operational sta-

tus was the V-2, wlth alcohol and liquid oxygen as the propellant com-

bination. This rocket motor developed an exhaust velocity of about 

6 500 ft/ sec. Current large liquid-propellant rockets employ kerosene 

and liquid oxygen~ and have increased the value of c to about 9000 

ft/ sec, the increment resulting m o::>re from better m'Jtor design and 

higher cham"ber pressure than from inherent characteristics of the 

propellant. Storable liquid propellants such as hydrazine and nitrogen 

tetroxide have obvious operational advantages over the cryogenics 

hydrogen and oxygen~ but because they are more complicated com·-

pounds, the exhaust velocity is not quite as high as with kerosene and 

liquid oxygen. 

Solid propellants for rockets m'~St have satisfactory structural 

characteristics ,and are therefore rather complex chem~cal compounds 

(e. g. nitroglycerine and nitrocellulose). As a result, the solid propel-, 

lants usually produce values of the exhaust velocity of 8500 ft/sec or 

less. Recently, light metals have been incorporated into the solid pro-

pellants, and the value of c has been increased toward 9000 ft/ sec. 

Very much higher values of c in solid propellants seem ·~nlikely. 

The values of the exhaust velocities quoted above are repre -

sentative of the propellants alone, although the precise values will de-

pend on nozzle design and ambient pres sure. Strictly, comparison 
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should be made only for specified conditions of operation. The value 

of c for a given propellant combination can vary by 10 per cent to 15 

per cent, depending on chamber pressure, nozzle exit pressure, and 

ambient pressure. 

Although the exhaust velocity c is the most natural index of 

propellant performance, another quantity called the specific impulse, 

I or I , is widely used. The specific impulse is defined as thrust sp 

divided by mass flow rate of the propellant in the units (pounds thrust)/ 

(lb. mass flow per sec.), and hence I = c/g , where g = 32.1740 
sp o o 

is the numerical value of the standard gravitational acceleration. The 

specific impulse is usually quoted as so many seconds, although a 

glance at the definition shows that it is really a velocity with g a nu­
o 

merical conversion factor. In applications, one converts to c = 

32. 1740 I ft/ sec , so the confusion in dimensions is not very im­
sp 

portant. 

The second important parameter is the structural weight ratio 

!3 = W /(W +W ) • This parameter is inseparable from the mechanical 
s p s 

design details of the rocket, in contrast with the exhaust velocity c , 

which is determined more by intrinsic chemical properties of the pro-

pellant than by specific rocket design. Hence, it is not possible to pre-

diet a minimum value of !3 in the way that a maximum value of c can 

be predicted. Estimates of weights of components will be made later 

in the course; for the moment, representative values taken from re-

cent journals will be quoted. The value of !3 for each stage · of the 

present Titan liquid propellant rocket is stated to be 0. 06 ('Missiles 

and Rockets, 1 Sept. 51 1960), with the implication that this will be 
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improved in later modifications. The very marked improvem·ent since 

the V -2 with f3 ::! 0. 25 is more striking than the gain in exhaust veloci-

ty. The value of f3 for the Titan is appropriate for "conventional" 

fuels . No figure for a hydrogen-fueled rocket (e. g. Centaur) is easily 

available, but it is certainly higher than 0. 06 because of the large 

tanks required for low-density hydrogen.. Hence, the gain in burnout 

velocity resulting from higher c for hydrogen is partially balanced by 

the larger value for f3. The value of f3 for current large, solid-pro-

pellant rockets is stated to be 0. 07 with expectation that it can be de-

creased to 0. 04 ( 1Missiles and Rockets, 1 July 27, 1959, p. 32). 

T:he value of f3 also depends on the ratio F /W . As F is in­
o 

creased, the size of the rocket nozzle increases, and hence f3 in-

creases1 further, as F is increased, the acceleration of the vehicle 

increases, and a heavier structure may be required. For current 

large liquid-propellant rockets, the value of F /W seem:3 to be about 
0 

1. 4 or 1. 5; and for large solid-propellant rockets, F /W is in the 
0 

range of 2. 5 to 3. 5. This difference is not surprising; m·.1ch of the 

structural weight of liquid-propellant rockets consists of propellant 

tanks which become heavy if the acceleration loads are high, whereas 

the cases of solid-propellant rockets are already rather heavy to with-

stand the chamber pressure, and can take appreciable acceleration 

loads with no increase in weight. 

The minimum velocities at the Earth's surface required for 

certain trajectories and orbits are listed in Table 1. 3. Although the 

correspondence is not quite exact, the combination of burnout velocity 

in gravity-free space, Eq. ( 1. 7 ), and the gravity correction for a 
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TABLE 1. 3 

Trajectory or Orbit v (ft. I sec. ) 
0 

Maximum range, 100 miles 4, 100 

Maximum range, 500 miles 8, 900 

Maximum range, 1000 miles 12, 200 

Maximum range, 3000 miles 19, 000 

Maximum l:'ange, 6000 miles 24, 000 

Orbit at the Earth 1s surface 26,000 

Escape from the Earth 36,700 

Escape from the solar system 77. 500 

sounding rocket, Eq. (1. 22), in the form 

v 0 = +n 1 :~] [1 -: 0 f(~~! 
with 

-y = (1-a)(1-f3) 

gives an approximation to the values of v as listed in Table 1. 3. 
0 

Substitution of appropriate combinations of c, f3, and W /F shows 
0 

that only the first few of the trajectories in the table can be accom-

plished with a single-stage rocket, even with very low payload. 

Staged Rockets 

The maximum burnout velocity that can be attained with a 

single- stage rocket in gravity-free space is c -tn ~ with a negligible 

payload. The structural weight ratio can be reduced, in effect, by the 

use of step rockets or staging. Suppose that a part of the propellant 

of a rocket is put in a second, smaller rocket carried along as the 

payload of the first rocket. After burnout of the first rocket, the 

structure is disengaged and the second rocket is fired. The propellant 
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of the second rocket accelerates a smaller structural mass than it 

would if part of the propellant of the first stage, so that a higher ter-

minal velocity for the actual payload is achieved. 

For a first quantitative examination of the effect of staging, let 

us neglect the effect of gravity and assume that each of the rockets in 

the several stages has the same exhaust velocity c and the same 

structural weight ratio {3. Let a
1 

= W 
1 

/W 
0 

be the payload weight ra­

tio of the first rocket, where W 
0 

is the initial gross weight, and W 1 

includes all subsequent rockets beyond the first, as well as the actual 

payload. According to Eq. ( 1. 7 ), the burnout velocity of the first 

stage is v
1

, say, where 

= c ( 1. 2.4) 

assuming that the motion starts from rest. Let W 2. be the payload for 

the second rocket; W 2. includes all subsequent rockets beyond the sec­

ond rocket and the actual payload. Define az = W 2./W 
1 

as the payload 

ratio of the second rocket. Since the second rocket has velocity v
1 

initially, the burnout velocity v 2 is given by 

V2 V1 
-c c 

(1.25) 

Continuing the process, we have for the last stage, if n is the number 

of stages, 

v 
n 

c 
vn-1 

c 
1 

= -tn {3 + {l-f3 )a 
n 

Adding up the n equations, 

v 
n 

c = L -tn {3 + ( ~ -{3) a. 
i= 1 1 

( 1. 26) 

(1. 27) 
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The payload ratios a 1, a 2, ••.• an are 

wl wz 
a1' a2. • • • • an = w; · W"i' · · · 

or 

connected by the relation 

w 
n 

wn-1 
= a • 

L .tn a. = .tn C1 , 
1 

( 1. 28) 

where W is the actual payload of the entire system, and a is the 
n 

overall payload weight ratio. 

If a is given, the final burnout velocity v varies with the 
n 

choice of ai's as given by Eq. (1. 27). These ai's are not completely 

arbitrary, however, since they must satisfy the condition of Eq. (1. 28). 

The values of a. that give the maximum v and this maximum are 
1 n 

most easily found by the m·~thod of Lagrange m 1.lltipliers. The condi-

tion that v in Eq. ( 1. 27) be an extremum ~.s that 
n 

ov 
n 

c 
(1. 29) 

for all possible variations oa. • However, the variations oa. must 
1 1 

satisfy the condition (from Eq. 1. 28) that 

n 1 L oa. = o, 
i= 1 ai 1 

(1.30) 

since a= constant. This last condition is unchanged if an arbitrary 

moutiplier A is introduced, i.e •• the condition to be satisfied by the 

v ariations oai is 

n 1 
A .L1 a. oai = o . 

1= 1 

(1. 31) 

Adding E.g_. (1. 31) to Eq. (1. 29), w e have, for the condition for an ex-

tremam of v n , 
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n l-!3 A] \' [- + - 6a. = 0 
{-~1 l3 + ( 1-13) ai ai 1 

( 1. 32) 

again for all possible variations 6ai • 

Only (n-1) of the n variations 6CX-_t, 6a2 , .•• , 6an are arbitra­

ry in Eq. (1. 32) because of the relation (1. 30) that they must satisfy. 

Let 6a1, .•. , 6an-l be chosen arbitrarily; then the coefficients of 

these in Eq. (1. 32) must all be zero to satisfy the condition for an 

extrem11m. The coefficient of 6a will not be zero in general because 
n 

60: can be expressed in terms of the other 6a. 1s. However, A is still 
n 1 

an arbitrary multiplier and is now chosen so the coefficient of 6a is 
n 

zero; hence, coefficients of all 6a. 1s in Eq. (1. 32) are zero, or 
1 

1-~ = A 
a . 

1 

i = 1, .•• , n (1. 33) 

and these n equations along with Eq. (1. 28) are sufficient to deter-

m i ne the n+l unknowns, a
1

, a
2

, • •• ,an and A . In this particular ex-

ample, solving for a. from Eq. ( 1. 33) 
1 

a - Al3 
i - (1-A)(l-~) 

and clearly all o:. 1s are equal; hence, from Eq. (1. 28), 
1 

1/n a. = a 
1 

and the maximum value of 

v 
n 

vn' 

i = 1, 2, ••• , n 

which we will denote by V , is 
n 

( 1. 34) 

(1. 35) 

When the Lagrange multipliers are introduced in a problem such as 

this, the simplest method of demonstrating that V is a maximum is 
n 

to choose any other set of a. 1 s for which v is easily calculated and 
1 n 
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For n--+ oo , one can put a.= 1-e where e: is a very small num-

ber; substituting for n in terms of e: in Eq. (1. 35) and letting e:-+ 0, 

the limiting value of V is 
n 

Lim V 
n-+0 n 

= c(l-{3)-tn.!. • 
a. 

( 1. 36) 

This mathematical limit of course is not attainable in practice, be-

cause it is scarcely possible to construct a rocket with an infinite num-

ber of stages, but it does give a useful index of the maximum advan-

tage of staging. For instance, it can be seen immediately that high 

burnout velocities cannot be achieved unless a. is very small. 

The ratio of the maximum burnout velocity V to the exhaust 
n 

velocity c is shown in Table 1. 4 for various values of a. and !3. The 

table demonstrates clearly that staging is effective only for small 

payload ratios. With small payload ratios, however, high burnout ve-

locities are attainable with quite modest values of c and !3 • 

The conditions ( 1. 33) or ( 1. 34) for v to be a maximum for 
n 

fixed a. are also the conditions that a. be a maximum for fixed v 
n 

To show this. one simply interchanges the roles of Eqs. ( l. 29) and 

(1. 30), that is, let Eq. (1. 30) be the condition that a. be an extremum 

and Eq. ( 1. 2 9) be the auxiliary c ondi ti on that v is given. 
n 

The solution of the staging problem above is particularly sim-

ple because c and f3 are the same for each stage. In the more gen-

eral problem, with exhaust velocity c. and structural weight ratio !3. 
1 1 

th 
for the i stage. the procedure is the same. The burnout velocity of 

th 
the n stage in gravity-free space is 



J3 n o. 2 o. 1 

o. 25 
I 0.92 1. 12 

co 1. 21 I. 83 

1 1. 27 1. 66 

2 1. 38 1. 91 

o. 10 3 1. 40 1. 97 

4 1. 42 2. 00 

co 1. 45 2. 07 

1 1. 43 1. 93 

2 1. 49 2. 10 

o. 05 3 1. 50 2. 13 

4 1. 51 2. 15 

co 1. 53 2. 18 

TABLE 1. 4 

V I c for n-Stages in Gravity-Free Space 
n 

a. 

o. 05 o. 02 o. 01 0.005 o. 002 o. 001 

1. 24 1. 33 1. 36 1. 37 1. 38 1. 38 

2. 25 2. 93 3. 45 3.98 4.66 5. 18 

1. 93 2. 14 2. 22 2. 26 2. 28 2. 29 

2.40 2. 96 3. 32 3. 62 3. 93 4. 10 

2. 52 3. 20 3.67 4. 11 4.62 4. 98 

2. 57 3. 30 3. 82 4.32 4. 95 5. 38 

2. 70 3. 32 4. 14 4. 77 5. 59 6. 22 

2. 33 2. 67 2. 82 2. 90 2. 96 2. 98 

2.68 3.38 3.79 4. 29 4. 76 5. 05 

2. 75 3. 54 4. 10 4. 65 5. 32 5. 79 

2. 78 3.60 4. 20 4. 78 5. 57 6. 09 

2. 84 3.72 4. 38 5. 03 5. 90 6. 56 
~ --

0 

1. 39 i 

co 

2. 30 

4. 60 

6. 91 

9. 21 

co 

3.00 

5. 99 

8. 99 

11. 98 

co 
-

I 
...... 
~ 
I 
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(1. 37) 

where the a. 1s satisfy Eq. (1. 28) as before. The conditions for v to 
1 n 

be an extremum, corresponding to Eqs. ( 1. 33 ), are readily found to be 

1 - !3i 
c i !3 . + ( 1-J3. )a. 

1 1 1 

and solving for a. , 
1 

= i = 1, .•• > n (1.37) 

i = 1, ••• • n (1. 38) 

Substituting for ai into a 1, a 2, ... , an = a , one obtains a relation for 

A in terms of the prescribed parameters ci and j3i • 

(l-j31( 1-j32). • · ( 1-j3n) 

(31,{32, · • • ~f3n 
(1.39) 

th 
This last equation is polynomial of the n degree in A and must be 

solved numerically. Usually, only one root represents a practical so-

lution; having found this root, the ai 1s are determined from Eqs. (1. 38). 

The problem of the optimum distribution of payload wieght ra-

tios in a multi-stage sounding rocket operating in a constant gravity 

field is important, but unfortunately, it is one of considerable diffi-

culty. Suppose that any particular stage has as its initial condition 

y = v
1 

and y = y
1 

where v 1 and y
1 

are given. For constant c and 

constant thrust, Eqs. (1. 20) can be extended readily to the new initial 

conditions, giving 

yb = c [-t.n _1_ - W 1 '(] + v 
1--y F

1 
1 

( 1. 40) 

2 [ w 1 1 1 ( w 1 ) 2 2] c v 1 w 1 
Y b = ~ F [ "Y - ( l-'d.tn 1=- } - 2 F "Y + - F "Y + Y 1 

g 1 '( 1 g 1 
(1. 41) 
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where y = (1-a.)( 1-13) and F 
1 

/W 1 is the initial thrust-weight ratio. 

1 2 
The initial energy per unit mass is E

1 
= zv 1 +gy 1 , and the burnout 

energy per unit mass is E = i'Yb 
2 + gyb • The increm.~nt of energy of 

this particular stage is then 

1 2[ 1 
2 

wl ( 1 )] 1 E - E 1 = z c (-tn -1-) - -F 2 tn -1-- y + cv1 tn 1 _v 
-'{ 1 -'{ I 

( l. 42) 

To find the burnout energy of a two-stage rocket with the first stage 

fired at y = 0 with zero velocity and the second stage fired immedi-

ately upon burnout of the first stage, let c 
1

, y 
1

, W 
0
/F 

0 
refer to the 

first stage and put c = c 
2 

, y = y 
2 

in Eq. ( l. 42) representing the sec­

ond stage. Then 

and 

and substituting into Eq. ( 1. 25) above, 

1 2 [< 1 )
2 

w 1 + z-c 2 tn -y:- - F" Yl 1 

where 

2(tn-1
1 
-yl 

w 
-yYl) 

0 

a. a. = (1 _l )(1 -~-) = a. • 
1 2 1-[3 1 1-13 2 

( 1. 43) 

( 1. 44) 

In these expressions, y
1 

and y
2 

replace a.
1 

and a.
2 

as independent 

variables to sim1)lify the form of the expression for E
2

• 



-22-

When gravity is neglected, i.e., W 
0
/F 

0 
= W 1 /F 1 = 0 in Eq. 

(1. 43), the expression for E 2 is a perfect square. Then it is clear 

that the order of firing of the rockets designated by 1 and 2 does not 

matter. With gravity, the expression for E
2 

is not a perfect square, 

and the maximum burnout energy depends on which rocket is used as 

the first stage. Frequently one finds in the literature the following 

statement --- if a two-stage rocket is made up of one "low perform­

ance" stage and one "high performance" stage, the "high performance" 

rocket should be in the second stage for maximum burnout energy. If 

in the high-performance stage, c is higher and both 13 and W /F low­

er than in the low-performance stage, a numerical example will con­

vince one of the validity of the statement above. However, one type 

of rocket is generally superior to another with respect to one or two 

of the parameters c, 13, and W /F , rather than all three, and the 

choice of optimum arrangement becomes more subtle. The simplest 

procedure in a specific example is to solve Eq. (1. 44) for Yz and use 

this result to plot E 2 as a function of y
1 

from Eq. ( 1. 43) for the two 

possible orders of type of rocket. 

Rockets with Energy Sources Other than Chemical 

The chemical rockets discussed in the previous sections com­

bine energy source and propellant as a unit. The release of the 

stored chemical energy is used through the action of guiding surfaces 

of chamber and nozzle to accelerate the propellant, consisting of the 

products of the chemical reaction. The characteristics of the prod­

ucts of reaction (specifically low molecular weight) are as important 
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in choosing a propellant combination as the magnitude of the energy 

stored in the combination (i.e., the chemical heat release}. 

Mechanical and electrical means of storing energy give very 

much smaller energy per unit ma.ss than chemical; but nuclear energy 

sources have enormously greater energy per unit mass, and it is only 

natural that their applicability to rocket propulsion should be the ob­

ject of inten.sive study. The energy per unit mass of fissionable nu­

clear fuel is of the order of 10 7 times that of chemical compounds, so 

great that the weight of the energy source itself is quite negligible 

compared with the weight of the device that converts the energy in a 

practical manner into thrust. Because the energy has negligible 

weight, the coupling between energy and propellant that is a charac­

teristic of the chemical system is removed, and the propellant for the 

nuclear energy source can be chosen quite independently. 

If one considers the possibility of using a fissionable fuel in a 

rocket chamher similar to the way in which a chemical fuel is used, a 

serious difficulty presents itself. A chemical reaction will proceed 

rapidly to completion as soon as the temperature becomes moderately 

high, independeltly of external conditions. A nuclear fission reaction, 

on the other hand, continues only as long as the unreacted fuel concen­

tration stays above a certain value, the critical concentration. A s the 

chamber mixture flows out the nozzle, the nuclear reaction is quenched 

immediately, although the unreacted fuel concentration is high. In 

fact, the rate. of discharge of un.reacted fuel is so high that such a 

rocket would be completely unacceptable. 

Clearly, the nuclear rocket must have some means of retain-
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ing the nuclear fuel and allowing only propellant to escape. One 

method is to retain the fuel in a solid matrix and let the heat genera­

ted by the fission reaction be transferred to the propellant flowing 

through the matrix. The maximum temperature is limited by the al­

lowable temperature in the solid, and hence is 2000°F or m:>re lower 

than the maximum temperature in chemical reactions where walls 

can be cooled and are cooler than the propellant rather than hotter. 

The effect of the relatively low temperature of the propellant in a nu­

clear rocket is more than balanced by the possibility of using a pro­

pellant with a low molecular weight (hydrogen). Apparently exhaust 

velocities of 20, 000 to 25, 000 ft/ sec can be realized. Such exhaust 

velocities are sufficiently attractive that an active program for de­

velopment of the nuclear rocket has begun. 

Other means of containing the nuclear fuel and at the sam.e 

time relieving the temperature limitation of the heat-transfer nuclear 

rocket have been considered. One possibility is to establish a strong 

vortex or vortices in the rocket chamber to separate heavy fuel from 

light propellant by the centrifugal pressure field. Propellant with a 

very low concentration of fuel m~_ght be discharged, leaving the fuel­

rich mixture in the rocket chamber. Much more basic investigation 

is required before such an arrangement could be considered seriously. 

One method of carrying a nuclear reaction reasonably close to 

comz>letion is by an explosion. A series of nuclear explosions in some 

form of chamber has been suggested as a rocket device. A large 

mass of propellant, preferably of low molecular weight, could be 

heated and then discharged. The difficulty here is that wlth the high-
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est densities attainable for fissionable fuel the critical mass corre­

sponds to the explosive energy of perhaps several kilotons of TNT. 

Obviously, the rocket required to fit explosions of this magnitude 

would be of enormous size and presents engineering problems of an 

entirely different scale than m•'lt heretofore in propulsion. The possi­

bility of a controlled thermonuclear device as a rocket cannot be dis­

missed, although it can scarcely be discussed intelligently before a 

controlled reaction is achieved. 

All of the propulsion devices mentioned above accelerate the 

propellant in the same manner as a chemi.cal rocket~ that is, by the 

action of pressure transmitted through the fluid propellant by the wall s 

of the rocket chamber and nozzle. If very high propellant tem ... ")era­

tures are required~ the walls transmitting the force to the propellant 

must be cooled. The problem of wall heating could be alleviated or 

even eliminated if the accelerating process could be carried out by 

means of body forces acting directly on the propellant, so that no 

walls are in contact with the propellant. The only body forces that 

are of practical use are electric and magnetic forces. These can be 

effective, of course, only if the propellant molecules are electrically 

charged. Two principal types of electric propulsion devices are being 

investigated extensively. 

One of these is the "ion rocket", in which the propellant is 

completely ionized and the positive ions are accelerated by an electric 

field to give a high-velocity beam. This positively-charged beam 

must be neutralized after acceleration by adding electrons; otherwise, 

the behicle wvuld accumulate a negative charge~ and the discharged 



-26-

ion beam would return to the vehicle. 

Another type of accelerator is based on the body force that 

arises when a magnetic field H is impressed at right angles to an 

electric current flow j , giving rise to a force proportional to jH and 

at right angles to both. To make use of this effect, the propellant 

must be electrically conducting, i.e., must be ionized, although elec­

trically neutral, and flow between electrodes that pass a current 

through the propellant. A magnetic field at right angles to the current 

and to the direction of flow of the propellant produces the required ac­

celeration. Problems may arise in cooling the electrode surfaces that 

are in contact with the propellant. It is not possible at the present 

time to predict which of the devices above, or of others based on sim­

ilar principles, will prove most suitable for propulsion. 

Any of the propulsion systems based on electric and magnetic 

body forces require electric generating equipment. The total weight 

of the system for conversion of nuclear energy to electrical energy 

will be approximately proportional to the electrical power output. 

The best systems available now or in the very near future have a 

weight of 100 lb/h. p. or so; a weight of 10 lb/h. p. can be expected in 

a few years from systems under development; and a weight of 1 lb/h. p. 

is estim3.ted, rather hopefully, as a possibility in the future. With 

electric power systems of such high weight/power ratio, the thrust 

that can be produced is a sm3.11 fraction of the weight of the system, 

and take-off from the surface of the Earth is not possible. The use­

fulness of the electric power systems for propulsion appears to be 

limited to acceleration from a satellite orbit. In a satellite orbit, 
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centrifugal force balances gravity~ and a small thrust acting over a 

long period of time can produce a large impulse as in gravity-free 

space. 

The optimum proportioning of propellant and power conversion 

system masses in a rocket of this type can be determi.ned relatively 

easily. The basic rocket equation for gravity-free space is still ap-

plicable1 i.e. 1 

(1. 45) 

where Avb is the increment of velocity resulting from discharge of 

the propellant. If m is the total propellant mass and t.. the 11burn-p -b 

ing11 time, the power output of the rocket motor is 

m 2 
p = _.E. • .!.c 

~ 2 
= w 

2 
c 

p 2g~ ~ 
( 1. 46) 

since this simply represents the rate at which kinetic energy is dis-

charged in the jet. We asswne that initially the rocket weight is made 

up of structural weight W 1 propellant weight W ~ and payload 
s p 

weight W 1 • As in the earlier definitions, 

w 
s 

13 = w +W 
p s 

and we asswne that the structural weight consists principally of the 

power conversion system) including the propellant accelerator. Then 

if the weight of the power conversion system i s proportional to the 

power output, we can put 

w 
s = KP 

and, from the definition of j3 1 

j3 = x
2

/(1 + x 2
) ~ 

(1.47) 

( 1. 48) 
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Solving for c and substituting into Eq. (l. 45), 

· l+x2 
t. .6vb = x -tn -:--z . 
-b a.+x 

(l. 49) 

( 1. 50) 

The expression on the left of Eq. (1. 50) is positive for all 

positive values of x ; since it approaches zero as x approaches zero 

and also as x approaches infinity, it must have a maximum for some 

positive value of x. Hence, for fixed K, a., and ~ , there is some 

value of x that gives the maximum velocity increment. The condition 

for .6vb to be a maximum as a function of x is readily found by differ­

entiating the right hand side of Eq. (1. 50). However, the resulting 

transcendental equation is not easy to solve, and it is more convenient 

to choose a new variable y , defined as 

y ::: (l+x
2

)/(a.+x
2

) 

then 

1-a. -v I 
X = y-1 - 0. 

and 

, (1. 51) 

( l. 52) 

Differentiating with respect to y and equating the result to zero, the 

condition for maxim~~m .6-vb is 

Z(y-1)2 (~=~- a.) = (1-a.)y-l-ny, 

and solving for a. as a function of y 1 the condition becomes 

a. = Z(y-1) - ytny 

y[ 2(y-l )-tn y] 

( l. 53) 

( l. 54) 
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One can readily show that this is also the condition that a. be a maxi-

mum for K/2g~ .6vb prescribed. The table below lists the parame­

ters resulting from various choices for y. 

y 1.2 1. 3 1.4 1.5 1. 7 5 2. 0 2. 5 3. 0 

a. • 735 • 590 • 506 • 439 • 318 • 23 5 • 136 • 081 

x =y2g~ 'c • 774 • 880 • 853 . 827 . 763 • 727 • 662 .613 

{-;k.6vb . 141 • 230 . 288 • 336 • 428 . 503 . 606 • 673 
b 

Aa an example~ suppose that K = 0. 02 lb. /ft. pound~ 10 lb/h. p. 

and that .6vb = 20~ 000 ft. /sec. is required. With a payload weight ra-

6 
tio a.= 0. 506 ~ ~ = 1. 5 X 10 sec. ~ 17 days~ c =57. 500ft. /sec., 

and the average acceleration is 1. 3 X 10-
2

ft. sec
2

. T:he effect of 

c hanging a. ~ .6vb ~ and K c an be found with the help of the table. 

Several types of power conversion systems for electric pro-

pulsion are being considered. Some consist of a closed-cycle heat 

engine with a nuclear reactor as a heat source and a radiator as a 

heat sink to produce mechanical power for a light-weight electric 

generator. Others are based on direct conversion devices~ again with 

the reactor as a heat source and a radiator. So far~ the direct con-

version schemes have lower efficiency than the heat engines~ and 

hence require a larger radiator for the sam•e power, but the predicted 

ov erall weights are comparable. The propellant accelerator, particu-

larly for the electrostatic type, w ill weigh much less than the remain-

der of the power conversion system. Solar power, with direct conver-

sion devices, is much more conv enient for production of sm::Ul electric 
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power than the nuclear energy sources, but it does not appear com­

petitive for the relatively large power required for propulsion of 

large vehicles. 

At first sight, the very small acceleration of a vehicle with an 

electric propulsiondevice makes it appear quite inferior to the chemi­

cal rocket, even though the payload ratio can be much higher, as 

shown in the example above. However, if very great distances are in­

volved, as for interplanetary flight, the time of flight will be of the 

order of several months, or even years, and there will be little differ­

ence in travel tim•~ between a chemi.cal rocket that produces the ve­

locity increment from :>atellite speed in a few minutes and the electric 

propulsion device that requires a few weeks to produce the velocity 

inc rem.~nt. 
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2.. ELEMENTARY THEORY OF THE ROCKET NOZZLE 

In its simplest form1 the theory of gas flow through a rocket 

nozzle may be carried out completely utilizing only the most elem·en­

tary mathematical means. In carrying out the analysis, several ex­

plicit assumptions will be made which limit the accuracy and applica­

bility of the results. In spite of these, the results are usually quite 

close to physical reality. The assumptions are: 

1. The combustion process is complete before the gas en­

counters the nozzle; the flow consists of a homogeneous non-reacting 

ideal gas. 

2. The process is reversible; dissipation arising from 3hear 

within the wall boundary layer and from volume dilatation in the main 

stream i s neglected. 

3. The flow is loc ally adiabatic; no heat is transferred from 

the gas to its surroundings or between adjacent portions of the gas. 

4. The flow is one dime nsional; all gradients of tern:>erature, 

velocity, and pressure normal to the principal direction of flow are 

neglected. 

The First Law of Thermodynamics, in a form appropriate for 

use here, states that the internal energy of the gas is increased by the 

addition of heat and by doing work on the gas. This law may be written 

be = oq + ow , ( 2. 1 ) 

where oq, be, and ow are the heat transferred to the gas, the internal 

energy of the gas, and the work done on the gas, respectively. The 

symbol o is used, in agreeme nt with the usual convention, to denote 

the change in a thermodynamic quantity, the magnitude of which may 
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depend upon the details of the process and not just upon the end points. 

Under the asswn.ption of a reversible process. the work done on the 

gas is - pd(l I p) • where p and p are., respectively, the pressure and 

density of the gas. Therefore, equation (2. 1) becom•es 

oq = de + pd (1 I p) ( 2. 2) 

where d(llp) is exact and de ma.y be shown to be so. If the gas tem-

perature and density (or its reciprocal V = 1 I p) are chosen as the in-

dependent variables, various important partial derivatives may be 

computed from equation (2. 2). If the temperature T is allowed to 

vary while the specific volume V (or density) is held constant. it is 

found that 

aq I = ae I + o c aT aT - v 
v v 

( 2. 3) 

The specific heat at constant volume, C , is defined as the heat re­
v 

quired to raise the gas temperature one degree while the gas volume 

is held constant. The deduction above shows that this heat goes en-

tirely toward increasing the internal energy of the gas. 

The enthalpy of a gas is defined to be 

h=e+plp. (2. 4) 

and the First Law of Thermodynamics expressed in terms of the en-

thalpy becomes 

1 
dq = dh -- dp 

p 
(2. 5) 

Consider the temperature and the pressure as the independent variables 

expressing the state of the gas. This is clearly possible because the 

pres sure and density are related through the equation of state for a 

perfect gas 
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p/p = RT ( 2. 6} 

where R is the gas constant. If the variations in equations (2. 5} are 

carried out holding the pressure constant, 

it I = ;~I + o e c 
p p p 

(2. 7} 

The quantity C is the specific heat at constant pressure, that is, the p 

quantity of heat required to raise the temperature of the gas one de-

gree while the pressure is held fixed. A ccording to the above, the 

specific heat at constant pressure is equal to increase of enthalpy at 

constant pressure. Because the pressure is positive and the density 

decreases as heat is added, the specific heat at constant pressure ex-

ceeds the specific heat at constant volume. 

If the definition of the enthalpy is utilized in equation (2. 7 }, 

C = ah I = ~ (e + E) I + a(RT} I 
p aT aT p aT 

p p p 
(2. 8} 

where the equation of state has been used in the last step. The term 

i;, I of equation (2. 8} may be evaluated by considering the tempera­
p 

ture and specific volume as the independent variables. Therefore 

i;! = ~~~ ~il + ~~~T ~~~ = cv + ;~~T~~ . 
p v p p p 

(2. 9) 

The partial derivative ~~IT is the one involved in the famous Joule­

Thomson investigation. Although the value of this derivative is not 

zero, it becomes smaller as the gas becomes more nearly perfect, 

that is, as the state of the gas is removed farther from c ondensation. 

For a perfect gas, that is, one satisfying the equation of state (2. 6) 

rigorously, iV-1 = 0 
· T 

Substituting this result back into equation (2.8) 

it follows that 
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c = C + R p v 

or. in another form. the gas constant R may be expressed as the dif-

ference between the two values of specific heats 

R = C - C p v 
(2. 10) 

According to the assumptions which have been placed on the 

nozzle flow, no he at is transferred to or from each element of the gas 

during the expansion process. The ref ore, the nozzle flow is a contin-

uous adiabatic process.and the appropriate form of the First Law of 

Thermodynamic s is 

de+ pd(l/p) = 0 • (2. 11) 

However, since it has been shown that 8e/8Tjv = Cv and that 8e/8VI T 

~ 0 , the last equation may be expressed in the form 

c d T + pd(l I p) = 0 • 
v 

( 2. 12) 

This relation may be rewritten in terms of the pressure and density 

alone, using the equation of state. For writing 

__E_ 1 1 
dT = d((:>R) = R_ [ pd(l/p) +pdp] ( 2. 13) 

where R is treated as a constant independent of the gas state. equation 

(2. 12) becomes 

c v 1 1 1 
R [ pd ( P) + p dp] + pd P (2. 14) 

This is a differential equation in whic h the variables may be separated 

c 
__£. dp = dp 
c p p 

v 
(2. 15) 

In all real gases, the values of the specific heats as well as their 

ratio C /C , vary with the state of the gas. In many instances, how­
p v 
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ever, it is possible to achieve a good approximation by assuming the 

specific heats to be constant at appropriate average values. A gas for 

which C is constant ( and hence C is constant because of their re-
v p 

lation through the constant R} is said to be thermally perfect. Then, 

calling the ratio of specific heats~ y = C /C ~ equation (2. 15} may be 
p v 

integrated directly to give 

y log p = log p + constant, 

or 

PP"Y = constant. ( 2. 16} 

The result is the well-known law for the reversible adiabatic or isen-

tropic process, and will apply to each element of the gas as it flows 

through the nozzle. By use of the equation of state, the result may be 

expressed in terms of the temperature and density 

T/(p}y-1 = constant, 

or, in terms of the temperature and pressure, 

Ty/(y-1} 
------ = constant. p 

(2. 17) 

( 2. 18) 

From the First Law of Thermodynamics and momentum equation 

for the gas, there follows a general integral for adiabatic one-dimen-

sional flow usually known as the energy equation. Under the present 

assumptions , the energy equation may be written 

D 1 2 v
2 

e +.!.:... + z-v = C T +.....,. = C T = constant , ( 2. 19) 
p p £. p c 

where T and v are the values of gas temperature and velocity, re-

spectively, at any point of the nozzle. The stagnation temperature and 

pressure of the gas are denoted T and p and are the values that 
c c 

would exist within the combustion chamber of the rocket if the gas ve -
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locity vanished identically. The gas temperature depends primarily 

upon the nature of the propellant and slightly upon the combustion 

chamber pressure, p • If the state of the gas at the nozzle outlet is 
c 

denoted by the subscript e , then the gas states at the nozzle outlet and 

the combustion chamber are related as 

(2. 20) 

Solving for the discharge velocity, which will be important in deter-

mining the thrust, 

( 2. 21) 

Because the gas follows an isentropic process between the combustion 

chamber and the nozzle exit, equation (2. 18) may be employed to ex-

press the discharge velocity in terms of the corresponding pressure 

ratio. This is appropriate, inasmuch as it is the ambient pres sure at 

the nozzle exit, which is known in advance. The ref ore, 

v = e 

(y-1)/y] 
3:::f_ R T [ 1 - (p e) 
y-1 c p 

c (2. 22) 

The form of the last result may be modified som.ewhat by put-

ting in evidence the molecular weight of the gas. Let M be the mo­

* lecular weight of the gas which is flowing through the nozzle, and V 

* is the volume corresponding to this weight. Then if R is the gas 

constant for the equation 

* * PV = R T • ( 2. 23) 

it is found that R* is a universal constant,which is not only independent 

of the state, but also of the gas. * Clearly V = MV • and consequently 

>!< 
p/p = (R /M)T . (2. 24) 
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Using this relation in the expression for the nozzle discharge velocity, 

it follows that 

v e = (2. 25) 

It is evident, therefore, that the nozzle discharge velocity is increased 

not only by increasing the chamber temperature and inc reasing the 

nozzle pressure ratio, but also by decreasing the mole c ular weight of 

the propellant combustion products. 

To proceed further in the calculation of rocket nozzle perform-

ance it is necessary to express the mass of gas flowing through the noz-

zle in term.3 of the rocket chamber conditions, the atmospheric pres-

sure, and the rocket nozzle geometry. In the course of this calculation 

it will be necessary to employ the value of the propagation velocity of 

a small disturbance in the gas whose state is prescribed in advanc e. 

This value is the so-called velocity of sound propagation. 

Consider a plane disturbance in a fluid body which propagates 

with a velocity v • By imposing an equal and opposite velocity to the 

fluid, the disturbance ma.y be brought to rest, thereby reducing the 

problem to one of steady state. Then, the velocity of the fluid to the 

left of the wave is v , while that on the right is v + dv • If p and p 

are corresponding values of the pressure and density to the left of the 

wave, the values to the right of the wave are p + dp and p + dp , re-

spectively. Then, across the wave, the continuity equation reads 

d(pv) = 0 (2. 26 ) 

and the momentum equation is 

2 
- dp (2. 27) d(pv ) = . 
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Carrying out the indicated differentiation on the left side of (2. 27) and 

taking account of ( 2. 26 ), it is seen that 

pv dv = - dp • ( 2. 28) 

Furthermore, the c ontinuity equation states that pdv = - vdp so that 

substituting into equation (2. 28), 

2 
v dp = dp • (2. 29) 

The differentials appearing in equation (2. 29) are taken in the direction 

of flow, and consequently their quotient may be considered the deriva-

tive taken under conditions prevailing along the direction of flow. 

Then if the propagation velocity for small disturbances is given the 

special notation a , 

2 
a = dp/dp • ( 2. 3 0) 

For the nozzle, the relation becomes particularly simple, inasmuch as 

the flow is isentropic, the pressure and density are connected by equa-

tion (2. 16). Then, carrying out the indicated differentiation, 

( 2. 3 1) 

Thus the local sonic velocity depends only upon the temperature of the 

gas. The energy equation is conveniently expressed in terms of the 

local velocity of sound, for equation (2. 19) is just 

2 y-1 2 2 
a + - 2- v = ac , 

where a is the velocity of sound in the combustion chamber. 
c 

(2. 3 2) 

Now the general geometry of the rocket nozzle as well as the 

conditions at the nozzle throat may be ascertained from the logarithm~.c 

differential of the continuity equation pva = constant. This gives 

dA + ~ + dv = 0 . (2. 33) A p v 
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But the momentum _relation may be written~ for one-dimensional flow~ 

in the form 

pvdv = - dp = - ~ dp dp 

This equation may be solved for dp / p 

dp/p = - (vdv)/a
2 

2 
- -a dp 

and used to eliminate this quantity in equation (2. 33 ). Thus 

(2. 33) 

dA 2 d A = ( v 2 - 1 ) vv ( 2. 3 4) 
a 

which may be used to investigate the manner in which the nozzle area 

must change along its length in order to insure accelerating flow. 

There are three cases to be considered: v < a, v > a , and v = a. 

I. v < a. W~1en v < a , that is~ when the local velocity of the 

gas is subsonic, and when the flow is accelerating, i.e., dv /v > 0 , 

the right side of equation (2. 34) is negative to that dA/A < 0 . This is 

the familiar circumstance from hydraulics, name ly, that the area of 

the nozzle must decrease to accelerate the fluid. 

II. v > a • When v > a , that is, when the local velocity of the 

g as is supersonic, and when dv /v > 0 , the right side of equation 

(2. 34) is positive so that dA/A > 0 • Thus, when the nozzle .flow has 

become supersonic~ it is nec essary to diverge the passage in order to 

accelerate the gas. 

The fact that the initial portion of the nozzle must converge and the 

final supersonic portion must diverge leads to the existence of a 

throat, that is, a section of smallest cross-sectional area. This cir-

cumi>tance is covered by c ase ill. 
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III. v = a • When v = a and when the local acceleration is 

finite, the variation of area vanishes, that is, dA/ A = 0 • However, 

the condition dA = 0 implies the throat, that is, the section where the 

nozzle changes from converging to diverging. Hence, it ma.y be con-

eluded that, within the approximation of one-dimensional gas dynami.cs, 

the gas is moving at the sonic velocity at the throat. 

In summarizing it may be said that to insure accelerating flow 

in the nozzle, the following conditions must exist: 

dA/A< 0 

dA/A > 0 

dA/A = 0 

when 

when 

when 

v<a 

v>a 

v = a (throat) 

( 2. 3 5) 

In all rocket applications, the pressure ratio across the nozzle 

exceeds that necessary to produce sonic velocity,and consequently the 

appropriate nozzles are of the convergent (divergent) type with sonic 

velocity at the throat. Because of the existence of a sonic throat, it is 

particularly convenient to calculate the mass flowing through the noz-

zle by working at the throat section. If the subscript t is used to de-

note quantities at the throat section, the mass of gas flowing per unit 

time, m, is 

(2. 36) 

where p and a depend upon chamber conditions and are known. The 
c c 

velocity and density ratios may be calculated from ~he energy equation 

in the form given by equation (2. 32). At the throat the sonic velocity 

and the gas velocity both become at , so that 
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2 y-1 2 2 
at + -2- at = ac 

2 
y-1" 

(2. 37) 

Furthermore, because the gas temperature is proportional to the 

square of the sonic velocity, it is clear that 

(2. 38) 

Because the flow is isentropic, the corresponding density ratio fol-

lows from the temperature - density relation, equation (2. 17 ). 

T 1/(y-1) 1/(y-1) :t = (Tt) = (y!l) • 
c c 

(2. 39) 

Now by means of equations (2. 37) and (2. 39), the mass flow may be 

written in terms of known quantities. 

( 2. 40) 

Because the pressure and temperature in the combustion chamber are 

known either by direct calculation or measurement, there is a certain 

advantage to expressing equation (2. 40) in the form 

( 2. 41) 

where the qqantity r 1 is 

(2. 42) 

The thrust of a nozzle under conditions of ideal expansion may 

be computed from the known values of exit velocity. Because the dis-

charge velocity is supersonic, the discharge pressure is fixed by the 
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chamber conditions and the area ratio and is not necessarily equal to 

the surrounding atmospheric pressure. By ideal expansion~ it is im-

plied that the nozzle area ratio is chosen so that the expansion does 

take place close to the ambient pressure. 

Now the thrust for ideal expansion is just 

F = mv = r• peA- /3::i. RT [1- (pe)('(-
1
)l'(]' 

e a t Vy-1 c p c c 

but since ac = 1./ '(R T c it follows directly that 

F ~ p a r•-J.__!:___ [1 c t '(-1 
(2. 43) 

The thrust coefficient~ defined as CF = F I (p cAt) , may be written as 

-v 2 [ (Pe)('(-1)1'(]' = l' -- 1- -'(-1 p 
c 

CF 
F 

- peAt 
( 2. 44) 

and is seen to depend only on the nozzle pressure ratio and the proper-

ties of the propellant gas. For the ideally expanded nozzle, the spe-

cific impulse is proportional to the discharge velocity and consequently 

ma.y be found from equation (2. 25 ). Therefore~ to obtain a given 

thrust, mass of gas required is decreased as the chamber temperature 

increases and the molecular weight decreases. 

In order to obtain the value of thrust calculated above, it is 

necessary to construct the nozzle with a certain outlet area A • For 
e 

the conditions of ideal expansion the outlet area is determjned by the 

chamber conditions and the ambient atmospheric pressure or "back 

pressure" against which the gas is discharged. Therefore, there is 

no difficulty in calculating the ratio e: = A I A ~ the so-called expan­
e t 

sion ratio. From c ontinuity considerations it is clear that 
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{2. 45) 

The density ratio may be written down directly 

- ( 2 1/(-y-1) PC 1/-y 
- -y+1) (p-) 

e 
(2. 46) 

where the results of equation (2. 39) have been used. Now using the 

discharge velocity as calculated in equation (2. 22), the expansion ra-

tio may be written as 

The value of a/ ac follows from equation (2. 37) to give 

e; = ( 
2 ( -y+ 1 ) I 2 ( -y- 1 > 

-y+1) 

Now if the parameter r is defined as 

1 

( 
2 {-y+1)/2(-y-1) 

r = -y:y -y+1) = rr /I{Y. 

(2. 47) 

{2. 48) 

then the form•.Ilas for both the thrust coefficient and the expansion ra-

tio may be written 

= r ~ [1 "Yy-1 ( 2. 49) 

(2. 50) 

It should be borne in mind that these expressions have been derived for 

ideal expansion, and therefore, the exit pressure p is identical with 
e 
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the atmospheric pressure p • When the expansion is non-ideal~ the 
0 

relation between the expansion ratio and the pres sure ratio is not 

modified. However. the thrust coefficient is changed due to the differ-

ence between atmospheric pressure and nozzle discharge pressure. 

In addition to those mentioned thus far~ two additional parame-

ters are used in designating the nozzle or propellant performance. 

These are the effective exhaust velocity, 

C = F/m, 

and the characteristic velocity~ defined as 

* C = (pcAt)/m . 

( 2. 51) 

(2. 52) 

When the nozzle is expanded ideally, the effective exhaust velocity is 

exactly the actual exhaust velocity v • However~ when the nozzle is 
e 

not ideally expanded~ and the atmospheric pressure contributes to the 

rocket thrust. the effective exhaust velocity is equal to the true ex-

haust velocity of an ideally expanded nozzle using the same gas mass 

and giving the same thrust. The characteristic velocity may be ex-

pressed in a somewhat different manner by recalling the mass flow re-

lation, equation (2. 41). Then 

C * = a c /f' 1 = 1 /f' l/ R T c' .. (2. 53} 

and hence is a multiple of the chcunber sonic velocity, independent of 

the nozzle and dependent only upon the propellant used. 

There is a simple relation between the characteristic velocity 

and the effective exhaust velocity which may be found by expressing 

the thrust coefficient 
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Now substituting for the thrust in terms of the effective exhaust ve-

locity, 

and the denominator is clearly the characteristic velocity. Therefore, 

the thrust coefficient is related to the effective exhaust velocity and 

the characteristic velocity simply as 

* CF = C/C • (2. 54) 

The following table gives the usual range of values for the va-

rious parameters which have been introduced to describe nozzle and 

propellant performutce. 

Parameter D~finition Dlmen,sion Range of Values 

Specific 
Impulse, I F/mg sec 185 - 425 sp 

Effective Ex-
haust Velocity. C F/m ft/ sec 5900 - 12, 000 

Characteristic peAt 
Velocity, C* --- ft/ sec 4500 - 8000 m 

Thrust Coef- F 
ficient, CF -;:;-p;:-

PC t --- 1. 1 - 1. 6 

Nozzle with Non-Ideal Expansion 

The discussion of nozzle flow so far has dealt only with ideally 

expanded nozzles, that is, those having the ideal nozzle exit pressure 

equal to the atmospheric pressure. Actually, a rocket nozzle spends 

most of its useful life operating under conditions of non-ideal expan-

sion,and consequently performance calculation under these conditions 
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is of importance. A nozzle for which the ideal exit pressure is less 

than the ambient atmospheric pressure is referred to as being over-

expanded. When the ideal exit pressure exceeds the atmospheric 

pressure~ it is said to be under-expanded. The thrust for the over-

and under-expanded rocket nozzles will be developed~ and an approxi-

mate calculation of thrust slightly off the ideal operating condition will 

be carried out. 

When the nozzle is not ideally expanded~ the thrust relation 

has an additional term accounting for the difference between nozzle 

outlet and ambient pressure. By placing the control plane for the mo-

mentum calculation directly at the nozzle outlet the thrust may be com-

puted without considering the expansion or shock wave mechanism by 

which nozzle outlet pressure is finally transformed into the ambient 

pressure. 

If p is the ideal nozzle exit pressure~ p the atmospheric 
e o 

pressure, and A the nozzle exit area~ the thrust (or drag) contributed 
e 

by this pressure variation is 

A(p -p). 
e e o 

The entire thrust is then simply 

F = p AI' 1 

c t 

r---------------~ 

2 [ p ( '1-1 ) I"] 
-

1 
1 - ( ~) + A (p -p ) , 

'1- p c e e o 

and the thrust coefficient is 

(2. 55) 

(2. 56) 

(2. 57) 

Inasmuch as the area ratio of a nozzle, rather than the pressure ratio, 

p /p ~ is usually fixed, it is convenient to express the thrust coeffi­
e c 
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cient CF as a function of the area ratio Ae/At and the ratio of cham­

ber pressure to the atmospheric pressure. Then for any nozzle geom-

etry, chamber pressure, and operating altitude, the rocket thrust coef-

ficient may be determined. It is not convenient to express the thrust 

coefficient explicitly in these variables; however, the computations are 

readily carried out. The only additional developm•ent required is that 

of expressing the pressure ratio p /p in terms of the area ratio 
e c 

Ae/At. This is easily done by employing the continuity relation 

(2. 58) 

so that 

A 
e 

-x; (2. 59) 

and only the density and velocity ratios must be determined. From the 

isentropic relation 

(2. 60) 

while the ratio of throat pressure to chamber pressure is simply 

~ = (-2- )"I (-y-1) 
p -y+1 • 

c 

Tberefore, the density r a tio may be written in the form 

2 = (pt)1/-y.(pc)1/-y(_2_)1/(-y-l} = (~)1/(-y-l)(pc)1/-y. 
p p Pt -y+1 -y+1 p (2. 61) 

e e e 

The velocity at the nozzle exit is, as shown previously 
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2 [ p (y-1)/y] 
y-l (yRTc) 1- (p:) 

and the required velocity ratio is 

( 2. 62) 

~ ~ -J.y:1 [1- (::)(y-1)/y] 
(2. 63) 

T!le ratio of the nozzle exit area to the nozzle throat area may now be 

written using relations (2. 61) and (2. 63) in equation (2. 59). This gives 

A 
e 

A 
t 

(2. 64) 

With this relation, the thrust coefficient of equation (2. 57) may be ex-

pressed in term.3 of either the pressure ratio p /p or the nozzle area 
e c 

ratio A I At = € • and the atmospheric pressure ratio p /p • For a e o c 

given pressure ratio p /p ~ the values of thrust coefficient have a 
0 c 

maximum with respect to the area ratio Ae/At. Thus, an optimum 

.nozzle expansion ratio exists for given chamber and atmospheric 

pressures. 

The condition for the optimumacpansion ratio may be obtained 

from the relation of the pres sure ratio p /p to the nozzle area ratio 
e c 

Ae/At, for if the change of thrust coefficient with pe/pc is calculated, 

it follows that 
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a 
a(p /p ) r• 

e c 

2 [ (Pe)('{-1)/'{] Ae 
--1-- +--x-----+ 
'{-1 p .t"\.. 

c t 

(
pe-po) oe 

+ P a(p /p ) • 
c e c 

( 2. 65) 

Computing the derivative of the first term on the right side, 

r• _2_. i. (- '{-1)(Pe)- 1/" 
'{-1 " p c 

Comparing this with the results of equation (2. 64), it is seen that the 

first two terms on the right side of equation (2. 65) cancel each other 

so that, in general, 

(2. 66) 

It follows obviously that the thrust coefficient has a stationary value at 

p e = p c • Furthermore, it is a maximum, since the derivative is posi­

tive for values of e: below the value satisfying equation (2. 66) and is 

negative for greater values of e: • The optimum value of the thrust 

coefficient then occurs when the theoretical nozzle outlet pressure is 

equal to the back pressure. 

Suppose now that the values of the chamber pressure and the 

ambient pressure are known, and are such that (p -p )/p << 1 • By 
e o o 

developm·ent about the point of ideal expansion, p = p , an approxi­e o 

mation for performance with slightly non-ideal expansion may be ob-

tained. If the small paramder (p -p )/p is denoted by 6 , the de-
e o o 

velopm.ent will be m:.:t.de in term'> of this dimensionless quantity. 
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Consider the first term on the right side of equation (2.. 57). This 

may be written as 

p p -p (y-1)/-y] 
_ (~ + e o) 

Pc Pc 

[ 

p (y-l)ly (y-l)ly] 
= r• y:l 1-(po) (1+6) . 

c 

Expanding in powers of 6 , this term may be rewritten in the approxi-

mate form 

T' ' 
(y-1)/y 

2 1 - (p 0) ~ + y-1 6 - .!. y-1 .!. 6 2) 
y-1 PC \ y 2 y y 

2 1-(po)(y-l)ly 

Y-1 p 
c 

('1-1)1'1 f 
_2. 1- (Po) 1 
'1-1 p c 

(2. 67) 

It will be noted that this approximation has been computed to the sec -

ond order in 6 1 the reason for this w ill becom·~ clear presently. The 

second term may also be calculated approximately. For 

( _2._)("+ 1) I 2.('1-1) _ 1 I 
y+ 1 (p e ) y ( p o) 6 

2 [ p (y-1)/~ pc p c 

'1-1 1-(p:> J 
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In terms of the parameter 6 , this term becomes 

y+1 
2 2{y-1) 

( y+ 1 ) 

(p I P ) ( y- 1 ) I y 
0 c 6(1+6)-1ly 

2 [ p 0 (y-1)ly (y-1)lyJ 
-1 1-(-) (1+6) 
y- PC 

In a manner similar to that employed above, this term may be written 

to the second order, 

y+1 
2 2(y-1) 

( y+ 1 ) 

(p I P ) ( y - 1 ) I y { (, 

--;::::::=2 o=[=c=p=o==( 'Y=-=1=) l=y=]:;- 6 - ~ [ 1 - _'Y ~-1 
-y--1 1- (-p ) 

c 

(2. 68) 

Now, finally substituting the approximate results of equations (2. 67) 

and (2. 68) into the expression for the thrust coefficient, it follows that 

1 { .Y.::.!. 2[ po(y-1)lyJ 1-2 
- 1-(-) 
y-1 p 

c 
(2. 69) 

where 

[ 

(y-1)lyJ 
2 Po 

- 1-(-) . 
y-1 p 

c 
(2. 70) 

Now equation (2. 69) shows several interesting features. First, it is 

noted that the first order terms in 6 cancel so that the deviation from 

the CF , the thrust coefficient with ideal expansion ratio, is a quantity 

of the second order. This result was obvious from the outset inas-

much as the point about which the expansion was made has a maximum 

value. Furtherm::>re, the sign of the second order variation is such 

that CF never exceeds CF , likewise following from the fact that CF 
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is the maximum value of CF for a. given chamber pressure and at­

mospheric pressure. It is actually more convenient to express equa.-

tion (2. 69) in terms of the ideal thrust coefficient C_F , as 

• 1 r• 2 
1 { .Y:.!. 1 2 1 r• 2 

2 
cF-CF=-z(~) cF I- 2 P {'y-1)/-y o ~ 2cF(~}o .(2.71) 

(---.£) -1 
Po 

Heterogeneous Flow in Nozzles 

The presence of small solid particles occurring in the exhaust 

of rocket motors causes losses of specific impulse up to about 5 per 

cent of the value which would obtain if the same material were exhausted 

as a vapor. The magnitude of the loss depends, of course, upon the 

size of the solid particles and the fraction of exhaust mass flow that oc-

curs as solid. The loss in rocket motor impulse is due to the facts that 

(i) the particle velocity lags behind the velocity of the gas, since the 

particles are accelerated by drag forces arising from relative motion 

of the gas and particles; (ii) heat is stored in the solid particles, since 

they do not cool as rapidly as the gas during the expansion process. 

As a consequence of this heat storage and the particle drag forces ex-

erted upon the gas, the gas exit velocity is reduced below that which 

would occur without particles. (iii) The relative motion of gas and 

particles results in a dissipation that reduces the gas stagnation pres-

sure below the chamber value. 

It is pas sible to calculate the losses to be expected in any noz-

zle flow of a heterogeneous mixture to a reasonable degree of accuracy. 

The error in the calculation is determi.ned largely by the accuracy of 

particle drag and heat transfer information and by some uncertainties 
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in the transport properties of the gas. For small particles in nozzles 

that do not incorporate too abrupt gas acceleration, the problem may 

be linearized. assumjng the lag to be a small fraction of the gas ve-

locity. Such calculations may be carried out quite directly. 

Form,.llation of the two-phase gas - particle flow problem is 

most easily carried out as if the particle cloud behaved as a sort of 

fluid with appropriate properties. Then the conservation equations 

ma.y be written for each phase or "fluid11 which include coupling term3 

describing the exchange of mom•'!ntum and heat between phases and the 

dissipation caused by the passage of particles through the viscous gas. 

It will simplify further considerations if it is assumed that particles of 

only a single size are present in the gas. Thus, if we denote velocity 

parallel to the nozzle axis by u • the mass density by p • and designate 

quantities associated with the particulate phase by a subscript p , then 

the equations of continuity for each phase ma.y be written 

puA = m. , 

P u A = x.rn , 
p p 

(2. 7 2) 

(2. 73) 

where rn is the rra ss flow rate of gas through a cross section A , and 

,._m. is the mass flow rate of solid particles. The momentum equation 

for each phase may also be written as 

F 
p 

( 2. 7 4) 

(2. 7 5) 

where p is the local gas pressure, and the quantity F is the force 
p 

exerted upon a unit volum·e of gas by the particles contained within that 
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volum.~. In particular, it is to be noted that there exists no partial 

pressure of the solid phase; in other words, the particles interact with 

the fluid and not with each other. If it is assum·~d that the particles 

obey the first-order Stokes drag law, then the force F exerted by the 
p 

particles upon a unit volume of the gas is 

(2. 76) 

where n is the number of particles of radius a in a unit volume, and 
p 

c onsequently the effective mass density p of the solid phase is mn 
p p 

where m '.s the mass of a single particle. The gas viscosity ~ will be 
1 

assumed to vary as the square root of gas temperature, T 2 , so that 

the ratio 'f.lla is constant where a denotes the gaseous velocity of sound. 

The quantity A is a characteristic length associated with the velocity 
v 

equilibration rate of a single particle, and is defined as 

A = ma/(61TO''f.l). v 
(2. 77) 

Physically, A is the distance traversed while a particle of m3.SS m 
v 

a.nd radius 0' reduces its relative velocity to e -l of its initial value 

after being injected into a gas stream of viscosity 'f.l moving at its son-

ic v elocity. We denote ). the velocity equilibration range and note 
v 

that since a/'f.l is constant, A is also constant. For roc ket motor at­
v 

mospheres and particle radii of one micron, the values of A are of 
v 

the magnitude of one centimeter. Since the particle m3.ss m varies as 

the particle radius cubed, it follows that A varies as the square of the 
v 

particle radius. 

The First Law of the rmodynami.cs may be written for the gas as 

puc d T = u ~ + (u -u) F + Q 
p dx dx p p p 

(2. 78) 
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where Q is the heat transferred per unit volume per second from the 
p 

particles to gas, and the term (u -u)F is the work done on the gas by 
p p 

the passage of particles through the gas. It is to be noted that 

(u -u)F - (u -u)
2

, and consequently represents a dissipative interac-p p p 

tion; the sign remains unchanged regardless of whether the particles or 

g as are moving the faster. The value of c , specific heat of the gas 
p 

at c onstant pressure, is assumed constant in the analysis, largely as a 

matter of analytical convenience. The heat transfer rate Q from 
p 

particles to gas is approximately calculated as if the Nusselt number 

w ere unity, inasmuch as the particles were assumed to follow the 

Stokes drag law. 

Q 
p 

Thus, Q may be written 
p 

k 2 = n ( - ) 4rrcr ( T - T) == p c a 
P cr P P P 

T -T 
p (2. 79) 

where k is the thermal conductivity of the gas and T is the loc al 
p 

temperature of solid particles. The characteristic length AT h as a 

physic al significance similar to its counterpart A , except that in this 
v 

c ase, it is the temperature difference rather than the velocity differ-

ence that is decaying with distance. Specifically, AT is defined as 

AT = (cpm3.)/(4rrok) = 3/2 Pr Av (2. 80) 

and is designated the temperature equilibration range. It is to be 

n o ted that "- T is direc tly proportional to "-v , the factor of proportion­

ality being 3/2 Pr, where Pr = c 11/k is the Prandtl number of the 
p 

gas, assume d to be a constant in the present analysis. Because of this 

proportionality between A. v and AT, the presence of particles in the 

gasdynamic flow field adds only one characteristic length to the prob -

lem; in ma.ny cases, 3/2 Pr is near enough to unity that )_ v and A. T 
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may be considered equal. 

Returning now to the basic equations, the First Law of thermo-

dynamics for the solid phase may be written 

dT 
puc__£= -Q 

p p dx p 
( 2. 81) 

where c is the constant specific heat of the solid material, and the in-

dividual solid particles are assumed undeform~d by stresses imposed 

upon them by the gas. The fact that the particles are not deformed by 

the flow accounts for the absence of terms in equation ( 2. 81) corre-

spending to volumetric dilatation or dissipation within the solid. 

Together with the gaseous equation of state, the preceding re-

lations give a complet analytical description of the one-dimensional 

heterogeneous flow. Because it is the intention here to consider the 

special circumstances where the differences u-u and T- T may be 
p p 

considered small in comparison with u and T respectively, there is 

an advantage of introducing the variables 

u- u - u 
p s 

T- T a T 
p s 

(2. 82) 

l - (pp/x.p) = Ps 

in preference to the particle quantities u , T • and p • A compa-
p p p 

rable transforma.tion in the equations of continuity, momentum, and 

energy may be effected to emphasize the fact that us , T s , and p s 

are essentially of much smaller numerical magnitude than u, T, and 

unity, respectively. By adding the equations of motion for gaseous and 

solid phase, equations (2. 74) and (2. 75), the force F acting between 
p 

the two phases disappears and, after some rearrangement, 
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du d dus 
(l+x.) pu dx + ~ = x.pu dX (2. 83) 

In much the same manner# addition of statements of the First Law for 

gaseous and solid phase, equations (2. 78) and (2. 79), eliminates the 

heat exchange between the two phases. Moreover, the two momentum 

relations, equations (2. 74) and (2. 75), may be employed to eliminate 

the pressure and inter-phase force. This operation yields a relation 

that may be integrated from the rocket chamber to an arbitrary posi-

tion of the nozzle and gives: 

X. [ 1 2 = l+x. cTs+uus--zus ], (2. 84) 

where it has been taken into account that u , us , and T s vanish in the 

rocket chamber, and that T is the common temperature of the gas 
c 

and solid phases in the chamber. 

Now consider the limiting circumstance where the velocities 

and temperatures of the two phases remain exactly equal throughout the 

nozzle; this condition will be designated the "equilibrium" flow. Then, 

since u = T = 0 , equation (2. 83) becomes s s 
du dn 

(l+x.)pudx+clx = O, 

and equation (2. 84) reads 

c +x.c 2 
( f+x. )(T-Tc)+iu = 0. 

If appropriate form:1 of the equations of continuity are used, 

(l+x.)puA = (l+x.)rn, 

and the equation of state ma.y be rewritten 

R 
p = (l+x.)p(l+x.)T. 

(2. 85) 

(2.86) 

(2. 87) 

( 2. 88) 
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Equations (2. 85) through (2. 88) are recognized as those describing the 

isentropic flow of a gas through a nozzle of mass flow (l+x.)rn and 

cross-sectional area A, where the gas has an effective density 

p = (l+x.)p. 

and effective gas properties 

c • (c +x.c)/(l+x.) 
p p 

c = (c +x.c)/(l+x.) 
v v 

R = (c -c )/(l+x.) 
p v 

'I = (c +x.c)/(c +x.c) 
p v 

(2. 89) 

(2. 90) 

Then clearly the expansion process takes place according to the law 

T/T = (p/p {'i-l)/ 'I = 
c c 

-;- ):Y-1 
( p p c • ( 2. 91) 

where p c and p c are the pressure and effective density in the rocket 

chamber. All familiar relationships for isentropic nozzle flow hold, 

then, provided they are written in term:'3 of the effective quantities giv-

en above. Although this condition of ''equilibrium" flow is an artificial 

one, so far as actual rocket nozzles are concerned, it does form a 

suitable starting place for an approximate performance calculation, 

since it is quite nearly correct for any nozzle of reasonable perform--

ance. 

Returning now to the problem of heterogeneous nozzle flow under 

non-equilibrium conditions, it is worth noting that the equilibrium noz-

zle flow problem is a simple one,because the isentropic integral, equa-

tion (2. 91), renders the mom•~ntum equation (2. 85) redundant. With the 

aim of utilizing any simplification to the present problem that may ac-
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crue from this, the corresponding m;tnipulations of equations {2. 85) 

and (2. 84), together with appropriate equations of state and continuity, 

lead to the relationship 

T p (y -1 ) I y [ ~ 1 d T d ] 
( Tc )(;) = exp 1~){ ~ cpT c d: +us dx (u-us) dx (2. 92) 

In the analysis of non-equilibrium heterogeneous flow, it will be con-

venient to work with equations (2. 84) and (2. 92). They do not suffice to 

complete the problem, and additional linear combinations of the original 

equations are required. From equations (2. 72) and (2. 73), it follows 

directly that 

pu+u =pu, s s s s 
(2. 93) 

while from equations (2. 7 5) and (2. 7 2) it is not difficult to show that 

du 
u­

dp 

au 
s 1 

dp/dx = 
au 

s 
du 

~-,1-.--- + u __ s 
dp/dx dp 

where a is the equilibrium speed of sound; that is, 

2 
a = yRT, 

(2. 94) 

and Av is the velocity equilibrium length (equation 2. 77) based upon the 

equilibrium speed of sound. Similarly, from equations (2. 81) and (2. 72}, 

it follows that 

c aT dT _ _p_ s 1 
u dp c dp/dx 

AT 

( 2. 9 5) 

where AT is based upon the equilibrium speed of sound and the effective 

specific heat c . The set of equations (2. 84), (2. 87 ), (2. 88 ), and 
p 

(2. 92) through (2. 94) are completely equivalent to the original equations 

and they are written explicitly in terms of the quantities u , T , and 
s s 

p s . Moreover, the independent variable has been changed to the gas 
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pressure p ~ and the distribution of pressure along the nozzle axis# 

p(x) or its inverse, is assumed to be prescribed. 

When the three dependent variables p , u • and T are s s s 

small, a perturbation solution naturally suggests itself, and the ap-

propriate small quantity in terms of which the solutions should be ex-

panded is I" IL where L is the fixed nozzle length. The state of the 
v 

gas may then be written 

p = p(O)+(i IL)p(l)+(i IL)2p(2)+ •.• 
v v 

u = u(O) + (i IL)u(l) +(I" IL) 2u( 2 ) +... (2. 96) 
v v 

T = T { 0 ) + (I" I L) T ( 1 ) + (I I L) 2 T ( 2 ) + ••• 
v v 

where each coefficient is a function of the local pressure p • Each of 

these variables has a non-vanishing zeroth degree part, and all coef-

ficients in the expansions are of order unity. The variations of the 

particle state from that of the gas, p s , us , 

terms of the first degree 

Ps = (I I L) p (l ) + (f I L ) 2 p ( 2 ) + • • • 
v s v s 

u = (I I L )u ( 1 ) + <I I L) 
2 

u ( 2 ) + ••• 
s v s v s 

and T , have leading 
s 

(2. 97) 

T = <I I L) T (l ) + <I I L) 2 T ( 2 ) + ••• 
s v s v s 

The functions giving terms of various order in each variable may be 

determined by substituting expressions (2. 96) and (2. 97) into the equa-

tions (2. 84), (2. 87), (2. 88), and (2. 92) through (2. 95) and separating 

each equation according to the powers of the small parameter I IL • 
v 

In the present analyses, there will be no need to consider more than 

the zeroth and first degree terms. 
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Th f 
. (O) (0) 

e unctlons p , u and T(O) are described by the zeroth 

order parts of equations (2. 84), (2. 88), and (2. 92). Inspection of 

these shows immediately that this solution corresponds exactly to the 

so-called equilibrium solution described previously by equations 

(2. 86), (2. 88), and (2. 91); to this order of approximation, then, the 

gas and particles have the same velocity and temperature. Clearly 

then, the solution being employed consists in a perturbation expan-

sion about the equilibrium flow. Physically, this implies that as 

I /L becomes very small, the actual flow approaches more and more 
v 

closely to the equilibrium flow. That is equivalent to saying that when 

the equilibration range I is negligible com pared with the nozzle 
v 

length, the gas and particles achieve an equilibrium state before a 

significant fraction of the nozzle length has been traversed. These 

quantities are readily written down in terms of the prescribed pres-

sure distribution along the nozzle. 

P ( o) I P c = (pIP c) 1 I " 

= (p/p {Y"-1)/ ~ 
c 

)0) = ic T ( 1 - (p 1 P ) ( "- 1 ) /)' ) 
p c c 

Calculation of the first order terms p (1)• 
s 

(2. 98) 

(2. 99) 

(2. 100) 

and T (l) 
s 

follows quite directly from equations (2. 93 ), (2. 94), and (2. 95). In 

equations (2. 94) and (2. 95), the presence of the small quantity A. in 
v 

the denominator of their right hand sides reduces the order of these 

terms by one. Consequently, it follows from the zeroth order part of 

equation (2. 94) that 
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u(O) du(O) d 
= ~ dP (*). 

where the new length variable ~ = x/L has been introduced. Utilizing 

the relationships between the pressure and zeroth order quantities in 

the above equation gives the somewhat simpler form 

u (1) = - a(O) (..!. ~). 
s - p d£ 

'( 

(2.101) 

Similarly. from the form of the energy relation given by equation (2. 95) 

it follows, after some reduction. that 

(2. 102) 

and from equation (2. 93 ). 

~+a,<~*). '( M 

(1) 
Ps = (2. 103) 

From equations (2.10l)and(2.102), inwhich u (l) and T (l) are de-
s c 

termined algebraicly, it is apparent that the order of differential equa-

tiona has been reduced by one in each case; that is. the perturbation 

employed is a singular one. and hence some "boundary layer11 regions 

will be ignored. The physical effect of this fact may be illustrated by 

considering a situation where, due to a change in nozzle slope, the 

pressure gradient dp/d~ is discontinuous. Then, according to equa-

tion (2. 101), the particle slip velocity is discontinuous, a circumstance 

which is clearly impossible. The exact solution, or the local boundary 

layer solution. would smooth this discontinuity into the physically cor-

rect one. 

Evaluation of the remaining first order terms may be carried 

out from e quations (2. 84), (2. 88), and (2. 92), noting particularly the 
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fact that the right hand sides of both equations (2. 84) and (2. 92) are of 

the first order and are known to that order. These two perturbation 

relations may be written explicitly as 

~+ ("{-1)M(0)2 (u(l)) = 
T -:m (2. 104) 

and 

(2. 105) 

where the functions on the right hand sides of equations (2. 104) and 

(2. 105) are the known functions of the prescribed pressure ratio 

(2.106) 

and 

p { (O) du (
1
)} 

G(p/p) =I 1 (1- )u (1)~- 'Y"IU(O) s d 
c c T(O) Tl s dp 'I dp p 

PC p 

(2. 107) 

where the possible simplification of the last integral will be post­

poned. Here, we have denoted the quantity (IT/I }(c /c )2 = Tl . v p 

The first order perturbation to the equation of state, equation (2. 88), 

gives 

(2. 108) 

Now equation (2. 105) gives directly the first-order gas temperature 

perturbation, and equations (2. 104) and (2. 108) may be solved for ve-

locity and density perturbations directly as 

(1) 
u - )t 1 F(....E.) G(~) 
~ - 1 +)t ( 0) 2 p - p 
u (~- 1 )M c c 

(2. 109) 

and 
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p (1 ) I p ( 0 ) = - ( x. I 1 +x. ) G (pIp ) • 
c 

(2. 110) 

The first order modifications to equilibrium nozzle flow, due to the 

effects of solid particles transported by the gas, is then given by 

equations (2. 105), (2. 109), (2. 110) for the gas flow, and equations 

(2. 101), (2. 102), and (2. 103) for the particle flow where the gas pres-

sure is a prescribed function of x or of s . 
The required cross-sectional area of a nozzle carrying mass 

flow m and providing the required pressure distribution must also be 

expressed as a series in powers of A. IL • That is, 
v 

A(plp ) = A(O)(plp ) +(A. IL)A(l)(plp ) + ••• 
c c v c 

(2.111) 

where the coefficients A(O)• A(l)• etc., are readily determined from 

the equation of continuity, equation (2. 72). It will prove most conven­

p a A(O)Irn, since the ient to express the zeroth area in the form 
c c 

chamber conditions are assumed constant and the area may be scaled 

up or down depending upon the desired mass flow. This gives, ac-

cording to the well-known relations, 

p a A(O) llyJ 
c c (..E...)= (....E...) _2_ (1 

m Pc Pc l :Y-1 

1 

P (y-1)ly))}z­
(-) 

PC 
( 2. 112) 

The ratio of the first area perturbation to the zeroth order area m .'i.y 

be written as 

and consequently, is given in terms of the F and G functions, equa-

tions (2. 106) and (2. 107). Through partial integration of (2. 107) and 

ensuing simplification, the expression for A(l) IA(O) may be written 
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X. 1 [ ( - (0)
2

) 1 ~ = 1+x. - (o> t 1 + Tl('y-1) M P" ds 
yM 

p/pc . 2 } 
.., 1 + Tl ( y- 1) M l O) 1 dCl dCl 

J M(O) 2 ~ 
1 (l 

(2. 113) 

None of the calculations involved encounter any difficulties in the 

neighborhood of the nozzle throat. 

The particle velocity lag and particle temperature deviation 

c ause a general reduction in the specific impulse of a rocket motor. 

To calculate this loss to the first order in A. /L , consider a nozzle of 
v 

fixed length L expanding the gas from a given chamber state p , T , 
c c 

to a prescribed exhaust pressure p • If the specific impulse 
e 

I(O) = u (O) /g, (2. 114) 
e 

that occurring under conditions of equilibrium flow) is taken as the 

reference value, then the fractional loss of impulse caused by the 

presence of the particles is 

(1) (1) u (l) 
u I x. (u s ) \OJ l+x. --roT-~ 
u Pe u u Pe 

(2.115) 

The term associated with the pressure at the nozzle discharge is ab-

sent because nozzles carrying both equilibrium and non-equilibrium 

flow are expanded to the local atmosphere pressure. This loss may 

be written down explicitly utilizing the values for u ( 1 ) /u (O) and 

u ( 
1

) /u (O) from equations (2. 109) and ( 2. 111 )) respectively. With 
s 
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this substitution~ 

- v X. 'r) 1 d ( )+ 1-'r) A. ( 
- L l+x. - ~M(O) Pe * pe -2 (0)2 

+ ___ !].....__~ 
2 

(~-1 )M (O) 
e 

u 
(0) d 

dp 

'I M e 

- 1 ~ ds 2 dl; 
p 

(2. 116) 

where the subscript e has been used to denote the value of the vari-

ables at the nozzle exit; that is, when p = p • Partial integration of 
e 

the second integral in equation (2. 116) and some subsequent simplifi-

cation yield a final convenient form for the fractional impulse loss: 

"-v 1 
=--(-X.-) 

L l+x. _ 2 (0)2 
'I Me 

1~ 2 d£ dp. (2.117) 
p 

It should be noted that for most cases of practical interest 'r) :=::: 1 ,and 

the error introduced into equation (2. 117) by setting 'r) = 1 is corre-

spondingly small. 

Evaluation of the impulse loss from equation (2. 117) presents 

no difficulty so long as the pres sure distribution along the axis p(s) , 

or its inverse s(p), is prescribed. Then, writing the Mach number 

in terms of the pressure 

(2. 118) 

evaluation of equation (2. 117) is,at worst, an elem.entary numerical 
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integration. 

The analysis which has been carried out for a fixed exhaust 

pressure can be extended to a nozzle of fixed outlet area rather easily. 

The discharge area A and the pressure at the nozzle exit are coupled 
e 

through the continuity relation. If there were no particle slip, the 

pressure p (O) at the outlet of the nozzle satisfies the equation 

pa A e 0 1/-yf 0 0-l)N]? i 
c. e = (p /p ( )) 2/(~-1) [1- (p ( )/p ) . (2.119) 
m c e e c 

Since the outlet area is fixed, particle slip and the attending non-

equilibrium effects cause the pressure at the outlet to be modified by 

an amount proportional to I /L , with the nozzle outlet pressure in the 
v 

form 

= 

A. (1) 
v pe 

+----+ ... L p 
c 

(2.120) 

Now utilizing equations (2. 111), (2. 112), and (2. 113), the nozzle out-

let area parameter may be written to the first order of I /L as 
v 

c e = (p /p l "Y 2/(-y-1) 
pa A I { 

m c e 
I- (p /p rv-1)/'i l t 

e c ) 

X {I+ (fv/L) ~~K [< I + 

(2. 121) 

But p /p is expressed by equation (2. 120) so that retaining only the 
e c 

zeroth and first order parts, 
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I ( < o ) C:Y- 1 ) IY)- 1 l ( 1 ) ) 
x -~( Po)':ii--iz.!- 1_/Pe ) !(-Pe_ 

y p ( ) i \ PC 1 PC 
e '-- _J 

\ 

I ) (0) (0) l ) 
~ ( 1 (p e ) 1 (p e ) 1 + 1;)( 1 + G p - F p . ( · (2. 122) 

I (--1)M (O) c (-y-l)M (O) c •, 
'-- Y e c - J 

The condition tl1at the outlet area param.ete r be unchan2: ed by the f1 ow per-

turbation is simply that the nozzle outlet pre s sure be modifier:! b y <1.n 

r 
amount _;. p (1) /p such that the coeffici e nt of ) I L i:t equa tion (2. 122) 

L e c v 

vanish. 'This then states that for a nozzle of fi::e G mass flo\'/~ C 1c outl (.; t 

area is not modified by t;1e flow perturbation. Expli c itl y , t h is g ives t i1e 

outlet pressure perturbation p ( 
1

) /p 
e c 

a s 

p ( 1 ) (~p ( 0 ) ) 
e )( e 

--p-- = ~ p -------------------------------_-1 ____________ ___ 

c c ( - (ppec(O))(y-1)/y) )'+1 ~-1 1 
-y- -z-

(~- l )M ( O) 
e 

p (0)) 
G ( e ____ 1 __ ..,. 

pc (~-1 ):\-1 ( 0 ) 
e 

1 + ------~ 

(2. 123) 

w hich may then be c omputcu w h e n t11C functions ~· a n d G <:.. r c knO\.n. 

Nov.r the thrust of the motor may also be expanJ e J. in a p c r t ur lJ ation 

series 
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(0} (0} 
(O) pe du 

= u < -P- > + d (pIp ) 
c c 

( 1) 
"fv pe 

L P 
p (O) /p c 

e c 

A [ (O) (0) J I 
+ __::!... _1_ u(1)(~ )+ _x._ u (1)(~) + __::!... 

L 1+x. p 1+x. p p L 

A P P (1) 
e c e ) 

( 1+x.)rh -p-- • (2. 124 
c c c 

The straightforward calculation of the derivative shows that 

Aepc 

< 1 +x. )rn 

s o that the remaining perturbation term:? are 

~~(1) 
L 

( 1 +x.)rn 

p (O) 

(-e-)+ _ x._ 
p l+x. 

c 

(2. 125) 

(1) (O) ] u p 
~(-e-) . 

u PC 
(2. 126) 

Comparison with equation (2. ll5) shows this to be identical with the 

result obtained for a fixed outlet pressure. The t w o are the same. 

therefore, up to the first order terms in "f /L • the accuracy of our 
v 

calculation. 
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3. COMBUSTION THERMODYNAMrCS 

AND CHEMICAL PROPELLANTS 

Free Energy and Equilibrium 

The Helmholtz free energy, or work function, is defined by 

the equation 

A: £- TS (3. 1) 

Defined entirely in term:s of functions of state, A is also a function of 

state. Compare two states of a system held at constant temperature: 

AL = E,_ -,;_ s,_ 
A, : £, r, s~ 

Subtracting, we find that for any change at constant temperature 

LlA = Ll£- TAS (3. 2) 

Substituting from the First Law for a reversible change; we have 

.6. A = 

But since Ll S = !r~r /T , it follows that 

from which 

-- .a A : W..w"~ 
(3. 3) 

For any given change at constant temperature, there is a maximum 

extractable work, expressible as the difference of a function of state, 

-!J . .A. 

To find, in terms of A , criteria for determining the direction 

of spontaneous reaction, and the situation at equilibrium, we again set 

out from ·~quation (3. 2) for any isothermal change. Now, however, we 

do~ stipulate a reversible change, but substitute for 6.E the general 
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case expressed in the First Principle of Thermodynamics: 

.6 A :: Ll E - T LlS .: 

Stipulating that only P dV work is possible~ and that the system is 

maintained at constant volume, we reduce w to zero. Hence, 

fr - T~1S 

For any observable change~ T .6S > q. Therefore, for every observ-

able change at constant temperature and volume~ there is a decrease 

of the Helmholtz free energy. The criterion of a spontaneous change 

at constant T and V is thus 

(3. 4) 

At equilibrium, TAS: and the criterion of equilibrium in a sys-

tem at constant T and V is 

LlA:o (3. 5) 

In the special circumstances indicated, spontaneous change al-

ways reduces the capacity of the system to do work, and equilibrium 

i. s reached only when that capacity has been reduced to a minimum. 

Here then, we have a function that can represent the changes and 

equilibria of chemical system.; in much the way that the concept of 

mt~chanical potential energy represents change and equilibrium in 

purely mechanical systems. Consider a reaction of the following 

type: G + H = L + M. We construct the curve showing on one side the 

total value of A for the reactants G and H; on the other side, the to-

tal value of A for the products L and M; and in between, the values 

of A for the various mixtures of G, H, L, and M corresponding to 

different degrees of completion of the reaction. The equilibrium com·-

is that represented by x , where, in the trough of the curve, the equi-
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100% 
L+M 

Fig. 3. 1. Variation of free energy with composition of reaction mix­
ture. 

librium defined by the condition D.A = 0 is established where A as-

sumes its minimum value. If the reaction proceeds at a finite rate in 

either direction, its progress from any initial condition to equilibrium 

is then a matter of 11 sliding down to the bottom. 11 

Every system not at equilibrium is potentially capable of de-

livering work. but no system at equilibrium i.s capable of furnishing 

any work whatsoever. The maximum -.vork output recoverable from the 

change represented above is given by the vertical drop -- that is, by 

A ... al-A .
1 

, and this same quantity of work is the m i nim'.lm :i.nput 
::.rutl equ1 

required for the non-spontaneous change in which the initial state of the 

system is restored after it has reached equilibrium. In practice, of 

course, no change is ever strictly reversible, so that the maximum 

work is never recovered in any actual process. But since A is a func-

tion of state, the value -D.A £or a given change is always the same. 

Although the total energy of system and surroundings remains constant, 

every spontaneous change m'.lSt result in a degradation of energy, an 

irrecoverable decrease in the amount of (11free 11
) energy available to do 

work. 
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Substituting from equation (3. 3) into (3. 2), 

= - L1E. + TAS 

we obtain the relation of the maximum work output to the decrease in 

internal energy. If 6.S is positive for the given change, the maximum 

work output is greater than the reduction in internal energy by the 

margin of T 6.S = q , where q is heat absorbed by the system, 
rev rev 

Thus, in the reversible isothermal expansion of an ideal gas, there is 

no reduction in internal energy, and the work output is simply equal to 

the heat input. On the other hand, if 6.S is negative for the given 

change, the maximum work output is less than the reduction in internal 

energy by the margin of T6.S = q , where q is now heat re-
rev rev 

leased by the system. The heat so rejected corresponds to the heat 

rejected at exhaust temperature by a Carnot engine, and T6.S is there 

the measure of the unavailable energy. Thus, for example, if an iso-

thermal reaction at constant volume involves the formation of product 

molecules with structures having a degree of organized complexity 

greater than that of the reactant molecules, then that reaction has 

negative 6.S and, of any drop in internal energy, only the difference 

(-6-E + T6.S) is extractable as useful work, i.e., recoverable "free 

energy." 

Equilibrium criteria in terms of 6.A do not fully m ·eet the re-

quirements of calculations carried out under conditions of constant 

temperature and constant pressure. For these conditions, the essen-

tial criteria! are better expressed in terms of the Gibbs free energy, 

F, defined by the equation 

F., h'- TS (3. 6) 
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A development paralleling that whic'h yielded equation (3. 2) yields 

here, for a change at constant tem:s::>erature, 

(3. 7) 

Assuming constant pressure, we can substitute for .6.H to give 

whence, in view of equation (3 . 3 ), we can conclude that 

- A F" :: w~-.,a:: - -p A V" = Wn 1 t 
(3. 8) 

Dismissing the work done against the atmosphere, the maximum 11net 

work" obtainable from an isothermal change is then represented by 

-.6.F. In any actual change, the net work recovered will be less than 

-.6.F , but, since F is a function of state, -.6.F for a given change re-

mains the same however much work is or is not recovered. 

Let us now express in terms of F the criteria for direction of 

spontaneous reaction and position of equilibrium. At constant temper-

ature and pressure, 

t1F: LJ£+-p~V'-TAS 

Substituting from the First Principle of Thermodynamics for any 

change, reversible or irreversible, 

LlF = 
When only p.6.V work is possible, the last equation reduces to 

LJF :- f'- T~S 

It is now clear that the equilibrium criteria can be re-expres sed in 

terms of F. The criterion of a spontaneous change at constant T and 

p is 

(3. 9) 

The criterion of equilibrium in a system at constant T and p is 
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elF =- o (3. 10) 

No system is at equilibrium Hit can undergo a change that reduces its 

capacity to do work. Only when a minimum £ree energy has been at-

tained (dF = 0) is the system at equilibrium. 

Returning to equation (3. 7 ), we see how the direction of the 

spontaneous chemical reaction is controlled. Clearly, loss of heat 

content (-.6.H) and increase in entropy (+.6.S) both tend to produce ( -.6.F) 

spontaneous reaction. Four possible situations are indicated in the 

table. At sufficiently low temperatures (minimizing the T.6.S term), 

exothermic reactions (-.6.H) will be spontaneous (-.6.F); at sufficiently 

high temperatures, the T.6.S term must become dominant. A complex 

compound formed from its elements in an exothermic reaction will be 

stable at low temperatures even though~ since it is a comparatively 

.6.H .0.S .6.F 

- + - reaction always spontaneous 

+ - + reaction never spontaneous 
I 

? direction depends conditions - - on the 

+ + ? direction depends on the conditions 

highly-ordered structure, the .6.5 term is negative. But, assuming 

constant pressure, at high temperatures this compound, like complex 

compounds generally, will become unstable as the T.6.S term assum.~s 

control. 

As in the case of E and H , only changes in F are thermody-

nami.cally significant, and for convenience, we may arbitrarily assign 

zero free energy to the elem·ents in their standard states at 25°C. For 

0 0 
these we say F 

298 
= 0 , and we can then calculate .6.F f , the free en-
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ergy of formation of one mole of any compound. 

Equilibrium StiLte and Equilibrium Constant 

It is easily shown that, at constant temperature, the variation 

with pressure of the free energy of a mole of the substance j is given 

by the equation d:F . = 
J 

v .dp. 
J J 

d.. F-. = 
1 

If the substance is a perfect gas, 

RT 

For integration, take the lower limi.t to be a pressure of one abnos-

0 
phere, for which the gas has its standard free energy, F. • As the up-

J 

per limit, take the free energy F. corresponding to any other pressure, 
J 

p. • Then 
J 

RT 

RT_& r;· 
For any number of moles, n. , of the ideal gas, 

J 

- -o ~ F;· : ""i 0 · • -ni F,· + -ni R T.. .,., Pi 

(3. 11) 

For the general case of a reaction involving ideal gases, we 

represent by nj the number of moles of j consumed, and by ~ the 

number of moles of k formed. For the reaction, we have 

For a reaction of the form gG + hH + lL + m::\.1 , we write 

-6 r :r .! 1_ ~m ~ - c? J:.- A~ 
The free energy of a mixture of ideal gases is simply the sum of the 
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free energies of the component gases, each exerting its own partial 

pressure p . • 
J 

For ideal gases in a reaction mixture, we can then 

substitute as follows: 

[ .L F,_o"* ~ ;:./- / ,{/'-~ ~} 

+RT (J j,ri., mkto~- 1./n '!'(; -i..l..r.NJ 

The pressure function has precisely the form of the equilibrium c on-

stant for the reaction. Now let us suppose that the reaction has pro-

ceeded to equilibrium. At this point .6.F = 0 , and the pressures of the 

gases will be such that the pressure function takes on the value of the 

equilibrium constant, with partial pressures expressed in atmo s-

pheres. Thus: 

_.!1f_ 0 

R7 

This simple relation has so far been obtained only for the case of re-

actions involving strictly hypothetical ideal gases. In general we find 

that a relation of the form of equation (3. 11) can be written for any sub-

stance j in terms of the "activity," a. , of that substance. Thus, 
J - "'o .i' 

~· ~ RT.-vn "'/ (3. 12) F;· : 
We can now set out from equation (3. 12), as formerly we did from 

(3. 11 ), and obtain a general relation just like the above, except that the 

equilibrium constant, K , is now expressed in terms of activities. 
a 

The activity of a substance is a function of its concentration; by dealing 

only with ideal gases, it is possible to overlook a complicated function 

of concentration which arises from ;;trong m':::>le c ular interactions. By 
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and large, however, with change in concentration, the activity will at 

least change in the same direction. Often we can, with no major loss 

of accuracy, replace activities by more familiar partial pres sure and 

mole fraction terms. 

Provided that we take care 1o select the appropriate terms and 

units, we find that for any reaction we can write 

(3. 13) 

where Z is some concentration function having the form of the equi-

librium constant for the reaction concerned. Then, for any reaction 

at equilibrium .. one has 

(3. 14) 

Temperature Dependence of the Equilibrium Constant 

Although invariant at constant temperature, the equilibrium 

c onstant K does change with changing temperature. By equation (3. 7) 

from which it is evident that ~F0 
is a function of temperature. This 

being so, it follows necessarily that K is also a function of tempera-

ture. Combining the last equation with (3. 14), we have 

), K = - AH" 
--- + 
J?T 

Ll..S p 

R 

Suppose that we compare values of K over a temperature span in which 

~H0 
is constant. The constancy of ~H0 

requires that ~Cp be negli­

gibly small. Under this condition, ~s0 
must also be constant. We 

then write 
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- AH
0 

+ LlS 
0 _j, K,: 

R7;_ R J 

Subtracting the second equation from the first, it follows that 

k(~) 
1<, 

= Ll H "(-' _ _L) 
R t;. /, 

(3. 15) 

This is van't Hoff's law, and it applies excellently to a great many 

systems. 

Ol:>serve that deductions drawn from equation (3. 15) are in 

agreement with Le Chatelier 1s principle. Consider that T 2 > T 
1 

. 

For an endothermi c reaction b.H > 0 , -b.H/R < 0 , the right side of 

the last equation is positive, and K
2 

> K
1

• That is, the rise of tem­

perature favors the endothermj.c reaction, which has a greater equi-

librium constant at the lower temperature. But beyond such qualita-

tive predictions, (3. 15) provides the means to calculate the change of 

equilibrium constant with temperature. 

We can then no longer depend on equation (3. 15) for our calcu-

lation of the change in equilibrium constant over great ranges of tem-

perature. However, we can easily derive an equation on which we can 

rely even in these circumatanc es. 

Observe that, of the terms appearing in equation (3. 14), three 

v ary with temperature: K, .0.F
0

, and T itself. Differentiating with 

respect to T , we have then 

_ _d_ ( ~ F c') : R }., K + R T 1r .J._, K 
o(..T 

But now we can substitute for db.F
0 

/dT from the Gibbs-Helmholtz 

relation, and so obtain 
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-:- {Ll H o_ AFo) ~ R)., K + RT -fr .I-nK 

Substituting now for L::l.F0 , again from equation (3. 14), we find 

so that, final! y, we have 

d . 
--_I-nK= 
d.r 

(3. 16) 

When L::l.H
0 

is constant, this expression integrates to equation (3. 15). 

When L::l.H0 varies, we ma.y express it as a function of temperature and 

substitute that function in equation (3. 16). 

0 0 0 
Given data on L::l.S

298 
and L::l.H

298 
, we can calculate L::l.F 

298 
for 

any reaction. We see now that, given such a value for L::l.F~98, (3. 14) 

permits us to calculate the equilibrium constant of the reaction at 

25°C. We see further that-- given these data, the value of K, and 

data on the heat capacities of the materials concerned-- equation 

(3. 15) or (3. 16) will permit the calculation of the equilibrium .::: onstar..t 

at any temperature. Given purely thermal data, we can calculate the 

equilibrium constant of any reaction at any temperature. 

Free Energy of Mixing 

The internal energy change and the enthalpy change associated 

with the mixing of ideal gases at constant temperature and pressure 

are zero, 

.::: 0 (3.17) 
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so that the change in free energy due to mixing :follows from the defi-

nitions for the free energies 

Ll £ . . --
1'\'111(11'\(1 Ll A'",~'~i = - TLlSm,·y, ., = RTl,:/n ;(. 

1 

(3. 18) 

where X. represents the mole fraction of species i. Equation (3. 18) 
1 

gives the change in free energy when different gases (n. moles of com-
1 

ponent i) are mixed at a given temperature and pressure. 

Application of Equilibrium Criteria 

Consider the general chemical reaction 
, -- (--S: >j· ''M;· (3. 19) 

I 

where \!. 1 and \! . '' represent, respectively, the stoichiometric coe:f:fi-
J J 

cients of reactants and products for the chemical species M. , and n 
J 

is now the total number of chemical species involved. Let 

Kp --
.. 1·"-~·' 

n(fJ;·, e) I I (3. 20) 

I 

l~.:lJ I (3.21) 

(3. 22) 

(3. 23) 
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If 1.·"->'·' 
17 (?1;) J ' 

" /_' .,_ '/,' I TT (X· ) J (J 
1,11 

,, J / 1.· - ,, . nrr:J' ; 
I 

(3. 24) 

(3. 25) 

(3. 26) 

(3. 27) 

(3. 28) 

(3. 29) 

Here, p . =equilibrium partial pressure, p . = actual partial pressure, 
J• e J 

(M . ) = equilibrium concentration, (M.) = actual concentration, n . = 
J, e J J, e 

equilibrium number of moles, 

equilibrium mole fraction, X . 
J 

n. = actual number of moles, X . 
J J, e = 

= actual mole fraction, Y. = equilibri­
J, e 

um weight fraction, Y. = actual w eight fraction of the 
J 

chemical species 

identified by the symbol M .• 
J 

We shall refer to K , K • K , KX, and 
\J c n 

Ky as equilibrium constants expressed in terms of ratios of pressures, 

concentrations, moles, mole fractions, and weight fractions, respec-

tively; the primed quantities will be termed quotients. 
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The equilibrium constants and quotients defined in equations 

(3. 20) to (3. 29) are related. For ideal gases, 

71j, e ~ 

~~e : 

and 

'Yi,s , 

v~·,e 
RT 

"Pa·, (/ 

"'JOT,il 

'vlj 

= 
n~·)e 

?17~e 

'"P1·, e 

fRT 

(3. 30) 

(3. 31) 

(3. 32) 

(3. 33) 

where V is the total volume of the system which is at the total pres-

sure pT and contains nT moles of gas, W. is the molecular 
, e , e J 

weight of species j , and p represents the density of the gas mixture. 

Combining equations (3. 30) to (3. 33) with equations (3. 20) to (3. 29), 

K-p : 

: 

(3. 34) 

and 

J 

k.,. : 
, tJ, ~...<. , ( RV T) 4 "~ 

K~ ( R T) -- "~, 

= 
n ' u 

~<x' fJOr)d": I<Y' (fRT)tJn Tl?W;·)"i-''i 
(3. 34a) 
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where 

A most useful relation is obtained by relating the standard 

(Gibbs) free-energy change to the equilibrium constants . For ideal 

gases, 

, 
L1 F .: z (~. '~'}·') ~i 

= 
(3. 35) 

The difference between the standard free energies of products and re­

O actants will be denoted by the symbol .6.F , i.e., 

from which equation (3. 35) can be written 

/ 

L1 F - L1 F " -- R T k ~ 

(3. 36) 

(3. 37) 

For thermodynamic equilibrium at fixed pressure and temperature, 

K 1 = K and .6.F = 0 
p p 

Hence 

(3. 38) 

Equation (3. 38) shows the relationretween the standard free energy 

change (i.e., the free energy change at 1 atm) and the equilibrium c0n-

stant at an arbitrary pressure and temperature. The practical import-

ance of the equilibrium constant K is the result of the fact that it is 
p 

independent of total pressure and can therefore be listed as a unique 

function of temperature. 
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Equilibrium constants with respect to the elements in their standard states' 

T, °K KP,I K., 2 I K.,,3 K.,, 4 K.,, • 
298. 16 4.8978 X J0- 4I 2.4831 X I o- 3• 2.8340 X I o- 7 1.1143 X JO·IO 1.9187 x JQ-•o 
300 9.0157 X J0- 4I 4.2560 X JQ- 30 3.131JxJ0- 7 6.1235 x I 0 30 4.6559 X 10- oo 
400 5.5335 X J0- 30 1.3459 X JQ- •a 2. 1419 x JQ-• 1.7418 x l020 J.832J?• JO- U 
500 1.7140 x J0- 23 6.9<)84 X J0- 21 2.6984 X J0- 4 7.6913 x 1022 4.3351 X J0-36 
600 3.7239 X 10- u 4.6452 X J0-17 1.4555 X J0- 3 4.2954 X 10 1 ~ 7.8886 x lo- u 
700 4.7315 x 10- 10 2.5351 X 10- 14 4.8362 X J0-3 3.8282 X 1016 2.3768 X 10_,. 
800 1.0162 x 10- 13 2.9040 X JO- U 1.1869 X J0- 2 1.9454 X I 013 5.4828 X I 0 - 21 
900 6.6681 X I0- 12 1.1700 X 10- 10 2.3757 X 10- 2 3.1405 x 1011 2.2856 X JO- IB 

1000 1.9055 X JO- lO 2.2693 X JO- O 4.1295 x 1o- • 1.1482 X J010 2.8708 X I O- la 
1100 2.9i03 X JO- O 2.5852 X 10- • 6.4834 X I o-• 7.6015 x l08 1.5066 X 10- 14 
1200 2.9390 x 10- • 1.9715 X J0- 7 9.4287 X I o- • 7.8759 X 107 4.0926 X I o- u 
1300 2.0469 X I 0- 7 1.1052 X JO- O 1.2900 X JO- l 1.1497 x 107 6.7143 X JO- lt 
1400 1.0824 x I o- • 4.8596 X JO- O 1.6899 X JO- I 2.2060 x 108 7.4131 X JO- II 
1500 4.5973 x to- • 1.7575 X JQ-6 2.1324 X JO- l 5.2541 x to• 5.9402 x J0- 10 
1600 1.6315 X J0- 6 5.4300 X J0- 6 2.6104 X JO- I 1.4955 X I 0' 3.6787 X JO- O 
1700 4.9911 X J0- 6 1.4710 x J0- 4 3.1180 x J0- 1 4. 920-1 X I 04 1.8420 X I o-• 
1800 1.3493 X I 0 - 4 3.5752 X J0-4 I 3.6495 X JO- I 1.8302 x to• 7.7215 x 10- • 
1900 3.2885 X 10- 4 7.9232 X J0- 4 . 4.200-4 X 10-1 7.5422 x 103 2.7861 X 10- 7 

2000 7.3350 x 10- 4 1.6233 X 10- 3 4.7664 X 10- 1 3.3931 X 101 I 8.8491 X 10-7 
2100 1.5174 x J0- 3 3.1110 x J0- 3 5.3394 X I o- t 1.6458 X 103 2.5194 x 10- • 2200 2.9383 X J0- 3 5.6247 X J0- 3 5.9208 X 10- 1 8.5212 x 102 6.5283 X 10- s 
2300 5.3753 X 10- 3 9.6627 X J0- 3 6.5041 X 10- l 4.6677 x to• 1.5585 X 10-6 
2400 9.3821 X 10- 3 1.5874 x 1 o- • 7.03 71 X 10- 1 2.6847 x 102 3.4610 X 10- • 
2500 1.5574 X 10- 2 2.5090 x to- • 7.6648 x to- • 1.6127 X 102 7.2161 x 1o- • 
2750 4.7424 x 10-• 6.8250 X J0- 2 9.0910 x 10- • I 5.3272 X 101 3.5917 X 10-• 
3000 1.2010 x 10- • 1 1.5762 X 10- l 1.04 78 j 2.0999 X )01 1.3515 X 10- 3 
3250 f.6381 X 10- l 3.2048 X JO- I 1.1788 9.5786 4.2678 X J0- 3 
3500 5.1 807 x l0- 1 5.8')<)3 X JO- I I 1.3046 4.9295 1.131 I X J0- 2 
3750 9.3022 X J0- 1 1 1.0000 1.4218 I 2.7498 i 2.6363 X JO- Z 
4000 1.5528 . 1.5933 I 1.5315 . 1.6623 1 5.5361 X J0-2 
4250 2.4416 2.4010 I 1.6351 1.0568 1.0668 X JO- l 
4500 3.6521 3.4602 1.7322 7.0307 X I o- t 1.9134 X JO- I 
4750 5.2349 4.8029 1.8229 , 4.9181 X JO- l 3.2321 X JO-l 
5000 7.2395 6.4506 1.9067 3.5465 X JO- l 5.1874 X JO-l 

1 
By permiSSIOn, from NBS Circular 500, Selected Values of Chemical Thermodynamic 

Properties, I February 1952. The equilibrium constants are defined as follows: K", 
1 

= p o/po
2
l, 

K,,' = PniPH•'• Kp, s = Pon/Po2 lpn2 l, KD, 4 = PH2o/Pn2 • {lo2 1, K'P• ~ = PNIPN2 1. The 
part1al pressures are those of the (ideal) gas, unless the contrary is indicated explicitly. 
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Equilibrium constants with respect to the elements in their standard states1 

T, °K K~.• K,,1 K,.. I K,,, K,,to 

293.16 6.5013x t0-1• 3.1470x JQ-1 1.2677 X JO-llA 1.0169 X 1024 1.2131 X JOU 
300 8.1283 X JO-lt 3.1605 X JQ - l 7.4989 X J0-118 8.4723 X 1023 4.6559 X JQU 
400 6.9823 X JO-II 3. 7766 X JO-l 1.4 723 X J0-8• 1.3397 x to•• 3.4356 X JOSI 
500 1.6055 X JO-O 4.1534 x :o-• 9.26R3 X 10-ea 1.7865 X 1016 1.8113 X 10" 
600 6.0353 X I o-8 4.4035 X JO - l 3.2509 X JQ-56 2.1677x 10" 2.5177 X 1034 

700 8.0612 X J0- 7 4.5709 x to-• 2.9992 X JO- <G 9.2257x 1012 3.1842x 1020 

!\00 5.6234 X JO-I 4.6979 X JO-l 1.5959 X J0-30 8.5507 X 1011 6.7143x t026 

900 2.5486 X J0 - 6 4.7962 x J0-1 2.7227 X J0-34 1.3366 X 1011 9.2470 x 1022 

1000 8.5487 X J0-6 4.8742 X JO-l 4 . 16~7 X J0-30 3.0061 X 1010 4. 7534 x I 020 

1100 2.3020 X JO - • 4.9363 X JO-l I. I 092 X JO- •• 8.R004 x to• 6.3387 X I 010 

1200 5.2590 X JQ- • 4.9785 X JO-l 7.9068 X JO-•• 3.1499xto• 1.7378 x 1017 

1300 1.0554 X J0- 3 2.0464 X J0- 21 1.3110 x to• 8.2414x t015 

1400 1.9178 X J0- 3 2.3938 X JO-lt 6.t660 x 108 6.0534x 10" 
1500 3.2255 X JQ-3 t.4825 X J0- 17 3.1945x 10" 6.2951 X 1013 

1600 5.078t X J0- 3 5.4828 X JQ-Ie 1.7960x to• 8.6896x 1012 

1700 7.5770 X J0-3 1.3183 X JO-I• 1.0703 X J08 1.5031 X 1012 

t800 1.0817 X JQ-2 2.2303 X JO-l3 6.7422 x 107 3.t623 X 1011 

1900 1.4873 X J0- 2 2.7861 X J0-12 4.4586 X 107 7.8524X )010 

2000 1.98 15 X J0- 2 2.7102 x to- n 3.064t X 107 2.2387 X I 010 

2100 2.5674 X JO-I 2.1238 X JO-IO 2.1827 x l07 7.2028 x to• 
2200 3.2516 x to-• 1.3671 X JO-• 1.5389 X 107 2.5498 x to• 
2300 4.0346 X I o-• 7.5266 X JO - t 1.1943 X 107 9.9426x to• 
2400 4.9125 x to- • 3.5318 X J0-8 9.1348x10° 4. 1H50 x to•· 
2500 5.8878 X J0-2 1.5108 X I0-7 7.t532 x to• 1.8915 X 10" 
2750 8.7466x JO-• 3.4380 X J0- 8 4.5426 x to• 3.3083 X 107 

3000 1.2148 X JO- l 4.6366 X J0-6 2.6182 x to• 7.7108 x 10• 
3250 1.6040 x to- • 4.1812 x 10-• 1.7527x to• 2.2527 x to• 
3500 2.0334 X I o- t 2.7454 X J0-3 1.1844 X )QI 7.8J09 x to• 
3750 2.49W x Jo-• 1.3948 X JQ-2 9.1496x 106 3.1275 X lOS 
4000 2.9793 X JO-l 5.7663 X JO-l 6.9375 X )()6 1.3880 X I ()6 
4250 3.4839x J0-1 

4500 4.0085 X JO-l 
4750 4.5188 X JO- l 
5000 5.040S X JQ- 1 

1 By permtsston, from NBS Circular 500, Selected Values of Chemical Thermodynamic 
Properties, I February 1952. The equilibrium constants are defined as follows: K11, 8 = 
PNO/PNzPoal, f 11 , 7 = K 11 , 7 = Pc (c, diamond) /pc (c, graphite), K.,, a = PC(g) and ;)(' 11 , 8 = 
Pc(g)/pc (c, graphite), fr;, 9 = Pco/po2* and f ,, • = pco/pc (c, graphite)po2 *, K,, 10 = pco2/po1, 
f,, 1o = pco,/pc (c, graphite)Po2. 
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Equilihrium constants with rt!spcct to the elements in their standard statt!S1 

T, °K K7.,u Kp,U Kp,U Kp,U 

298.t6 7.9t59x to• 2. 2439 X I o-•• 3.4277 X tO-It 6.9343 X tO-I& 

300 6.5826x to• 3.9264 x 10-a• 4.6238 X 10-n 8.8\05 X 10-16 

400 3.0S96x tO$ 2.8774 X 10-27 9.0991 X 1Q-lt \.3970 X I0-10 

500 2.6749x to• 2.3496 X 10-u \.4060 X \0-10 4.7\63 X 10-a 
600 9.9937x t01 2.0 I ll4 X 10-17 \.9\5\ X JO-I 2.3030 X JO-I 
700 8.9578 \.2794 X 10- u 6.4908 X \0-7 3.7282 X \0-6 

800 1.4\35 \.5922 X JO-ll 9.2003 X JO-I 3.0227 X tO- • 
900 3.2501 X JO-l 6.760!! X tO-ll 7.2812x 10- • 1.5453 X 10-a 

1000 9.8288 X IQ- 2 1.3372x t0-1 3.8300 X 10- • 5.7161 X \0-3 

t\00 3.677\ X \0- 2 1.5283 X JO-I \.4949 X \0-3 1.6719 X I o-s 
1200 I .6073 X 10-• \.\564 X 10-7 4.6666 X 10- • 4 .0992 X 10- s 
t300 7.9177 x 10-• 6.373R x to-• \.2249 X JO- I 8. 7740 X 10-s 
1400 4 .33 \\ X JO-S 2.7473 x 10- • · 2.8074 X J0- 2 \.6877 X \0-1 

1500 2.55!!6 X 10-s 9.6962 X \Q-I 5.7717 X \0-1 2.9813 X \0-1 

T, °K x,.u Kp,l& Kp,U Kr, zo 

298.16 2.5468 x to- u 4.8978 X 1016 5.3629 x to• 2.9648 X 101 

300 3.0620 x t0- 11 3.8994 X I 011 3.4206 x to• 2.9174 x 101 

400 5.9965 x to-a 3.6813xt011 \.8923 X 107 1.7100 X 101 

500 5.7332 X 1Q-I \.3964 X 1010 8.2433 X t05 1.2050 X 101 

600 \. 2086 X 10- • 3.3450 x to• \.0044 X 10" 9.4406 
700 1.0725 X \0-3 2.3073 X 107 2.2126 x to• 7.8524 
800 5.5373 X \0-3 3.0825 x to• 7.0746 x 103 6.7920 
900 \.991\ X tO- t 6.4062 x to• 2.8987 x to• 6.0534 

1000 5.5578 X \0-2 1.8159x 105 \.41 51! X 103 5.5208 
1100 1.2897 X JO-I 6.4670 x to• 7.8705 x to• 5.1050 
1200 2.6062 X J0- 1 2.7296 x to• 4 .8 t28x to• 4.7863 
1300 4.7315 X JO-I 1.3\31 X 101 3.1747 x to• 4.5186 
1400 7.8977 x to- • 7.0146 x 10' 2.2233 x to• 4.3152 
1500 8.1111 X J0-1 4.0654 X 103 1 1.6297 X I 02 4.1400 

1 By permJss•on, from NBS Circular 500, St!lected Valut!s of Chemical Thermodynamic 
Properties, I February 1952. The equilibrium constants arc defined as follows: Kp,ll = 
PcH,/PHs1 and .:£7>, 11 = PcH 4 /pc (c, graphite) PHz2

, Kp, u = PCzlla /Pus and ~J>• u = 
Pcaua!Pc <c. graphite) 2PHt, Kp, u = Pc• 'Pct21, Kp, 15 = Pnr/Pnrs~. Kp, a= PI/Pial, K.p, 18 = 
PHCIIPuaiPc•s~. Kp, u = PHnr/PHs'Pnr,l, Kp, 20 = PHI/PaaiPia~· 

T, °K K,,'" K,,11 

298.t6 1.998 X JO -ZI 3.590 x to- •• 
300 2. 908 X I o- u 6.980 X JO- <o 
400 1.319 x 10-u 3.512 X JO-•• 
500 \.399 X JO-IO 3. 719 X 10- zo 
600 7.019x lo- • I. 789 X I o-•• 
700 6.095 X JO - I 4.078 X \0-21 

800 \.767 X J0-4 1.343 X JG-l& 
900 2.439 x 1o-• 1.227 X JO-lt 

1000 2.023 x 1o-s 4.558 X JO-U 
1200 4.874 X 10- 1 1.054 x 10-u 
1400 4.8 12 5.118 x to-u 
1600 2.690 x to• 9.528 X J0-10 

1800 1.034 x to• 9.312 x 10-1 

2000 3.055 x to• 5.794 X JO-& 
2500 2.177 x 103 1.638 X JO-I 
3000 8.055 X 103 1.427 X 10-• 
3500 2.084 x 101 6.947 x w-• 
4000 4.245 x to• 2.290 x 10-• 
4500 7.424 x to• 5.804x w-• 
5000 1.155x 10" 1.225 x w-• 

1 From L. G . Cole, M. Farber and G. W. Elvcrum, Jr., J. Chem. Phys. 20:586 (1952). The 
equilibrium constants are defined as follows: Kp, 13 = py2 fpy2 , Kp, 17 = PHsl py1 1fp11 y. 
Equilibrium constants involving the intcrhalogcns CIF, BrF, IF, BrCI, ICI, and IBr are given 
by L. G . Cole and G. W. Elverum, Jr., J. Chern. Phys. 20: 1543 (1952). 
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By using the definition of the Gibbs free energy, we obtain 

from equation (3. 38) the equivalent relation 

LlH 0
- TLJ.S 0

.::- Rr.A,,kJo (3. 39) 

0 0 where L:l.H and L:l.S represent, respectively, the enthalpy and entropy 

changes for reaction (3. 19) at a pressure of 1 atm and any arbitrary 

but fixed temperature T. The quantities L:~.H0 are readily computed 

from the standard heats of formation and heat capacities. Entropy 

0 0 
changes L:l.S and standard free-energy changes L:l.F may be computed 

similarly by utilizing tables of standard entropies and free energies. 

As one example of the application of these thermodynamic re-

lations, consider the calculation of standard enthalpy changes from the 

temperature dependence of K • Dividing equation (3. 38) by T we ob­
p 

tain 

and since 

it follows that 

But from the general thermodynamic relation 

it follows that 

since 

cAs C> 
T -­

otT 

and s0 
all refer to (constant) unit pressure. 

_A_ (.E.) .: 
~T T 

H" 
R 

(3. 40) 

(3. 41) 

Hence, 

(3. 42) 
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For a chemical reaction represented by equation (3. 19) 

= (3. 43) 

or 

(3. 44} 

Equation (3. 44) shows the relation between the temperature variation 

of K and the enthalpy change for reaction occurring at a pressure of 
p 

0 
1 atm. Thus, .6-H may be obtained experim•~ntally at any temperature 

by measuring the temperature variation of Kp at constant pressure. 

A11.othe r example more directly related to evaluation of chem:_-

cal propellants is the calculation of equilibrium c omposition and par-

tial pressures using equilibrium constants. Consider the following 

reaction involving only ideal gases: 

a., A, ... a, A.z. ---- (3.45) 

0 0 0 0 
Let n (A

1
), n (A

2
), n (B

1
), and n (B

2
) represent, respectively, the 

initial number of moles of A
1

, A
2

, B
1

, and B
2 

before equilibrium 

has been reached at a given temperature T. When equilibrium is 

reached according to (3. 45), the following num~ers of m.::>les for each 

component will be present: 
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n~(B.) ~ no(B,)+ ;,, ~ 

n~ ( .D.l} : n ° ( .B.l) f b:~. t 
since for every b

1
£ moles of B 1 formed, b 2£ moles of B 2 are 

formed~ a
1 
£ moles of A

1 
disappear, and a 2; moles of A 2 disappear. 

From the definitions of K and K , it now follows that 
n p 

(n°(8,)-+b,{ )"' (n°(B.~.)+ b.,. t)b.r. 
(3. 46) 

and 

(3. 47) 

where 

It is evident that for given values of K or K the value of £ can be 
n p 

calculated readily for given initial concentrations of the various reac-

tants. 

Properties of Propellant Materials 

Som-e representative chemicals which have been used or may 

be useful for the more important propulsion units are listed in the 

table on the following page. 

Bipropellant mixtures consisting of a liquid oxidizer and a 

liquid reducing material are used extensively in rocket propulsion 

work. In general, satisfactory performance cannot be expected be-

tween any oxidizer listed in group (A) and any reducing compound 

listed in group (B). Practical utility depends on such fac tors as ease 

and speed of combustion, propellant density, toxicity, coolant charac-
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A. Oxidizers in bipropellant systems: nitric acid (HN03), oxygen (02). ozone (03). Ouorine 
(F2), fluorine oxide (F20), nitrogen tetroxide (N 20 4), chlorine trifluoride (CIF3), hydrogen 
peroxide (H20 2), nitrogen trifluoride (NF3), bromine pentafluoride (BrF6). 

B. Reducing materials in bipropellant systems: hydrogen (H 1), ammonia (NH3), hydnt:T.inc 
(N3H,), hydrazine hydrate (N,H, · H 20), diborane (B2H8), tetraborane (B,H10), pentaboranc 
(B6 H,), borazole (B3N 3H8), borimide (B2(NH 3h], aluminium borohydride [AI(BH,),], 
disiloxane [(SiH~hO], disilane (Si2H1). trisilane (Si3HA), gasoline (C.Hu to C12Hu). kerosene 
(mixture of hydrocarbons with boiling points somewhat higher than gasoline), aniline 
<C.H6 NH 2), methyl alcohol (CJ-!~OH), ethyl alcohol (C2H 60H), propyl alcohol (C3 H70H), 
acetylene (C1H 2), ethylene (C2 H,), methane (CH,), other hydrocarbons, other alcohols 

H 
I 

[R-OH (R = an organic radical)], aldehydes (R-C = O), ketones (R-C-R'). 
II 
0 

C. Monopropellants : nitromethane (CH3N0 2), dinitroethane [C2H,(N0 2)z], hydrogen 
peroxide (H 20 2), hydrazine (N2H,). 

D. Gas-generating compounds: hydrazine (N2 H4 ), hydrogen peroxide (H20 2). 

E. Water-reactive chemicals : aluminum borohydride [AI(BH,h]. lithium (Li), sodium ( Na), 
potassium (K), lithium hydride (LiH), sodium hydride (NaH), various alloys containing active 
metals. 

F. Fuels for ramjets: any suitable liquid reducing compound, carbon (C), boron (B), 
carbon-metal mixtures. 

G. Oxidizers in composite propellants: potassium perchlorate (KCIO,), ammonium nitrate 
(NH,N03). 

H. Fuels in composite propellants : polymers (i.e., high molecular weight compounds) 
containing mostly carbon and hydrogen. 

J. Double-base propellants: homogeneous colloidal mixtures of roughly 50% nitrocellulose 
(containing in the neighborhood of 13 % N) with roughly 50% nitroglycerin. In some double­
base propellants the amount of nitroglycerin is reduced to about 20% and such substances as 
dinitrotoluene, potassium nitrate, etc., are added to act as stabilizers, plasticizers, flash 
suppressors, coloring or darkening agents, etc. 

teristics, etc. It is noteworthy that the reducing and oxidizing com-

pounds which have been chosen as liquid propellants generally yield 

combustion products of low molecular weight. 

A propellant is useful as a monopropellant for rocket applica-

tions if it can be made to burn with the evolution of heat and the pro-

duction of low molecular weight decomposition products. Gas-

generating compounds must have similar properties, although it is 

generally desirable to have a maximum production of gases at rela-

tively low temperatures. 
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Water-reactive chemicals are substances which react exo­

thermically with water with the production of large volumes of gas. 

They are used in such devices as the hydroduct and hydropulse. 

Ramiets, which do not carry their own supply of oxidizing 

agent, are best powered by the combustion products forme d as the re­

sult of chemical reaction between a liquid reducing compound or a 

simple metal or nonmetal and atmospheric oxygen or nitrogen. 

Composite propellants differ from double-base propellants by 

being more or less heterogeneous. Thus, they consist of a non-uniform 

mixture of oxidizing and reducing materials. Double-base propellants, 

on the other hand, consist of homogeneously compounded materials, 

the discontinuities in physical and chemical properties being of col­

loidal dim~nsions. 

The more important characteristics of desirable propellant 

chemicals are sumrnarized in the following table. page 93. The 

reasons for emphasizing the listed characteristics are, in some cases, 

closely related to the results obtained from a study of the thermody­

namics of combustion. On the other hand, some of the desirable 

physical characteristics follow rather obviously from handling or 

cooling requirements in liquid-fuel rocket engines. 

A detailed discussion of performance of selected bipropellant 

mixtures requires quantitative calculations on the thermodynamics of 

combustion. However, it is possible, even on the gasis of the quali­

tative rema.rks listed in the tables to draw some useful conclusions 

regarding performance. For e x ample, the series of oxidiz ers 

F 2, F 20, NF 3 , 0 2, ClF 
3

, BrF 
5 
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Desirahle proprrties of propellants used in liquid-fuel rocket engines 

(a) Small negative or preferably positive standard heats of formation of the pr0pellants. 

(b) The reaction products should have low molecular weights and large negative heats of 
formati0n . If conditions (a) and (b) arc met, then the reaction products will consist of low 
molecular weight compounds at high temperatures. 

(c) The propellants should have large densities in order to minimize the dead weight of 
storage tanks. 

(d) The oxidizers and reducing agents arc best handled as liquids. Hence it is desirable to 
obtain propellants which arc normally liquid in the operating temperature range of service 
units (i .e., from about - 40 to ·I 60"C). For substances such as liquid oxygen and hydrogen 
special cooling units must be provided . This refrigeration equipment represents added dead 
weight, which the propulsion unit must carry, and is warranted only in the case of very high 
energy propellant mixtures. 

(e) In normal propellant operation the combustion chamber temperatures may get exces­
sively high. Hence it is necessary to provide special cooling equipment for the chamber walls. 
Cooling may be accomplished by forced convection involving passage of oxidi7er and/or 
reducing agcntthrough coils enveloping the chamber. In extreme cases, this cooling technique 
is inadequate and it is necessary to resort to sweat cooling, which is accomplished by passing 
a small amount of one or both of the propellants through small passages in the chamber wall, 
thus using the heat of vaporization, as well as the specific heat of the oxidizer and/or reducing 
agent, in order to cool the chamber wall. It is apparent that successful cooling can be accom­
plished the more readily the higher the specific heat and the heat of vaporization of the material 
involved. Hence it is customary to choose, if possible, at least one of the components of a 
bipropellant system with a high specific heat and/or large heat of vaporization. 

(f) Since it may be necessary to store the propellants for long periods of time before usc, 
good propellants should have high storage stability, i.e., they must not decompose or change 
chemically in any way during storage so that their use as a propellant is impaired. 

(g) Since propellants are chemicals which have to be handled by service personnel, it may be 
desirable for some applications to use propellants of relatively low toxicity. Actually the art of 
propellant design has advanced at the present time to the point where practically every useful 
bipropellant component is toxic or represents a handling hazard for other reasons. As the 
result of this development, it has become important to educate service personnel on the proper 
handling of dangerous chemicals. 

(h) For large-scale use it is, of course, imperative that propellants which arc readily available 
and preferably also of low cost are employed. In practice this last requirement is inessential 
since experience has shown that rare and expensive chemicals, which are needed in large 
quantities, usually become cheap and readily available in the course of time. 

(i) The bipropellant mixture in a liquid-fuel rocket should be spontaneously combustible 
with minimum time Jag. Spontaneously combustible propellants are said to be hypergolic 
whereas non-spontaneously combustible propellants are said to be nonhypergoiic. The time 
lag or ignition delay is the period of time preceding steady-state combustion. It is measured 
empirically and is a function of physical factors such as injection methods, motor configuration, 
etc., as well as of the chemical constitution of the propellant mixture. Long ignition delays may 
lead to the accumulation of large amounts of propellant in the combustion chamber before 
vigorous exothermic reaction occurs and initiates steady-state combustion. The accumulation 
of excessive amounts of propellant, before steady-state combustion, is usually accompanied 
by severe initial shock and very high initial pressures, which may lead to rupture of the com­
bustion chamber. 

(j) The reaction products should not be excessively corrosive or form solid deposits, thereby 
leading either to increased or decreased nozzle throat diameters. In the former case, steady­
state combustion may cease altogether or else occur at such low pressures as to impair overall 
performance. Nozzle plugging, on the other hand, may lead to an excessive increase in chamber 
pressure followed by rupture of the combustion chamber. 

(k) For application to guided missiles, the exhaust gases should not interfere with the 
guidance method which is used. 
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is listed in order of decreasing performance with a given reducing 

substance containing predominantly hydrogen. The performance dif-

ferences are readily explained in terms of variation of the term 

T / M (T = combustion chamber temperature, M = average mo-
e c 

lecular weight of combustion products) which is of primary importance 

in determining the specific impulse. 

For convenience in performance calculations , the physical 

properties as well as enthalpy, entropy, and heat capacity of transition, 

of selected chemical compounds are summa.rized in the following 

tables. 

Substance Process 
Tempera-

Pressure, lure, iJH, 11S, 11Cp, 
mmofHg "K kcal/mole cal/mole-•K cal/mole-•K 

Br2 c -+I 760 265.9 2.52 9.48 0.9 
1-+g 214 298.16 7.34 24.6 

c C-+g 760 4620 
CH, c -I 87.7 90.68 0.225 2.48 

1-g 760 II 1.67 1.955 17.51 
c.H. c -I 900 191.7 0.9 5 
(ethyne, 1-g 900 191.7 4.2 22 
acetylene) 1-+g 760 189.2 5.1 27 
c.H. c -I 0.9 103.97 0.8008 7.702 
(ethcnc, ethylene) 1-+g 760 . 169.45 3.237 19.10 
c.H. c -+I 0.006 89.89 0.6829 7.597 2.2 
(ethane) 1-g 760 184.53 3.517 19.06 - I 1.5 
CHF3 c -1 113 
(trifluoro- 1-g 760 189.0 4.4 2.3 
methane) 
CH6N c -I 179.70 1.466 8.16 
(methylamine) 1 -+g 760 266.84 6.17 23 .1 
C,H7N c-+ I 180.97 1.420 7.85 9.81 
(dimethylamine) 1-+g 760 280.0 6.33 22.6 17.1 
C 2H8N 2 1-+g 760 354 
(2-dimcthyl 
hydrazine) 
CH,O c -+I 154.9 
(formaldehyde) 1-+g 760 253.9 5.85 23.0 
CH,O c, I -+I 175.26 0.757 4.32 4.2 
(methanol) I ... g 760 337.9 8.43 24.95 
CH,02 1-g 34 298 7.9 26.5 
(methyl hydro-
gen peroxide) 

I 
1 By perm1ssron, from NBS Crrcular 500, Selected Values of Chemical Thermodynamic 

Properties, I February 1952. 



-95-

Tempera-
iJH, IJS, iJCp, Substance Process Pressure, ture, 

mmofHg OK kcalfmole cal/ mole-°K cal/mole-°K 

C 1H,O c _, 760 160.71 1.236 7.69 3.45 
(ethylene oxide) 1-+g 283.72 6.101 21.50 -9.7 
C,H00 c -+I 131.66 1.180 8.96 6.8 
( dimethylether) 1-+g 248.34 5.141 20.70 -10.6 
C 2H60H c -+I 158.6 1.200 7.57 5.70 
(ethanol) 1-g 760 351.7 9.22 26.22 
CH,ON2 
(urea) 

c -I 405.8 3.60 8.9 

CH30 2N c _, 244.78 2.319 9.47 
(nitromethane) 1-+g 760 374.0 
CH30 2N 1-+ g 760 255 5.0 19.7 
(methyl nitrite) 
CH30 3 N 1-+g 760 339.7 7.8 23.0 
(methyl nitrate) 
C 2H60 2N c -+I 183 
(nitroethane) 1-+g 17 293 9.1 31 
C 2 H60 2N 
(ethyl nitrite) 

1-+g 760 290.1 6.64 22.9 

C 1H60 3 N c ... I 171 
(ethyl nitrate) 1-+ g 760 361.9 
C 2H,01N 1 c -I 250.9 4.5 18 
(glycol dinitrate) 1->g 19 378 
C(N01), c -I 286 
(tetranitro- 1 -g 760 . 398.9 9.2 23 
methane) 
co 1-g 760 81.67 1.444 17.68 
co. 1-+g 760 194.68 6.031 30.98 
cr, c ... I 172.18 I .531 8.892 2.75 

1-+g 760 239.11 4.878 20.4 -8.76 
CIF 1-+g 760 172.9 5.34 30.88 
Cl20 7 1->g 760 354.7 7.88 22.2 
F, c-+ I 55.20 0.372 6.74 1.86 

1->g 760 85.24 1.51 17.7 -4.27 
F,O 1- g 760 128.3 2.65 20.7 

"· c -1 54.0 13.96 0.028 2.0 1.9 
1-+g 760 20.39 0.216 10.6 

HBr c ... I 186.30 0.5751 3.087 1.64 
1-+g 760 206.44 4.210 20.39 -7.37 

HCI c, I ->I 158.97 0.4760 2.994 2.10 
1 ->g 760 188.13 3.86 20.5 - 7.14 

HCN 1-+g 760 298.86 6.027 20.17 
HF c - I 190.09 1.094 15.756 2.55 

1-g 760 293.1 1.8 6.1 - 10.9 

HI c _, 
c -+g 0.31 298.16 14.88 49.91 
c -+I 222.37 0.6863 3.086 1.10 

HN01 c-+ I 231.57 2.503 10.808 10.55 
1 ->g 48 293 9.43 32.17 

H 10 c -I. 760 273.16 1.4363 5.2581 8.911 
1->g 4.58 273.16 10.767 39.416 -10.184 
1->g 23.75 298.16 10.514 35.263 -9.971 
1-+g 760 373.16 9.717 26.040 - 10.021 
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Substance 
Tempera-

Process Pressure, ture, b.H, /:,S, /:,Ck, 
mmofHa OK kcal/mole cal/mole-•K cal/mo -·K 

H,o, c --+I 271.2 2.S2 9.29 
1--+11 2.1 298.16 13.01 43.64 

I, t: .... I 386.8 3.74 9.67 
IF7 t: .... I 1(J) 276.6 7.37 26.64 
N, C, I --+ I 94 63.15 0.172 2.709 

1--+g 1(J) 77.36 1.333 17.231 
NH1 t: .... I 45.57 195.42 1.351 6.9133 

1--+g 1(J) 239.76 5.581 23.277 
N 1H• t: .... I 274.7 

1--+g 764 386.7 10 25.9 
NH.N1 c --+ g 1ro 407 15.1 37.11 
NH4N01 (\ v ·._.. 

c,IV 1ro 255 0.13 0.511 
c, IV .... 

c, Ill 1ro 305.3 0.38 1.23 
c, IJI --+ 

t:, IJ 6.32 X 10' 336.5 0.20 0.594 
C, IJ --+ 

t:, I 7(J) 398.4 1.01 2.535 
c, I --+ I 1ro 442.8 1.3 12.94 

N,H. · HN01 c .... I 316 
N,H, N01 r, I .... I 343.9 
N,H.·H10 c .... I 233 

1--+g 118.5 391.7 
NH 10H c .... I 306.3 

1--+g 22 331 
NO c .... I 164.4 109.55 0.5495 5.016 6.0 

1--+g 1ro 121.42 3.292 27.113 11.8 
N 20 t: .... I 658.9 182.34 1.563 8.5719 4.67 

1--+g 7(J) 184.68 3.956 21 .421 
N 10 1 c .... I 162 

1--+g 1ro 215 9.4 34.2 
N,o. c --+ I 139.78 261.96 3.502 13.368 6.12 

1--+g 1(J) 294.31 9.110 30.954 
N 20 1 c --+ g 1(J) 305.6 13.6 44.50 
N01F c -+I 107.2 

1--+g 1ro 200.8 4.31 21.46 
N03 F c -+I 92 

1 --+ g 103 193 
o, t:, I -+I 1.1 54.39 0.1063 1.95 1.74 

1-+g 7fJJ 90.19 1.6299 18.07 - 6.00 
o. 1-+g 1ro 162.65 2.59 15.92 

l I 
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Performance Evaluation of Chemical Propellants 

For frozen chemical compositio~ the nozzle efflux velocity v e 

may be calculated from the relation 

(3. 48) 

where M represents the constant molecular weight of the gas mixture 

and ..6.H e is the molar enthalpy change between nozzle entrance and 
c 

nozzle exit positions and is independent of pressure for ideal gases. 

If the relative concentrations of each component, as well as the nu-

merical values of T and T , are known. then it is a simple matter c e 
- e to evaluate both M and ..6.Hc • The composition of each constituent 

can be calculated by straightforward analysis. 

The average mnlecular weight of a gas mixture of n campo-

nents is given by the relation , 
M = ~AJ·M;· (3. 49) 

where X. represents the m::>le fraction of the /h component whose 
J 

molecular weight is M. • The value of ..6.H e for frozen chemical 
J c 

com:>osition is evidently given by the relation 

"' 2 
Ll H .: c £AI r ~~;· rrc;- -0· (71)) (3. 50) 

or 

tl 1~ £x1 c~~i tiT 
7; 

(3. 51) 

where Hj (T) represents the molar enthalpy of component j at the tern-

perature T , and C . represents the corresponding molar heat 
p,J 
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capacity. Note that X . remains constant during frozen chem~cal flow. 
J 

Equation (3. 50) follows immo3diately from the expression for the en-

thalpy of an ideal gas mixture. 

For adiabatic expansion of one mole of an ideal gas mixture 

doing only pressure - volume work. it follows from the First Law of 

Thermodynamics that 

-J,£ .. pd.V :o (3. 52) 

But 

whence 

(3. 53) 

since X . is constant for flow without composition change. The equa­
J 

tion of state for one mole of ideal gas mixture is 

whence 

R o/.T c!: Aj - V ~ T: ( Rd.T- RT~Jnp)£ X,· (3 • 54) 

Introducing equations (3. 53) and (3. 54) into (3. 52). we obtain the re-

lation 

(3. 55) 

Integration between the limits T and T leads to the result 
e c 



-99-

(7; 
2.; X,Lc"'i d.t..T: h r:) 

~ 

I (3. 56) 

where the pressure ratio p /p is assumed specified. Molar heat 
c e 

capacities for selected chemical compounds at various temperatures 

are tabulated below. 

Molar heat capacities C, (cal/mole-°K)1 

T, °K I O,(g) H2(g) N,(g) O(g) H(g) N(g) C(c, graphite) C(c, diamond) 

298.16 7.017 6.892 6.960 5.2364 4.9680 4.9680 2.066 1.449 
300 7.019 6.895 6.961 5.2338 4.9680 4.9680 2.083 1.466 
400 7.194 6.974 6.991 5.1341 4.9680 4.9680 2.851 2.38 
500 7.429 6.993 7.070 5.0802 4.9680 4.9680 3.496 3.14 
600 7.670 7.008 7.197 5.0486 4.9680 4.9680 4.03 3.79 
700 7.885 7.035 7.351 5.0284 4.9680 4.9680 4.43 4.29 
800 8.064 7.078 7.512 5.0 150 4.9680 4.9680 4.75 4.66 
900 8.212 7.139 7.671 5.0055 4.9680 4.9680 4.98 4.90 

1000 8.335 7.217 7.816 4.9988 4.9680 4.9680 5.14 5.03 
1100 8.449 7.308 7.947 4.\1936 4.96RO 4.9680 5.27 5.10 
1200 8.530 7.404 8.063 4.9894 4.9680 4 .9680 5.42 5.16 
1300 8.608 7.505 8. 165 4.9864 4.9680 4.9680 5.57 
1400 8.676 7.610 8.253 4.9838 4.9680 4.9680 5.67 
1500 8 .739 7.713 8.330 4.98 19 4.9680 4.9680 5.76 
1600 8.801 7.814 8.399 4.9805 4.9680 4.9680 5.83 
1700 8.859 7.911 8.459 4.9792 4.9680 4.9681 5.90 
1800 8.917 8.004 8.512 4.9784 4.9680 4.9683 5.95 
1900 8.974 8.092 8.560 4.9778 4.9680 4.9685 6.00 
2000 9.030 8.175 8.602 4.9776 4.9680 4.9690 6.05 
2100 9.085 8.254 8.640 4.9778 4.9680 4.9697 6.10 
2200 9.140 8.328 8.674 4.9784 4.9680 4.9708 6.14 
2300 9.195 8.398 8.705 4.9796 4.9680 4.9724 6.18 
2400 9.249 8.464 8.733 4.9812 4.9680 4.9746 6.22 
2500 9.302 8.526 8.759 4.9834 4.9680 4.9777 6.26 
2750 9.431 8.667 8.815 4.9917 4.9680 4.9900 6.34 
3000 9.552 8.791 8.861 5.0041 4.9680 5.0108 6.42 
3250 9.663 8.899 8.900 5.0207 4.9680 5.0426 6.50 
3500 9.763 8.993 8.934 5.0411 4.9680 5.0866 6.57 
3750 9.853 9.076 8.963 5.0649 4.9680 5.1437 6.64 
4000 9.933 9.151 8.989 5.0914 4.9680 5.2143 6.72 
4250 10.003 9.220 9.013 5.1199 4.9680 5.2977 
4500 10.063 9.282 9.035 5.1495 4.9680 5.3927 
4750 10.115 9.338 9.056 5.1799 4.9680 5.4977 
5000 10.157 9.389 9.076 5.2102 4.9680 5.6109 

1 By permission, from NBS, Tables of Selected Values of Chemica/Thermodynamic Properties, 
Series Ill, Volume I, March 1947 to June 1949. 

M 
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Mo/ar heat capacities c, (cal/mole-°K)1 

T, °K C(g) CO(g) NO(g) OH(g) H 20(g) CO.(g) CH 4(g) C 2H 2(g) 

298.16 4.9803 6.965 7.137 7. 141 8.025 8.874 8.536 10.499 
300 4.9801 6.965 7.134 7.139 8.026 8.894 8.552 10.532 
400 4.9747 7.013 7 .162 7.074 8.185 9.871 9.736 11.973 
500 4.9723 7.120 7.289 7.048 8.415 10.662 11.133 12.967 
600 4.9709 7.276 7.468 7.053 8.677 11.311 12.546 13.7211 
700 4.9701 7.451 7.657 7.087 11.959 11.849 13.88 14.366 
800 4.9697 7.624 7.833 7.150 9.254 12.300 15.10 14.933 
900 4.9693 7.787 7.990 7.234 9.559 12.678 16.21 15.449 

1000 4.9691 7.932 8.126 7.333 9.861 12.995 17.21 15.922 
1100 4.9691 8.058 8.243 7.440 10.145 13.26 18.09 16.353 
1200 4.9697 8.167 8.342 7.551 10.413 13.49 18.88 16.744 
1300 4.9705 8.265 8.426 7.663 10.668 13.68 19.57 17.099 
1400 4.9725 8.349 8.498 7.772 10.909 13.85 20.18 17.418 
1500 4.9747 8.419 8.560 7.875 11.134 13.99 20.71 17.704 
1600 4.9783 8.481 8.614 7.973 11.34 14.1 
1700 7.9835 8.536 8.660 8.066 11.53 14.2 
1800 4.9899 8.585 8.702 8.152 II. 71 14.3 
1900 4.9980 8.627 8.738 8.233 11.87 14.4 
2000 5.0075 8.665 8.771 8.308 12.01 14.5 
2100 5.0189 8.699 8.ROI 8.378 12.14 14.6 
2200 5.0316 8.730 8.ll28 ll.828 12.26 14.6 
2300 5.0455 8.758 8.852 8.504 12.37 14.7 
2400 5.0607 8.784 8.874 8.561 12.47 14.8 
2500 5.0769 8.806 8.895 1!.614 12.56 14.8 
2750 5.1208 (8.856) 8.941 8.733 12.8 14.9 
3000 5.1677 8.898 8.9111 8.838 12.9 15.0 
3250 5.2150 8.933 9.017 8.931 13.1 15.1 
3500 5.2610 8.963 9.049 9.015 13.2 15.2 
3750 5.3043 8.990 9.079 9.092 13.2 15.3 
4000 5.3442 9.015 9.107 9.162 13.3 15.3 
4250 5.3800 9.038 9.133 9.228 13.4 15.4 
4500 5.4115 9.059 9.158 9.290 13.4 15.5 
4750 5.6375 9.078 9.183 9.350 13.5 15.5 
5000 5.9351 9.096 9.208 9.406 13.5 15.6 

1. °K CJ.(g) Br2(g) '•(.r() Cl(g) I Br(g) I l(g) HCI(g) HBr(g) Hl(g) 

298.16 8.11 8.60 8.81 5.2203 4.9680 4.9680 6.96 6.96 6.97 
300 11.12 8.60 8.82 5.2237 4.9680 4.9680 6.96 6.96 6.97 
400 8.44 8.77 8.90 5.3705 4.9683 4.9680 6.97 6 .98 7.01 
500 8.62 8.86 8.95 5.4363 4.9708 4.9680 7.00 7.04 7.11 
600 8.74 8.91 8.98 5.4448 4.9793 4.9680 7.07 7.14 7.25 
700 8.82 8.94 9.00 5.4232 4.9973 4.9680 7.17 7.27 7.42 
800 8.88 8.97 9.02 5.3887 5.0258 4.9682 7.29 7.42 7.60 
900 8.92 8.99 9.04 5.3506 5.0632 4.9688 7.42 7.58 7.77 

1000 8.96 9.01 9.06 5.3133 5.1066 4.9700 7.56 7.72 7.92 
1100 8.99 9.03 9.07 5.2788 5.1529 4.9726 7.69 7.86 8.06 
1200 9 .02 9.04 9.09 5.2477 5.1192 4.9770 7.81 7.99 8.18 
1300 9.04 9.05 9.1 0 5.2201 5.2434 4.9836 7.93 8.10 8.29 
1400 9.06 9.07 9.12 5.1958 5.21139 4.9925 8.04 8.20 8.38 
1500 9.08 9.08 9.13 5.1745 5.3199 5.0039 8.14 8.30 

I 
8 .46 

1600 5.1557 5.3510 5.01711 
1700 5.1392 5.3771 5.0340 
1800 5. 1246 5.39R4 5.0521 
1900 5.11 17 5.4152 5.0718 
2000 5.1002 5.4279 5.0928 
2100 5.0900 5.4369 5 .1147 
2200 5.0S09 5.4427 5 .1371 
2300 5.0727 5.4458 5.1597 
2400 5.0654 5.4464 5. 11!22 
2500 5.051!8 5.4450 5 .2045 

I 2750 5.0449 5.4347 
i 

5.2571 
3000 5.0339 5.4178 5.3039 
3250 5.025 1 5.3972 5.3437 

I 
3500 5.0179 5.3741! 5.3762 
3750 5.0120 5.3518 5.4016 
4000 5.0070 5.3292 5.4205 
4250 5.0028 5.3074 5.4337 I 4500 4.9993 5.2867 5.4419 
4750 4.9964 5.2672 5.4458 

I 5000 4.9941 5.2490 5.4462 
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Molar heat capacities Cp (cal/molc-°K)1 

T, " K Fa(.~r) F(.s.') HF(g) 

100 6.957 5.068 6.91\1 
200 7.097 5.403 6.959 
298.16 7.487 5.436 6.960 
300 7.495 5.435 6.960 
400 7.895 5.361 6.961 
500 8.200 5.282 6.973 
600 8.420 5.220 6.987 
700 8.581 5.17 1 7.015 
800 8.702 5.134 7.063 
900 8.796 5.108 7.129 

1000 8.872 5.0R4 7.210 
1100 8.934 5.067 7.304 
1200 8.987 5.053 7.401 
1300 

I 
9.033 5.042 7.503 

1400 9.074 5.03J 7.604 
1500 I 9.111 5.025 7.703 
1600 9.145 5.019 7.798 
1700 

I 
9.177 5.014 7.886 

1800 9.206 5.009 7.974 
1900 9.2JO 5.005 8.054 
2000 9.262 5.002 8. 129 
2100 9.287 4.999 8. 199 
2200 9.313 4.996 8.264 
2300 9.337 4.99~ 8.326 
2400 9.3(>1 4.992 8.383 
2500 9.384 4.990 8.436 
2600 9.407 4.9!l9 8.486 
2700 9.426 4.9il7 1!.532 
2800 9.453 4.986 8.576 
2900 9.474 4.9S5 8.617 
3000 9.496 4.984 8.656 
3200 9.539 4.9l!2 8.727 
3400 9.580 4.980 8 .790 
3600 9.622 4.979 8.847 
3800 9.664 4.97R 8.899 
4000 9.705 4.977 8.946 
4200 9.745 4.976 8.990 
4400 9.786 4.975 9.028 
4600 9.826 4.975 9.066 
4800 9.866 4.974 9.102 
5000 9.906 4.974 9.135 

1 From L . G . Cole, M. Farber, and G . W. Elverurn, Jr., J. Chem. Phys. 20: 586 (1952). 
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The left hand side of equation (3. 56) can be wrwritten in the 

form 

which is more suitable for numerical calculation. The corresponding 

entropy data are tabulated below. 

from 

where 

Molar entrupirs (calfnw/e-°K)1 

T, °K O,(g) H,(g) Nt(K) O(g) I H(g~ N(g) C(c, graphite) C(c, diamond) 
------

298.16 49.00 31.21 45.77 38.47 27.39 36.61 1.361 0.5829 
300 49.05 31.25 45.81 38.50 27.42 36.65 1.374 0.5918 
400 51.09 33.25 47.82 39.99 28.85 38.07 2.081 1.14 
500 52.72 34.81 49.39 41.13 29.96 39.18 2.788 1.76 
600 54.10 36.08 50.69 42.05 30.87 40.09 3.474 2.39 
700 55.30 37.17 51.81 42.83 31.63 40.85 4.127 3.01 
800 56.36 38. I I 52.80 43.50 32.30 41.52 4.740 3.61 
900 57.32 38.95 53.69 44.09 32.88 42.10 5.314 I 4.18 

1000 58.19 39.70 54.51 44.62 33.40 42.63 5.846 4.70 
1100 58.99 40.40 55.26 45.09 33.88 43.10 6.342 I 5.18 
1200 59.73 41.04 55.95 45.53 34.31 43.53 6.807 5.63 
1300 60.42 41.63 56.61 45.93 34.71 43.93 7.247. i 1400 61.06 42.19 57.22 46.30 35.08 44.30 7.663 
1500 61.66 42.72 57.79 46.64 35.42 44.64 8.057 I 
1600 62.23 43 .22 58.33 46.96 35.74 44.96 8.43 I 
1700 62.76 43.70 58.84 47.27 36.04 45.26 8.79 
1800 63.27 44.15 59.32 47.55 36.32 45.55 9.13 
1900 63.75 44.59 59.79 47.82 36.59 45.82 9.45 
2000 64.21 45.01 60.23 48.07 36.84 46.07 9.76 
2100 64.66 45.41 60.65 48.32 37.09 46.31 10.05 
2200 65.08 45.79 61.05 48.55 37.32 46.54 10.34 
2300 65.49 46.16 61.44 48.77 37.54 46.76 10.61 
2400 65.88 46.52 61.81 48.98 37.75 46.98 10.88 
2500 66.26 46.87 62.16 49.19 37.96 47.18 11.13 
2750 67.15 47.69 63.00 49.66 38.43 47.65 11.73 
3000 67.98 48 .45 63.77 50.10 38.86 48.09 12.29 
3250 68.74 49.16 64.48 50.50 39.26 48.49 12.80 
3500 69.46 49.82 65.14 50.87 39.63 48.87 13.29 
3750 70.14 50.44 65.76 51.22 39.97 49.22 13.74 
4000 70.78 51.03 66.34 51.55 40.29 49.55 14.18 
4250 71.38 51.59 66.88 51.86 40.59 49.87 
4500 71.96 52.12 67.40 52.15 40.88 50.18 
4750 72.50 52.62 67.89 52.43 41.15 50.47 
5000 73.02 53.10 68.35 52.69 41.40 50.76 

1 By permission, from NBS, Tables of Selected Values of Chemical Thermodynamic Properties, 
Series Ill, Volume I, March 1947 to June 1949. 

For equilibrium flow, the gas efflux velocity may be calculated 

--lie- Mrli ..... n, 
M, 

(3. 57) 
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Mo/ar entropies (calfmole-°K)1 

T, °K OH(g) NO(g) C(g) CO(g) C02(g) H 20(g) I CHc(g) C.H.(g) 

298.16 43.89 50.34 37.76 47.30 51.06 45.11 44.50 48.00 
300 43.93 50.38 37.79 47.34 51.12 45 .15 44.55 48.06 
400 45.98 52.44 39.22 49.35 53.82 47.49 47.17 51.30 
500 47.55 54.05 40.33 50.93 56.11 49.34 49.48 54.09 
600 48.84 55 .39 41.24 52.24 58.11 50.90 51.64 56.53 
700 49.93 56.56 42.01 53.37 59.90 52.27 53.68 58.69 
800 50.88 57.59 42.67 54.38 61.51 53.49 55.61 60.65 
900 51.72 58.52 43 .26 55.29 62.98 54.60 57.45 62.44 

1000 52.49 59.37 43.78 56.12 64.33 55.62 59.21 64.10 
1100 53.19 60.15 44.25 56.88 65.58 56.56 60.89 65.64 
1200 53.85 60.87 44.68 57.59 66.75 57.45 62.50 67.08 
1300 54.46 61.54 45.08 58.24 67.84 58.29 64.04 68.43 1400 55.03 62.17 45.45 58.86 68.86 59.08 65.51 69.71 
1500 55.57 62.76 45.79 59.44 69.82 59.83 66.93 70.93 
1600 56.08 63.32 46.12 59.98 70.72 60.55 
1700 56.56 63.84 46.42 60.50 71.58 61.24 
1800 57.03 64.33 46.70 60.99 72.40 61.90 I 1900 57.07 64.80 46.97 61.45 73.17 62.53 
2000 57.89 65.25 47.23 61.90 73.92 63.14 
2100 58.30 65.68 47.47 62.32 74.63 63.72 
2200 58.66 66.09 47.71 62.77 75.31 64.29 
2300 59.07 66.49 47.93 63.1 1 75.96 64.83 
2400 59.43 66.86 48.15 63.49 76.59 65.36 
2500 59.78 67.23 48.35 63.85 77.20 65.86 
2750 60.61 68.08 48.84 63.69 78.62 67.07 
3000 61.37 68.86 49.29 65.46 79.92 68.19 
3250 62.09 69.58 49.70 66.17 81.14 69.23 
3500 62.75 70.25 50.09 66.84 82.27 70.22 
3750 63.38 70.87 50.45 67.46 83.33 71.15 
4000 63.97 71.46 50.80 68.04 84.32 72.04 
4250 64.53 72.01 51.12 68.59 85.26 72.86 
4500 65.06 72.54 51.43 69.10 86.15 73.63 

I 
4750 65.57 73.03 Sl.73 69.59 86.99 74.37 
5000 66.05 73.SO 52.00 70.06 87.80 75.08 

T, °K ClaCir) Br2(g) lz(g) CI(K) Br(K) l(g) HCI(g) HBr(g) Hl(g) 
-298 16 53.29 58.64 62.28 39.46 41.R I 43 .1R 44.62 47.44 49.31 

300 53.34 58.69 62.33 39.49 41.84 43.21 44.66 47.48 49.36 
400 55.72 61.20 64.88 41.01 41.27 44.64 46.66 49.49 51.37 
500 57.63 tl:\. I 6 66.87 42.22 44.37 45 .75 48.22 51.05 52.94 
(,()() 59.21 64.78 6!!.51 43.21 45.28 46.fi(l 49.51 52.34 54.25 
700 60.56 65.16 69.R9 44.05 46.05 47.42 50.60 53.45 55.38 
ROO 61.74 67.36 71.10 44.77 46.72 48.09 51.57 54.43 56.38 
900 62.79 68.41 72.16 45.41 47.31 48.67 52.43 55.31 57.29 

1000 63.74 69.34 73.12 45.97 47.84 49.20 53.22 56.12 58. 11 
1100 64.59 70.22 73.98 46.47 48.34 49.67 53 .95 56.86 58.88 
1200 65.38 71.01 74.77 46.93 48 .79 50.10 54.62 57.55 59.58 
1300 66.10 71.73 75.50 47.35 49.21 50.50 55 .26 58.20 60.24 
1400 66.77 72.40 76.17 47.74 49.60 50.!!7 55.85 58.80 60.86 
1500 67.39 73.03 76.80 4!l.09 49.96 51.22 56.41 59.37 61.44 
1600 68.03 7.l.45 4!l .43 50.31 51.54 56.81 59.88 
1700 68.58 74.00 4!! .74 50.63 51.84 57.31 60.39 
1800 69.10 74.52 49 .. 03 50.94 52.13 57.79 60.87 
1900 69.59 75.01 49.31 51.23 52.41 58.24 61.34 
2000 70.06 75.48 49.57 51.51 52.C.7 5R.67 61.7!! 
2100 70 51 75.93 49.82 51.77 52 92 59.09 62.20 
2200 70.9~ 76.36 50.06 52.03 53.15 59.49 62.61 
2300 71.35 76.77 50.28 52.27 53.3!! 59.87 63.00 
2400 71.74 77.16 50.50 52.50 53.60 fi0.24 63.37 
2500 72.12 77.54 50.70 52.72 53.82 60.60 63.73 
2750 51.1!! 53.24 54.31 
3000 73.82 79.23 51.62 53.71 54.77 62.20 65.37 
3250 52.03 54.15 55.20 
3500 75.27 80.64 52.40 54.55 55.60 63.58 66.77 
3750 52.74 54.92 55.97 . 4000 76.52 81.89 53 .07 55.26 56.32 64.77 67.99 
4250 53 .37 55.58 56.65 
4500 77.63 83.00 53.66 55.89 56.96 65.84 69.08 
4750 56.17 57.25 
5000 78.63 84.00 54.18 56.44 57.53 66.80 70.06 
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Molar entropies (cal/mole-"K)1 

T, °K Fo(g) F(g) HF(.~) 

100 40.76 32.13 33.97 
200 45.60 35.76 38.75 
298.16 48.51 37.93 41.53 
300 48.55 37.97 41.57 
400 50.76 39.52 43.57 
500 52.56 40.71 45.13 
600 54.08 41.66 4().40 
700 55.39 42.46 47.48 
800 56.27 43.15 4K.42 
900 57.57 43.76 49.25 

1000 58.50 44.29 50.01 
1100 59.35 44.78 50.70 
1200 60.13 45 .22 51.34 
1300 60.85 45.62 51.94 
1400 61.52 45.99 52.50 
1500 62.15 46.34 52.93 
1600 62.74 46.66 53.52 
1700 63.30 46.97 54.00 
1800 63.82 47.26 54.45 
1900 64.32 47.53 54.89 
2000 64.79 47.78 55.30 
2100 65.25 48 .03 55.6!! 
2200 65.68 48.26 56.0K 
2300 66.09 48.48 56.45 
2400 66.50 48.69 56.81 
2500 66.87 48 .90 57.15 
2600 67.24 49.09 57.48 
2700 67.60 49.28 57.80 
2800 67.94 49.46 58.12 
2900 68.27 49.64 58.42 
3000 68.60 49.81 58.71 
3200 69.21 50.13 59.27 
3400 69.79 50.43 59.80 
3600 70.34 50.7 1 60.31 
3800 70.86 50.98 60.79 
4000 71.36 I 51.24 61.24 
4200 71.83 51.48 61.68 
4400 72.28 51.73 62.10 
4600 72.72 51.93 62.50 
4800 73.14 52.15 62.89 
5000 73.54 52.35 63.26 

(3. 58) 

and 

-Me -- (3. 59) 

In order to perform numerical calculations, it is convenient to consid-

er that H and H represent the absolute molar enthalpies of the gas 
c e 

* 0 mi.xture referred to T = 298. 16 K as reference point. Thus 

(3 . 60) 
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and 

H~ = 

The factor M /M in equation (3. 57) corrects the molar enthalpy at 
· c e 

the nozzle exit position to the enthalpy for the same weight of gas mix-

ture for which H has been computed. 
c 

Choosing M as the fixed weight for which the analysis is to be 
c 

carried out, the condition of isentropic flow may be expressed by the 

relation 

(3. 62) 

Here, S {T, -p) is the molar entropy of an ideal gas mixture at tempera-

ture T and pressure p , and substituting for these entropy values 

(3. 63) 

Equation (3. 63) can be used to calculate T for any given propellant e 

system. It should be noted that the use of this equation requires nu-

merical calculation of Xm(Ji.
1 

Pc>) for each assumed value of Te • For 

this reason, performance calculations for equilibrium flow are m:>re 

laborious to carry out than performance calculations for frozen flow. 
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4. SOLID PROPELLANT ROCKET MOTORS 

The propellant of a solid rocket motor is stored entirely with-

in the combustion chamber in the form of one or more shaped blocks, 

called grains. The main characteristic of a solid-propellant rocket is 

its simplicity. The burning tim•~ may be from a few seconds or frac-

tions of a second to as long as one or two minutes. 

Once the rocket has been ignited the combustion generally pro-

ceeds until all the propellant is burnt; the thrust program i.s fixed. 

It is possible,with suitable grain designs, to obtain a thrust 

which increases (progressive burning), remains constant (neutral), or 

decreases (regressive) with burning time. With constant-geom•~try 

nozzles, the thrust is approxima.tely proportional to the chamber pres-

sure. The following figure represents a typical record of a near-

constant thrust motor. The time integral of the thrust gives the total 

impulse I. 

__ Fa.tt._. -· .., 

OA . B F 

OA IGNITION DELAY 
AB THRUST BUILD UP TIME 
BC E9UILIBRIUM BURNING TIME 

AD EFFECTIVE BURNING TIME lfi,=O.Srp 

CF TAIL OFF TIME 

EFF. THRUST = ~ 
AD 

Fig. 4. l. Thrust law: typical recording of a near-constant thrust, to­
gether with some current definitions of durations and thrust values. 
The pressure-time diagram would be similar. 
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Combustion of Solid Propellants 

The combustion of a solid propellant is a progressive phe-

nomenon localized near the surface of the grain; the burning rate r is 

defined as the distance travelled per second by the flame front perpen-

dicularly to the surface of the grain. The surfaces on which combus-

tion must not take place are protected with an inhibiting ma.terial. 

Burning rates ranging from 0. 01 to 10 in/ sec, depending upon compo-

sition and pressure, are possible, but usual burning rates lie between 

0. 04 and 2 in/ sec. An empirical relationship giving the burning rate 

r of a propellant as a function of the pressure p may be written 

n 
r = a+ bp • ( 4. 1) 

For a given propellant, a and b are functions of the initial tempera-

ture of the grain and the exponent n is a constant. The constant a is 

usually of negligible importance. Then equation (4. 1) is represented 

by a straight line in a logarithm5.c diagram. The burning rate of a 

composite propellant is shown in Fig. 4. 2 as a function of pressure 

for several values of the initial temperature. The burning law written 

above is valid only within well specified ranges of pressure and tern--

perature. For instance, below a certain pressure the combustion of a 

propellant becomes unstable and may stop completely. Even at normal 

operating pressures it is not always possible to represent the burning 

rate versus pressure relationship by a simple equation of the form 

given above. For instance, Fig. 4. 3 represents the behavior of a 

plateau-burning composite propellant for which r is constant in a 

certain range of pressure. An even more complicated case is given 

in Fig. 4. 4, which represents the burning rate versus pressure rela-
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Fig. 4. 2. Burning rate of a compo site propellant as a function of 
pressure for several values of the initial temperature. 
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tionship of a mesa-burning double-base propellant. 

As shown in Fig. 4. 2, if the initial temperature of the pro-

pellant decreases, the coefficient a diminishes together with the 

thrust and chamber pressure of the motor, but the burning time in-

creases. The total impulse of the motor is only slightly smaller than 

at normal temperature. 

If the initial temperature is too low, the chamber pressure 

may be too low to sustain smooth combustion, and intermittent burn-

ing, called chuffing, may occur. At high initial temperatures the to-

tal impulse rises somewhat, and the increase in chamber pressure 

ma.y become important to the design of the chamber. 

Figures 4. 5 and 4. 6 show the influence of the initial tempera-

ture upon the performance of solid-propellant motors. The thermal 

sensitivity of solid propellants limits the allowable range of exterior 

temperature. 

Fig. 4. 5. Influence of the initial 
temperature upon the thrust law 
of a solid-propellant motor. 
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Fig. 4. 6. Influence of the 
initial temperature upon the 
performance of a solid­
propellant motor. 

Experimental data show that the burning rate r increases 

above its normal value with an increase in velocity of the combustion 
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gases parallel to the burning surface. Some data suggest that a 

threshold velocity exists below which the burning rate is unaffected by 

gas velocity. This phenomenon plays an important role in high per-

£orma.nce designs, and is called erosive burning. It can be roughly 

represented by the empirical linear relation 

where k is the erosion coefficient which is approximately constant 

and V the m: an flow velocity parallel to the surface. The corrective 

term k(V-Vt) is equal to zero for negative values of (V- Vtv) . The 

values o£ k and vtv depend upon pressure, propellant temperature, 

and the dimensions o£ the port area. 

/ 
/ 

/ 

I 
v" i/ 
" -400 800 

FLOW VELOCITY 
lm/ .. cl 

Fig. 4. 7. Erosive burning: experi­
mental relationship between the 
erosion ratio and the flow velocity. 

Homogeneous Multi-Base Propellants 

In a homogeneous propellant, both oxidant and fuel belong to 

the same molecule. Such propellants are often called double-base or 

colloidal propellants because they consist generally of colloidal mix-

tures of nitrocellulose and nitroglycerine. 

Nitrocellulose (13. 25°/o N 2 ) is a low-energy compound con­

taining 21. 25 gram-atoms of carbon, 25. 96 g-at. of hydrogen, 36. 63 

g-at. of oxygen, and 9. 46 g-at. of nitrogen per kg. It is underoxi-
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dized by 301.8 g/kg. Nitroglycerine C 3H
5

(N03 )3 , which is a very 

high-energy explosive~ is overoxidized by 35. 2 g/kg. 

The following table gives the composition and performance of 

the fairly energetic double-base Ballistite JPN. Its specific impulse 

and burning rate are high (I = 250 sec and r = 2. 14 em/sec at 100 
s 

kg/cm
2

), but its combustion index n and thermal sensitivity T are 

both poor,and its lower pressure limit for stable combustion is quite 

important (30 to 40 kg/cm
2

). Owing to the elevated flame temperature, 

radiation plays an important role, bringing heat from the hot gases 

back to the grain. Carbon black is added in order to absorb radiant 

energy which otherwise would have heated the remaining translucent 

propellant. If the nitroglycerine content is lowered, the specific im-

pulse decreases together with the burning rate and the flame temper-

ature. For a propellant containing 32 percent of NG, 60 per cent of 

NC, and 8 per cent of additives, I = 228 sec, T = 2450°K, and r 
s c 

I I 2 0 ranges from 0. 5 to 1. 2 em sec at 100 kg em and 15 C. 

Part B of the following table gives the composition and per-

formance of the French S.D. whose nitroglycerine content is only 25 

per cent. 

The properties of double-base propellants are sometimes im-

proved by adding to the nitrocellulose-nitroglycerine matrix a certain 

amount of finely-ground crystals of an inorganic oxidizer like potassi-

um perchlorate or even an explosive compound. High explosives in-

eluding trinitrotoluene and pentaerythritol tetranitrate can burn with-

out detonation at rates comparable to those of propellants. Aluminum, 

magnesium, or other metallic powders can also be added. 
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---·-·------- ---------------------
A. Composition and Cluzracteristics of J P .N3 

Compositilm 

;\;itrocellulosc (13.25% Nz) 
Nitroglycerine 
Diethylphthalate 
Potassium sulfate (flash-suppressing agent) 
Ethyl centralite (sym.-diethyldiphenylurea) 
Carbon black (added) 
Wax (added) 

Cluzracuristics 

% 
51.5 
43.0 

3.25 
1.25 
1.0 
0.2 
0.08 

Burning rate 
Density 

r = 0.089p0.69 exp [0.0038 (Tc-15)) cmfsec 
CoeP = 1.62 gfcm3 

Isobaric combustion 
temperature at 100 kgfcm2 Tc = 3125°K 

Molecular weight IDl = 26.4 
Specific heat ratio y = 1.215 
Temperature of spontaneous ignition 300°K 

B. Composition and Characteristics of the French S.D.ll 

Composition 

Nitrocellulose 
Nitroglycerine 
Ethyl centralite 
Miscellaneous 

Characteristics 

Burning rate 
Density 
Isobaric combustion 

temperature at 70 kgfcm2 
Molecular weight 
Specific heat ratio 

% 
66 
25 
8 
1 

r = 0.0055p0.60exp [0.0032 (Tc-20)] cmfsec 
g0 (!p = 1.59 g/cm3 

Tc = 2170°K 
IDl = 22 
, = 1.26 

Although the burning mechanism ::>f double-base propellants has 

been studied in great detail, there does not exist a completely ade-

quate quantitative theory. 

During combustion, the solid is transformed into gas by py-

rolysis and by chemical reactions. Even if the transformation occurs 

through the formation of an intermediate liquid phase, there exists a 

certain position~ called the burning surface, where gas is being 

formed. The mechanism of the solid-phase decom.,?osition is con-
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sidered as the rate-controlling step of propellant burning~ and the gas 

is being forrned at a rate 

(4. 2) 

where p is the density of the propellant, B the pre-exponential fre­
p 

quency factor~ E the activation energy~ R the universal gas constant 
0 

and T the temperature of the gas at the burning surface. s 

With double-base propellants, the solid-phase processes, which 

. -3 -2 
take place m a very thin layer about 10 to 10 em thick, are highly 

exothermic and are completed at a fairly low temperature in the neigh­

borhood of 600°K if the burning rate is sufficiently slow. Ti1.ey include 

the thermal decomposition of nitroglycerine and nitrocellulose and the 

reactions between these substances and the stabilizers. 

Figure 4. 8 represents a model of the flame of a double-base 

propellant satisfactory from both the experimental and theoretical 

points of view. After the solid-phase decomposition has taken place, 

the gas-phase reactions can be divided into three layers: close to the 

burning surface, some exothermic reactions take place in the fizz 

zone; then, in the preparation or dark zone, activated products are 

Fig. 4. 8. Schematic model of the flame of a double-base propellant 
with the fizz, preparation, and flame zones. 
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formed without heat production; finally, when a sufficient concentration 

of activated products is achieved, the final reaction occurs in the 

flame zone at the end of which the isobaric combustion temperature is 

obtained. 

The thickness of the zones diminishes when the pressure in­

creases. At intermediate or low pressures, the thickness of the 

preparation zone is mach greater than the thickness of the other zones 

and the heat transferred from the flame zone towards the surface can 

be neglected. Therefore, in that range of pressures, the burning rate 

and the surface temperature are determjned mainly by the solid phase 

decomposition and by the heat evolved within the fizz zone. The pres­

sure dependence of r is very complex and depends strongly upon com­

position and additives which may act as catalysts of the solid-phase and 

fizz-zone reactions. 

At fairly high pressures, the dark zone almost disappears, and 

a significant amount of heat from the flam·e zone is conducted back to 

the burning surface. Therefore, the burning rate increases smoothly 

with pressure and, for a given pressure, the c ompositions having the 

highest combustion temperatures exhibit the highest burning rates. 

At very low pressures, the thickness of the dark zone increases 

very rapidly. The flame-zone reactions becom.e sluggish and may 

cease com:r,>letely while the propellant still continues to react. When 

this happens~ the chamber pressure drops to atmospheric but the tem­

perature of the surface layers rema.ins relatively high. 
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Composite Propellants 

In a composite propellant, oxidizer and fuel are separate com-

pounds intimately mbced together. The stoichiometric mixture ratio, 

which corresponds roughly to maximum combustion temperature and 

specific impulse, is always fairly small; it ranges between 0. 5 and 

0. 05. Figure 4 • . 9 represents the calculated combustion temperature, 

the molecular weight, the specific heat ratio, and the specific impulse 

as functions oi oxidizer percentage of a typical ammonium perchlorate­

polyester composition at the pressure of 70 kg/cm
2

. When the oxidizer 

content increases towards stoichiometric, the combustion temperature 
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dizer percentage {p = 70 kg/em ). 
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rises sharply. but the increase in specific impulse is more gradual. 

The optimum values of T and I are on the fuel-rich side because of 
c s 

dissociation~ the variation of molecular weight, and the specific heat 

ratio. 

Actual compositions seldom contain mare than 80 per cent or 

85 per cent of oxidizer because physical properties of the propellant 

are provided entirely by the fuel. M·')reover, the susceptibility to 

detonation of some propellants increases with the oxidizer content. 

The number of available solid oxidizers is fairly limited. They 

are generally crystalline inorganic salts like potassium, sodium, 

lithium, or am1nonium nitrates or perchlorates, but organic com-

pounds like ammonium picrate c 6H 2 (N02 )
3
0NH

4 
are also used. In 

addition to high heat release and low molecular weight of the gaseous 

combustion products, the oxidizers must have a high available oxygen 

content corresponding to a fairly low stoichiom·~tric ratio. The table 

below gives the molecular weight, the percentage of available oxygen, 

the heat of formation~ the combustion products, and the density of var-

ious inorganic oxidizers. 

Molecular A vailable H eat of Products of Density 
Oxidizer weight oxygen formation complete 

g fcrriJ % ofweight kcalJmole combustion 

LiCI04 106.397 60.152 - 106.00• LiCI 2.429 
.:\"aCI04 122.454 52.265 -92.18 NaC1 
KCI04 138.553 46.192 - 103.6 KC1 2.52 
.:\"H4CI04 117.497 34.043 - 69.42 N2,HC1,H20 1.95 
Li.:\"03 68.948 58.015 - 115.28 Li20 2.38 
.:\a:\03 89.005 47.056 -101.54 Na20 2.261 
K:\Oa 101.104 39.563 - 117.76 K20 2.109 
.:\H4~03 80.048 19.988 - 87.27 N2, H20 1.725 

• Other values sometimes quoted arc: - 110.5 and, morerecent1y,-91.8 kcal/ 
mole. 
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Ammonium perchlorate forma the mainstay of today's high­

energy composite propellants) with commonly used fuels, it gives 

specific impulses between 220 and 250 sec with low combustion in­

dexes and low temperature sensitivities. The burning rate of that 

family of propellants ranges from 0. 4 to 2 em/ sec and even more. In 

general, it increases with the oxidizer content, together with specific 

impulse and density , but for the same composition it can be adapted 

w ithin fairly wide 1im~.ts by the choice of oxidizer particle size and by 

adding suitable catalysts. 

For instance, for the same c omposition (ox idizer 75°/o, fuel 

25°/o}, it is possible to increase the burning rate from 0. 575 to 1. 05 

e m/ sec by varying the particle m .e an diam•=ter from .::: oarse ( 150 ~-t} to 

fine (25~-t}. However, very large particles may not burn completely 

in the chamber. Catalysts like manganese dioxide, ferric oxide, cop­

per chromite, or many others (Cr
2
o

3
, Sn0

2
, Ti0

2
, ZnO) are also 

used for increasing r • 

The following table gives the performance of two typical am­

monium perchlorate and one ammonium nitrate composite propellants. 

A wide variety of fuel-binders may be used ranging from as­

phalt to polymers like polysulfide, polyester, epoxy, synthetic rub­

bers, polyurethane, polyvinyl, p olyacrylate, polyamide, polyethylene, 

polystyrene, polysiloxane, polybutadiene, polyisobutylene, and phe­

nolic or cellulosic resins. Depending upon the fuel-binder, the phys­

ical properties of composite propellants can range from hard, tough, 

and brittle to soft and resilient. The nature of the fuel-binder has a 

strong influence upon the value of the stoichiometric mixture ratio. 



CALCULATED CHARACTERISTICS 07 METALLIZED COMPOSITE PROPELLANTS 

Composition 

Isobaric combustion 
tempcraturl" Tc (°K) 

Molecular weight 

Specific heat ratio 

%of solid matter 
in the combustion 
products 

Specific impulsett 
(sec) 

67.5% NH4Cl04 63.75% NH4Cl04 12"/o NH4Cl04 
22.5% binder• 21.25% binder 18% binder 

10% AI 15% Al 10% AI 

3002 

20.21 

1.2665 

UJ.9 

248.3 

3221 

18.954 

1.2775 

27.85 

253 

3290 

21.813 

1.2500 

18.85 

252.6 

• The furl-binder is a polyester whose gross formu!J. is C2aH2s04. 

68% NH4Cl04 

17% binder 

15% AI 

3519 

20.905 

1.2635 

27.9 

254 

67.5% NH4Cl04 71.25% NH4Cl04 
22.5% binder 23.75% binder 

10% Mg 5% B .. 

2915 

20.823 

1.2615 

16.6 

243.4 

248Jt 

22.508 

1.2475 

Ot 

241 

---

•• This last formulation merely provides an indication of the energetic possibilities of boron; indeed powdered elemental 
boron cannot be expected to burn completely37• 

t At chamber temperature, BaOa is gaseous: it condenses only within the nozzle. 
tt The specific impulse takes into account the loss due to condensed matter in the Aow . Indeed, 

available data suggest that Al20a is already condensed at chamber temperature23. With boron. condensation of DsOs 
within th~ nozzle has be~n taken into account and equilibrium Aow has been assumed in order to compute I,. 

I 
...... 
...... 
CXl 
I 



Composition 

Molecular weight 
Specific heat ratio 
Isobaric flame temperature 

Tc (°K) 
Characteristic velocity 

c• (m/sec) 
Specific impulse /• at 

70 kg/cm2 (sec) 
Combustion index at 

70 kg/cm2 
Burning rate at 70 kgfcm2 

(em/sec) 
Density (g/cm3) 
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75% NH4Cl04 
25% fuel and 

additives 

24 
1.24 

2420 

1396 

224 

0.4 

0.5-1.5 
1.66 

80% NH4Cl04 
20% fuel and 

additives 

25.5 
1.22 

2790 

1460 

236 

0.4 

0.8-2.0 
1.72 

80% NH,NOs 
20%fuel and 

additives 

22 
1.26 

1755 

1219 

195 

0.4 

0.2-{).3 
1.55 

Current temperature sensi­
tivity coefficient T (°K - 1) 0.0012-{).0024 0.00 12-{).0024 0.0025 

The fuel-binder does not hav e a strong influence upon the specific im-

pulse of the propellant if the heat of forma.tion is not too low. Howev-

er, fuels containing a high hydrogen to carbon ratio. perhaps som·~ 

nitrogen but little sulphur. must be favored in this respect, but they 

often have relatively low stoichiom·etric ratios. 

The performance of composite propellants can be improved by 

adding high-energy metallic elements or compounds which give highly 

stable but condensed combustion products. In the simplest approach, 

powdered metals are added to the main composition. Taking into ac-

count the correction introduced by the presence of condensed matter in 

the exhaust, the gain in specific impulse may be as much as 10 or 15 

seconds. The following table gives the calculated performance of an 

ammonium perchlorate - polyester formulation boosted with various 

percentages of aluminum, magnesium, and boron. 

Our understanding of the burning mechanism .:Jf composite pro-

pellants is at best of conceptual significance. All proposed descrip-

tions of the process make use of the same fundamental assumption as 
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is used for homogeneous propellants, i.e., that the regression rates 

of both fuel and oxidizer are governed by equation (4. 2), which ex-

presses the solid-phase decomposition rate as a function of the sur-

face temperature T . s 

For the steady- state burning of a composite solid propellant, 

it is reasonable to assume that the m ·ean linear rates of regression o£ 

the oxidizer and fuel surfaces are very roughly equal: 

or 

r 
0 

E 
0 

Bo exp (- R T 
0 so 

( 4. 3) 

In general, the pre-exponential factor and the activation energy of the 

fuel and of the oxidizer are not equal. It follows that T must be dif­
so 

ferent from Tsf • That assumption constitutes the base of the "two­

temperatures postulate'' of the theory of composite propellant burning. 

Because of the difference in pyrolysis rates ( r versus T ), one 
s 

constituent gasifies relatively faster, and the slower-burning campo-

nent is left protruding from the surface. The faster-pyrolizing consti-

tuent is then in contact with a cooler region of the flame than the 

slower-burning constituent. 

In order to take advantage of this model, some assumptions 

must be made upon the process which controls the heat exchange be-

tween the flame and the surface. It appears that two different proces-

ses can be considered: the thermal decomposition of the oxidizer, and 

the diffusion flame. 

The oxidizer thermal decomposition model has been satisfacto-
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rily developed in the case of an am::n:::mium nitrate propellant in which 

the pyrolysis rate of the oxidizer is the faster. Figure 4. 10 repre-

sents the pyrolysis rates of NH
4
No

3 
and of a typical fuel as a function 

of surface temperature. It is assumed that the regression is com-

pletely governed by the heat exchange between the surface and the 

products of the decomposition of NH
4
No

3
, acting as a monopropellant. 

.... 
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Fig. 4. 10. Pyrolysis rate of 
NH

4
No

3 
and of a typical fuel, 

as a function of the reciprocal 
of the surface temperature. 

At the outer boundary of the decomposition zone the temperature is 

1250°K, corresponding to the combustion of NH4N03 alone. If the 

surfaces of both fuel and oxidizer were in the same plane, their tem-

peratures would be roughly equal. The regression rate of the oxidizer 

would be greater and the fuel would protrude into the higher tempera-

ture layers of the decomposition zone until both rates eventually be-

came equal. This is a self-regulating process, and the mean burning 

rate of the propellant is equal to the regression rate of the oxidizer 

alone, since there are always enough oxidizer surfaces to carry on 

the flame propagation. 

With potassium :?erchlorate propellants, flame pictures sug-

gest that the oxidizer particles are protruding over the fuel matrix, 
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and a model has developed in which heat reaching the surface comes 

from the diffusion flamelets at the boundaries of the oxidizer and fuel 

vapor. A substantial elaboration of such a model is required to de-

scribe the propellant behavior. Sum1nerfield has proposed such a 

model, in which, as the propellant is heated, fuel vapor pockets are 

expelled through the solid surface. This model further involves a 

finite chemical tim•~ and the effect of high turbulence level. 

T:!Le situation is different with ammonium perchlorate propel-

!ants in which the decomposition of NH
4
Cl0 

4 
into N

2
, 0

2
, HCl, and 

H 2 0 gives a temperature of about 1430°K, and the oxidizer thermal 

decomposition model m:'i.y be considered. 

If the oxidizer-decomposition model is taken for granted, the 

burning rate dependence on pressure can probably be explained, and 

the increase in burning rate due to a finer granulation or to the fuel 

nature can be viewed as the result of the interaction between the oxi-

dizer and fuel pyrolysis. 

Combustion Chamber Equilibrium 

Inasmuch as the rate of propellant consumption depends upon 

the pressure in the chamber, it is apparent that some relation exists 

between the pressure, chamber volume, and rate of propellant con-

sumption which is fundamental in determining the rocket thrust. Like-

wise, it is clear that the propellant consumption process may or may 

not be stable, depending upon the manner of dependence of burning rate 

upon chamber pressure. For example, if the rate of propellant con-

sumption increases very rapidly w ith pressure, the increase in burn-
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ingrate may cause the pressure in the chamber to rise so rapidly 

that the result is catastrophic. Therefore, not only must the equilib-

rium ope rating conditions be investigated for a solid propellant rocket 

of given characteristics, but also the stability of the operation. 

The operation of a solid propellant rocket depends upon the 

gross conservation of mass in a manner which may be expressed as: 

Mass of Propellant Consumed= Gas Stored in Chamber+ Gas 

Ejected from the Nozzle . 

Assuming the flow through the rocket nozzle to be given by the isen-

tropic relations previously developed, each term of this relation may 

be expressed in analytic form. The gas ejected from t he nozzle is 

given by 

Rate of Gas Discharge = r• A~c 
a c 

(4. 4) 

where p is the pressure in the chamber and a depends only upon the 
c c 

propellant combustion temperature (i.e., the cham her temperature) 

and the gas properties. The rate of gas storage in the combustion 

chamber velum~~ may be written 

d 
Rate of Storage = dt (p c V c) ( 4. 5) 

where p and V are the instantaneous gas density and velum~ of the 
c c 

combustion chamber. It is important to note that the flow process is 

not steady because of the fact that the combustion chambe r volume is 

changing throughout the rocket burning period. Finally, the rate of 

gas generation is 

Rate of Generation = rA p 
c p 

(4. 6) 
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where r is the rate of propellant burning at the existing combustion 

chamber pressure, p is the density of the propellant, and A is the 
p c 

surface of the propellant which is accessible to combustion. The 

above equation may then be written simply in the form 

rA p 
c p 

r•A.P 
= ~( V )+ ~c 

dt p c c a 
c 

( 4. 7) 

Now it is known that under c onsiderable variation of the combustion 

chamber pre s sure, the cham"ber temperature T is very nearly con­
e 

stant. In particular, this value does not vary according to the simple 

thermodynamic relations for constant volume. H~nce, it will be as-

sumed that RT =constant, so that the above relation may be written 
c 

rA (RT p ) 
c c c 

r•A.P RT 
=~(VRT )+ ~c c 

dt c c p c -..I ' 
y -yRT 

c 

( 4 . 8) 

For convenience, an effective "pressure" of the propellant may be de -

fined according to the perfect gas law; that is 

p = p RT 
p p c 

( 4 . 9) 

This is a fictitious pressure which has no particular physical signifi -

cance, but will serve as a notation. Then, using this pressure, 

rA p = ddt (V p ) + r-fitT: Atp , c p c c c c 
( 4. 10) 

where r = 1 /I.(Y r• . Now because of variation of the volume V with 
c 

time, it is necessary to relate the rate of change of combustion cham-

ber volume to the rate of propellant consumption. If the volum1~ of the 

combustion cham"ber at the start of burning is denoted by V 
0 

, the 
c 

volume at any later time may be expressed as the sum of the initial 

volume and the volume of propellant consumed during that time. If 
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the burning rate is r and the combustion surface is A , the rate of 
c 

volume increase is simply rA so that the volume of the combustion 
c 

chamber at any time t is 

v 
c = rA dt 

c 
( 4. 11) 

where the time t = 0 has been chosen as that corresponding to the ini-

tiation of combustion. Using this relation, the derivative in equation 

(4. 10) may be simplified to give 

dp dV 
V __ c +p __ c_ = 

c dt v dt 

dp 
V __ c +rAp • 

c dt c c 
( 4. 12) 

Upon substitution into equation (4. 9), and collecting terms 

rA (p -p ) - f' ~ fRT Atp . c p c v --- c c ( 4. 13) 

This is clearly a differential equation for p , provided that the other 
c 

principal variables, V , r, and T , can be expressed as functions 
c c 

of the chamber pressure and the time alone. The linear burning rate 

has been written previously as a function of the chamber pressure 

(equation 4. 1 ), and consequently, the differential equation for the 

chamber pressure of the solid propellant rocket is 

dpc n .. ~ 
vc "cit = ape (pp-pc)Ac- r VRTC Atpc. ( 4. 14) 

The combustion equilibrium will be achieved when the value of 

dp /dt ~ 0, that is, when the chamber pressure is nearly invariant 
c 

with time. The term "nearly invariant'' is used because there will al-

ways be some long period effects which prevent the pressure from be-

ing exactly constant. Among these are slow variation of the propellant 

grain temperature with time, heating of the combustion chamber itself 
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and consequent change in the radiation conditions, etc. However, for 

theoretical considerations, it will be quite sufficient to assUine that 

combustion equilibrium is defined by dp /dt = 0. This implies that 
c 

all transient phenomena and pres sure perturbations have died out. 

Inspection of the differential equation (4, 14) leads one to won-

der whether any stable equilibrium exists . B~cause of the dependence 

of the burning rate upon the pres sure, it appears possible that the 

burning rate will increase so rapidly with combustion chamber pres-

sure that no equilibrium 'Nil! be reached. Reasoning from equation 

(4. 14), this observation means that as p increases, the right hand 
c 

side of the equation will be positive, indicating a positive value of 

dp /dt. Therefore, the chamber pressure will increase even further c 

with time, indicating an unstable process. The stability of the calcu-

lated equilibrium 0perating condition will be investigated subsequently. 

Denote by a superscript the conditions for which equilibrium 

is reached, that is dp /dt = 0. Then, from equation (4. 14), 
c 

*n >l< >:< R'' >:< ap A (p -p ) = I' RT A~p 
c c p c c ~c 

( 4. 1 5) 

The stability of this solution may be checked by studying the transient 

behavior of the chamber pressure in the neighborhood of this point. If 

the process is stable to small disturbances of the combustion chamber 

pressure, the assumption of an equilibrium ::>perating point was cor-

rect. If the process is unstable, the assumption leads to a contradic-

tion, and no equilibrium operating point exists. 

Consider a disturbance in chamber pressure p 1 where 
c 

;}:; 

p 1 /p << 1 , so that the instantaneous chamber pressure is 
c c 
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( 4. 16) 

>:< 
Inasmuch as the equilibrium pressure p does not depend upon the 

c 
~:c >:c 

time, dp /dt = d/dt (p +p 1
) = dp 1 /dt. The value of T , and con-

e c c c c 
>'< 

sequently the value of p ', is unchanged by the pressure perturbation 
p 

p 1 which has been imposed. 
c 

>!< 
Now because p 1/p << 1 , an approx-

c c 

imation may be made in calculating the value of p c n which occurs in 

t he linear burning rate. That is 

p n = fp >:< + p 1)n 
c \1 c c 

p I n 
= p >:Cn( 1 + c ... ) 

c -.-
Pc 

Substituting these results into equation (4. 14), it appears that 

( 4 . 17) 

I *n( p c ) >!< >:< 
~ ap 1 + n ----::;:- (p -p -p 1 )A 

c '•' p c c c 
-I' r;;* At(p >:C +p I). 'Jn.l.c c c 

PC 
( 4. 18) 

This equation may be simplified by noting that equation (4.15) gives a 

general relation among the variables in the equilibrium ~:;tate. By sub-

tracting equation (4. 15) from (4. 18) and neglecting second and higher 

order terms in p c 1 
, it follows that 

dp I 
c 

vc~ 

>:< 

>:<nf (~ )] ~ ap c [1 + n >:< - 1 A .::p c 
1 

PC 

Employing equation ( 4. 15) again, it is seen that I' R' At = 

( 4. 19) 

>:Cn-1 >:C >:C 
ape Ac(pp -pc ) , so that the differential equation for the pressure 

perturbation is just 

dp I v c 
c <It ( 4. 20) 

>:Cn 
Now, inasmuch as V > 0 and certainly ap A > 0 , the sign of the 

c c c 
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derivative depends entirely upon the signs of p 1 and 
c 

-1 + (n-l)[p;:' /p c>:C - 1} . In general, the value of the fictitious propel-

lant pressure. p , is greatly in excess of the combustion chamber, 
p 

5 
its value being numerically of the order of 10 pounds per square inch 

because of its high density. 

To investigate the stability of the combustion chamber flow 

process, consider a small pressure disturbance p ' and, for conven­
e 

ience, consider p ' > 0 . Then, for stability 
c 

for neutral stability 

and for instability 

dp I /dt < 0 t 

~ 

dp I /dt = 0 c , 

dp I /dt > 0 , 
c 

If the pressure disturbance is considered to be general so that it ma.y 

be either positive or negative, the corresponding stability criteria are 

1/p 1(dp '/dt) < 0, 
c c 

Stable: 

Neutral: l/pc 1 (dpc 1 /dt) = 0, ( 4. 21) 

Unstable: 1/p I (dp 1 /dt)> 0 
c c 

The sign of the pres sure derivative, and hence the stability of the sys­
p * 

tern, is completely determined by the quantity -1 + (n-1)(~- 1) = k. 

Then we have 

Stable: k < 0 , 

Neutral: k = 0 , ( 4. 22) 

Unstable: k > 0 • 

This stability criterion is completely adequate, but is somewhat in-

convenient to apply because it involves the combustion chamber equi-
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librium conditions as well as the characteristic exponent of the pro-

pellant burning rate. Within the accuracy of approximation and, more 

important than that, within the accuracy that the theoretical criterion 

* * may be applied to the actual rocket, it may be said that (p /p - 1) ~ 
p c 

:>'r: >:c 
pp /pc . Furthermore, for any value of n significantly different from 

unity 
,... )!( 

ln-11 >> p '"!p'. 
c p 

Therefore, the stability param•'!ter is approximately n-1 , and the 

classification of stable chamber operation m3.y be classified in terms 

of the characteristic exponent n alone: 

Stable: 

Neutral: n = 1 , ( 4. 23) 

Unstable: n>l. 

The equilibrium equation (4. 15) holds only when n< 1 , since only 

under this condition does a stable equilib rium exist. Fortunately, the 

values of n for various solid propellants lie in the range 0. 4<n<O. 8. 

Before returning to the calculation of performance under the 

equilibrium conditions, it is of interest to estimate the time required 

for the decay of a pressure disturbance in the combustion chamber. 

To be practically useable, a chamber - nozzle configuration should be 

such that the pressure disturbances decay in a period of time which is 

short compared with the duration of rocket burning. To estimate the 

rate of decay of a pressure disturbance in the chamber, the differen-

tial equation (4. 20) for the perturbation chamber pressure must be 

solved as a function of time. The approximation, discussed in the 

~"' ):{ 

last paragraph, will be made that (n-1 }(p /p -1) >> 1 , so that the 
p c 
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right side of equation (4. 20) becomes -r ~RTc*'At(l-n)pc 1 • If, fur-

ther, * V denotes the combustion chamber volume at the onset of the 
c 

disturbance, then the instantaneous chamber velum·~ is 

v = c 

t 
>:c r * 

Vc + J rAe dt 

0 

( 4. 24) 

where the zero of the tim·~ scale has now been moved to the time dis-

turbance instigation. It will be assumed that the disturbance is suffi-

ciently small that the burning rate r is unchanged over the period of 

interest. Therefore, 

v 
c 

( 4. 25) 

With these approximations, the differential equation (4. 20) becomes 

which may be 

dp I 
c 

p-r 
c 

easily solved by separation of variables. 

(1-n)r RAt d(rA::<t) 

rA 
c 

'~ * V +rA t 
c c 

( 4. 26) 

In fact, 

If at time t = 0 a pres sure disturbance p c10 is introduced into the com­

bustion chamber, then the history of this pressure disturbance is given 

by the s elution of the 

p 1/p I 
c c 

0 

= ( 1 + ( 4. 27} 

Consequently, as has already been shown from the stability analysis, 

the disturbances die out in time so long as n < 1. However, it is fur-

ther seen that they die out more quickly the smaller the value of n. 

Li.kewise, it appears that the ratio of throat area to combustion surface 
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area is important in this regard. * The larger the ratio A I A , the 
t c 

more rapidly will combustion chamber equilibrium be restored. The 

condition that the chamber disturbance vanishes in a time which is 

short compared with the rocket burning time may be applied to equa-

tion (4. 27) to estimate the permissible values of the variables which 

may be used. If the bracketed term of ( 4. 27) is written as 
>'.< 

rAe tb 
1 + ----:-.:,,:---

v 
c 

where V is the total volume of propellant in the rocket motor, it is 
p 

'~ noted that V /V is of the order of 1 over m ·:>St of the burning time. 
p c 

Consequently, if the life of the disturbance is very small compared 

with the burning time, the right side of (4. 27) may be expanded in a 

binomial series and sufficient accuracy obtained with only the linear 

term 5.n time. Therefore, 

p I 
c 

"P' ~ 
co 

1 - (1-n)r ( 4. 28) 

H~nce, for this to vanish for values of t such that t/~ << 1, the fol-

lowing inequality must be satisfied: 

~RTc*'Attb 
( 1-n)r 

'•' v 
c 

>> 1 • (4. 29) 

The quantity -RAt~ is proportional to the volume of gas ejected 

from the nozzle, and since this is m•1ch greater than the combustion 

>!c; 
chamber volume V , it is usually possible to satisfy this inequality 

c 

if n is not too nearly equal to unity. 

Returning now to the question of the actual equilibrium :>per-
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ating condition, now that the conditions under which it exists are 

understood, equation (4. 15) may be rewritten 

( 4. 30) 

This has not actually been solved for p since it still occurs in the 
c 

right hand term. However, the quantity p -p is dom:nated by the 
p c 

effective propellant pressure p , and only a small error is made in 
p 

approximating this by 

1/(l-n) A 1/(l-n) 

~ app ) ( c) 
pc RO \r~ ~ 

>:< 1 /(l-n) 1/(1-n) 
= (appc ) KN . ( 4. 31) 

Here the area ratio A /A has been denoted KN and the definition of 
c t 

the characteristic velocity c * = ( v yR T ~ ) I r 1 has been used. The 

term ap c 
p 

is entirely determined by the chemical nature of the solid 

propellant employed, while the ratio KN is a matter of physical di-

mension and may therefore be varied even for the same propellant. 

Furthermore, the exponent 1/(l-n) is rather large for usual values of 

n, ranging between 2 and 5. Therefore, the chamber pressure is 

quite critically affected by the combustion area - throat area ratio. 

It is also of interest to investigate, using the present results, 

the effect of varying the nozzle throat area for a given combustion 

chamber and propellant. Near the ideal expansion point, the thrust co-

efficient CF is nearly independent of the chamber pressure pc so long 

as the expansion ratio across the nozzle is large. Then the thrust 

may be written in the form 

F = CFpcAt • ( 4. 3 2) 
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Now from equation (4. 31), the chamber pressure is proportional to 

At-( 1 1( 1-n)) when the area of the combustion surface and the propel­

lant composition are fixed. Then the thrust is proportional to 

F ......, A A - ( 1 I (1-n) ) = A - (n I ( 1 - n)) 
t t t • ( 4. 33) 

Therefore, the rocket thrust de c reases as the throat area increases, 

with a rate depending upon the exponent n. For usual propellants, 

-1 -4 
the rate of decrease is between At and At . For propellants 

having a value of n c lose to unity, the thrust is extreme ly sensitive 

to the throat area. 

For most large rocket motors, the required proportions of 

the chamber necessitate large cylindrical combustion surfaces,with 

the consequence that the gaseous produc ts of combustion flow in the 

chamber passage toward the nozzle, and in doing so may attain ve-

locities of considerable magnitude. A pressure gradient along the 

grain results from this flow proc ess, the pressure decreasing from 

the front end of the grain (F) to the nozzle end of the grain (N). This 

pressure variation along the burning surface c auses the grain to burn 

more rapidly at the front end. 

On the other hand, the erosive effect of gas velocity past the 

propellant surfac e causes an increase in the propellant burning rate. 

In the unrestricted burning roc ket, the mass of propellant gas flowing 

by any cross section increases toward the n o zzle end of the grain, and 

consequently, the local velocity past the grain is larger toward the 

nozzle end than it is toward the front. This variation of gas velocity 

causes varying decrees of erosion over the propellant surface; in par-

ticular, it causes the propellant to burn more rapidly at the nozzle 
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end. In the simple analysis which follows, it will be assumed that the 

burning rate is uniform over the grain surface. 

From the nature of the internal ballistic problem for the usual 

solid rocket, it is clear that some rather far-reaching assumptions 

must be nade before any theoretical analysis m::~..y be considered. In 

general, it will be assumed that: 

l) The process may be described as the one-dimensional, non­

viscous flow of a perfect gas; 

2) The effects of pressure and gas velocity on burning rate 

cancel each other over the grain so that the burning rate is constant; 

3) The calculations may be based upon steady-state flow pro-

cesses. 

According to the first assumption, the effects of viscosity in 

producing a frictional pressure loss in the combustion chamber pas­

sages and losses in the flow separation at the nozzle end of the grain 

will be neglected. This is not a serious restriction so far as exhibit­

ing the physical phenomenon is concerned. The second assumption is, 

however1 a limitation, inasmuch as experimental results show consid­

erable effect of erosion for long tubular charges. However, the re­

sults will be completely satisfactory for grains of short and medium 

length, and not in serious error for long grains. The assumption of 

a quasi-stationary analysis is quite adequate so long as the periods of 

pressure and velocity variation are long with respect to the stabiliza­

tion time of the chamber - nozzle system. Other specific assumptions 

made in the course of analysis will be noted as they are made. 

The idea of the following analysis is simply one of relating the 
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conditions within the tubular chamber of the rocket to those of an e-

quivalent rocket with uniform pressure along the grain, and then 

utilizing the results of the previous analysis. This process will be 

divided into two main parts, that of relating the nozzle end pressure 

and mass flow to those of the previous analysis, and finally relating 

the effective combustion-chamber pressure to the front end pressure 

from which the burning rate of the propellant is determined. 

Let p and T be effective chamber-pressure and stagnation-
c c 

gas temperature, respectively. Then from the nozzle analysis, the 

mass of gas passing through the nozzle is 

(4. 34) 

The value of T is a known constant of the propellant combustion pro­
c 

cess. However, the effective value of p is not known. If it is as­
c 

su.rned that the gas flow from t he grain port outlet to the nozzle is a 

reversible adiabatic process, then the effective value of p is simply c 

the stagnation pressure corresponding to the velocity vN and pressure 

The velocity v N 

2 
VN = 

satisfies the relation 

2C T (1 - TNIT ) , p c c 
( 4. 3 5) 

and because the process is adiabatic and reversible, the pressure ra-

ti o pNip c may be used. 

v 2 = 2 c T (1 - (p I p {v- 1 ) I 'I \ 
N p c N c ) 

( 4. 36) 

Clearly, the mass flow through the grain port is 

( 4. 37) 

where A , the port area, is the entire area accessible to the flow at 
p 

the nozzle end of the grain. Utilizing the isentropic feature again, the 



-136-

( 4. 38) 

so that the mass flow may be written as 

m -= p v-_A (pN/p )1/'1 = (p /RT )v--A (pN/p )1/-y. c w-p c c c w-p c (4. 39) 

Now employing the value of the velocity at the nozzle end from equa-

tions (4. 36), the mass flow is just 

= pcAp PN 1/'1 v'-l:l (1- PN ('{-1)/'1) 
m -{RT: ( p ) '{-1 ( p ) 

c c 
c 

( 4. 40) 

By continuity, this mass is equal to that flowing through the nozzle, 

described by equation (4. 34) in term:;; of the effective chamber pres-

sure. Equating these two relations, it follows that 

_l:::L ( PN {'{-1)/'1) 
1 1- (-) 

'1- PC 
( 4. 41) 

where A/Ap is a known geometric factor. Hence, equation (4. 41) 

gives the ratio of the grain nozzle end pressure to the effective cham-

ber pressure, although the relation is implicit. 

In any actual design, the pressure ratio pN/pc is not far from 

unity, so that within the accuracy of the analysis, certain approxima-

tions may be made. Considering the right side of equation (4. 41), it 

is obvious that the value of this expression is determined by the term 

1 - (p /p )('1 - 1 )/'{ which is very sensitive to the value of the pres­N c 

sure ratio. The term (p /p )( 1 /'1) outside the radical will not be in­
N c 

fluential in the calculations. By writing 
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= (p I P ) 2 I 'I _!::j_ (1 _ (p I P )< '1- 1 ) I"\ 
N c '1-1 N c ) 

Each of the terms including the small term (pNip c - 1) may be ex­

panded in a binomi.al series which, retaining only the first power of 

the small quantity , becomes 

( 4. 42) 

( 4. 43) 

In terms of this nozzle end pressure, the mass rate of flow 

from the nozzle, and hence that from the grain port, may be approxi-

mated as 

r 
m ~ ----

~ RT~ 
(4. 44) 

where use has been made of equations (4. 34) and (4. 43). If the mass 

flow may be expressed in terms of the linear burning rate, r , as 

m --= rp A , (4. 45) 
p c 

then, by substitution into equation (4. 44), the pressure at the nozzle 

end of the grain is expressed as 

rppAc -fRT'c (1 - tr 2
(A/Ap)

2
) 

PN -= I' t 
( 4. 46) 

Here, p denotes the propellant density and A 
p c 

the total combustion 

surface of the propellant grain. Equation (4. 45) is an approximation 
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in that the gas being stored in the combustion chamber due to the re-

duction of propellant volume is neglected. The correct expression for 

the mass ejected from the nozzle is clearly 

m o: rA (p - p) 
c p 

(4. 47) 

where p is the density of the propellant gas generated by combustion. 

The actual value of the nozzle end chamber pres sure, pN , 

may not be determine d from equation (4. 48) because of the unknown 

linear burning rate r. This burning rate is not simply related to the 

pressure pN because the burning rate is increased above the expected 

v alue due to the erosive effect of gas velocity past the propellant sur-

face. The only point at which the burning rate can be calculated is at 

the front end of the grain where the gas velocity vanishes. Since the 

burning rate is assumed constant over the entire grain, the value 

found at this point will hold e verywhere. Therefore, the pressure pF 

at the front end of the chamber must be computed. 

The difference of pressure between the two ends of the propel-

lant grain is caused by the continuous production of gas along the flow 

passage and the consequent acceleration of the gas along the constant 

area passage. In order to investigate this phenomenon. equations of 

continuity and momentum 1nust be developed which apply to a flow of 

v arying mass. If p and v are the local gas density and velocity, re-

spectively, then pvA would be a constant value were it not for the gas 
p 

generated at the combustion surface. However, considering a section 

of length dx along the direc tion of flow between the planes at x and 

x+dx, the change of ma.ss flow between these two plane s is 
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( 4. 48) 

This may be expressed in another manner by considering the mass of 

gas generated by the burning surface. The mass added to the flow per 

unit length is then 

( 4. 49) 

Consequently, the gas added to the flow may be set equal to that gen-

erated by burning over the length dx to give 

( 4. 50) 

which is the extension of the one-dimensional continuity equation for 

systems with mass addition. The momentum relation may be devel-

oped in a similar manner. The momentum change across the two 

planes is easily expressed as 

( 4 . 51) 

which accounts for both the effects of velocity change and mass addi-

tion. This change of momentum is accounted for by the pres sure force 

between the two faces 

( 4. 52) 

and any component of momentum in the direction of flow possessed by 

the combustion gas from the propellant. It will be assumed that the 

escape from the propellant surface is such that no mean momentum is 

contributed to the gas stream. Then the m-::>m·entum relation is 

( 4. 53) 

It will be assumed further, in good agreement with known results, 

that the stagnation temperature o£ the propellant gas is a fixed quantity 
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c T and is relatively independent of the pres sure or propellant tem­
p c 

perature. Then the energy equation which is appropriate to the gas 

flow is 

r ..,o --= { 4. 54) ..,._, f 

Of the three equations defining the flow {equations 4. 50, 4. 53, and 

4. 54), the first two m .'l.y be integrated directly starting from the front 

end of the propellant grain. At this point, the pressure is pF , the 

·,relocity of the gas vanishes {vF = 0), and the value of x will be chosen 

x = 0. Then the continuity equation integrates to 

A L 
fpl" c L. { 4. 55) 

expressing the evident fact that the mass of gas flowing by a cross 

section taken at the ordinate x is equal to the mass of gas generated 

by propellant burning from the point x to the chamber front. The mo-

mentum equation m<"ty likewise be integrated to give 

.:: ( 4. 56) 

where advantage has been taken of the fact that the momentum vanishes 

at the grain front. Then equation (4. 56) says simply that the entire 

gas momentum is generated by the difference between the local pres-

sure and the pres sure at the grain front. To summarize, the relations 

which will be employed in investigating the distribution of pres sure 

along the grain face, and in particular, to find the front end pres sure, 

pF , are 

= ( 4. 55) 

( 4. 56) 
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2 
Now from equation (4. 56), the term pv is just 

(4. 54) 

( 4. 57) 

while the local gas density itself ma.y be found by squaring the continu-

ity equation (4. 55) and dividing by the momentum relation (4. 56). 

This gives 

J :: 
( fp r A c ) .t. 

A z. p 
( 4. 58) 

The momentum per unit area and the local gas density may now be 

employed to elim~_nate the velocity and density term:> from equation 

(4. 54), the energy relation. Making this substitution, it is found that 

(4. 59) 

This expression gives the local pressure p in terms of the pressure at 

the front of the grain and known parameters inasmuch as the burning 

rate r is determined by the pressure pF. Reasoning in the opposite 

manner, this equation may be employed to give the pressure pF in 

terms of a known local pressure. The local pressure which may be 

employed to this purpose is that at the nozzle end of the grain pN 

which occurs when x = L. Making this substitution and collecting terms 

in the form of pF/pN , it follows that 

/ P,.: ).t-t ~ r~F) -[ _ _rt!. + -< •• ~ .:> r ( l,o r A. )~)7 = 0 
t ? r-t P. "("'-, ' ---- --

N N ~ ~ 

( 4. 60) 

This quadratic is easily solved for the pressure ratio pF/pN to give 
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= I 
,------------------. 

+ __!:_ I I -1 L ( ~-; .t ~ ?.; f.-.!;!,. ~AA ) ' 
~-) v "JON ,. (4. 61) 

where the choice of sign for the radical is obvious. 

This solution is merely form3.1, however, inasm'.lch as the pro-

pellant burning rate still depends upon the chamber front pressure. 

However, this form has the advantage of allowing an approximation by 

mt~ans of which the solution to the complete problem may be obtained. 

Consider the physical significance of the second term in the radical. 

This may be written 

Now since pN is approximately the chamber pressure, it follows 

closely that 

so that the above expression may be written approximately 

)._ ( 'r-1) 
(fp r- A,) 

.\ 

oL\"flTAL 
~" ' .,. 

T.!-le quadratic (p rA )/ (p a A ) has a simple physical significance by 
p c c c p 

means of which its value may be estina.ted. T!le numerator is the 

mass of propellant consumed by the combustion process per unit time; 

the denominator is the mass which would flow through the propellant 

port area A if the gas moved with the sonic velocity of the combustion 
p 

chamber. Usually the mass flow through the port passage (equal to that 

generated by the propellant combustion) is such that a binomial expan-

sion of this radical, retaining only the first order term, is appropriate. 

To good accuracy 
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(4. 62) 

It should be mentioned again that this relation does not give pF ex­

plicitly in terms of pN and known constants because the burning rate 

r still depends upon pF. 

Now the result can actually be put into a convenient form most 

easily by referring to the approximate value of the nozzle end pressure 

pN which is given by equation (4. 46). By substituting this value of pN 

for its equivalent in the denominator of the second right hand term of 

the above equation, it follows immediately that 

( 4. 63) 

4 . 
Here, terms of order (At/Ap) and h1gher have been dropped because 

A/ Ap is not greater than 0. 5 as a rule. It is conventional to use as 

parameters the area ratios 

K_ = A /A --r c p 

KN E A /A c t 

(4. 64) 

both of which are greatly in excess of unity. The ratio of the front to 

nozzle end pressures may be expressed in terms of these ratios as 

/of ( 4. 65) 

Clearly, this reduces to the result that pF = pN = p c for the restricted 

burning rocket since the ratio ~~~ is quite small,and its square may 

be neglected. 
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Through application of this relatively simple relation between 

the front pressure and nozzle end pressure, the absolute value of the 

grain front pressure may be calculated directly. Solving equation 

(4. 65) for the nozzle end pressure pN 1 entering the result in (4. 46}, 

for pN , and writing the propellant burning rate as r = apFn , it follows 

that 

( 4. 66) 

This may be solved for the grain front pressure, again neglecting 

4 
quantities of order (~/KN) and higher; 

( 4. 67) 

Consequently the value of pF is now known directly in terms of rocket 

and grain geometry and the propellant properties. 

The reliability of the performance calculation may be improved 

}~ 

by employing the experimental value of c for the propellant used. 

>:< 
Usually, the experimental value of c is about 90 per cent of the the-

oretical value, that is, the effective combustion temperature is in the 

neighborhood of 80 per cent of the calculated value. Then it is appro-

priate to employ, where experimental values are available, 

I ~ I 

f a. p c * x, j ;-.::;;/1 + .!.. r J {.!!J_)j ;:;; 
I~ ~1-1" N ..(. f/(IV 

If the effective combustion chamber pressure is defined as 
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I 
I 

1-?1 
( 4. 68) 

then the pressure at the front end of the propellant grain may be ex-

pressed as a correction to this pressure by writing 

( 4. 69) 

Aside from the chemical properties of the propellant, the value of p 1 

c 

depends upon the nozzle area ratio, while the pressure at the front end 

of the chamber depends upon both the nozzle area ratio ~ and this 

internal area ratio ~ • 

The pressure distribution along the propellant grain may be 

calculated from equation (4. 59) using the now known value of pF • Re­

grouping the terms in e quation (4. 59) in the form 

...!.. ;_ro )(- 'f'J ~ _!_ _:e + /c r; I!_.!JO ~~-'-)'(1 -t)"- /-./7 
.l.. ( 'r-' ~ r-1 1} 'f> ' p,. A p L -<-

( 4. 70) 

the resulting quadratic expression may be solved to give 

( 4. 71) 

B ·.r the same argument used in connection with the simplification of 

equation ( 4. 61 ), it follows that to a good approximation 

( 4. 7 2) 

Then, in terms of the effective chamber pressure p , the local pres­
c 

sure on the grain surface is 
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(4. 7 3) 

This result indicates that the local pressure and, in particular, the 

pressure at the nozzle end of the grain may or may not fall below the 

effective chamber pressure depending upon the value of n, the ex-

ponent in the propellant burning law. 
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5. LIQUID PROPELLANT ROCKET MOTORS 

Propellants and Propellant Evaluation 

A chemical propellant system consists of an oxidizer and a 

fuel; the oxidizer consists mainly of atoms such as oxygen, chlorine, 

and fluorine; the fuel consists mainly of such atoms as hydrogen, 

lithium, beryllium, boron, carbon, sodium, magnesium, aluminum, 

and silicon. If the oxidizer and the fuel have no chemical affinity at 

normal temperature and can be m i xed to form a single liquid, we 

have a composite monopropellant. If the fuel and oxidant atom3 are 

both joined in the same molecule, we have a simple monopropellant 

such as propyl nitrate. In this case, the exothermic reaction consists 

in a decomposition, such as occurs with hydrogen peroxide or hydra­

zine. 

Usually, however, the liquids (oxidizer and fuel) are injected 

separately, and such a system constitutes a bipropellant. When the 

two components of a bipropellant react im~nediately upon contact with 

one another, the propellant is denoted hypergolic. The most usual 

oxidizers available for bipropellants are: 

hydrogen peroxide, H 2 0 2 

nitric acid, HN03 

liquid oxygen, 0 2 

ozone, 0
3 

tetranitromethane, C(N02 )4 

nitrogen peroxide, N 20 4 

fluorine, F 2 
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oxygen fluoride, F 
2

0 

chlorine, Cl
2 

chlorine trifluoride, ClF 
3 

nitrogen trifluoride, F 3N 

perchloryl fluoride, CI0
3

F 

fluorazine, N 
2

F 
4 

The fuels that can be used along with these oxidizers are very numer-

ous; they include compounds of: 

c arbon: 

boron: 

nitrogen: 

hydrides: 

organometallic s: 

saturated and unsaturated hydrocarbons 
amines 
alcohol 

ammonia 
hydrazine 

HLi 

Consider first those fuel elements which react with a simple 

oxidizer such as oxygen itself, as shown in Fig. 5. 1. The elements of 

g reatest interest are those which occur at the center of the period, the 

maxim'.lm of energy being obtained from beryllium and aluminum. 

Combustion temperatures (Fig. 5. Z) follow virtually the sam•~ law, 

these same elements yielding the optimum. High temperatures can 

also be obtained from certain heavy metals, such as thorium burning 

in oxygen (4700°K) and zirconium (4800°K), but the resulting mole-

cules are heavy and the choice is limited to the first, second, and 
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third periods. Comparing the elements with one another by reference 

to the available energy gives only a first approximation,and it is bet­

ter to base the comparison on the specific impulse. This is illustrated 

by the following table, which compares fluorine-hydrogen and oxygen-

hydrogen at maximum of performance. 

Propellant (liquid) : F z+H2 02+H2 

Available energy of stoichiometric 
mi.xture (kcal/kg) 3110 3600 

Optimum equivalence ratio 3.33 2. 27 
I 0 

3323 2760 Temperature ( K) 

Molecular weight 10. 01 I 9. 0 

Specific impulse (sec) for pc/pe = 20/1 l (equilibrium flow) 364 350 

Although the hydrogen-oxygen system has higher available energy 

than the hydrogen-fluorine system, its performance is lower. Such 

differences are due to dissociation phenomena which depend on the na-

ture of the molecules formed at the end of combustion as in the present 

case where water (H20) is more easily dissociated than hydrofluoric 

acid (HF). 

The available energy of the (fluorine-lithium) propellant is 

higher than that of (fluorine-hydrogen), but calculation indicates the 

specific impulse of (F 
2

+Li) to be lower than that of (F 
2
+H

2
). This 

diffe renee is illustrated in Fig. 5. 3. Even though the combustion tem-

perature is higher for lithium than for hydrogen, which is in accord-

ance with the classification based on available energy, the fact of the 

molecular weights being markedly lower in the (F 
2
+H

2
) system [·han in 
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Fig. 5. 3. Comparison between the performance of the propellants 
(fluorine-hydrogen) and (fluorine-lithium): p = 20 atm, expansion 
ratio = 20/ l. c 

the (F 2+Li) system explains the result. 

This observation serves to stress once again the necessity for 

calculating specific impulses when comparing propellants with one 

another. 

>:c 
The mixture ratio <I> or the equivalence ratio <I> m:~.y modify 

the specific impulse. For specific impulse, the optimum lies in the 

>',< 

direction of rich mixtures ( <I> > l) and its position depends on the 

elements present. The maximum depends strongly on the proportion 

of hydrogen in the mixture. On the other hand, the highest tempera­

* ture is obtained close to the stoichiometric m~_xture, but with <I> > l. 

This fact is shown in Fig. 5. 3, which shows that for the propellant 

~:.::: 

(F 2+H2 ) the maximum of specific impulse occurs around <I> = 3. 

In general, the specific impulse increases with the combustion 



-152-

pressure, but in order to isolate its significance, it is necessary to 

assume a constant expansion ratio, that is, that the nozzle has a cer-

tain geometric form. In Fig. 5. 4, the characteristic velocity is seen 

to be insensitive to changes in chamber pressure, for when this pres-

sure is multiplied by two, the c haracteristic velocity increases by 

only one per cent, this due to a slight increase in combustion temper-

ature with pressure. 

It has been shown that the specific impulse cor responds to the 

product of two term3: the characte ristic velocity and the thrust coef-

ficient: 

* c C.r 
( 5. l) 

Although the characteristic velocity is not greatly affected by the 

chamber pressure, the thrust coefficient depends more sensitively on 
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Fig. 5. 4. Variations of the c haracteristic velocity and specific im­
pulse as funct~ons of chambe r pressure. Propellant F 

2
+H

2
; expansion 

ratio 140/1 ( ~ -· = 1). 

the expansion ratio. 

The specific impulse can be appreciably imporved by appro-

priate choice of the expansion ratio or the nozzle geom1~try. Figure 
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5. 5 shows that the specific impulse is increased by over 30 per cent 

when the expansion ratio changes from 10 to 100. The gain is due 

mainly to recombination during the expansion. To show this effect, 
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r---- - y- _ , 
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SPECIFIC IMPULSE (we l 

Fig. 5. 5 Variations of specific im:;:>ulse as a function of the expansion 
ratio (stoichiometric mixture; p = 20 atm). 

c 

two extreme assumptions have been considered, namely frozen and 

equilibrium flows. The difference between these becomes m3.rked 

when the expansion ratio increases. Therefore, it is necessary to 

specify the equivalence ratio and the expansion ratio when evaluating 

the specific impulse of high energy propellants. 

Although propellants may be compared on the basis of specific 

impulse, such classification fails to account for the volume required 

by the propellant-powerplant combination. To account for volumetric 

requirements, the parameter which should be used for com?arison is 

the volumetric specific impulse I o , where o is the density of the 
s 

propellant. 
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PERFORMANCE OF THE PROPELLANT (F 
2
+H

2
) 

PC = 20. 4 atm. 

(1>• = 1 (1>• = 3.3 

Par am- p. = 1 aim p. = O.JJ49 aim p. = 1 atm p, = 0.1149 aim 

elers Frozen Equi-
Frozen Equi- Frozen Equi- Frozen Equi-

librium librium librium librium 

J,(sec) 312.8 341.5 363.4 420.7 351.7 364.6 411.0 430.7 

c•(mfsec) 2221 2343 2221 2343 2489 2558 2489 2558 

Cp 1.381 1.429 1.604 1.761 1.386 1.398 1.619 1.651 

A. 
3.049 3.987 12.25 21 .30 3.154 3.384 13.00 14.24 A, 

T. (°K) 2074 3456 1112 2749 1597 1882 884 1075 

The performa.nce of different oxidizers will depend on the fuels 

associated with them. Figure 5. 6 shows how I and I 6 compare 
s s 

when different oxidizers are used with a fuel containing carbon and 

hydrogen, such as kerosene of the general formula C H
2 

, or with a 
n n 

fuel containing nitrogen and hydrogen, such as ammonia. The oxidiz-

ers with a fluorine base give the highest performance, but it should be 

remarked that the fluorine-ammonia propellant is better than the 

u .. .. 
> ... 

wiii 
Vlz 
...JLo.l 
::>0 
CL >< 
::::Ew 
-Vl 
u...J _::::> 
~ CL 
u::::E w-
CLu 
Vl_ 
~ 

u w 
CL 
Vl 

FROZEN FLOW 
pc =20 aim 

pc 20 
p~ =..., 

Fig. 5. 6. Comparison between several oxidizers used with two fuels 
(frozen flow, p = 20 atm, p /p = 20/ 1 ). 

c c e 
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fluorine- kerosene system even though, when the fluorine is replaced 

by oxygen, both propellants have about the same specific impulse. 

This is due partly to the strong dissociation of molecules based on 

fluorine and carbon such as CF
4

, c
2

F 
2

, CF 3' ... so that energy is 

derived solely from the combination of hydrogen with fluorine. 

It is advantageous if the curve of specific impulse as a function 

of the equivalence ratio is flat near its maximum, for then any varia-

tions that ma.y occur in the thrust and in the duration of combustion as 

the result of possible changes in the mixture ratio will be minimized. 

As the oxidizer and fuel have different specific gravities, the maximum 

values of I or of I o do not coincide with the same values of the mix-
s s 

ture ratio. In m0st cases, the maximum of I o , by comparison with 
s 

the rnaxim1~m of I , occurs c loser to the poorer mixtures. It is well 
s 

to have available, for each propellant, under standard conditions of 

expansion, three curves showing the theoretical varuations of I , of s 

I o , and of the temperature at the end of combustion expressed as s , ... 
functions of ~ or ~,. • Such graphs (similar to that shown in Fig. 5. 7) 

constitute a characteristic diagram for the propellant. 

The comparisons have so far been based on the theoretical 

performances of the propellant. Therefore, it is important to know 

how closely the results obtained experimentally approach these thea-

retical performances. T hree quality factors may be introduced to aid 

in this comparison: 

J = s ) ) 
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Fig. 5. 7. Performance of a propellant. 

these being related by the relation 

The divergence between the theoretical and experimental specific im-

pulse is measured by the parameter s ;for the usual propellants, 
s 

the parameter sF depends mainly on the geometry of the nozzle and 

only slightly on the nature of the propellant. This being so, compari-

son between propellants is based in fact upon sb • Figures 5. 8 and 

5. 9, obtained with the propella nts HN0
3

- U. D. M , H. and o
2

-H
2

, show 

that the values of sb lie between 0. 9 and 1. 0. 

For more energetic propellants or for longer nozzles in which 

recombination reactions are possible, it is ne c essary to base compari-

sons on s • In this case, the recombination modifies the values both s 
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The Combustion Chamber 

The processes of vaporization, diffusion, heat transfer, com­

bustion, etc. take place successively in the chamber once the propel­

lant has been injected until complete combustion has taken place. 

These processes are so complex that it is difficult to follow them in 

any detail. On entering the combjstion chamber, the oxidizer and fuel 

are suitably atomized and mixed. If the oxidizer and the fuel have no 

chemical affinity for each other in the liquid state, atomization and 

mi.xing will be carried out to as high a degree as possible in order to 

obtain very rapid vaporization of the liquids and formation of a homo­

geneous gaseous phase ready for combustion. If the oxidizer and fuel, 

however, react in the liquid state (hypergolic propellant), this exo­

thermal reaction will be used to vaporize the mixture and to bring 

about as quickly as possible the gaseous phase preceding ignition. 

Schematic diagram:'> showing possible processes taking place are 

shown in Figs. 5. 10 and 5. 11. From the quantitative point of view, it 

is difficult to determine the tim.:! required for each process. It is pos­

sible, however, to determ~ne the characteristic time intervals re­

quired for · certain partial or complete processes, and the characteris­

tic volume necessary for obtaining complete combustion. 

Consider the change of specific volume v from the time the 

propellant enters the combustion chamber until the burnt gases are ob­

tained. Consider first the case of concentrated combustion, Curve I, 

Figure 5. 12. 
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Fig. 5. 12. Variation of the spec ific volume in the combustion c ham­
ber as a function of time. 

At the origin time (point A), the propellant enters the combus-

tion c hamber in liquid phase. It is atomized; oxidizer and fuel are 

then mixed, and if we assume a c ertain delay before the chemical phe-

nom.•:ma and vaporization take place, the change in volume starts at B. 

The increase is at first slow but then becomes more rapid. After 

point C, the combustion reactions start and c ontinue until point D, the 

nozzle entrance. In this case we can assume : 

( 1) That the propellant does not burn immediately on entering 

the combustion c hamber, but only after a certain time interval knc.wn 

as the ignition delay T. during whi c h the particles of oxidizer and fuel 
1 

are suitably mixed and absorb the amount of energy necessary to initi-

ate combustion. 

(2) That the gases resulting from c ombustion stay during a 

certain time t in the combustion chamber until combustion is com·-
rg 

plete . 

The processes undergone by the propellant are thus defined by 
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two characteristic times: 

- the time ,-. during which the liquid phase predominates; 
1 

- the time t during which the gaseous phase predominates. 
rg 

The total residence time is, therefore, equal to: 

t-,. = 7,· ~ i-,.J 
Consider now the case of distributed combustion, Curve II, Fig. 

5. 12. We assume that the chemical reaction first starts in the liquid 

phase and continues in the gaseous phase when the propellant enters 

the chamber. It is no longer possible to distinguish ,. . and t 
1 rg 

nevertheless, it is possible to define a time constant due to the com-

bustion T and a timt~ constant 8 for the chambe r. If, for example, 
c 

we assume a first-order chemkal reaction to take place in the propel-

lant, T is equal to the reciprocal of the specific reaction velocity, 
c 

and this timt~ is defined by the tangent to the exponential curve at time 

t = 0. The time constant for the chamber is equal to the residence 

time of the gaseous ma.ss. It is thus possible in both cases to intro-

duce two characteristic times, T. or T for the combustion, and t 
1 c rg 

or 8 for the chamber. 

The minimum volume required for satisfactory combustion 

must take into account ,. . or T , which we shall refer to by the letter 
1 c 

T , and the residence time t 
rg 

To define the m~nimum volume we 

can write 

.: 

* where L is the characteristic length: 

* L = 
v 

c 

A1 = volume of the chamber 
nozzle throat area 

( 5. 2) 

( 5. 3) 
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It is, therefore, necessary to know f
1

(1·) and f
2

(t ) in order to de-
rg . 

* * terinine L , the characteristic velocity c being known. To a first 

approximation, the characteristic time 1' can be neglected. so that 

the residence time t can be defined as the ratio of the mass of gas 
rg 

m residing in the chamber to the amount of propellant injected rn 
c 

per unit time: 

(5. 4) 

According to the elementary theory, the assumption is made that under 

steady-state conditions, an average specific mass p holds for the en­
c 

tire volume V of the thrust chamber, including the volume of the c 

combustion chamber and the volume of the convergent section, and is 

equal to the specific mass of the burnt gases. Then 

.: ( 5. 5) 

and we obtain 

(5. 6) 

Assuming that 'I is constant throughout expansion, we obtain 

(5. 7) 

* * relating the characteristic velocity c , the characteristic length L 

and the residence time of the gaseous mass t 
rg 

Taking the value of 

'I to be 1. 2, r = o. 6485, and assuming p = p • it follows 
c c 

t';! = 
L'* 

;:: 2,38 ( 5. 8) 

c* 
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>:< 
= 2 m and c = 1500 m/ sec, t = rg 

-3 -3 -3 
3. 17 X 10 sec 7 and usually 2 x 10 < t < 7 X 10 sec. The resi-

rg 

dence time t depends on the nature of the propellant and the injection 
rg 

system. With the aid of chambers having transparent walls~ it can be 

shown that this residence tim·~ varies from 2 to 7 milliseconds, depend-

ing on the type of injector. 

To a first approximation. therefore. it is possible, for a given 

type of injector and a given propellant. to calculate the volume of the 

chamber using the relationship : 

:::: (5. 9) 

where F is the motor thrust and K, K' are constants. In determining 

the minimum volume, however. the characteristic times ,. and t 
rg 

must both be taken into account according to the relation: 

( 5. 10) 

where f 1 is a function of the injection-pressure drops ~Po and ~PH 

of the oxidizer and the fuel. the chamber pressure p , the nature of 
c 

the combustion gases and their temperature, the turbulence, and the 

position and arrangement of the oxidizer and fuel jets. Examination 

of high-speed films taken in combustion chambers with transparent 

walls shows heterogeneous conditions of temperature, composition, 

and velocity. There is no flame front in a plane perpendicular to the 

axis of the chamber. On the contrary, what is actually seen is a 

series of lum:.nous trails in the longitudinal direction, which indicates 

a stratified flow. It is even possible to detect products of combustion 
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proceeding upstream and recirculation behind the injection zone, and 

and generally the intensity of the transverse flow is not sufficient to 

mix this longitudinal stratification. The intensity of this recirculation 

modifies the effective volume of the combustion chamber and thus the 

characteristic length necessary for complete combustion. 

Instead of a characteristic time, one may consider a charac-

teristic length where the combustion process is observed in each point 

x along the axis of the chamber with origin in the plane of injection. 

The parameters representing the combustion process are then: 

~(x) 
£. =-.--.-m m. 

1 

= propellant burnt at the abscissa x 
propellant injected 

or another parameter which is equivalent to the above: 

* = _c=_ ... ~(x.....:)_ = s * '(' 
c c (L) 

characteristic velocity at the abscissa x 

( 5. 11) 

(5. 12) 

characteristi c velocity at the end of the combustion chamber 

The classical method is to carry out a series of tests using motors of 

different length and to measure in each case the characteristic velocity 

c In this way curves similar to those of Fig. 5. 13 are obtained and 

they determine the optimum length for the combustion chamber. These 

curves are valid for a given propellant and a given injection system, 

while the ratio 

A 
c = 
~ 

= chamber cross-section 
throat area 

( 5. 13) 

and the mixture ratio are constant. This optimum length, however, 

depends on the mixture ratio. This is indicated in Fig. 5. 14 for the 

propellant nitric acid- UDMH. It is possible to define a surface using 
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Fig. 5. 13. Variation in the characteristic velocity as a function of the 
length of the combustion chamber. 

* >!< ,~ 
the coordinates (L , c , ci> ), the top of which determines the geometry 

and the optimum operating conditions of the combustion chamber. We 

note in particular that the optimumperformance shifts towards richer 

m~xtures when shorter combustion chambers or shorter characteristic 

lengths are used. From the practical point of view, therefore, it is 

_necessary to carry out numerous tests in order to decide on the shape 

Fig. 5. 14. Characteristic velocity as a function of characteristic 
length L>!< and equivalence ratio (propellant: nitric acid- UDMH). 
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of the combustion chamber giving optimum performance. 

This length also depends on the nature of the propellant as in-

dicated below for various propellants: 

nitric acid-hydrocarbons 

nitric acid- UDMH 

liquid oxygen-ethyl alcohol 

liquid oxygen-kerosene 

fluorine- am1nonia 

>!< 
2<L <3m 

* 1.5<L <2m 

* 2. 5 < L <3m 

* 1. 5 < L < 2. 5 m 

* l < L < 1.5m 

The ratio e defining the optim,.lm cross-section to be given to the 
c 

combustion chamber depends above all on the size of the motor and 

decreases as the thrust of the motor increases. In early practice, 

motors had values of e between 4 and 15~ while current practice 
c 

tends toward longer chambers with 1. 2 < e < 4; for instance, e = 3 
c c 

to 4 (F = 1 ton), ec = 2 to 3 (F = 10 tons), ec = 1. 2 to 2 (F = 100 tons}. 

The choice of e c is equivalent to giving a certain value to the flow rate 

per unit area: 

= (5. 14) 

Rocket Nozzle Cooling 

The heat transfer between the combustion gases and the walls 

of the chamber and nozzle takes place by convection and by radiation. 

Consider a fluid at a high temperature moving along the wall of 

a conducting body. At a point of the wall where the velocity and the 

temperature of main flow are V and T , the wall temperature is 
g g 

T and the heat flow per unit area is P w c 
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If we assume an average specific heat at constant pressure cp, the 

stagnation temperature Ttot corresponding to the total enthalpy is 

1/:. I. (5. 15) ~t .: ?; + -1-
r J.C._,o 

At the wall, the fluid generally has a temperature Tf slightly differ-

ent from the stagnation temperature Ttot • The difference between 

Ttot and Tf is taken into account by a coefficient known as the local 

recovery factor 

r.: = ( 5. 16) 

The local heat-flow rate per unit area is proportional to the tempera-

ture difference (Tf- Tw) so that we can define a local film or convec­

tion coefficient 

(5. 17) 
'l- Tw-

Since the fluid is motionless at the wall, the transfer of heat through 

the fluid film next to the wall takes place by thermill conduction. 

Fourier's law gives an expression for the therm.al flux and the film co-

efficient: C)T) 
<A - If ~~ 1.:~ -h, = ..: ( 5. 18) 

?l- 7;,.- -,;:- 7~ 

k is the thermal conductivity of the fluid at the wall temperature and 

y is an ordinate perpendicular to the surface. The study of heat 

transfer in rocket nozzles involves the following dimensionless groups: 
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Nusselt number Nu = ~D 
-k 

Pr ~ Cp~ 

k 
Prandtl number 

Re .: JYI_l?_ 
/ 

Reynolds number 

Mach number M :: ~ 
.::l. 

where D is a characteristic length, 1-l and p are the absolute viscosity 

and the mass density of the fluid, and a is the local velocity of sound. 

A._l1.alysis and experiments on heat transfer by forced convection 

lead to relations of the type 

N lA. :: f, ( R~ Jv(, ?,. J 

r .: ~~ ( R,, !v(. Pr) 
Experim-ental results show that the recovery factor r depends upon 

the Prandtl number,and in the case of a turbulent boundary layer, 

r.: Pr (5. 19) 

The convective heat transfer coefficient h is given by the Nus selt num-

ber; in the case of a flat plate, 

N~: 
~.8 P,.. 

0.0.296 Re - --- ·------­
/'1 ,2,; ~-0·/(F;-1) 

(5. 20) 

The length involved in the Reynolds number is the distance measured 

from the leading edge of the plate. 

Experimental studies on rocket motors lead to relations of the 

type 
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(),J,-
~ ().8lL70.8.Z(- ?;.) (5. 21) 

0. 01~ .2 0- n, 7;r 

in which the Reynolds number is calculated using the diameter of the 

combustion chamber. The Nusselt number is sometim.es replaced by 

the Stanton number 

_, -1 

/'({(, 7; R, (5. 22) 

In general, the determination of the heat transfer coefficient in a 

rocket motor is an extremely complex problem because the values of 

1-l• p, c , k vary considerably through the boundary layer. For this 
p 

reason, average values are often taken between these two extreme 

temperatures, for example T = t(T +T ) , or use is made of T or g w g 

T Chemical reactions may also take place in the boundary layer, 
w 

and these can modify the temperatures; it ma.y occur that dissociated 

species recombine. Generally, the speed of reaction plays a second-

ary part in determining the ma.ss concentrations of the different chem-

ical species and modifies the local film coefficient only slightly. The 

heat liberated by recombination reactions appears as an additional 

"enthalpy potential". There may, in some instances, be a catalytic 

effect due to the wall which causes local changes in the chemical com-

position. In many cases, the wall material sublima.tes or ablates 

under the effect of the heat transfer; the mass addition leads to a re-

duced heat transfer rate. 

If, as indicated in Fig. 5. 15, T is the temperature on the 
wt 

wall in contact with the liquid and T t is the temperature of the liquid, 

the heat flow rate per unit area is 
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0 y 

Fig. 5. 15. Temperature variation in the boundary 1 aye r. 

( 5. 23) 

A 
:: 

where h .t is the coolant-liquid film c oefficient. The laws determining 

h..e, are similar to those for exchange between the gas and the wall, and 

w e get 

Nu = 
(), 8 0,.$~ 

0.028 ~ Pr (5. 24) 

In this expression the values of u , cp, and k are generally calculated 

at an average temperature in the liquid boundary layer 

The characteristic length D.t involved in the Reynolds numl::ler and the 

N1.1s selt number is defined by 

(5.25) 

where A .t is the passage area of the liquid and P .t is the wetted per­

imeter. Some details of cooling passages are shown in Fig. 5. 16. 

Under some conditions, the thermal flux may be such that the 

temperature of the wall T on the liquid side is greater than the 
w .t 



-171-

A 

CIRCULAR JACKET 

li.qui.d flow i.n th• di.r•cti.on 
opposi.t• to gas flow 

8 

SPIRAL JACKET 

Fig. 5. 16. Cooling-jacket shapes. 

critical temperature of the liquid at the pressure considered. This 

results in local boiling which increases the amount of heat that the 

liquid is capable of absorbing. At higher temperatures, a vapor film 

ls formt~d in contact with the wall. Near the boiling point, one obtains 

results similar to those of Fig. 5. 17, which shows the change in q/ A 

as a function of ( Tw-t- T -t ). In general, there exist the four conditions 

represented in Fig. 5. 18 which correspond to: 

( 1) convection (liquid-wall), 

(2) the presence of nuclei in contact with the surface and 
brought to the boiling point; the formation of vapor bubbles, 

(3) the presence of a partial gaseous film, 

(4) the presence of a gaseous film over the entire surface. 
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Fig. 5. 17. Forced convection with and without local boiling (nitric 
acid). 
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Fig. 5. 18. Typical heat-transfer curve. 

For liquid-propellant rockets, either the oxidizer or the fuel, 

or both, may be employed as cooling agents. The liquid is circulated, 

either through a jacket or in a helicoidal channel covering the surface 

of the chamber. 

The conventional design for a combustion chamber having a 

double wall is shown in Fig. 5. 19. The liquid enters at the end of the 

divergent section and is guided along the wall of the nozzle by means 
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of a jacket leaving a passage for the fluid. The passage area is smal-

ler at the throat in order to increase the heat transfer in this region. 

The liquid then passes through the cylindrical combustion chamber and 

and leaves on the side near the injection system. 

Fig. 5. 19. Circulation of the coolant liquid parallel to the hot gases. 

More recent designs of regenerative c ooling system:'3 use a 

bundle of tubes in which the coolant c irculates under pressure. Such 

a solution is represented schematically in Fig. 5. 20. The cross 

section of each tube has two flat parts and two circular parts. Such a 

-COOLANT 

HOT GAS 

aarnoo ~lA 
heated surface 

ALUMINUM TUBE FINNED AWMINUM TUBE 

Fig. 5. 20. Circulation of the c oolant liquid parallel to the hot gases 
(tube bundles). 

cooling system is very efficient since the metal between the gas and 

the liquid is very thin. It is diffic ult to manufacture a combustion 

chamber of this type, because it is necessary to weld the tubes in 
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such a way that they withstand the pressures and thermal stresses en­

c ountered. In addition, the eros s section of the throat determi.nes the 

number of tubes so that it may be necessary to use tubes of varying 

cross sections. For the divergent nozzle, a V-shaped arrangemt~nt 

must be adopted such that it covers the entire surface, this being par­

ticularly important when the area ratio is large. Whatever the case, 

it is possible w ith this m e thod to accommodate any c hamber and noz­

zle shape, and the w •.:: ight saving over conventional m e thods is con­

siderable. 

Use ma.y also be made of a helicoidal thread or rib to construct 

c oolant passages. The wire is welded onto the wall, and the diameter 

of the wire fixes the distance between the two walls within which the 

c oolant circulates. If a thread is machined in the wall of the chambe r, 

the temperature in the m e tal is not uniform. The thickness of the 

thread must be such that it does not disturb the transmission of heat to 

the wall and there is no hot spot on the wall at the thread. 

The liquid employed in the cooling circuit should not exceed its 

boiling point, or at least the temperature of the wall Tw-f- should re­

main below a certain value, above which nucleate boiling takes place . 

W e can thus define the limiting temperature (Tw-t )-f- , and for Twt > 

( T w,e/ t , the thermal flux ~ t increases abruptly; this transition point 

is associated with a value of ~t equal to ~u-t , which is the heat flux at 

the upper limit of nucleate boiling. This value of ~u-f- can be used as a 

criterion to calculate a cooling efficiency of the propellant. In general, 

~u-!, passes through a maximum f or a certain pressure and hardly var­

ies when the pressure lies between 0. 3 and 0. 7 times the critical 
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pressure. It decreases when T .(, increases, increases with the ve­

locity of the liquid V. A true comparison of the different propellants 

cannot be made simply by considering the properties of the liquids. 

Bartz has compared them from the theoretical point of view by using 

them in a standard motor having the following characteristics: a 

thrust of the order of 25 tons (metric), a chamber pressure of 20 

kg/cm
2

, a characteristic length of 100 em, a throat diameter of 31 

em, a convergent area ratio Ac I At = 2/1 , a divergent area ratio 

Ae I At = 7/1 , a convergent half-angle of 30°, a divergent half-angle 

0 ? 
of 15, and a pressure drop in the cooling system of 5. 25 kg/em ·~. 

The table on page 176 results from ·~he analysis. 

In the process of film cooling and sweat cooling, a liquid or 

gaseous film is introduced between the combustion products and the 

wall to form a thermal barrier. In the case of the liquid, the film 

vaporizes and may play a part in the combustion. In the case of a 

fuel, the richness of the mi.xture in this region reduces the combustion 

temperature and hence the thermal flux penetrating the wall. This 

film is obtained either by injecting the fuel through carefully situated 

orifices in the wall (film :::ooling) or by using the transpiration of one 

of the liquids through the porous material constituting the chamber 

wall (sweat cooling). Film cooling has been the most favored, and in 

liquid-propellant rockets, the fuel injection orifices are distributed in 

a cross section of the chamber, either near the injection head or in the 

convergent section of the nozzle . 

In solid-propellant rockets, the nozzle might be protected by a 

gaseous film produced from the combustion of a special propellant 



Sections 1 2 3 4 5 6 7 8 9 10 II 12 13 /4 

( Twv )2 •K 728 752 883 1065 1155 1079 1005 941 884 830 783 738 698 662 
(T wvls •K 732 727 881 1112 1189 1101 1014 941 880 833 783 740 709 684 
tile cal/cm2 o sec 42.05 46.0 82.12 136.4 157.9 139.1 121.1 106.6 94.9 85.5 76.5 68.9 62.7 57.8 
til, ca1/cm 2 • sec 58.2 60.7 93.9 145.2 163.9 144.7 12601 111.1 98.76 88.9 79.3 71.1 64.3 58.9 

TABLE 15 
-------

1 2 3 4 5 6 7 8 9 /0 

Coolon/ liquid Other liquid Mixture T c til, w e, v, T, tllut T°K (Tt)eK 
ratio OK calfcm2 ·sec kg/sec em mfsec o K cal/cmz o sec (2fio2atm) OK 

a RFNA UDMH 0.40 2664 228 71.67 0.277 l8o53 355 344 453 390 

b Corporal SFNA 0.33 2743 198 26.90 0.182 15.03 390 320 578 454 
I 

c DETA SFNA 0.33 2671 196 26.0 0.184 17.86 374 281 666 425 .... 
-.] 

d 50J\n50FA SFNA 0.33 2753 192 27.03 0.183 15.24 386 211 633 447 0" 
I 

e JPa N204 0.33 2892 192 25.31 0. 181 19.32 387 205 627 449 

f NHa RFNA 0.45 2347 218 32.07 0.156 22.10 306 207 333 333 

g Isopropanol SFNA 0.30 2636 205 25.08 O.IBrl 19.2 370 176 561 418 

h NHa 02 0.71 2712 255 38.69 0.175 23.77 306 227 333 330 

jP3 02 0.44 3098 235 28.21 0.194 20.45 409 201 627 464 

j CIF3 N2H4 0.4 3267 228 65.77 0.232 17.62 374 166 399 424 

I = mixture ratio 6 = velocity of the liquid at the throat 
2 = 90% of the theoretical value 7 = temperature of the liquid at the throat (inlet temperature 3II°K 
3 = thermal flux at the throat for all substances except for NHs, for which we have 273°K) 
4 = total coolant flow rate 8 = upper limit of heat flux with nucleate boiling 
5 = thickness of the cooling jacket 9 = saturation temperature. 
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HOT GAS -

FILM METAL 

COOLING METAL 

POROUS 
SWEAT WALL 
COOLING METAL 

Fig. 5. 21. Cooling systems. 
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J- nnnnnnnnn 

WALL PROTECTION WITH A Fl LM OF 

COLO GAS 

I SOLID PROPELLANT ROCKET I 

Fig. 5. 22. Wall protection by film cooling. 

having a relatively low combustion temperature. The thermal flux ~ t 

to the wall is m::.>dified by this ma.ss addition. Fig. 5. 23 shows that ~t 

changes slowly when the flow rate m 
c 

is low (main flow rate rn ), 
m 
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since ~t decreases linearly with f = rn /m up to a certain value of 
c m 

f of the order of 0. 10; after this, ~t remains practically constant. 

The effect is greatest in the section near the throat. 

N e 
u 

j 

)o( 

3 ... 

0~------~~------~~~ 
0 Cl.05 0.11 

COOLANT FLOW 
MAIN FLOW '"'~ mm 

Fig. 5. 23. Transmission of heat to the wall as a function of the ratio 
of the coolant flow to main flow. 

These results show that for the film cooling to be efficient, it 

is necessary to inject up to 10 per cent of the main fuel flow with a 

corresponding decrease in overall specific im;>ulse. 

One of the problems which arises when using film .::ooling is 

the stability of the film.. Slight disturbances are observed, their 

wavelength being of the order of 10 times the thickness of the film, and 

these disturbances are independent of the liquid flow. These disturb-

ances decrease when the Reynolds number for the gaseous flow in-

creases. If the velocity of the liquid at the injector exit exceeds a 

certain critical value, the wavelength of the disturbances increases 

and droplets start to be carried off by the gas flow. 
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Consider the sweat-cooled plate represented in Fig. 5. 24: the 

flow velocity is V x, b at temperature Tb ; the gas is injected at ve-

locity V and is assumed to have the same properties as the main 
y. w 

fluid; the temperature of the wall is T 
w 

The parameter character-

izing these two flows is .A ={V(J.""'/v.¥, b) {1?.,.) o.~-, the Reynolds number 

being equal to V b. x/'J • For different values of \ , the values for 
x, 

the film ::oefficients h and h with and without sweat cooling are 

0 

1 0.496 0. 282 0.107 

-----, -----· -----------1----- ------·-] 
0.25 I 0.375 0.5 

_ _.__ _____________ - -- . .... . .. - ---
For low values of A , h/h varies linearly with A , i.e., with the in­

c 

jection velocity of the fluid in the porous surface. 

Fig. 5. 24. Sweat cooling. 

Propellant Feed System 

It is the task of the feed system to supply the liquid-propellant 

m:::>tor with the amounts of propellant that it requires at each time. We 

shall consider below the two types of feed system; (a) the gas-pressure 

system, and (b) the turbopump system. 

Gas-pressure systems differ according to the nature of the 

gases introduced into the tanks: 

(a) The cold gas-pressure system: a neutral gas stored at 

high pressure is expanded into the tanks. 
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b) The feed system employing the combustion gases of a small 

solid-propellant grain; 

c) The hot gas-pressure feed system: a small quantity of sol-

id propellant is burnt in a neutral gas under pressure. 

The cold gas system is represented schematically in Fig. 

5. 25. It consists of a high-pressure tank of volume V, a pressure 

regulator, and a check valve at the outlet of which there is a low-

pressure distributor connected to the oxidizer and fuel tanks. This 

low pressure forces the liquid into the combustion chamber and, for a 

particular pressure in the tanks, a state of equilibrium ~- s established 

between the flow through the nozzle throat and the injector discharge 

rate. In rockets with a gas-pressure feed system, the high-pressure 

tank represents an important item in the weight balance of the missile. 

It is, therefore, advisable to reduce its volume to the minimum com-

patible with satisfactory ope ration. 

HIGH 
PRESSURE 

TANK 

Fig. 5. 25. Feed system '.lSing pressurized gas. 

Although the high-pressure tank may not be too large, it m~.1st 

have a volume sufficiently great to ensure that the combustion chamber 

is properly supplied throughout the entire period of operation. The 



tank pressure must always be high enough, compared with the feed 

pressure, not to give rise to :::>scillations which would result in pres-

sure instability in the combustion chamber. 

In practice, it is difficult to determine the optim•.1m gaseous 

volume necessary to ensure proper em:?tying of the propellant tanks , 

and certain assumptions must be made. We shall make use of the fol -

lowing symbols: 

known data 

VT = volume of the oxidizer and fuel tanks V T + V T 
0 H 

p. = initial pres sure in the high-pres sure tank 
l 

T. = initial temperature in the high-pressure tank 
1 

pT = pressure in the propellant tanks: feed pressure 

unknown 

The practical volume V of the high-pressure tank. Let us in-

traduce here the dimensionless variable k = V /V T • 

intermediate parameters 

pf' Tf = final pressure and temperature in the high-pressure 

tank, 

W i' W f = weight of gas contained in the high-pressure tank at 

the beginning and end of operation, 

T T = final gas temperature in the propellant tanks, 

W T = weight of comuressed gas contained in the oxidizer and 

fuel tanks at the end of delivery. 

L e t us now write the gas equations for the following conditions : 

initial state of the gas in the high-pressure tank: 
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final state of the gas in the high-pressure tank: 

final state of the gas in the oxidizer and fuel tanks: 

t;Yr: W,.RTr 
At the end of the feed period, all the gas is distributed between the 

feed tank and the oxidizer and fuel tanks: 

W: : 14'; + 1/V~ 
so that we can write 

v 
v;. = 

(5. 26) 

The expansion of the gas in the tank between pi and pf cannot be re­

garded as adiabatic since it exchanges heat with the wall. By intra-

ducing a coefficient for polytropic expansion, 

.:: / _...:£. .: '13) 11 
{ r;. - (5. 27) 

and, if a
2 

denotes the ratio TT/Ti, the parameter k equals 

:~ ( a,p::-fit-) (5. 28) 

where a
1 

and a
2 

are empirical coefficients. Regarding the value of 

n, there is some difference of opinion between the various authors. 

The values for n range between 0. 1 and 0. 3. Values for a 2 for di£-

ferent values of the ratio P/Pf are: 

:~ 75 I :. 8-0-·UT . :.~;·~~ [ " : ·. J 
Since the operation of the pressure valve must be accurate and free 

from instability at the end of the feed period, there is every justifica-
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tion for a safety margin in choosing pf • 

2. 
200 kg/em , we shall take : 

For all values of p. below 
1 

A higher value of Ap would require an undesirably large high-pres-

sure tank. 

The param·~ters a
1 

and a
2 

can be found analytically if certain 

assumptions are ma.de and new experim·~ntal parameters are intro-

duced. For an adiabatic process, neglecting the Joule- Thomson effect, 

the First Law of Thermodynamics gives 

W,. Cy- 7j : ( 5. 29) 

w here c is the specific heat at constant volum·e. Using the equation 
v 

of state, 

and 

I',· Vcy­
IZ 

~ Yr c,. - --- .,. 
R 

:: (5. 3 0) 

The curves represented in Fig. 5. 26 have been calculated nu-

mcrically; the value of k is given as a function of the feed pressure, 

the initial storage temperature T. being regarded as an auxiliary pa-
1 

2 
rame ter. The use of storage pressures lower than 150 kg/ em leads 

to very large tank volumes, while for values higher than 350 kg/cmz 

the advantage of the reduced gas volum3 hardly compensates for the 

inc reased tank weight. 

The turbopump feed system is employed for rockets with a high 

thrust and a long burning time, and is therefore of interest when the 

volume of the propellant tanks is large. The main advantages of such 
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0-'0'r----,------.----, 

'\:200 kQI!!m
1 

pf. p. •10 kglctn 

0.1021.,_ __ 10.._ __ ...... t5 __ _...J41 

FEED PRESSURE ' Ckglcm'l 

Fig. 5. 26. Value o{ k as a function of p , for p. 
(pf = Pe + 10 kg/em~ and n = 0. 11). e 1 

an arrangement are: 

2 = 200kg/cm 

( 1) good flexibility in operation can be obtained through con­

trolling the pump speed; 

(2) high, stable pressures can be obtained, the pressure re­

maining practically constant for a given set of operating conditions; 

(3) high power-to-weight ratio and small volume requirements. 

Pumps can be classified according to the geometry of the im-

peller and the path of the fluid. There are three categories of pumps 

(Fig. 5. 27 ); centrifugal or radial, mixed flow, and axial. Pumps for 

rocket motors are usually of the first or second types. 

We introduce the following notation, see Fig. 5. 28: 

V = absolute velocity of the fluid 
a 

V = peripheral velocity of the blade 
e 

V = relative velocity 
r 

a = angle between v and v at a given point 
a e 

!3 = angle between velocity v and direction v 
r e 

w = angular velocity = 2'lfN (N = number of revolutions 

sec) 

per 
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A = the cross section at the point considered 

r = radius of the eros s section 

and denote conditions at the impeller inlet and discharge by the sub-

scripts 1 and 2. The torque T applied to the impeller is 

RADIAL RADIAL 

-·~· -
HELl CO- CENTRIFUGAL" 

I MIXED FLOW I 

HELICOIDAL AXIAL 

Fig. 5. 27. Turbopump types. 

Fig. 5. 28. Diagram showing the operation of a pump. 

( 5. 31) 
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and the theoretical power P delivered to the impeller is: 

P= Tw = ~~ !{;_ coo«,d?l. fi 1{;1 cas«, d.,;, 
AL ~' 

(5. 32) 

The power divided by the weight flow rate through the impeller, denot-

ed by the letter Hth, is the theoretical head given by Euler's formula: 

: ( 5. 3 3) 

Without losses, the increase in stagnation pressure between the inlet 

and the outlet of the pump is 

(5. 34) 

where p is the mass density of the fluid passing through the pump. 
p 

If the velocities are uniform at all points, and if the mass flow in the 

im'Jeller is denoted rn • we obtain 

( 5. 3 5) 

and 

LlJO&~c :: frLJii.,_ Ya.t coo«~- v;; Va, ~cnO(,j 
(5. 36) 

The ratio of experim•~ntal and theoretical pres sure rises is written 

b.preal 
= 

T1p b.ptheoretical 

where '11 takes into account all losses. 
p 

(5. 37) 

To represent the performance of a pump, the independent vari-

ables normally chosen are the volumetric discharge Q and the angular 

velocity of the shaft w = 2'11'N so that the pressure rise b.p , the torque 

T , the power P delivered by the motor, and the efficiency '11 are ex-
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pressed in the following manner: 

Ll-p = f. ( G, w) 

T = I, ( Q. w) 

p = { ,, ( Q, w) 
(5. 38) 

?j = f ,, ( Q, w) 

These characteristics are not independent; if two of them are known, 

the others can be found with the aid of the relations 

( 5. 3 9) 

The characteristic curves usually are represented at a constant angu-

lar velocity; Fig. 5. 29 shows the curves L:l.p = f(Q), P = f''(Q), and 

T'J. = f II I ( Q) • 

60 100 0.6 
... 

E 50 - 80 0.5 ~ ~ "' .><; 

40 60 
Q. 

Q. 

~ 

30 
0 

~ 
:I: 20 

0 
0 2 6 8 

DISCHARGE 9 

Fig. 5. 29. Pump characteristics: variations in the power P, pres­
sure rise L:l.p , and efficiency 1'1 as functions of the flow Q (N = 333 
revolutions per sec). 

For various angular velocities, the pressure-discharge charac-

teristics of a given pump are shown in Fig. 5. 30. They m.~y be de-

duced from t"!ach other with the aid of rules of similitude. The flow Q 

is proportional to N, the head or the pressure rise L:l.p being proper-



-188-

tiona! to N
2

• The homologous points lie on parabolas corresponding 

to constant values of Q/N or to constant efficiencies. 

2 4 6 8 10 12 
DISCHARGE Q ldm3/s-cl 

Fig. 5. 30. Pressure-flow characteristics at different speeds. 

In the case of a rocket motor with a variable thrust, obtained 

by variation of the pump speed, the operating point does not generally 

follow a curve of constant efficiency; the locus of the points is a dis-

tinct curve (A) and the ratio Q/N decreases with the speed. 

The fundamental quantities involved in selecting a pump are the 

discharge Q , the pressure rise 6-P , or the head H = 6-p/ p g , the 
p 

mass density p , 
p 

. al 2 2 portlon to w r2 

and 

Q 

and the shaft speed N or w • The head H is pro-

3 
and the volumetric flow to wrz • so that: 

(5. 40) 

(5. 41) 

Eliminating r 2 , we get: 

= ( 5. 42) 

If, now, we consider the pump which is geometrically similar to the 

one of interest, working at the same operating point, with a discharge 
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3 
of l m /sec and a head of l m , the angular velocity of such a pump is 

the specific speed w
8 

s~(-:) ~ 
For the real pump, therefore, we have 

or, introducing the shaft speed in revolutions per second, 

-~ 
N vQ fl 

(5. 43) 

(5. 44) 

(5. 45) 

If, instead of expressing Q in m
3 

/sec and H in m, we employ gallons 

per minute and feet, we obtain 

(5. 46) 

The performance of a pump is limi.ted by cavitation, which ap-

pears as soon as the static pressure p at some point falls below the 

vapor pres sure p of the liquid. If this phenomenon is to be avoided, 
v 

p > p ; if this condition is not fulfilled, bubbles will form locally and 
v 

these collapse abruptly when they reach a region of pressure higher 

than p • In regions of condensation, violent shocks are produced 
v 

leading to rapid erosion of the surfaces. It can be noted that for a 

given suction pressure the experimental characteristic line suddenly 

breaks away from the normal characteristic line and falls rapidly; 

this break is associated with cavitation. 

If cavitation is to be avoided, the minimum pressure in the 

pump p . must be greater than or at least equal to the saturated va­
mln 

por pressure of the liquid p , that is, p . > p . The minimum 
v m1n v 

pressure is produced in the neighborhood of the leading edges of the 
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blades, on their rear face. It is given by the expression: 

l 

;;! fp V,., ( 5. 4 7) 

where p
1 

is the pressure immediately before entering the impeller 

blades, V r 
1 

is the relative velocity of the fluid at this same point, 

and Pp is the mass density of the fluid. The coefficient A. is in prac­

tice between 0. 2 and 0. 4. 

For a rocket pump whose geometric suction head and suction 

pressure loss are negligible, pressure p
1 

is related to the suction 

pressure psuc : 

( 5. 48) 

where Val is the absolute velocity of the fluid just before entry to the 

impeller blades. Combining the last two relations, we get: 

( 5. 49) 

L e t us try to find the lower limit of suction pressure which can b e per-

mitted without the risk of cavitation, and let us call this pressure 

(p ) Taking into account the necessity of a certain safety margin, 
sue -t. • 

we can write: 

(5. 50) 

where cp is a factor of safety lying between 1. 2 and 1. 4. Let us as-

sume that the triangle of inlet velocities has a right angle; then 

and 
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( 5. 51) 

Dividing by the pressure rise of the pump .6p , the preceding relation 

gives: 

= 

The head coefficient is: 

For a given pump and 

~I / 

simi.lar operating conditions: 

·/ ,,_ - constant, 
/ r~~-

constant, 

and hence: 

( f7s l(c )J - 1'~ 
: constant =- a. 

(5. 52) 

JP: constant 

Introducing the specific speed, which is also a constant for the oper-

ating conditions in similitude; 

N.s = NQ %l fl-~4 
(5.53) 

H A'!" ( NV'~)~ (5 . 54) = .: ---··--
.fpi Ns 

and finally 

(?s",) 1 - ?v- : 
(NV'ii')% at?# -;;;- (5. 55) 

or, in terms of the heads, 

(IY V4!) ~ 
( Hsllc J1 - H, :: a. -----

(5. 56) N& 
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where (H ) 1 -H is often called the required suction head above va-
suc "V v 

por pressure. Replacing the specific speed N by the values corre­
s 

spending to the radial pumps employed in rocket motors, we arrive at 

the following formula: 

= {5. 57) 

in which the pressures are expressed in atmospheres and where ~ is 

between 13 and 17, N is the number of shaft revolutions per second, 

Q is the vol um•~tric flow rate in m 
3

/ sec, and g p is the specific 
p 

weight in kg/m
3

• From this relation, we can deduce the m ;-'l.ximum 

shaft speed when the suction pres sure is fixed: 

( 5. 58) 

The power necessary for driving the feed pumps is obtained 

from a gas turbine. As represented in Fig. 5. 31, an auxiliary com-

bustion chamber is used as a high-pressure gas generator to feed the 

turbine. The latter drives the two pumps for the oxidizer and the fuel 

either by direct drive between the turbine and the pumps using the 

same shaft, or by a gear box if the turbine speed is higher than that of 

the pumps. The turbines used in rocket motors are generally of the 

impulse type with one or at most two velocity stages. The expansion 

of the gases takes place entirely in the nozzle of the gas generator. 

The symbols employed are indicated in Fig. 5. 32. As for the turbo-

pump, the torque T of a turbine is 
t 
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V: VALVES 
F : FILTER 

Fig. 5. 31. Diagram of a turbopump feed system. 

Fig. 5. 32. Velocity triangles for a turbine. 

7i ·1 r, //,., co<.c<, d~ - i~ ~z. '-"«-«~d. .ffl7 

:.4, :A.t 
(5. 59) 

and the useful power P supplied by the fluid to the turbine is equal to: 

For an impulse turbine Vel = Vel = V , so that 
e 

(5. 60) 
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( 5. 61) 

(5. 62) 

where r i.s the mean radius of the wheel at the level of the blades. 
m 

The efficiency TlT of the wheel is the ratio of the useful power to the 

kinetic energy contained in the fluid at the nozzle exit: 

;z. ~(Ya,cO::Jo<,- K:t.tuoa.) 
Va,l... 

(5. 63) 

The turbine efficiency Tlu is equal to the product of the nozzle efficien­

cy and the efficiency of the wheel. The efficiency of the nozzle is q, 2 
; 

<I> is the ratio of the actual exhaust velocity to the isentropic exhaust 

velocity. Therefore, 

.< Ve ( 1/a., c~ Q() - Va-t c~-< L) t/ l. 

v~ . .z. (5. 64) ------ -·---------- -

Defining 

:: 
v,.l. 
v ... , 

.: velocity coefficient of the moving blades 

and 

s :: 
the useful power can be written: 

( 5. 6 5) 

If the moving blades are symmetrical, ~a.=: 180°- ($ 1 

(5.66) 
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and the turbine efficiency becom es: 

(5. 67) 

a function of the second degree in C , which at C 1 = z cos CL , has a 

maximum value 

z ..p (!1· f) (5. 68) 

In rocket motors, the value of C usually lies between 0. 2 and 0. 25. 

The torque Tt depends on the nozzle mass flow of the gas generator 

• 
"?'n7 --

CK 
1 

where p is the pressure in the generator, 
g 

(At) g is the area of the 

>!< 
throat, and c is the characteristic velocity of the propellant em­

g 

played in the generator. The torque T t is thus given by the expres-

sian: 

'/ (A-t~ rwr / 
(J/a,C(I()o<,- J/e.~ C~«l) 

c~ ,. (5. 69) 

The term (Val cos a.1 - V a 2 cos a.2 ) is determined from the construc-

tion parameters a. 1 and a.2 and the operating parameters Val and 

V a 2 , so that the torque T t must be controlled b y means of the flow, 

i.e. • by the pressure p in the generator chamber. 
g 


