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Fig. 2 Solution of infegral equation for D(7)

analytical work performed to accelerate the convergence of the
solution, may be found in a separate report [21].

Since the derivation of S in the preceding section involves
various purely formal manipulations whose validity depends
upon the anticipated nature of the initially unknown weight
funetions A4, B, C, and D, some remarks concerning the a posteriori
verification of the solution to the residual problem are in order.
The numerical solution D of the Fredholm equation (66) is de-
picted in Fig. 2. Further, a plot of log (D(%)) versus log 7 indi-
cates the asymptotic behavior

D(n) = c(w)p~™ +o(n™4) as

with e(1/4) = 0.322, ¢(1/2) = 1.26. On the other hand, equa-
tion (73), together with the continuity of D on [0, =), insures the
required convergence of the improper integrals in (69)-(72) and
entitles one to differentiate the displacements and stresses of §
under the respective integral signs. Such differentiations, in turn,
enable one to confirm that S indeed satisfies the cylindrical
counterpart of the field equations (2) and (3). Also, a tedious
but straightforward computation based on (69)-(72) verifies that
S meets all of the boundary conditions (26), the first two of (27),
as well as (28), for every D that possesses the foregoing regularity
properties. Finally, for every such D, the displacements (69)
and the stresses (71) are found to vanish in the limit as { — =,
so that, by (25), the solution 8” for Case 2 approaches the asso-
ciated plane-strain solution §” in this limit.

We have yet to confirm the last of the boundary conditions
(27), i.e.,

==y

(73)

22 — a)

Tulp, 6,0) = ot cos20 (1<p<=, 0<60<2m), (74)

the fulfillment of which depends evidently upon the specific values
of D. Accordingly, the verification of (74) supplies an essential
check on the accuracy of the numerical solution of (66) and
thereby gives an indication of the accuracy to be expected of the
entire solution to the problem under consideration. The typical
difficulties encountered in the numerical evaluation of the stress
field appropriate to S are illustrated in especially severe form by

those attending the computation of 7..(p, 8, 0). To convey an
idea of these complications, we first recall from (71) that

TP, B; ;)

08 20 =j; D(n)(1 + n{)n*Qaln, p) exp (—n{)dn

+f Dt p, $dn, (75)
0

where ¢, is itself an improper integral and is given by the third of
(72). The first integrand in the right-hand member of (75), be-
cause of the factor exp (—n¢{), decays rapidly as 7 — © when
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{>0. For{ = 0, however, this integrand is an oscillatory fune-
tion of slowly decreasing amplitude. The improper integral
representing ¢,, is also found to be poorly convergent. Since an
accurate knowledge of £, (, p, 0) is an essential prerequisite for
the performance of the second integration required by (75), it
was necessary to examine the asymptotic behavior of the inte-
grand of ¢, for large values of vy and to remove in closed form—in
terms of sine and cosine integrals—certain contributions to ¢,.(n,
p, 0) that impede its direct evaluation. An additional difficulty
arises from the fact that the integral representation (75) for 7, is
discontinuous along the edge p = 1, { = 0. Indeed, one finds
from (75) that

Tu(l'l'; 0; 0+) = Tu(l" By 0) i 48(3’)/‘”' (76)
This discontinuous behavior is reflected in the slow convergence
of (75) near p = 1, { = 0. Nevertheless, as is apparent from
Table 1, the error inherent in the computed values of 7..(p, 8, 0)
is insignificant also in the vicinity of p = 1. It will be observed,
however, that the deviations of the numerical from the theoretical
values of 7,,(p, 8, 0) increase in magnitude as p approaches unity.
Finally, it should be emphasized that, for reasons already men-
tioned, the numerical results for the stresses away from the plane
boundary, i.e., at { > 0, are apt to be appreciably more accurate
than those summarized in Table 1.

Table 1 Check on boundary condition for ¢.: in residual problem
U'u(ﬂ, 9, 0)/0’ cos 20
= 1/4 y=1/2
Numerical Theoretical Numerical  Theoretical
p value value value value

1 1.00218 1.00000 2.01167 2.00000
1.02 0.95576 0.96117 1.89914 1.92234
Lk 0.82730 0.82645 1.65466 1.65289
1.2 0.69578 0.69444 1.39262 1.38889
1.4 0.51100 0.51020 1.02146 1.02041
1.6 0.39070 0.39063 0.78148 0.78125
1.8 0.30879 0.30864 0.61737 0.61728
2 0.25011 0.25000 0.49982 0.50000
4 0.06228 0.06250 0.12432 0.12500
6 0.027 0.02778 0.05381 0.05556
8 0.01523 0.01563 0.03120 0.03125
10 0.00903 0.01000 0.02027 0.02000

Of primary physical concern is the variation with { of the non-
vanishing stresses along the boundary of the hole p = 1 and the
radial variation of the normal displacement along the plane
boundary { = 0. A detailed account of the numerical evaluation
of 7.1, 6, §), 101, 6, §), Tae(1, 6, §), and v(p, 6, 0) is included in
[21]. The results obtained are plotted in Figs. 3-6 for Case 2,
which corresponds to the state of pure shear (11) at infinity and
represents the basic nontrivial loading case. Thus the present
numerical results are based on the solution

8" =8+ 1)
in which §” is the plane-strain solution (24) associated with Case
2, whereas S'is the solution of the residual problem given by (69)-
(72). Analogous numerical results for the general loading con-
ditions (6) are immediately deducible from those presented here
by means of (12) and (22).

Each of the diagrams to be discussed includes three curves,
corresponding to the values of Poisson’s ratioy = 1/2, v = 1/4,
and » = 0. In this connection, we recall that §” is the exact
solution for Case 2 when v = (), so that

8" = 8" for

v =20, (78)

Also, since all components of S tend to zero as { — «, one has
8 =8 (79)

as g‘—bm'

regardless of the particular value of Poisson’s ratio. In view of
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the fact that the residual tractions 7,,(p, 8, 0) to which 8” gives
rise on { = 0 are self-equilibrated, the conclusion (79) confirms
an expectation suggested by (77) and an intuitive appeal to
Saint-Venant’s principle.??

Figs. 3 and 4 show the {~dependence at the ¢ylindrical bound-
ary of the transverse normal stress 7., and the transverse shear
stress Tg., respectively. The variation with { of the circumferen-
tial normal stress g at p = 1 is given in Fig, 5. These graphs
display clearly the three-dimensional boundary-layer effect that
constitutes the main objective of the present paper. As is ap-
parent from Fig. 3, when » > 0, 7,, departs radially from its re-
spective plane-strain values (dashed lines) in the vicinity of { = 0
but is already virtually indistinguishable from 7, of solution
87 at ¢ = 3. Similarly, the shear stress 7., which vanishes iden-
tically in 87, according to Fig. 4 attains its maximum magnitude
at approximately { = 0.35 and decays rapidly as { inereases be-
yond this value; at { = 3, the magnitude of 7, is less than 3 per-
cent of the maximum magnitude of 7¢9. The relevant departures
of 7¢g from its plane-strain values are confined to an even thinner
boundary layer. Thus Fig. 5 reveals that for » = 1/2 the plane-
strain solution overestimates the magnitude of 7g up to { = 0.45,
the actual value of ITga( 1, 6, 0)/cos 29] being 2.35 as compared to
the value of four predicted by §”. In contrast, the magnitude of
a9 in S is only slightly larger than in §” for { > 0.45 when » =

22 Note, however, that the plane region IT over which S violates the
boundary conditions 7::(p, 8, 0) = 0 is unbounded.
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1/2. Finally, Fig. 6 depicts the dependence upon p of the normal
displacement 2, at the plane boundary { = 0. This displace-
ment component vanishes identically in the plane-strain solution.
As was to be anticipated, all of the three-dimensional effects
under discussion are highly sensitive to changes in Poisson’s ratio
and become more pronounced at larger values of this parameter.
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