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ABSTRACT

Extremely metal-poor (EMP) stars ([Fe/H] � −3.0 dex) provide a unique window into understanding the first
generation of stars and early chemical enrichment of the universe. EMP stars are exceptionally rare, however, and
the relatively small number of confirmed discoveries limits our ability to exploit these near-field probes of the first
∼500Myr after the Big Bang. Here, a new method to photometrically estimate [Fe/H] from only broadband
photometric colors is presented. I show that the method, which utilizes machine-learning algorithms and a training
set of ∼170,000 stars with spectroscopically measured [Fe/H], produces a typical scatter of ∼0.29 dex. This
performance is similar to what is achievable via low-resolution spectroscopy, and outperforms other photometric
techniques, while also being more general. I further show that a slight alteration to the model, wherein synthetic
EMP stars are added to the training set, yields the robust identification of EMP candidates. In particular, this
synthetic-oversampling method recovers ∼20% of the EMP stars in the training set, at a precision of ∼0.05.
Furthermore, ∼65% of the false positives from the model are very metal-poor stars ([Fe/H] � −2.0 dex). The
synthetic-oversampling method is biased toward the discovery of warm (∼F-type) stars, a consequence of the
targeting bias from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding survey. This EMP
selection method represents a significant improvement over alternative broadband optical selection techniques. The
models are applied to >12 million stars, with an expected yield of ∼600 new EMP stars, which promises to open
new avenues for exploring the early universe.

Key words: methods: data analysis – methods: statistical – stars: general – stars: statistics – stars: fundamental
parameters – surveys
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1. INTRODUCTION

Understanding the origins of structure on all scales, from the
largest filaments containing clusters of galaxies, to the smallest
biological lifeforms that inhabit planets, is arguably the main
tenet of astronomy. The recent proliferation of wide-field
surveys aims to study these problems, and a vast array of
related questions, by generating large statistical samples that
capture the diversity of different objects throughout the
universe. A challenge for these surveys, however, is that more
data is not equivalent to better understanding. While the Large
Synoptic Survey Telescope (LSST; Ivezić et al. 2008b) will
eventually dwarf all other ground-based, wide-field optical
surveys, the data deluge from LSST demands the development
of superior algorithmic techniques. These methods must be
capable of capturing and exploiting complex information from
current and future data streams.

Data-driven methods, such as machine-learning algorithms,
provide an intriguing solution to these challenges. These
models are extremely flexible and have the ability to ascertain
complex, nonlinear interactions within the data. In brief,
machine-learning models use a training set, a collection of
sources with known labels, such as a classification or physical
property, to derive a mapping between those labels and
features, measured properties of the sources in the training set.
Once the mapping is learned, this knowledge can be applied to
new, unlabeled data. With spectroscopic resources already in
short supply, a major challenge is deriving labels that are

traditionally determined from spectroscopic measurements,
e.g., redshift or metallicity, from photometric observations
alone. The importance of solutions to this problem will be
amplified during the LSST-era, when more than 20 billion
sources will be photometrically detected (Ivezić et al. 2008b).
The majority of these sources will not be amenable to
spectroscopic observations, even with thirty-meter class
telescopes.
Almost from the time it was realized that metal-rich stars

produce less light in the blue optical than their metal-poor (MP)
counterparts (Schwarzschild et al. 1955), efforts have been
made to photometrically estimate stellar metallicities (e.g.,
ultraviolet-excess technique; Wallerstein 1962). The most
successful efforts to date use narrowband and mediumband
filters, designed to be sensitive to metallicity dependent
absorption lines in the stellar spectrum. The most prominent
technique uses the uvbyβ Strömgren filters (see Strömgren 1966
for a review), which have been demonstrated to produce
[Fe/H]4 measurements with a scatter of ∼0.1 dex relative to
spectroscopic observations for FG stars (Nordström
et al. 2004). For isolated groups of stars (clusters, galaxies),
if there is a single stellar population (i.e., the stars were born
during a single episode of star formation) and the distance is
well known, then [Fe/H] estimates can be made using a single
photometric color and isochrone fitting. Interestingly, Lianou
et al. (2011) find that isochrone fitting performs poorly relative
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3 Hubble Fellow.

4 Throughout this paper [Fe/H] is used as a proxy for metallicity, where
[Fe/H] is defined as * - N N N Nlog log ,Fe H Fe H( ) ( ) where NFe and NH are
the total number of iron and hydrogen atoms, respectively.
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to spectroscopic methods when the single stellar population
assumption is violated. Modern wide-field surveys, such as the
Sloan Digital Sky Survey (SDSS; York et al. 2000) or LSST,
primarily observe field stars with broadband filters. The age
and distance to any field star is highly uncertain, meaning
methods that use the SDSS filters are at a significant
disadvantage relative to the Strömgren filters or isochrone
fitting. Nevertheless, when careful selections are made to limit
samples to FG stars, broadband photometric estimates of
[Fe/H] can be made with a typical scatter of ∼0.2–0.3 dex
(e.g., Ivezić et al. 2008a; Bond et al. 2010). Yuan et al. (2015a)
use repeated imaging of a specific SDSS field to re-calibrate
stellar colors, allowing them to develop a method that provides
a ∼25% improvement relative to the method in Ivezić et al.
(2008a). Achieving good precision with broadband filters
requires the use of the u-band (see An et al. 2009).

Stellar atmospheres retain the composition of the gas from
which the star forms: as the universe becomes enriched with
metals over time, so do newly formed stars. Thus, stellar
metallicity measurements can serve as a proxy for stellar age
(though the scatter in these relations is large, see Soder-
blom 2010 for a review). Stars with very small metal
abundances, known as extremely metal-poor (EMP) stars
([Fe/H] � −3.0 dex), are relics from the early universe that
provide unique insight into the nature of the first generation of
stars. In particular, stars with M*/Me  0.8 have not had
sufficient time, within the age of the universe, to undergo
significant post-main-sequence evolutionary changes and
remain on, or close to, the main sequence. Therefore, the
atmospheres of EMP stars retain information on the initial mass
function of Population III stars, the diversity and nucleosyn-
thetic yield of the first supernovae, the early chemical
enrichment of the universe, and the formation of the first
galaxies (for recent reviews on EMP stars see Beers &
Christlieb 2005; Frebel & Norris 2015). As a result,
considerable efforts have been made to identify EMP stars in
the Milky Way halo in order to understand the nature of the
Galaxy in the first ∼500Myr after the Big Bang.

Traditionally, candidate EMP stars are identified via
objective-prism or low-resolution-spectroscopic surveys, and
later confirmed via high-resolution spectroscopy. The HK
Survey of Beers et al. (1985, 1992) identified EMP candidates
from stars with weak Ca II K absorption. Several groups have
utilized objective-prism observations from the Hamburg/ESO
survey to identify EMP candidates and confirm bona fide EMP
stars with high-resolution spectroscopy (e.g., Cohen
et al. 2004; Frebel et al. 2006; Christlieb et al. 2008). Recently,
SDSS, and in particular the SDSS-II sub-survey known as the
Sloan Extension for Galactic Understanding (SEGUE; Yanny
et al. 2009), have identified hundreds of EMP candidates from
low-resolution spectra. Many of these candidates have been
confirmed with high-resolution observations (e.g., Aoki
et al. 2013). Additional follow-up is ongoing for all of these
surveys, and more EMP discoveries can be expected.

Early evidence of the utility of the ultraviolet-excess
technique suggested that the relation saturated for very metal-
poor (VMP) stars ([Fe/H] � −2.0 dex), and this result has been
seemingly confirmed with modern survey data (e.g., Bond
et al. 2010). As a result, there have been virtually no studies on
the utility of identifying EMP stars from broadband photo-
metric colors alone. Recently, Schlaufman & Casey (2014)
developed a technique that exploits the significant near-infrared

molecular absorption of metal-rich stars to identify candidate
EMP stars. Using data from the Two Micron All-Sky Survey
(2MASS; Skrutskie et al. 2006) and the Wide-field Infrared
Survey Explorer (Wright et al. 2010), Schlaufman & Casey
identify bright (V < 14 mag) EMP candidates, of which a small
handful, corresponding to an efficiency of a few percent, have
been confirmed via their initial follow-up spectroscopy.
Additionally, the SkyMapper Telescope is poised to discover
a large bounty of EMP stars by combining observations from
the broadband ugriz filters with a custom narrow filter centered
on the Ca II K line (Keller et al. 2007). The use of this narrow
filter is extremely efficient for the discovery of EMP stars, and
the early returns from SkyMapper include the confirmation of
41 EMP stars via high-resolution spectroscopy (Jacobson
et al. 2015). The unique filter combination has also led to the
discovery of the most iron-poor star known (Keller et al. 2014).
SkyMapper follow-up is still ongoing, and estimates of the
discovery efficiency using their narrow band filter are currently
not available (though 41 of the 122 EMP candidates studied in
Jacobson et al. 2015 were confirmed, suggesting an efficiency
of ∼1/3). Nevertheless, this survey likely represents the
premier method for uncovering southern sky EMP stars in the
near future.
Here, a new technique to estimate [Fe/H] from only broad-

band ugriz filters is presented. The method utilizes machine-
learning algorithms and is trained using a sample of ∼170,000
stars with precise photometric observations and spectroscopic
determinations of [Fe/H] from SDSS. It is demonstrated that the
method is superior to other photometric [Fe/H] techniques.
Furthermore, the method can be slightly altered, via the inclusion
of synthetic EMP stars in the training set, to be suitable for the
discovery of EMP stars. This final model enables the first-ever
identification of EMP stars from broadband-optical filters alone.

2. THE SPECTROSCOPIC SAMPLE

Machine-learning models require a training set: a collection
of sources with known labels. Once the mapping between
features and labels is learned, the model can be applied to
newly observed, unlabeled sources for which only features are
known. The construction of the training set and choice of
machine-learning algorithm are essential steps for developing a
model that produces accurate predictions. Furthermore, as is
the case for all data-driven approaches, the training set must be
representative of the population of unlabeled sources or the
model predictions will be unreliable. This is a major challenge
for many astronomical surveys: typically, new surveys probe
fainter populations than those in previously studied well-
labeled samples (see, e.g., Richards et al. 2012). As detailed in
Section 6, significant care is taken to ensure that the models
developed here are applied only to a subset of field stars that is
extremely similar to the training set.

2.1. SDSS Spectroscopic Measurements of [Fe/H]

SDSS is an optical, wide-field survey that has produced
ugriz imaging of >14,500 deg2 and collected spectra of
>850,000 stars (several million spectra of extragalactic targets
have also been obtained; Alam et al. 2015). With
>250,000,000 stars without spectroscopic observations, SDSS
is ideal for the construction of the model: the large reservoir of
spectroscopically observed stars will ensure a robust training
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set, yet there remains a significant pool of sources containing
unknown EMP stars.

All SDSS optical stellar spectra are analyzed via the
automated Segue Stellar Parameters Pipeline (SSPP; for full
details on the SSPP see Allende Prieto et al. 2008; Lee
et al. 2008a, 2008b). Briefly, the SSPP determines Teff, glog ,
and [Fe/H] for stellar sources using multiple parameter
estimation methods (e.g., neural networks, synthetic spectral
matching, Ca II K line index technique, etc.). The individual
measurements of Teff, glog , and [Fe/H] are then robustly
combined to provide final adopted values, and their corre-
sponding uncertainties. For high signal-to-noise ratio (S/N)
spectra with 4500 K � Teff� 7000 K, the SSPP determines Teff,

glog , and [Fe/H]with typical uncertainties of 157 K, 0.29 dex,
and 0.24 dex, respectively. The SSPP also provides processing
flags for sources where the parameter estimates are no good,
such as white dwarfs or M stars.

2.2. Training Set Selection Criteria

Photometric colors and spectroscopic [Fe/H]measurements
for the training set sources are selected from SDSS data release
10 (DR10; Ahn et al. 2014), which includes the most recent
version of the SSPP. In total there are 427,225 sources with
[Fe/H]measurements in DR10, however, this set is further
pruned to avoid systematic biases and ensure a high-quality
training set. The selection criteria are designed to select sources
with the most reliable photometric and spectroscopic measure-
ments. It is important to note that each of these criteria can be
applied to the ∼2.6 × 108 SDSS stars with no spectroscopic
observations, ensuring that these choices do not introduce a
significant bias in the final model predictions.

Poor, or missing, photometric measurements will corrupt the
fidelity of the machine-learning models, thus, the first
restrictions placed on the training set are photometric. The
following photometric properties can all be retrieved from the
PhotoObjAll table in the SDSS DR10 database. The first
requirement for inclusion in the training set is a detection in
each of the ugriz bands, equivalent to psfMag_f > 0, where f
is the SDSS filter ([427,177]; in this and the next paragraph the
number of sources remaining in the training set following each
constraint will be given in brackets). Good calibration in each
filter, calibstatus_f = 1, where, again, f is the filter
[420,575], and a non-flagged photometric measurement, i.e.,
clean = 1 [399,646], are also required. Sources fainter than
19.5 mag in the g-band are excluded, psfMag_g � 19.5
[390,741]. Finally, sources with large photometric uncertainties
are excluded, as these will result in a noisy mapping between
colors and [Fe/H]. Sources with psfMagErr_u � 0.04 mag,
or psfMagErr_h � 0.03 mag, where h is any of the griz
filters, are excluded [240,614].

Spectroscopic properties are retrieved from the DR10
sppParams table. The SSPP is most reliable for stars over
a restricted range in Teff, 4500 K � TEFFADOP � 7000 K (Lee
et al. 2008a), thus, stars outside this range are excluded
[216,593].5 Furthermore, only stars with at least two individual
measurements of [Fe/H] are included, FEHADOPN � 2
[209,163], as some of the individual SSPP methods for [Fe/
H]measurements do not perform well over the full range of

observed metallicities (see Schlesinger et al. 2012). Requiring
two [Fe/H]measurements significantly reduces the likelihood
of a pathologically incorrect [Fe/H]measurement. Finally,
only sources with the following SSPP flags are included:
nnnnn, nnngn, or nnnGn, which correspond to normal stars,
stars with a slight G-band feature, and stars with a potentially
strong G-band feature, respectively [197,059]. Sources with
any other combination of flags likely have unreliable
[Fe/H]measurements and are unsuitable for this study (Y. S.
Lee 2015, private communication). Finally, for stars with
multiple spectra only the highest S/N spectrum is retained in
the training set [170,610].
These 170,610 stars form the training set, and the SSPP

measured [Fe/H] values form the labels for the model. Prior to
computing stellar colors, the observed brightness in each filter
is de-reddened using the Schlafly & Finkbeiner (2011)
recalibration of the Schlegel et al. (1998), hereafter SFD98,
dust maps. The reddening corrected photometric colors, (u
−g)0, (g−r)0, (g−i)0, and (g−z)0, constitute the full feature set
for the model.
While stellar metallicity is known to be correlated with

additional properies, such as Galactic coordinates ℓ, b, SDSS
did not target stars for spectroscopy in a uniform manner (see
e.g., Yanny et al. 2009). Thus, ℓ, b, and other non-color
features, are excluded from the model to ensure it generalizes
well to the full photometric SDSS sample. As new surveys,
such as the Large Sky Area Multi-object fiber Spectroscopic
Telescope (LAMOST; Cui et al. 2012; Deng et al. 2012), vastly
increase the sky coverage and number of stellar spectra relative
to SDSS, additional features can be added to the model to
potentially improve its performance.
The reddening correction introduces some uncertainty into

the model, however, the majority of SDSS observations are at
high galactic latitudes, where extinction, and its corresponding
correction, are small. The SFD98 dust maps measure the total
Galactic reddening along a given sightline, meaning that these
corrections are equivalent to assuming the stars in this study
reside outside the Milky Way. This assumption is clearly false,
and maximally correcting for reddening in this way may result
in some stars with colors that are too blue. Nevertheless, it is
assumed that any bias from this overcorrection is small,
especially because SDSS observations focused on low-extinc-
tion sight lines (>85% (92%) of the training set has Ar �
0.2 (0.3)mag). Furthermore, with a bright limit of g ≈ 14 mag
and a sample composed primarily of FG stars, the majority of
the stars in this study are 1 kpc away, meaning the adopted
reddening correction is reasonable. This assumption is further
corroborated by the generally good performance of the model
(see Section 4).
Reddening corrections become extremely problematic near

the Galactic plane ( b∣ ∣  10°), where the SFD98 maps are
unreliable and extinction is very patchy. As a result, the
methods presented here will provide unreliable
[Fe/H] estimates near the plane, unless superior extinction
estimates to individual stars are developed. Further discussion
of potential biases introduced by the reddening correction is
provided in Section 7.
The scope of the training set is shown in Figure 1, which

displays several summary statistics on a u−g, g−r color–color
(CC) diagram. The training set covers the full extent of the
stellar locus, while spanning metallicities from EMP stars to
metal-rich stars ([Fe/H] > 0.0 dex).

5 Strictly speaking, Teff cannot be determined for stars with only photometric
measurements. However, the photometric relation for Teff provided in
Pinsonneault et al. (2012) will enable the removal of stars that are too hot or
too cool for the machine-learning model.
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3. MACHINE LEARNING MODELS

In addition to building a robust and representative training
set, the choice of machine-learning algorithm is essential for
the construction of a useful model.6 Below a brief overview of
the three different algorithms utilized in this study is provided.

3.1. K-nearest Neighbors (KNN)

KNN regression identifies the K training-set sources that are
closest to the newly observed source in feature space. For the
new source, the predicted value of the target variable is simply
the mean from the K neighbors. An advantage of KNN
regression is that it is simple, and the model results are easy to
interpret. In this study, KNN regression is performed using the
Python scikit-learn implementation of the algorithm
(Pedregosa et al. 2011). Scaling factors are applied to each
individual color so that the re-scaled features have a sample
mean of zero and sample variance unity prior to performing
KNN regression.

3.2. Random Forest (RF)

RF methods utilize the aggregation of multiple decision trees
to assign a final classification or regression value to newly
observed sources (Breiman 2001). RF makes use of bagging
(see Breiman 1996), wherein bootstrap samples of the training
set are used to construct each of the Ntree total trees in the
forest. As each tree in the forest is constructed, only a random
subset of mtry features is selected from the full feature set as a
potential splitting criterion at each node of the tree. The use of

bagging and mtry random features reduces the variance of the
final model predictions relative to single decision-tree models,
providing low-bias, low-variance results. The final RF predic-
tions are determined by averaging the predictions for a new
source from each of the Ntree individual trees. Furthermore, the
RF algorithm is fast; each of the trees can be constructed
independently and thus in parallel, and relatively easy to
interpret. RF models have recently become highly popular as
an application for astronomical data sets due to their relative
insensitivity to noisy or meaningless features (e.g., Brink
et al. 2013; Miller et al. 2015), and their invariant response to
even highly non-Gaussian feature distributions (e.g., Dubath
et al. 2011; Richards et al. 2011). This study utilizes the
Python scikit-learn implementation of the RF algo-
rithm (Pedregosa et al. 2011).

3.3. Support Vector Machines (SVMs)

SVMs (Boser et al. 1992; Cortes & Vapnik 1995) are
learning models that project the features from the training set
into a high- or infinite-dimension space. SVMs then find a
linear hyperplane with the maximal margin separating the two
groups of sources, in the case of classification. These methods
can be generalized to regression problems (Drucker
et al. 1997), where the hyperplane must produce predictions
on the training set that are within a given threshold of their true
values. For this study a nonlinear radial basis function is used
to perform SVM regression, which is implemented using the
LIBSVM software package (Chang & Lin 2011). For the SVM
model, the individual colors are re-scaled so that the minimum
and maximum values of the features are 0 and 1, respectively.

Figure 1. Summary of the training set shown in the -u g ,0( ) -g r 0( ) CC diagram. Each plot shows summary statistics for the stars located within individual pixels,
which are ≈0.01 mag on a side. Only pixels with �2 stars are shown. (a) The median [Fe/H] per pixel. Note that at constant -g r 0( ) color, roughly corresponding to
constant Teff, the -u g 0( ) color provides an excellent diagnostic of [Fe/H]. (b) The total number of stars per pixel. Machine-learning methods typically perform best
in regions where there is ample training data. The strong over-density with < - <g r0.48 0.550( ) is due to the SDSS emphasis on targeting G stars, while the over-
density at ≈ (0.9, 0.3) is due to the targeting emphasis on F-turnoff-like stars (see, e.g., Yanny et al. 2009). (c) The scatter in [Fe/H], as measured by 1.48 multiplied
by the median absolute deviation (MAD), per pixel. Pixels with small scatter represent locations where the machine-learning model will be most accurate.

6 For a general overview of machine learning, we refer the interested reader to
Hastie et al. (2009).
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4. REGRESSION MODEL RESULTS

4.1. Comparison of the Three Regression Models

To determine which of the three models from Section 3 best
generalizes to new data, the 170,610 spectroscopic sources
were separated into a training set containing 110,000 sources
and a validation set with 60,610 sources. The models are
optimized via a grid search over the relevant tuning parameters
using 10-fold cross validation (CV) performed on the 110,000
source training set.7 These are the parameters that minimize the
root mean square error (RMSE):

å= -
⎡
⎣⎢

⎤
⎦⎥n

y xRMSE
1

,
i

n

i i
2

1 2

( )

where n is the total number of sources in the training set, yi is
the model prediction of [Fe/H] for the ith source, and xi is the
[Fe/H] spectroscopic value for the ith source, are adopted as
optimal. Small changes in the optimal tuning parameters do not
significantly alter the CV RMSE. The optimal models were
applied to the 60,610 source validation set, with the results
summarized in Table 1 and shown in Figure 2.

The panels in Figure 2 show that the KNN, RF, and SVM
models all produce similar predictions for [Fe/H] based on
photometric colors. Formally, the SVM model produces the
best predictions with RMSE = 0.2943 dex, which is ∼1%
better than the KNN and RF models. The SVM model also has
the lowest catastrophic error rate, CER, defined as the fraction
of sources where the predicted and spectroscopic values of
[Fe/H] differ by �0.75 dex. Again, while the SVM model has
the best performance the difference between the three is small
∼1%–3%. The residuals, shown in the bottom panel of
Figure 2, are also similar for the three models. For stars with
[Fe/H]SSPP between ∼0 and −2, corresponding to the vast
majority of stars in the Galaxy (Schlesinger et al. 2012), the
models exhibit virtually unbiased predictions with small
scatter. There is a systematic bias for stars with [Fe/H]SSPP
 −2 or [Fe/H]SSPP  0, which have over- and under-
predicted values of [Fe/H], respectively.

4.2. Understanding the Regression-model Bias

As a measure of the overall bias of each model, the Pearson r
correlation coefficient is measured for the residuals as a
function of spectroscopic [Fe/H] values. An unbiased model
would show little to no correlation, »r 0.∣ ∣ Models with

r 1∣ ∣ show a strong correlation between the residuals and
[Fe/H], indicating significant bias in the final model predic-
tions. The SVM model has the smallest r ,∣ ∣ and hence, the
smallest bias of the three models.
The correlation between the residuals and either Teff, the

individual photometric colors, or glog , is significantly weaker
than the correlation between the residuals and [Fe/H]SSPP.
Using the Fisher transformation of the Pearson r coefficient, the
correlation of the residuals with each of the photometric colors,
Teff, and glog is significantly smaller, probability P = 0.0001,
than the correlation with [Fe/H].
Thus, the systematic biases seen in Figure 2 are most likely

the result of alternative effects. There are two systematic effects
that play a role in this bias: (i) regression to the (sample) mean,
and (ii) regression dilution bias. Non-parametric, data-driven
regression models often produce predictions biased toward the
sample mean. This effect can most easily be illustrated for
KNN. Consider the most MP star in the validation set, which
has [Fe/H] = −3.68 dex, at best, the KNN prediction for this
source would be the mean [Fe/H] of the 60 most MP stars8

from the training set, which is equal to −3.38 dex. This
represents the best case scenario, if the nearest neighbors for
this EMP star include any that are not the least MP in the
training set the model-predicted [Fe/H]will be biased even
further from the true value. The models are also susceptible to
bias due to the uncertainties associated with the photometric
colors and spectroscopic [Fe/H]measurements. Noisy features
and target variables lead to a flattening of the regression slope,
an effect known as regression dilution bias (Frost &
Thompson 2000). This bias could be improved in the future
with more precise color measurements and superior spectro-
scopic determinations of [Fe/H], though it may be prohibi-
tively expensive to obtain these observations. Further
discussion of these two types of bias can be found in Miller
et al. (2015).
Physical effects may also be responsible for the systematic

overprediction of [Fe/H] for VMP stars. As metals are removed
from a stellar atmosphere, the absorption lines present become
weaker and weaker. Eventually, at some critical metallicity, Zcrit,
the lines will become so weak that they can no longer be detected
via broadband-photometric colors. This means photometric-
metallicity techniques eventually saturate, and assign all stars
with Z < Zcrit the same [Fe/H]. If Zcrit occurs at [Fe/H] ≈
−2.0 dex, then this would naturally explain some of the bias seen
in Figure 2. The photometric technique presented in Bond et al.
(2010) shows a similar saturation for stars with [Fe/H] 
−2.0 dex. Nevertheless, in Section 5 it is shown that EMP stars
can be recovered using broadband optical colors, meaning the
saturation of photometric metallicity is not solely responsible for
the biased VMP star predictions.

4.3. Comparison to Spectra

With an RMSE scatter of ∼0.29 dex, the SVM model
produces predictions of [Fe/H] that are similar to those

Table 1
Test Set Predictions

Model RMSE CER Train Timea

(dex) (s)

KNN 0.297 0.028 0.1
RF 0.297 0.027 72.4
SVM 0.294 0.027 728.4

Notes. Models: KNN—k-nearest neighbors, RF—random forest, SVM—

support vector machines. All models have been optimized using 10-fold cross
validation and a grid search of their respective tuning parameters. The results
shown here reflect the average of five separate models, and the model-to-model
scatter is small.
a Average time required to train the model on 110,000 sources using dual-
socket, 8-core, 2.66 GHz Intel Sandy Bridge CPUs with 64 GB of memory.

7 In 10-fold CV, 1/10 of the training set is withheld during model
construction, and the remaining 90% of the training set is used to predict
[Fe/H] for the withheld data. This procedure is repeated nine more times,
meaning every training set source is withheld exactly once. Predictions for the
withheld sources enable a measurement of the RMSE. 8 K = 60 for the optimized KNN model.
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from low-resolution spectra. The SSPP provides
[Fe/H]measurements with a typical uncertainty of ∼0.24 dex
(Lee et al. 2008a), though this precision is limited to stars with
high S/N (50). To better facilitate the comparison between
this study and the SSPP results, we compare the scatter
between the 77 stars in this study that are also part of the SSPP
high-resolution validation set (see Tables 3 and 4 of Allende
Prieto et al. 2008).9 Adopting the [Fe/H] values measured from
the high-resolution spectra as ground-truth, then the SSPP has
an RMSE = 0.37 dex, while the SVM model has an
RMSE = 0.44 dex. With the caveat that this comparison is
based on a small number of stars, this suggests the SSPP
performs ∼17% better than the SVM model. These RMSE
values are significantly larger than those reported in Lee et al.
(2008a), because the 77 stars in common between this study
and the sample in Allende Prieto et al. (2008) primarily exclude
relatively metal-rich stars. The analysis presented in Allende
Prieto et al. (2008) consists of two samples: a relatively metal-
rich sample (median [Fe/H] ≈ −0.5 dex) observed with the
Hobby Eberly Telescope (HET), and a relatively MP sample
(median [Fe/H] ≈ −2.0 dex) observed with the Keck and
Subaru telescopes. The initial study compares 81 stars observed
with HET and 44 stars observed by Keck and Subaru, while the

sample in common with this study retains only 42 HET stars
and 35 from Keck and Subaru. The scatter between the SSPP
and the high-resolution measurements from Keck and Subaru
(0.41 dex; see Table 6 of Allende Prieto et al. 2008) is
significantly worse than the scatter for stars observed with HET
(0.12 dex). Both the SSPP and the SVM model perform better
on relatively metal-rich stars, thus, the preferential exclusion of
these stars in the HET sample would lead to a corresponding
increase in the RMSE.

4.4. Comparison to Other Photometric Methods

With photometrically observed stars in SDSS outnumbering
stars with spectra by nearly a factor of ∼103, many efforts have
focused on determining photometric metallicity estimates from
broadband SDSS colors. In Kerekes et al. (2013), a KNN
method is used to predict [Fe/H]with an RMSE ≈ 0.32 dex for
stars with 15 mag < g < 17 mag, and 0.41 dex for stars with
18 mag < g < 19 mag. The sample in the Kerekes et al. study
places no restrictions on the quality of the photometric or
spectroscopic observations. Thus, stars that raised SSPP flags
or have large photometric uncertainties are likely driving the
significantly larger RMSE from that model.
Multi-dimensional polynomial fits to the median [Fe/H] in

0.02 mag2 bins in the -u g ,0( ) (g−r)0 plane are used to
determine photometric metallicities in Ivezić et al. (2008a).
This method is later updated in Bond et al. (2010), where SSPP

Figure 2. Regression results for the optimized KNN, RF, and SVM models shown, respectively, in the three columns from left to right. Top: density plot showing the
number of sources in each pixel on the predicted [Fe/H] vs. SSPP [Fe/H] plane. Pixels are ∼0.05 dex on a side. The solid, red line shows the relation for perfect 1:1
regression, while the dashed, gray lines show the boundaries for catastrophic errors, ±0.75 dex. Sources located outside the gray lines are considered catastrophic
outliers. The SVM model has the smallest RMSE and CER. Bottom: residuals from the models (shown above), with the density of sources shown in each pixel. The
orange stars show the median residual value in bins of width 0.2 dex. The associated error bars show the scatter in each bin: 1.48 × MAD, an outlier-resistant and
robust measure of the scatter. rres is the Pearson r correlation coefficient for the residuals as a function of [Fe/H] .SSPP rres values close to zero indicate little bias in the
model predictions. The SVM model produces the least biased estimates of [Fe/H].

9 Most of these 77 stars are in the 110,000 star training set. Thus, the SVM
predictions here are from 10-fold CV to avoid an overlap between the training
and test sets.
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values from DR7 replace the less accurate values from DR6,
which were used in the Ivezić et al. study. The fit presented in
Bond et al. (2010) produces a typical RMSE ∼0.2 dex for
metal-rich stars and ∼0.3 dex for MP stars. These values
cannot be directly compared to those presented in Section 4.1,
however, as the samples used in both the Ivezić et al. and Bond
et al. studies placed more stringent cuts on the training set than
those employed here. In particular, those studies included only
sources with 0.2 < (g−r)0 < 0.6, so as to focus on F/G stars. If
the same selection criteria from Ivezić et al. (2008a) are applied
to the validation set from this study, 35,377 of the 60,610 stars
remain. The RMSE for those stars is ∼0.26 dex for the SVM
model and ∼0.32 dex for the photometric model presented in
Bond et al. (2010).10 Thus, the SVM model presented in this
study represents an ∼18% improvement in the scatter relative
to the polynomial-fitting method presented in Ivezić et al.
(2008a) and Bond et al. (2010).

In Yuan et al. (2015a) photometric metallicity estimates are
made using metallicity-dependent stellar loci, which are
derived from their re-calibrated photometry of the multiply
imaged Stripe 82 region of SDSS (Yuan et al. 2015b). Yuan et
al. leverage the repeated imaging to derive more accurate
photometric colors, which in turn allows more accurate
metallicity measurements than the method presented in Ivezić
et al. (2008a). The downside to the method, however, is that
Stripe 82 covers a small portion of the SDSS footprint,
meaning they provide predictions for only ∼5 × 105 stars. The
method presented in Yuan et al. (2015a) is also restricted to
stars with 0.55 < (g−i)0 < 1.2. Using a cross-match radius of
0″. 5, there are 4291 sources in common between the test set in
this study and sources with [Fe/H] predictions in Yuan et al.
(2015a). Relative to the SSPP, the SVM model produces an
RMSE ≈ 0.26 for these 4291, while the model in Yuan et al.
produces an RMSE ≈ 0.24. Thus, the Yuan et al. model
represents an ∼8% improvement over the SVM model, for this
particular subset of 4291. Based on this comparison, the
performance of the two models is similar, though I note that
independent training and testing sets are not employed in Yuan
et al. (2015a), meaning the typical scatter from the stellar-loci
method may be larger than the RMSE reported above.

5. MODEL ALTERATIONS TO EMPHASIZE THE
SELECTION OF EMP STARS

While the regression models presented in Section 4 perform
well for the vast majority of field stars, the strong biases for
VMP stars make it difficult to identify EMP stars. The
discovery of EMP stars can be cast as a classification problem
where all EMP stars belong to one class and all other stars, with
[Fe/H] > −3.0, form the other class. For the 170,610 stars in
this study, 256 are EMP stars. Thus, there is a significant class
imbalance between the EMP and non-EMP stars. Typically,
machine-learning classification algorithms are built to max-
imize the overall accuracy of predictions. A classifier that
predicts all stars belong to the majority non-EMP class would
have an accuracy of 99.8%. In many applications this accuracy
would be stunning. This masks the failure of the model to
produce a desired result: the identification of new EMP stars.
Following adjustments to the training set, however, EMP stars
can be reliably recovered.

5.1. Dealing with Class Imbalance: Upsampling and
Downsampling

Many classification problems deal with imbalance, wherein
at least one class represents a very small minority of sources. It
is often the case, however, that the minority class represents the
target of interest: identifying additional instances of these rare
events is the motivation for model construction. Special
attention should be paid to the minority class so they are not
disproportionally misclassified. The consequences range from
mildly annoying, e.g., spam email bypassing filters to reach an
inbox, to extremely serious, e.g., in the medical profession.
There are two general approaches for dealing with class

imbalance. One approach is to manually adjust the imbalance
in the training set by randomly downsampling the majority
class or oversampling the minority class, or using a combina-
tion of the two. The other is to use cost-sensitive learning,
where the cost for misclassification of the minority class is
higher than the cost for misclassifying members of the
majority. Most efforts focus on some form of the sampling
technique, with downsampling approaches typically outper-
forming oversampling (see, e.g., Chen et al. 2004). A downside
to downsampling is that information is being removed from the
classifier, while strict oversampling will always be fundamen-
tally limited by the fact that no truly new instances of the
minority class have been added to the classifier.
Many researchers have found that oversampling the minority

class with replacement does not significantly improve minority-
class recognition (e.g., Ling & Li 1998). As a result, Chawla
et al. (2002) developed the synthetic minority over-sampling
technique (SMOTE), wherein synthetic members of the
minority class are generated to reduce the class imbalance. In
short, synthetic members are generated by fitting a KNN model
to the minority class. For each minority-class source in the
training set, one of the k-nearest neighbors is selected at
random, and a synthetic member of the minority class is
generated by selecting a random point along the feature vector
connecting the source and its neighbor. This process is then
repeated to achieve the desired amount of oversampling. While
examining a variety of classic class-imbalance problems,
SMOTE outperforms over-sampling, while the combination
of SMOTE and downsampling performs better than both
downsampling and cost-sensitive learning methods (Chawla
et al. 2002, 2003).
In Chen et al. (2004), two methods, which leverage both the

sampling and cost-based approaches, are explored to improve
the performance of RF on imbalanced data. The first approach,
which they refer to as balanced RF, uses a bootstrap sample of
the minority class as well as an equal number of majority class
members selected randomly with replacement to initiate each
tree in the forest. Thus, the minority and majority classes are
equally balanced over the classifier. The other method, which
they refer to as weighted RF, places a stronger penalty on
misclassifying the minority class by weighting the samples
when selecting splitting criteria at each node within individual
trees and also weighting the final vote in the terminal nodes of
each tree. Using multiple different performance measures, both
methods show improvements relative to other techniques,
including SMOTE plus downsampling, over a variety of
different problems (Chen et al. 2004).

10 See their Equation (A1), an update to Equation (4) from Ivezić et al.
(2008a).
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5.2. Improving Minority Class Recognition with Synthetic EMP
Stars

Initial tests of the three methods described above, SMOTE,
balanced RF, and weighted RF, showed no significant
improvement in the recovery of EMP stars. This is likely the
case due to the extreme imbalance for the problem at hand: the
minority class constitutes less than 0.2% of the training set,
which is significantly less than the datasets tested in Chawla
et al. (2002, 2003) and Chen et al. (2004). Instead, a SMOTE-
inspired approach, which generates synthetic EMP stars in a
different manner, is developed.

A zoom-in on the (u−g)0, (g−r)0 CC diagram is shown in
Figure 3 with the location of the EMP stars in the training set
highlighted. While there is a relatively tight cluster of EMP stars
on the blue edge of the stellar locus, approximately centered at
(0.8, 0.2), this roughly coincides with the highest density location
of non-EMP stars. Furthermore, over half of the EMP stars form
a loose sequence along the upper portion of the stellar locus.
Thus, SMOTE, which generates synthetic samples between
nearest neighbors while ignoring any underlying structure, is
liable to create synthetic EMP stars that lie off the relatively well
defined sequence. Instead, a different approach, which I refer to
as the synthetic-oversampling method, is adopted: new EMP stars
are generated by resampling the photometric colors within the
reported uncertainties from SDSS. In practice, the procedure is
straightforward: a user-defined number of EMP stars is selected
randomly with replacement from the training set. The photo-
metric measurements for each of the ugriz filters are then adjusted
via a random number selected from a normal distribution with
mean zero and standard deviation equal to the SDSS-measured
photometric uncertainty in the respective filter. Colors for the
synthetic stars are computed, and the SSPP [Fe/H]measurement
for the original star is assigned to the synthetic star.

As previously noted, the overall accuracy of a classifier is a
poor measure of performance when trying to identify minority-
class members in extremely imbalanced problems. Instead of
focusing on the true positive rate (TPR) and false positive rate,

respectively, I aim to simultaneously maximize the precision
and recall of the model, which are defined as:

=
+

=
+

precision
TP

TP FP
,

recall
TP

TP FN
, 1( )

where TP is the number of true positives, FP is the number of
false positives, and FN is the number of false negatives.11 The
precisionmeasures the fraction of minority class candidates
that are bona fide members of the minority class, while the
recall is a measure of the fraction of the minority class that is
actually recovered. For the EMP-discovery problem, the
precision and recall are best understood in the context of
follow-up observations. The precision characterizes the effi-
ciency of follow-up: high precision fractions mean few
candidates will be false positives, while low precisionmeans
many false positives must be observed to recover a single EMP
star. The recall characterizes the completeness of the sample
with follow-up observations. Observers with one night on the
telescope will demand high precision such that time is not
wasted observing false positives. Large surveys capable of
obtaining106 spectra, such as LAMOST, may tolerate more
false positives, and thus a lower precision, in order to obtain a
higher recall sample of EMP stars, which would be more
complete.
Ideally, a model would produce a precision and recall ≈1,

however, in practice, one must adopt a candidate decision
threshold that offers a trade off between these two desirable
properties.12 Finally, note that estimates of the recall typically
represent the completeness relative to a specific sample, in this
case SDSS SSPP EMP stars, which itself may not be complete.
Thus, the recall estimates presented here are upper limits as
there are populations of EMP stars that SDSS did not detect.
The SVM model is adopted to search for EMP stars due to its

superior performance in the [Fe/H] regression problem dis-
cussed in Section 4. An SVM regression model is used, instead
of an SVM classification model, so that candidates may be
ranked by their likelihood of belonging to the EMP class. Thus,
unlike a classification model where a single hard boundary
between classes is determined, the class boundary from the
regression model can be varied across different values of [Fe/
H] to determine the optimal trade off between precision and
recall. Given the rarity of EMP stars, the model is optimized
via CV over the entire 170,610 source training set, rather than
splitting the data into a training and validation set as was done
in Section 4. The SVM tuning parameters are optimized via
three different instances of 10-fold CV to maximize the
recall at a precision of 0.05, which is adopted as the figure of
merit (FoM). This FoM corresponds to only 1 in every 20 EMP

Figure 3. - -u g g r,0 0( ) ( ) CC diagram showing the density of sources in the
training set. The location of EMP stars in the training set is highlighted. Notice
that the EMP stars form a relatively tight cluster that is parallel to the main
stellar locus. EMP stars that are recovered by the synthetic-oversampling
method are shown in yellow, while non-detections are shown in magenta. The
synthetic-oversampling method is biased toward discovering those stars on the
extremes of the sample distribution (see also Section 5.3).

11 Note that there are many different nomenclatures throughout the machine-
learning literature for the terms defined in Equation (1). Recall is most
commonly referred to as the TPR, though it can also be referred to as the
sensitivity, hit rate, or completeness depending on the context. I adopt the
convention of referring to this quantity as the recall as it is only discussed
relative to the precision. The precision of a model is sometimes referred to as
the positive predictive value or purity.
12 Precision and recall can produce biased estimates of the quality of a
machine-learning model (see Powers 2011). However, when a data set is
strongly imbalanced, as is the case in this study, precision and recall are
effectively unbiased.
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candidates identified by the model being a genuine EMP star.
While this performance seems relatively poor, it represents a
dramatic improvement over previous broadband photometric
techniques to identify EMP stars. For instance, the subset of
stars SDSS targeted as MP achieved a precision of ∼0.003 (see
Section 7). The adopted FoM is made with LAMOST in mind:
the large fraction of false-positives is mitigated by the fact that
only ∼0.01% of the LAMOST survey is needed to discover
∼600 new EMP stars.

The results from optimized models with differing amounts of
downsampling and synthetic oversampling are summarized in
Table 2. As a baseline for the increase in performance
downsampling and synthetic oversampling provide, the results
for the full training set, with no synthetic over-sampling or
downsampling, are also included. In addition to the FoM,
Table 2 also includes the maximum recall at a precision of 0.1,
R(P = 0.1), as well as the precision at a recall of 0.1,
P(R = 0.1).

The FoM for the baseline model, which uses the entire
training set with no synthetic oversampling, is 0.109. From
Table 2, it is clear that the synthetic oversampling technique
provides a significant improvement over the baseline model,
with virtually all oversampled models showing a ∼100%
increase in the FoM. Furthermore, it is clear that the precise
choice of the degree of over- and downsampling does not have
a strong effect on the final model predictions. With the
exception of the model featuring 40× oversampling and 25%
downsampling, the largest difference in the FoM for over-
sampled models is ∼10%. Synthetic oversampling also
improves the recall at a precision= 0.1. Table 2 shows that

the baseline model, with no oversampling or downsampling,
has R(P = 0.1) = 0.004. Meanwhile, the models with at least
20× oversampling and 75% or 100% downsampling have
R(P = 0.1) of ∼0.02–0.03. This represents a significant
improvement over the baseline model. Thus, I conclude that the
use of a synthetically oversampled minority class improves the
efficiency of EMP star discovery. Interestingly, the precision at
a recall of 0.1 is similar for all iterations of the model. The
largest P(R = 0.1), 0.060, is only 7% larger than P(R = 0.1) for
the baseline model, 0.056.
Predictions of [Fe/H] from the synthetic-oversampling

model that features 40× oversampling and no downsampling
are shown in Figure 4. Relative to the SVM-regression model,
there are far more stars with predicted [Fe/H] � −2.5 dex. The
synthetic-oversampling model is also less biased, as measured
by the Pearson r coefficient. The overall performance of the
model, as measured by the RMSE, is ∼6% worse than the
SVM-regression model and the CER is ∼27% higher than the
SVM-regression model. Each model has its relative strengths
and weaknesses, and the ultimate choice of model should be
driven by specific science goals. The synthetic-oversampling
model is designed to identify EMP stars, while the SVM-
regression model is designed to provide the most accurate
[Fe/H] estimates for a typical field star. Thus, studies focused
on MP stars should adopt the synthetic-oversampling model,
while those examining the field should probably adopt the
regression model.
Example precision–recall curves are shown in Figure 5. The

precision–recall curves confirm what is shown in Table 2:
models with synthetic oversampling perform better than the
baseline model. The synthetic-oversampling models show
comparable or dramatically improved precision for any
recall 0.25.13

Interestingly, the synthetic-oversampling method does not
provide a significant boost relative to the baseline model for
recall> 0.3. This suggests that the majority of EMP stars
cannot be well separated from the background of non-EMP
stars with only broadband filters and the photometric precision
of SDSS, even when using synthetic oversampling. As Figure 3
shows, many EMP stars lie in the highest density regions of CC
space, and the only way to detect them is to obtain a very large
follow-up sample that will have low precision. Future
improvements in the photometric calibration of SDSS (e.g.,
Yuan et al. 2015b) may improve this situation.
Figure 5 also shows that the differences between the

optimized synthetic-oversampling models is small, as was
suggested by Table 2. It is also worth noting that the majority
of false positives for the synthetic-oversampling models are
metal poor: ∼65% of the false positives are VMP stars. Finally,
note that the SVM regression model presented in Section 4
does a good job of recovering VMP stars without any
additional tuning (see the dashed line in Figure 5). The SVM
regression model produces a recall ≈0.55 at a precision
of ∼0.5.

5.3. Potential Biases in the EMP Sample

If the EMP stars in the training set are not representative of
the true distribution of EMP stars in the field, then the

Table 2
Optimized EMP Classification Results

dsa Nb R(P = 0.1)c R(P = 0.05)d P(R = 0.1)e

25 0 0.000 0.132 0.049
25 10 0.022 0.197 0.052
25 20 0.016 0.198 0.056
25 30 0.007 0.193 0.052
25 40 0.003 0.178 0.053
50 0 0.001 0.133 0.055
50 10 0.009 0.198 0.055
50 20 0.027 0.212 0.059
50 30 0.003 0.212 0.058
50 40 0.001 0.203 0.053
75 0 0.004 0.109 0.054
75 10 0.000 0.203 0.054
75 20 0.033 0.207 0.060
75 30 0.029 0.201 0.056
75 40 0.020 0.207 0.059
100 0 0.004 0.109 0.056
100 10 0.000 0.207 0.055
100 20 0.023 0.212 0.059
100 30 0.025 0.210 0.055
100 40 0.033 0.212 0.058

Notes. Bold quantities indicate the maximum for a given column. Table values
represent the average of three different instances of 10-fold cross validation.
The baseline model, which uses all of the majority class and no oversampling,
is highlighted in italics.
a Percentage of the majority class remaining following downsampling.
b Oversampling factor for the minority class (see text).
c The recall at precision = 0.1.
d The recall at precision = 0.05. This is the model FoM.
e The precision at recall = 0.1.

13 The spike in precision for the baseline model at very low recall (<0.005), is
due to small sample statistics. At very low recall, few candidates contribute to
the precision measurement, making it more susceptible to noise.
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synthetic-oversampling method will produce a biased sample.
It is further possible that synthetic oversampling preferentially
selects a specific type of EMP star, such as cool dwarfs or hot
sub-giants. If present, these biases would prevent the
construction of a complete sample. The number of known
EMP stars is small enough, however, that any additional
discoveries are valuable for understanding these rare stars.
Furthermore, the biases in these methods may be complemen-
tary to other methods. For instance, the infrared-color
technique presented in Schlaufman & Casey (2014) preferen-
tially selects giant stars.
Examining which EMP stars are recovered via CV can

provide an estimate of the bias in the synthetic-oversampling
method. Figure 3 shows the CV-recovered EMP stars when
using a candidate decision threshold of [Fe/H]SOM<=−2.707.
The results shown are for the model with 40× oversampling
and no downsampling, though the total number, and location,
of sources recovered does not change significantly for any of
the models with FoM ≈ 0.2. From Figure 3, it is clear that the
EMP stars closest to the edges of the stellar locus are the most
likely to be recovered. This is not surprising for two reasons:
(1) there is higher contrast between these EMP stars and the
background of non-EMP stars, and (2) the model has been
optimized to sacrifice completeness in favor of precision.
Examination of the SSPP parameters for the recovered EMP
stars shows that the synthetic oversampling method is biased
toward recovering warm stars with relatively high surface

Figure 4. 10-fold cross-validation results for the full 170,610 star training set for the SVM-regression model (left) and the synthetic-oversampling model with
40× oversampling and no downsampling (right). Top: density plot showing the number of sources in each pixel on the predicted [Fe/H] vs. SSPP [Fe/H] plane.
Bottom: residuals from the model, with the density of sources shown in each pixel. The pixel scale, solid and dashed lines, and orange stars in the top and bottom plots
are the same as in Figure 2. The synthetic-oversampling model produces less-biased predictions for sources with [Fe/H]  -2.0,SSPP than the regression models in
Section 4. However, the reduction in bias comes at the cost of RMSE and CER. Note that the results shown here are for CV on the full 170,610 source training set,
meaning the SVM-regression results are slightly different than those shown in Figure 2.

Figure 5. Precision–recall curves for different parameters of the synthetic
oversampling method. The baseline model, which features no oversampling
(N = 0) or downsampling of the majority (ds = 100), is shown with a solid red
line. The model with no downsampling and 40× oversampling is shown with a
solid orange line, while the model with 50% downsampling (ds = 50) and 20×
oversampling is shown with the light blue line. The use of synthetic EMP stars
significantly improves the performance of the model. The zoom-in shows that
the synthetic-oversampling method produces a FoM that is ∼2× better than the
baseline model. These results are relatively insensitive to the degree of over-
and downsampling (see Table 2). The maroon-dashed line shows the
precision–recall curve when using the SVM regression model from Section 4
to identify VMP stars.
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gravity. In particular, of the 126 EMP stars in the training set
with Teff � 6000 K, ∼28% are recovered, while only ∼15% of
the 130 stars with Teff < 6000 K are recovered. Of the 173 stars
with glog < 3.5 dex, ∼14% are recovered, while ∼36% of the
83 EMP stars with glog � 3.5 dex are recovered. Thus, it can
be concluded that the synthetic oversampling model preferen-
tially selects the hotter, higher surface gravity stars within our
training set.

It is significantly more complicated to determine whether or
not the training set is biased relative to the true population of
EMP stars. This is primarily because the actual distribution of
EMP stars is unknown, but the complex targeting procedures
adopted by the SDSS-I and SDSS-II surveys further muddies
the picture. Furthermore, the targeting criteria for the SEGUE
portion of SDSS, which is responsible for most of the stellar
spectra included in this study, evolved with time (Yanny
et al. 2009). Spectroscopic targets were selected using a variety
of cuts on brightness, photometric color, and proper motion to
identify stars belonging to different classes, e.g., white dwarfs,
K giants, G stars, etc. As a result, the population of EMP stars
detected by SDSS must be biased. In particular, SEGUE used
photometric metallicity indicators to preferentially select MP
and metal-poor, turn-off (MPTO) stars. 120 of the 256 EMP
stars in the training set were targeted as either MP or MPTO
stars. SEGUE biased their search for MP stars toward hotter,
and thus more luminous, stars, even though K and M dwarfs
live much longer on the main sequence, in order to probe a
larger effective survey volume (Yanny et al. 2009). As a result,
there are few cool EMP stars in the SDSS spectroscopic sample
(see the relative lack of EMP stars with g− r  0.6 mag in
Figure 3). While a quantitative measure of this bias is not
available, it is clear that by design the sample of EMP stars
identified by SDSS spectroscopy is biased toward F turnoff
stars.

This training set bias provides context for understanding the
biased selection of EMP stars from the synthetic-oversampling
method. The over-representation of ∼F-type stars in the
training set is naturally propagated through the machine-
learning model to preferentially recover warm (Teff  6000 K)
EMP stars.

5.4. Confirmation of the Synthetic-oversampling Method with
High-resolution Spectra

The best way to confirm the efficacy of the synthetic-
oversampling method is to obtain spectra of candidate EMP
stars, measure [Fe/H] for these stars, and determine whether or
not the precision of the sample is ∼0.05, as was predicted in
Section 5.2. Current efforts to obtain such spectra are ongoing
and the subject of a future study. In the meantime, the model
accuracy can be tested using the high-resolution spectra
obtained by Aoki et al. (2013). Using the High Dispersion
Spectrograph (HDS) on the Subaru Telescope, Aoki et al.
obtained high-resolution spectra of 137 candidate EMP stars
selected from the SSPP. Relative to the SSPP, the HDS spectra
provide more accurate and precise measurements of [Fe/H],
leading to the unambiguous identification of EMP stars. There
are 119 stars in common between the Aoki et al. sample and
this study. Leave-one-out (LOO) CV14 is used to measure the

fraction of the EMP stars recovered by the synthetic-over-
sampling method.
Figure 6 shows the results of the LOO CV procedure, based

on a model with 40× oversampling and no downsampling. Of
the 119 stars, 64 are genuine EMP stars, and the synthetic-
oversampling method identifies 8 of those as EMP candidates
based on their photometric colors. This corresponds to recall=
0.125, which is worse than expectations (see Table 2). More
promising is the paucity of false positives, 10, which
corresponds to a precision ≈ 0.44. This estimate of the
precision is likely over-optimistic, however, because EMP stars
outnumber VMP stars in the Aoki et al. (2013) sample. In the
halo, VMP stars outnumber EMP stars by a factor of ∼50 (e.g.,
Allende Prieto et al. 2014). Pessimistically, this would suggest
a ratio of ∼500 false positives for every ∼8 true positives,
corresponding to a precision ≈ 0.02. While this is not too
dissimilar from the expected precision for the model, the true
precision of the model is likely better than 0.02. The Aoki et al.
sample of VMP stars is significantly skewed toward stars with
[Fe/H] � −2.7, while the actual halo metallicity distribution
strongly favors stars with [Fe/H] ≈ −2.0 relative to stars with
[Fe/H] � −2.7. Assuming the model is less likely to identify
the most metal-rich VMP stars as EMP candidates, which CV
shows is the case, then the precision should be better than the
pessimistic estimate.
Finally, note that the stars shown in Figure 6 are color coded

by [Fe/H]SSPP. While the recall is worse than one would
expect based on the CV results from Section 5.2, it is worth
noting that the SSPP slightly over-predicts [Fe/H]. Only 36 of
the 119 stars have [Fe/H]SSPP � −3.0, meaning the SSPP
sample is biased away from EMP stars, as determined by the
Subaru spectra. Relative to the [Fe/H]SSPP labels, the synthetic-
oversampling model produces a recall of 0.25, as one would
expect based on the results shown in Table 2. Ultimately, this is

Figure 6. Results from the synthetic-oversampling LOO CV performed on the
119 stars in common between this study and the high-resolution spectroscopic
sample of Aoki et al. (2013). The synthetic-oversampling method predicted
[Fe/H], [Fe/H]SOM, is shown relative to the Subaru/HDS measured [Fe/H].
Stars are color coded by their SSPP measured [Fe/H]. The solid, black line
shows the relation for perfect 1:1 regression. All stars with predicted
[Fe/H] �−2.707 are considered EMP candidates. The areas corresponding
to true positives and true negatives are shaded in the lower-left and upper-right
corners, respectively. False negatives and false positives are shown in the
upper-left and lower-right corners, respectively.

14 LOO CV is similar to k-fold CV. The difference is that rather than testing on
all the data, LOO CV removes a single star from the training set, constructs a
model, and then predicts [Fe/H] for the left-out star. For this study, this
procedure is repeated for each of the 119 stars with HDS observations.
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a demonstration that the results of the machine-learning models
are only as good as the training set. When comparing the SSPP
measurements to those from the high-resolution spectra, the
SSPP has a recall ≈ 0.47, assuming a class boundary of [Fe/
H]SSPP = −3.0. Assuming that the spectroscopic measurements
from the Subaru spectra are more accurate than the SSPP, this
means the synthetic-oversampling method has a recall ceiling
of ∼0.47. Moving forward, there are two paths toward
improving this ceiling: (i) improve the accuracy of the SSPP
measurements, or (ii) obtain significantly more high-resolution
spectra, and build a model using those [Fe/H]measurements.
While several incremental improvements have been made to
the SSPP (e.g., Ahn et al. 2012; Schlesinger et al. 2012; Aoki
et al. 2013), low-resolution spectra will always produce lower-
accuracy measurements than their high-resolution counterparts.
Furthermore, high-resolution spectra are extremely expensive,
meaning a new, uniformly analyzed training set with >105

sources is unlikely to be available anytime soon.15 Thus, for the
foreseeable future, and despite some clear limitations, the SSPP
provides the best basis for a training set to search for EMP
stars.

6. FINAL FIELD-STAR PREDICTIONS

Finally, [Fe/H] values are predicted for all SDSS stars that
satisfy the same selection criteria as the training set (see
Section 2). In sum, there are 14,337,770 sources in SDSS
DR10 that satisfy all of those photometric criteria, and have
ProbPSF = 1, which excludes sources with extended
morphologies. Predicted [Fe/H] values, from both the SVM-
regression model (see Section 4.1) and the synthetic-over-
sampling model (see Section 5), for most of these stars are
reported in Table 3, though important caveats apply.

The first caveat is that, unlike for the training set, this
photometric sample does not have spectroscopic measurements
of Teff. Given that the training set only includes stars satisfying

4500 K � Teff � 7000 K, the machine-learning models will not
produce reliable predictions for stars outside this temperature
range. To select stars that satisfy this criteria, Teff is assigned to
the photometric sample using the color-Teff relations in
Pinsonneault et al. (2012). These color-Teff relations are
calibrated for 4080 K � Teff < 7000 K, which covers the full
range of Teff included in the training set. As their method is not
valid at all temperatures, Pinsonneault et al. caution that the
three individual relations are only valid for stars with 0.13
< (g−r)0 < 1.34, 0.13 < (g−i)0 < 1.90, and 0.07 < (g
−z)0 < 2.21, respectively. Stars with colors outside this range
are excluded from Table 3, which restricts the sample of field
stars to 13,004,005. The three color-Teff relations, one each for
(g−r)0, (g−i)0, and (g−z)0, are applied to each star and the
mean Teff is adopted. After removing sources that are also
included in the training set, there are 12,569,529 stars with a
mean Teff between 4500 and 7000 K, and they are summarized
in Table 3.16

The second caveat is that most data-driven methods are not
reliable outside the parameter space enclosed by the training
set. Figure 1 shows the training set is confined to a specific
location in feature space, i.e., the stellar locus. Thus, model
predictions for sources within the range of acceptable Teff, but
well outside the region defined by the training set, may be
unreliable. To aid the user in identifying potentially unreliable
estimates of [Fe/H], Table 3 includes a proximity measure ρ,
which measures the relative distance of any given star to the

Table 3
Final Metallicity Predictions for Field Stars

Name Object IDa αJ2000.0 δJ2000.0 Teff
b [Fe/H]SVM

c [Fe/H]SOM
d ρe

(hh:mm:ss.ss) (dd:mm:ss.s) (K) (dex) (dex)

SDSS J000000.00+204152.5 1237680247351279746 00:00:00.00 +20:41:52.5 5617 −2.024 −2.425 0.0963
SDSS J000000.01+345915.4 1237666184574271704 00:00:00.01 +34:59:15.4 4579 −0.568 −0.567 0.1641
SDSS J000000.02+125954.1 1237678920204681228 00:00:00.02 +12:59:54.1 5903 −0.815 −0.828 0.0627
SDSS J000000.03+032107.2 1237678620102164731 00:00:00.03 +03:21:07.2 5340 −0.581 −0.587 0.0898
SDSS J000000.04+015313.0 1237678596479844501 00:00:00.04 +01:53:13.0 4726 −0.307 −0.311 0.1030
SDSS J000000.05–005019.4 1237663783123681350 00:00:00.05 −00:50:19.4 6110 −0.960 −0.958 0.0466
SDSS J000000.05+065743.2 1237669680114106516 00:00:00.05 +06:57:43.2 5010 −0.781 −0.779 0.0830
SDSS J000000.07+333115.1 1237663307989909606 00:00:00.07 +33:31:15.1 5631 −0.394 −0.393 0.0608
SDSS J000000.08+202502.3 1237679504318922768 00:00:00.08 +20:25:02.3 5467 0.166 0.162 0.1057
SDSS J000000.08+305810.6 1237663234451309002 00:00:00.08 +30:58:10.6 5148 −0.356 −0.348 0.0842

Notes. Only the first ten sources are presented here as an example of the form and content of the complete table. The full table, containing all 12,735,277 SDSS point
sources with [Fe/H] predictions, is available online.
a ObjID from the SDSS DR10 PhotoObjAll table.
b Photometrically determined Teff using the method of Pinsonneault et al. (2012). See the text for further details.
c Photometric [Fe/H] determined using the SVM-regression model from Section 4.1.
d Photometric [Fe/H] determined using the synthetic-oversampling method (see Section 5). Stars with [Fe/H]SOM � −2.707 are EMP candidates.
e The proximity measure, ρ. See Table 4 for useful thresholds on ρ.

(This table is available in its entirety in machine-readable form.)

15 SDSS has obtained a set of high-resolution near-infrared spectra that is this
large (Alam et al. 2015); however, that sample includes very few VMP stars
and virtually no EMP stars.

16 The color-Teff relations presented in Pinsonneault et al. (2012) are calibrated
for dwarf stars at [Fe/H] = −0.2 dex. A change in [Fe/H] results in a change
in Teff at fixed color. As a result the limits placed on the photometrically
determined Teff will slightly bias the sample toward MP stars by including
some that are cooler than 4500 K and hotter than 7000 K (see Table 3 in
Pinsonneault et al. 2012). Given the magnitude limits on the sample and the
rarity of MP stars, the overall contamination is expected to be very small. The
color-Teff relations have a weak dependence on glog , with only cool giants
(Teff  5000 K; glog � 3.5) requiring corrections. Stars with glog ≈ 2.0 need
the most significant corrections, which, nevertheless, are relatively small
( DT 100eff K). Given the rarity of giants in the SDSS photometric sample
(see, e.g., Ivezić et al. 2008a), these corrections are ignored and should not
significantly bias the final predictions from the models.
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training set. The proximity measure is defined as:
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where ρi is the proximity measure of the ith source, xi is the
four-dimensional feature vector, with each feature, l, scaled to
the standard normal distribution, respectively, and the sum is
over each of the j 60-nearest neighbors to the ith source as
determined by the KNN algorithm. Thus, ρ represents the mean
Euclidean distance between a given source and its 60-nearest-
training-set neighbors.17 Sources with large ρ are likely to have
unreliable estimates of [Fe/H].

The proximity measures are relative, meaning there is no
hard and fast rule for a threshold on ρ that eliminates all
unreliable [Fe/H] estimates. Table 4 shows the proximity
measure for training set sources based on several commonly
adopted threshold percentiles. Studies that require high-fidelity
[Fe/H] estimates can adopt a small ρ threshold, while studies
requiring larger samples can relax that criterion. Figure 7 shows
training-set and field stars that would be considered unreliable
when adopting a proximity-measure threshold of ρt = 0.3883,
corresponding to the most distant 1% training-set stars. The top
panel of Figure 7, which highlights sources in the training set,
shows that nearly every training-set source outside the 99.7%
(u − g)0, (g − r)0 contour is flagged as unreliable. Sources with
ρ > 0.3883 inside the contour have anomalous (g−i)0 or (g
−z)0 colors. Applying the same threshold to the field stars in
Table 3, shown in the bottom panel of Figure 7, shows that
sources distant from the training set are flagged as unreliable.
Once again, the vast majority of stars outside the 99.7%
contour are flagged as unreliable. It is reassuring that the cluster
of sources located at (u−g)0, (g−r)0 ≈ (0.15, 0.2), which
should be dominated by quasars (Sesar et al. 2007), is flagged
with large ρ. Of the 12,569,529 field stars to which the model is
being applied, the ρt = 0.3883 threshold would flag ∼1.7% as
potentially unreliable. That this number is close to 1% suggests
that the distribution of stars in the training set and the field are
very similar.

The synthetic-oversampling predictions ([Fe/H]SOM) pre-
sented in Table 3 come from the model with 40× oversampling
and no downsampling. When using this model, any stars with
[Fe/H]SOM � −2.707 are considered EMP candidates.

Adopting this threshold results in 16,606 candidates in Table 3.
That threshold corresponds to a precision= 0.05, meaning
∼830 of these candidates should be genuine EMP stars. This
estimate ignores the proximity measure, however, and thus
likely overestimates the true number of EMP stars in the
sample. The application of a conservative proximity-measure
threshold, ρ � 0.1705, which corresponds to the 95th percentile
of the training set (see Table 4), reduces the sample to
11,332,300 stars with 11,122 EMP candidates. Of these
candidates, ∼560 should be bona fide EMP stars given the
precision of the synthetic-oversampling model. There are only
a few hundred known EMP stars that have been confirmed with
high-resolution spectra (e.g., Aoki et al. 2013; Roederer
et al. 2014; Jacobson et al. 2015), the discovery of ∼560
new members of the class would represent a huge windfall for
this field of study.

Table 4
Proximity Measure Thresholds

Percentile rt

68 0.0843
90 0.1310
95 0.1705
99 0.3883
99.5 0.5774
99.7 0.7737

Note. The threshold, r ,t corresponding to the percentage of training set sources
with r r .t
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Figure 7. -u g ,0( ) -g r 0( ) CC diagram showing the location of stars with
large proximity measure. Top: density plot showing the total number of
training set stars in each ∼0.01 × 0.01 mag pixel on a white to black color
scale. The blue points show training set stars in the 99th percentile of proximity
measure, corresponding to r 0.3883. The solid orange line shows the 99.7%
contour for the training set, as measured in the -u g ,0( ) -g r 0( ) plane.
Bottom: density plot showing the total number of field stars with r < 0.3883
pixel−1. The solid orange line shows the same contour as the top panel. Red
points show the location of field stars with r 0.3883. The majority of stars
outside the main stellar locus have large proximity measure. There are no field
stars with -g r 0.13,0( ) because the colors-Teff method does not apply to
stars with Teff > 7000 K.

17 The choice of 60 neighbors is arbitrary, but the relative ranking of the
proximity measure does not change significantly for any choice of k 1
neighbors. k = 60 was adopted to match the optimized KNN model from
Section 4.1.
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7. SUMMARY AND CONCLUSIONS

I have presented a new photometric method for inferring
stellar metallicity from the SDSS ugriz filters. The model,
which utilizes machine-learning algorithms, is capable of
identifying previously unknown EMP stars once the training
set has been supplemented with synthetic EMP stars. The
model is trained using a large sample of SDSS stars with high
S/N spectra and reliable measurements of [Fe/H] from the
SSPP. Following reasonable cuts on photometric and spectro-
scopic quality, and the removal of duplicate spectra of the same
source, the training set consists of 170,610 unique stars.

The [Fe/H]-regression model represents an improvement
over previous methods by utilizing all four non-redundant
colors and a non-parametric model capable of capturing
complex interactions between the colors. Three separate
models, KNN, RF, and SVMs, are trained, and optimized,
using 110,000 stars from the training set. When these models
are applied to the 60,610 star independent validation set, they
each produce an RMSE ≈ 0.29 dex relative to the spectro-
scopic measurements of [Fe/H]. Of the three models, SVM
produces the smallest RMSE and bias, though the improvement
relative to KNN and RF is small (1%). The performance of
the machine-learning models is compared to that of low-
resolution spectra, which produce a typical scatter of ∼0.24 dex
when measuring [Fe/H] (Lee et al. 2008a). Using a sample of
stars with high-resolution spectroscopic observations as ground
truth, the SSPP provides only a ∼17% improvement over the
photometric method presented in this paper. Thus, the
[Fe/H] regression methods presented here are comparable to
the accuracy achieved with low-resolution spectra, with the
major benefit that photometric colors can be acquired much
cheaper than spectra. Furthermore, it was demonstrated that the
machine-learning regression methods perform better than other
photometric-metallicity techniques, while also being more
general. There is an ∼18% improvement relative to the
methods presented in Ivezić et al. (2008a) and Bond et al.
(2010), while the performance is similar to that achieved in
Yuan et al. (2015a). As a demonstration of the fidelity of the
model, [Fe/H] predictions for 12,569,529 stars without spec-
troscopic observations are presented in Table 3. Proximity
measures are provided for the ∼12 million stars with
[Fe/H] predictions, in order to evaluate the reliability of the
individual estimates.

A challenge for this method, and all photometric-metallicity
techniques, is correcting for interstellar reddening. The ability
to measure [Fe/H] directly from absorption lines, independent
of reddening, remains a major advantage of spectroscopy. In
principle, data-driven photometric methods could be used to
recover Teff, [Fe/H], and extinction (the method presented in
Section 4 effectively recovers Teff and [Fe/H]), but that would
require a significantly enhanced training set. Typically, a
training set must grow by approximately an order of magnitude
to properly capture the diversity necessary to resolve a new
parameter. Even with such an expanded training set, I speculate
that broadband filters will struggle to fully break the
degeneracies between these parameters (unless there is also a
significant improvement in photometric precision). Thus,
broadband photometric-metallicity techniques are, and will
remain, limited in the vicinity of the Galactic plane.

A primary aim of developing the photometric model was to
discover EMP stars. There is a significant class imbalance in
the training set, <0.2% of the sample consists of EMP stars,

making it difficult to identify these rare relics from the early
universe. To improve the recoverability of these sources, a new
framework, referred to as the synthetic-oversampling method,
was developed where synthetic EMP stars are added to the
training set while a randomly selected fraction of the majority
(non-EMP) class stars are removed.
The goal of the synthetic-oversampling method is to identify

EMP stars, while having a relatively low tolerance for false
positives. Thus, the adopted FoM is to maximize the model
recall at a fixed precision= 0.05, which corresponds to 19
false positives for every newly discovered EMP star. It is found
that the synthetic-oversampling method outperforms the base-
line model, where no oversampling or downsampling have
occurred, with a recall ≈ 0.2 at precision= 0.05. This
represents a ∼100% increase in the FoM relative to the baseline
model. The synthetic oversampling method was further tested
using 119 stars with high-resolution spectroscopic observations
from Aoki et al. (2013). This sample includes 64 bona fide
EMP stars, and the use of LOO CV shows that the model
produces a recall ≈ 0.125.
An examination of the EMP stars that are recovered by the

synthetic-oversampling method shows that there is a bias
toward the selection of warm (Teff  6000 K) stars with
relatively high surface gravities ( glog  3.5). The SEGUE
target selection of MP stars was intentionally biased toward
warmer stars (Yanny et al. 2009), which in turn leads to a bias
in the training set for this study. Thus, the bias introduced by
SEGUE is propagated through to the synthetic-oversampling
method.
While 19 false positives for every EMP star seems high, this

represents a significant improvement over the MP candidate
selection techniques adopted by SEGUE. Within the training
set 20,200 stars were targeted as MP, and only ∼0.3% are EMP
stars. Another 18,606 were targeted as likely MPTO stars, with,
again, a yield of only ∼0.3%. Furthermore, of the 19 false
positives for every EMP star, ∼65% of those false positives are
VMP stars. Thus, the synthetic-oversampling method produces
a highly pure sample of MP stars. Future and ongoing
spectroscopic surveys hoping to efficiently identify large
samples of EMP stars, such as LAMOST, should adopt the
synthetic-oversampling method for target selection.
While the present work is primarily concerned with the

discovery of new EMP stars, and the search is limited to those
with 4500 K � Teff � 7000 K, it should be noted that the
methodology is not limited to this specific problem. Given an
appropriate training set, the methods presented here could be
adapted to measure M dwarf metallicities, separate blue-
horizontal-branch stars from blue stragglers, or identify other
classes of objects that are significantly outnumbered by non-
class members, such as quasars in the redshift range 2.5
< z < 3 (see, e.g., Butler & Bloom 2011).
Astronomy has embarked upon an age where wide-field

photometry is cheap: SDSS and Pan-STARRS (Kaiser
et al. 2010) have mapped a significant fraction of the sky in
multiple filters to a depth of ∼21–22 mag. LSST will do the
same for the entire southern sky to a depth of ∼27 mag. Now,
more than ever, it is imperative that meaningful physical
information, such as [Fe/H], can be extracted from photo-
metric-only surveys. The large volume of data produced by
LSST will prove no better than existing observations if the
proper algorithmic solutions are not developed to deal with the
new, complex data stream. Machine-learning methods can cope
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with the coming data deluge, and this work represents a
demonstration of their potential. A great deal can be learned
about the Galaxy from photometric metallicity measurements
(e.g., Ivezić et al. 2008a; Bond et al. 2010), while the heaps of
yet to be discovered EMP stars provide the promise of
shedding light on otherwise unobservable aspects of the early
universe.
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