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Advanced interferometric gravitational-wavedetectors use optical cavities to resonantly enhance their shot-
noise-limited sensitivity. Because of positive dispersion of these cavities—signals at different frequencies pick
updifferent phases, there is a tradeoff between the detector bandwidth and peak sensitivity,which is a universal
feature for quantummeasurement devices having resonant cavities.We consider embedding an active unstable
filter inside the interferometer to compensate the phase, and using feedback control to stabilize the entire
system. We show that this scheme in principle can enhance the bandwidth without sacrificing the peak
sensitivity. However, the unstable filter under our current consideration is a cavity-assisted optomechanical
device operating in the instability regime, and the thermal fluctuation of the mechanical oscillator puts a very
stringent requirement on the environmental temperature and the mechanical quality factor.
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Introduction.—Current ground-based gravitational-wave
(GW) detectors, including Advanced LIGO [1], Advanced
VIRGO [2], and KAGRA [3], are kilometer-scale laser
interferometers that measure GW-induced differential arm
length change. These detectors are macroscopic in size, and
yet one of the major noises that limit their sensitivity is the
quantum noise—quantum radiation pressure noise at low
frequenciesandquantumshotnoiseathighfrequencies (above
∼100 Hz). To reduce the shot noise, they incorporate optical
cavities in two arms that resonantly enhance both the optical
power and signal, as shown schematically in Fig. 1(a). In
addition, they include a power-recycling mirror (PRM) at the
bright (common) port and a signal-recyclingmirror (SRM) at
the dark (differential) port—PRM further increases the power
circulating inside arm cavities, e.g., up to ∼1 MW for
Advanced LIGO, while SRM coherently reflects the signal
back to the interferometer and modifies the detector response
toGWsignalsatdifferent frequencies.For instance,Advanced
LIGO, in its nominal operationmode, uses a SRM to broaden
the detector bandwidth, which equalizes the response to both
low-frequency andhigh-frequency signals.However, this is at
a priceofdecreasing thepeak sensitivitywhenconsidering the
shot noise, as illustrated in Fig. 1(b). Such a tradeoff between
the bandwidth and the peak sensitivity (with their product
being approximately constant) can be attributable to the
positive dispersion of optical cavities—signals at different
frequencies are not simultaneously resonant due to the
frequency-dependent propagation phase. This feature was
first pointed out byMizuno [4] in theGWcommunity. It turns
out to be universal for all quantummeasurement devices with
resonant cavities, e.g., optomechanically based force or
position sensors [5], and laser ring gyros [6]. The band-
width-sensitivityproduct is ultimatelyboundedby theamount
of energy stored inside the devices, which is a consequence of
the quantum Cramér-Rao bound [7,8].

There are several approaches proposed in the literature
aiming at increasing the bandwidth-sensitivity product. They
generally fall into two categories: (i) a sensitivity-oriented
category—using external squeezing [9,10] or internal
squeezing [11,12] to reduce the shot noise while keeping
broad bandwidth (external squeezing has been implemented
in large-scale GW detectors [13,14] and is also planned for
future upgrades [15–17]), and (ii) a bandwidth-oriented
category—the so-called white-light-cavity idea [18–25]—
that uses an atomic medium with negative dispersion to
cancel the positive dispersion of optical cavities.
We consider a different approach to improve the broad-

band-sensitivity product by embedding an unstable filter
inside the interferometer to compensate the phase, and the

FIG. 1 (color online). (a) The typical laser interferometer
configuration for advanced GW detectors, with an unstable
optomechanical filter (blue) embedded. (b) The tradeoff between
the detector bandwidth and peak sensitivity (black and red
curves), and the effect of adding an unstable filter in the ideal
scenario (blue). (c) A simple flow chart for the entire scheme.
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entire scheme is stabilized via feedback control. Notice that
different from the stable atomicmediumproposed previously,
sucha filter is not constrainedby theKramers-Kronig relation,
and yet there is no violation of causality, as the controlled
system is stable and the measured output always lags behind
incoming GW signals. In addition, as indicated by the flow
chart in Fig. 1(c), the feedback uses output that contains both
the signal and noise, and therefore it does not influence the
signal-to-noise ratio, as proven in Refs. [26,27]. One reali-
zation of the unstable filter that we consider here is an
optomechanical device operating in the instability regime
pumped by an additional laser, as illustrated schematically in
Fig. 1(a). This is inspired by recent experimental observations
of the optomechanical analogue of the electromagnetically
induced transparencybyWeis et al. [28],Teufel et al. [29], and
Safavi-Naeini et al. [30], and also a more recent theoretical
proposal by Ma et al. [31].
A brief summary.—Before delving into the details, we

summarize the main features and explain them qualita-
tively. For the main interferometer, arm cavities are tuned to
be resonant with respect to the input laser (carrier light) at
frequency ω0, i.e., ω0Larm=c ¼ Nπ with Larm the arm
cavity length (4 km for Advanced LIGO) and N an integer.
GW-induced motion of the end test masses (ETMs)
modulates the carrier and creates signal sidebands at ω0 þ
Ω with Ω being the GW frequencies. When propagating
inside the arm cavity, these sidebands pick up the extra
phase of ϕarmðΩÞ ¼ 2ΩLarm=c (round-trip) compared with
the carrier. In order to make these sidebands also resonant
inside the arm cavities, ideally we need to insert an optical
filter with negative dispersion to cancel such an extra phase:
ϕarmðΩÞ þ ϕfilterðΩÞ ¼ 0, namely,

ϕfilterðΩÞjideal case ¼ −2ΩLarm=c: ð1Þ
In addition, the filter should not distort the GW waveform,
or equivalently, the modulus of its frequency-domain
transfer function needs to be close to unity—an all-pass
filter. Because of the famous Kramers-Kronig relation, any
stable filter can only approximate such a negative-
dispersion all-pass filter within a certain frequency band.
In contrast, this is no longer a constraint for unstable filters,
if one can find a realistic realization and proper feed-
back control scheme—the unstable optomechanical filter
presented here provides such an example.
Specifically, for the optomechanical filter, the radiation

pressure couples the optical field intensity and the mechani-
cal displacement. Such a nonlinear coupling is analogous to
the three-wave mixing in nonlinear optics. By tuning the
pump laser frequency to be ω0 þ ωm with the mechanical
oscillator frequency ωm much larger than the cavity
bandwidth γf, i.e., the so-called resolved-sideband regime
ωm ≫ γf ≫ Ω, the cavity resonance at ω0 is in favor of the
down-conversion process, which amplifies the sidebands
around ω0 and mechanical motion. It can be viewed as a
phase-insensitive parametric amplifier for sidebands with
the following input-output relation:

âoutðΩÞ ≈
Ωþ iðγm þ γoptÞ
Ωþ iðγm − γoptÞ

âinðΩÞ: ð2Þ

Here, γm ≡ ωm=Qm is the mechanical damping rate with
Qm being the quality factor; γopt is the negative mechanical
damping rate due to the optomechanical interaction, and is
approximately equal to PcFω0=ðmωmc2Þ, where Pc is
the intracavity laser power, F is the cavity finesse, andm is
the mass of the mechanical oscillator.
The unstable regime we referred to is when γopt becomes

much larger than γm and the mechanical damping rate
becomes negative. With the feedback control engaged, the
open-loop input-output relation of the optomechanical filter is

âoutðΩÞ ≈
Ωþ iγopt
Ω − iγopt

âinðΩÞ ≈ − exp
�
−
2iΩ
γopt

�
âinðΩÞ: ð3Þ

This realizes the all-pass filter with phase in Eq. (1) when

γopt ¼ c=Larm; ð4Þ
and the resulting intracavity laser power of the filter scales as

Pc ≈ 102W

�
4 km
Larm

��
10 MHz
ωm=2π

��
0.1mg
m

��
F
105

�
: ð5Þ

In Fig. 2, we show the corresponding shot-noise-only
sensitivity with the nominal parameters given above and
one additional parameter Lf ¼ 1 cm being the filter cavity
length.We can see that the unstable filter can compensate the
phase at low frequencies but is not perfect at high frequencies
due to the high-order frequency dependence of the phase
delay, which in principle can be improved by cascading
several unstable filters.
So far, we have only mentioned the phase property of the

unstable filter. As a general principle proven by Caves for

FIG. 2 (color online). The top panel shows the shot-noise-only
strain sensitivity of the unstable-filter scheme, compared with the
broadband and narrow-band tuned cases without the filter. The
power and arm cavity length are the same as for Advanced LIGO.
At high frequencies, the sensitivity deviates from the ideal
scenario, because of imperfect phase cancellation of higher-order
terms of Ω in eiϕarmðΩÞ (bottom panel).
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phase-insensitivity parametric amplifiers [32], there will be
an additional noise term given Eq. (2). As shown later, it
comes from the thermal noise of the mechanical oscillator.
In order for its effect not to be significant, we require

8kBTenvir=Qm ≲ ℏγIFO; ð6Þ
where kB is the Boltzmann constant, Tenvir is the environ-
mental temperature, and γIFO is the original detector band-
width before introducing the unstable filter. Therefore,
the lower the detector bandwidth is that we start off with,
the higher is the requirement that will be imposed on the
temperature and quality factor. As an order of magnitude
estimation, we have

Tenvir

Qm
≲ 6 × 10−10 K

�
γIFO=2π
100 Hz

�
: ð7Þ

In Fig. 3, we show the thermal noise effect on the sensitivity.
Asmentioned inRef. [31], one approach formitigating such a
thermal-noise effect is applying the optical-dilution idea
[33–36], which uses optically induced rigidity to dilute the
mechanical dissipation, and allows for enhancement ofQm by
a factor of 100 or evenmore, but further experimental study is
necessary. After this summary, we will present more details
about the scheme and also the issue of feedback control.
Dynamics of the optomechanical filter.—We start with

the optomechanical filter shown in Fig. 4(a), derive the
input-output relation for the sidebands, and later combine it
with the main interferometer. It is an optomechanical device
that has been studied extensively in the literature (see the
recent reviews in Refs. [5,37]), with the Hamiltonian given
by Ĥfilter ¼ Ĥ0 þ Ĥint þ Ĥγf þ Ĥγm. The free part Ĥ0 is

Ĥ0 ¼ ℏω0â†âþ p̂2

2m
þ 1

2
mω2

mx̂2: ð8Þ
The linearized interaction Hamiltonian Ĥint is

Ĥint ¼ −ℏg0½âeiðω0þωmÞt þ â†e−iðω0þωmÞt�x̂ ð9Þ
with g0≡ω0ā=Lf and ā¼½2PcLf=ðℏω0cÞ�1=2. Ĥγf describes
how the cavity mode â interacts with the ingoing (outgoing)
field âin (âout); Ĥγm describes the coupling between the
mechanical oscillatorwith the environmental thermal bath b̂th.

The parameter regime we are interested in, as mentioned
earlier, is the so-called resolved-sideband regime illustrated
in Fig. 4(b). This allows us to ignore the upper mechanical
sideband around ω0 þ 2ωm and use the rotating-wave
approximation (RWA) in the interaction picture, obtaining

ĤRWA
int ¼ −ℏgðâ b̂þâ†b̂†Þ; ð10Þ

wherewe have introduced the annihilation operator b̂ for the
mechanical oscillator through x̂ðtÞ≡ xqðb̂e−iωmt þ b̂†eiωmtÞ
and g≡ g0xq with xq being the ground-state uncertainty.
The resulting Heisenberg equations of motion read

_̂aðtÞ þ γfâðtÞ ¼ igb̂†ðtÞ þ ffiffiffiffiffiffiffi
2γf

p
âinðtÞ; ð11Þ

_̂bðtÞ þ γmb̂ðtÞ ¼ igâ†ðtÞ þ
ffiffiffiffiffiffiffiffi
2γm

p
b̂thðtÞ: ð12Þ

Solving them in the frequency domain, we obtain the input-
output relation for sidebands using âout ¼ −âin þ

ffiffiffiffiffiffiffi
2γf

p
â:

âout ≈
Ωþ iðγm þ γoptÞ
Ωþ iðγm − γoptÞ

âin þ
2

ffiffiffiffiffiffiffiffiffiffiffiffi
γmγopt

p
Ωþ iðγm − γoptÞ

b̂†th; ð13Þ

where we have used γf ≫ Ω and defined γopt ≡ g2=γf≈
PcFω0=ðmωmc2Þ. The first term gives Eq. (2) and in
Fig. 5, we compare it with the exact phase of the
optomechanical filter without the RWA and γf ≫ Ω. The
second term is the additional the thermal noise term
mentioned earlier, and the spectral density for b̂th is
approximately given by 2kBTenvir=ðℏωmÞ þ 1.
For themechanical sideband, the resulting susceptibility is

χmðΩÞ ¼ −ðiΩþ γm − γoptÞ−1: ð14Þ
Themechanicalmotion is unstable in theparameter regimeof
interest with γopt much larger than the bare mechanical
damping rate γm, and a feedback control is thus needed. We
show the control scheme after considering the filter together
with the main interferometer, as given below.
Dynamics of the entire system.—The total Hamiltonian

reads Ĥtot ¼ ĤIFO þ Ĥfilter þ ĤIFO-filter. We can model the
main interferometer also as an optomechanical device [38]:

ĤIFO¼ℏω0d̂
†d̂þĤγIFO þ

P̂2

2M
−ℏG0ðd̂þ d̂†ÞX̂þ X̂FGW:

ð15Þ
Here, d̂ is the differential optical mode—a single-mode
approximation that is valid when considering a sideband

FIG. 4 (color online). (a) Schematics of the optomechanical
filter. (b) Frequencies of interest: cavity resonance ω0 (red), laser
frequency ω0 þ ωm (blue), and its lower sideband (black), with
the upper sideband around ω0 þ 2ωm (not shown).

FIG. 3 (color online). Effect of the thermal fluctuation of the
mechanical oscillator on the sensitivity.
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frequency much lower than one free spectral range
c=ð2LarmÞ, ĤγIFO describes the interaction between d̂ and
the ingoing (outgoing) field d̂inðd̂outÞ at the dark port,
G0 ¼ ω0d̄=Larm is the coupling strength and d̄ ¼
½2ParmLarm=ðℏω0cÞ�1=2 with Parm being the arm cavity
power, X̂ is the differential motion of the ETMs and is
driven by the GW as a tidal force, and FGW ¼ MLarmḧðtÞ
with h being the GW strain. The coupling between d̂ and â
can be quantified by (exchanging photons)

ĤIFO-filter ¼ ℏωsðd̂†âþ d̂â†Þ; ð16Þ
where ωs ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cγf=Larm

p
is the coupling rate, equal to the

optomechanical coupling rate g when Eq. (4) is satisfied.
To focus on the shot noise, we will first ignore the

radiation pressure effect on the ETMs by assumingM → ∞
(a finite test mass is considered in the rigorous treatment).
The resulting equations of motion under the RWA are

_̂a ¼ −iωsd̂þ igb̂†; ð17Þ
_̂b
† ¼ −γmb̂† − igâþ

ffiffiffiffiffiffiffiffi
2γm

p
b̂†th; ð18Þ

_̂d ¼ −γIFOd̂ − iωsâþ
ffiffiffiffiffiffiffiffiffiffiffi
2γIFO

p
d̂in þ iG0Larmh: ð19Þ

The input-output relation at the SRM is d̂out ¼ d̂in−ffiffiffiffiffiffiffiffiffiffiffi
2γIFO

p
d̂.

The system stability can be examined from the eigenvalues
of the dynamical matrix (read off the equations of motion):

A ¼

2
64

0 ig −iωs

−ig −γm 0

−iωs 0 −γIFO

3
75: ð20Þ

Having eigenvalues with a positive real part implies insta-
bility, which is the case given the relevant parameter regime.
To find the stabilizing controller, we follow the state-space

approach. We first need to examine the observability and
controllability of the system. It turns out that if we detect the
output phase quadrature, which contains the GW signal,

using homodyne detection, only one of the two mechanical
quadratures will be observed, and this will lead to an
uncontrollable system. An apparent solution is measuring
both the amplitude and phase quadratures with heterodyne
detection. However, this is at a price of increasing the shot
noise by

ffiffiffi
2

p
in amplitude [39]. Instead, we can pick off a

small portion of the output signal and use the heterodyne
detection only for the control purpose. The rest is still
measured using the homodyne detection for extracting the
GW signal. As long as we optimally combine it with the
pick-off signal using a Wiener filter, the sensitivity will not
degrade by a noticeable amount.
In the sideband picture, the resulting readout vector with

(using) heterodyne detection isD ¼ ð0; 0; 1Þ—themeasured
d̂out is linear to d̂, and the control input vector is B ¼
ð0; 1; 0ÞT (superscript T for transpose)—the feedback force

is coupled to themechanical displacement that is linear to b̂†.
The system becomes both observable and controllable, as we
have rankð½D;DA;DA2�Þ¼ rankð½B;AB;A2B�Þ¼3. A sta-
bilizing controller can then be constructed (see Sec. 9.4 of
Ref. [40]), which has the following transfer function (from d̂
to b̂†) in the frequency domain:

CðΩÞ ¼ −Kð−iΩI −Aþ BKþLDÞ−1L; ð21Þ
where K¼ðK1;K2;K3Þ and L ¼ ðL1; L2; L3ÞT are chosen
such that eigenvalues of A −LD and A −BK all have a
negative real part. Given the nominal parameter specification
in Eq. (5), the system will be stabilized by setting K¼
3×105ϵ−1ð−i;1;−1Þ and L¼ 5×105ϵ−1ði;1.2;1Þ, where ϵ
is the fraction of the output (in amplitude) measured using
heterodyne detection. With this set of K and L found, an
arbitrary stabilizing controller can be generated via Youla-
Kučera parametrization [41], which is used for control
optimization.
Rigorous treatment.—We have used several approxima-

tions in order to gain intuitive understanding. These

FIG. 5 (color online). The difference between ϕfilter obtained
without using the RWA and −2 arctanðΩ=γoptÞ. The parameter
regime with ωm ≫ γf ≫ γopt is thus preferred for matching the
required frequency dependence.

FIG. 6 (color online). The figure shows the total quantum noise
(including radiation pressure noise) of the unstable filter scheme
at different temperatures. The color code for different curves is
the same as in Fig. 2. The test mass is assumed to be 40 kg, the
same as for Advanced LIGO.
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approximations are reasonable in the parameter regime that
we are focusing on. We briefly outline how the more
rigorous treatment is applied in the actual analysis for
producing the results presented in this Letter. Specifically,
the optomechanical interaction in the main interferometer
mixes the upper and lower sidebands around ω0, which
was ignored by assuming an infinite test mass and focusing
on the shot noise only. The interaction in the optomechan-
ical filter mixes in sidebands around ω0 þ 2ωm that were
ignored in the RWA. A rigorous treatment therefore
involves propagating four sidebands at frequency ω0 �
Ω and ω0 þ 2ωm � Ω. The result is shown in Fig. 6 as
one example. Notice that the low-frequency radiation
pressure noise can be reduced by either using a fre-
quency-dependent readout [42] or increasing the test mass
size.
Conclusion.—We have proposed the idea of using

unstable filters for improving the bandwidth of laser
interferometric gravitational-wave detectors. It can also
be applied to other quantum measurement devices with
resonant cavities, as the underlying principle is the same.
The main difficulty for implementing this idea with
optomechanics-based filters is the stringent requirement
on the thermal noise of the mechanical oscillator, which
could be mitigated by using the optical-dilution idea, but
requires further experimental verification.
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