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Quantitative Calculation of Electro-Optic Coefficients of Diatomic Crystals
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The bond-charge dielectric theory of Phillips and Van Vechten is applied to the calcu-
lation of the electro-optic tensor coefficients. The agreement of the theoretical predic-
tions with experimental values in the case of zinc blende and wurtzite crystals is very

good.

The second-order nonlinear optical response of
asymmetric crystals is usually represented by
the relation P, * 9=y, E,E,® between the am-
plitude of the induced polarization at w+ and
the inducing field amplitudes at w and . The
case when both w and Q are optical frequencies,
that is, frequencies above the lattice response
but below optical absorption, has been considered
by Levine.! He used the localized bond-charge
model [see Fig. 1(a)] of Phillips and Van Vechten?*®
(PV) which attributes the dielectric response of
covalent crystals to the localized bond charge re-
sulting in a linear susceptibility:

X =(hQ,)?/E 2. (1)

Here @, is the plasma frequency due to valence
electrons and E,, the effective energy gap, is giv-
en by E *=E ?*+C?, where E, is the homopolar
component and C the heteropolar (ionic) compo-
nent of the gap energy. Levine starts with the
linear dielectric response P,“) =y,,E ,©), taking
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FIG. 1. The response of the ions and the bond charge
to the applied electric field. In (2) and (b) the frequency
of the field is higher than the lattice response. Only
the bond charge is displaced, while the ions remain
stationary. In (c) and (d) the frequency of the field is
lower than the lattice response. It induces a displace-
ment of the bond charge (Ar,), a variation of the bond
length (Ady, and a bond rotation (A 6).

X;i; to be an instantaneous function of the second
field E,Y. This field causes a change A7, (=~ &rg)
in the bond charge position, as shown in Fig. 1(b),
which oscillates at . The explicit dependence of
E, and C on 7, given by PV is then used to obtain
Xijrs Where

Xi5=Xii O +AX;(E)
=x1” + 213, E D cosQt. (2)

If the frequency Q2 is below the lattice response
region (we will refer to it in this case as “low”),
then in addition to the purely electronic nonlinear
response described above we now have a contri-
bution to x,;, due to the fact that now the crystal
ions are capable of following the field E (¥ cos§t.
This is illustrated in Figs. 1(c) and 1(d). In addi-
tion to the displacement A7, of the covalent bond
charge we now have an elongation Ad, of the atom-
ic separation as well as a rotation A6 of the bond
direction, both caused by the ionic displacement
Ax,. Ax, is obtained from “low”-frequency dielec-
tric constant measurements and is used to deter-
mine d, and A6, We use, in the spirit of Levine,
the change Ad,, to calculate the corresponding
change Ax cosQt in bond susceptibility. This will
give rise to a polarization P,“* D=y, E @E®,
A second contribution to x,;, is due to the rocking
at @ of the bond angle (6 =6,+A 6 cosQt) which
yields a dipole component along the direction ¢
at (w+8) even when Ad,=0.

In what follows we will obtain expressions for
the ionic contributions to x;;, which are due to
Ad, and A6, When the result is added algebraical-
ly to x;;, %1, as measured by second-harmonic-
generation experiments or calculated by Levine,'
the result is the total nonlinear tensor x;;,
=X 0" O+ X551 . The constants x;;, thus de-
termined are those which characterize the linear
electro-optic (Pockels) effect. The relationship
between the conventionally defined electro-optic
tensor 7;;, and x;;, is

Xise=— (€;€,/2€ 0 ;jpe (3)

The linear susceptibility of a diatomic crystal
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is given as x =(hQ,)*/E *.*> The ionicity and cova-
lency of the bond are defined as f;=C?/E}?, f
=E,2/E 2® The expressions used in the evalua-
tion of E, and C are''

s $=2.48, (4)
C(xexp("ks'ro)(zu/ra "ZB/’VB)ezp (5)

VYa=Vp=7V,=dy/2,

Ey<r,

where d,=v, +7 3 is the bond length, 7, s are the
atomic radii, and exp(—%g,) is the Thomas-Fer-
mi screening factor. In order to consider crys-

tals with highly unequal atomic radii, a general-

ized form for E, was proposed" as

23[ (,ya - 7::)28 + (,r _,},c)zs]
2(ry—- rjzs ’ ()

E, o7,

where 7 is the average core radius.
The linear macroscopic susceptibility tensor
X;j is related to the bond polarizability 8, by

xi.i=V_12nanianjBn’ (7)

aB ko 3)ad Zo+Zs,
3 [f (1+ >+sfc—2]"’402+[f1 Z

s (2s —1>—L—ﬂ—]d9

where V is the volume of unit cell, @, is the di-
rection cosine of the nth bond, and the summation
is over all the bonds in a unit cell. Although PV
describe the macroscopic susceptibility x in
terms of the average energy gap, we assume that
E, and C are also related to the bond polarizabili-
ty directly, i.e.,

Bao (h2,F/E 2. (8)

When the bond length varies, it is reasonable to
assume that the ratio of v, and » 5 remains con-
stant. With this assumption, the two independent
parameters, 7, g, can be transformed into two
quantities which relate directly to the macroscop-
ic properties of crystals:

Avy =(ry/dy)Ady+ 0
Arg=(rg/d)ad, -6,

where 0 is the displacement of the bond charge in
the case of no bond elongation, Ad,=0. From
Eqs. (5), (6), (8), and (9), the change of bond po-
larizability is obtained as (here we drop the bond
index n)

(9)

ey (10)

where p=(#q—73p)/(¥o+73). In the first term, ksro/2 is obtained because the screening wave number

k is proportional to d, -1/2 ,¥ and the number -3 is because @, is proportional to d,

-3/2 The second

term on the right-hand swle of (10) is identical to that obtained by Levine in his calculation of the non-

linear optical susceptibility.’
tion of a single bond due to bond stretching.

The first term, which is proportional to Ad,, is thus the ionic contribu-

The rotational contribution can be obtained by considering the changes in bond direction cosines.

These are related to the ionic displacement Ax, by Aa,;=(3;,~

From (7) we have

0O JAX .

Ax;; =V (o 0,,08, +ba,,a, 8, +a,Aa,;8,). (11)
The complete ionic contribution to the nonlinear susceptibility is thus

Ay o= {2 (Ba/ V¥ S i @y O+ 3( 0y 8 1+ anjcik)]}Axh’ (12)
where

F=fdl+3(k g ) +sf,—2.5=[(zkg,) - 1.48]f; - 0.02. (13)
Ax, is related to the dielectric constant of the crystal as

Ne *Ax,=€y(€,,' —€L')E,, (14)
where N is the number of pairs of atoms per unit cell, e * is the Callen effective ionic charge} €, ' is

the relative dielectric constant, €.’ is the relative optical permittivity, and E, is the low-frequency

electric-field component along the k direction.

Using (3) we obtain the final working expression for the ionic component of the electro-optic tensor:

, eg(eH —e.,o! {E

iwo= VNe *e €, o
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TABLE I. Comparison of calculated and measured electro-optic coefficients
(clamped) of zinc blende (r;,) and wurtzite (3 crystals (in units of 107 m/V).
The signs of 7 ¢y, have not been determined except where specified.

Zinc blende Wurtzite

GaAs GaP ZnSe ZnsS ZnTe CuCl ZnS Cds CdSe
€4’ a 13.2 12.0 9.1 8.3 10.1 7.5 8.7¢ 9.5 10.2

-0.09 -0.11 -0.16 -0.18 -0.12 -0.21 -0.18 -0.16 =~0.15
ec*/e 0.20 0.23 0.33 0.35 0.26 0.27 0.35 0.41 0.36
7 onic +1.03 +1.53 +2.64 +2.93 +2.07 —5.56 +3.63 +3.80 +3.61
7 elec -2.73 -3.20 —-468 —-477 —-6.41 +266 ~5.63 =6.71 ~17.40
Youm™® -1.7 -17 -20 -~18 =—-43 =29 =20 =-29 -3.8
Tepr.? =15 =—1.1 2.0 1.6 43 -24 1.8 2.4 4.3

21. P. Kaminow and E. H. Turner, in Handbook of Lasers, edited by R. J. Pres-
sley (Chemical Rubber Co., Cleveland, 1971), p. 453.
bs. Singh, in Handbook of Lasers, edited by R. J. Pressley (Chemical Rubber

Co., Cleveland, 1971), p. 489,

°1. B. Kobyakov, Kristallografiya 11, 419 (1966) [Soviet Phys. Cryst., 11, 369

(1966)] .

For wurtzite crystals, we neglect the small dis-
tortion from the perfect tetragonal structure. g,
can be expressed in terms of the measured macro-
scopic susceptibility x as in (7), and the electro-
optic coefficients of zinc blende and wurtzite
crystals are obtained as follows: zinc blende,

714 °"=0.3689a,2wf/(e */e); (16)
wurtzite,
Vg O"= = 27 ,1°"=0.4260a ¢ 2wf/ (e */e), (17)

where a.;*=V3a,’c,, a, and ¢, are the lattice con-
stants, w =(€ - 1)(€,,—€)/€?, and 7,; are in units
of 1072 m/V, a, and a.¢; in angstroms. Values of
the parameters €,./, f, e * are listed in Table I.
The dependence of the electro-optic coefficients
7, °" on the bond geometry is perhaps the most
illuminating feature to emerge from this work.

This dependence is contained in curly brackets

in (156). For diatomic single-bond crystals 8, is

a constant and the geometrical factor becomes
Gip=l 22 fa,0,0, +3(@,;0,, + ,;0,).

bonds
n

The factor f is typically |f1<0.3. Table II con-
tains a listing of these factors for some key di-
rections (ijk) in crystals of the zinc blende, wurt-
zite and LiNbO, classes. It follows immediately
that when 2 a,;#0 the second term in G, is an
order of magnitude larger than the first one. In
such crystals the ionic contribution to 7;;, is

about an order of magnitude larger than the elec-
tronic term. This is the case in LiNbO, or LiTaO,.
When ,,@,;=0, as in zinc blende and wurtzite,

we have to settle for the smaller term 2, fa,;a,;Q,,.
This is the main reason why LiTaO, has 7,,=30.3

TABLE II. Comparison of the geometrical factors between zinc blende,
wurtzite, and LiNbO;. The quantities shown have been divided by the num-

ber of bonds per unit cell, 7, .

LiNbO,
Zinc blende  Wurtzite  (Nb-O)gyore (Nb-O)1ong
ny "' o, 0 0 0.475 -0.669
ny, 1Yo ? % % 4 %
ny 1o, Y, 0 -4 0.184 -0.185
=1y 12&,,2@"3
ny "1 Za, 0 % 0.107 -0.300

283



VoLUME 44, NUMBER 4

PHYSICAL REVIEW LETTERS

28 JANUARY 1980

x10"'* m/V, while in GaAs and ZnS, 7, ~2Xx10™"?
m/V.

The effective charge e * is related to the Szigeti
effective charge e * by e *=[(€.+2)/3€.Je ,*. The
value of e */e varies from 0.2 to 0.4 and seems
to be independent of the number of valence elec-
trons. The calculated values of 7;;,'°" using (17)
and (18) are shown in Table I as 7;,,;.. The pure
electronic contribution is entered as 7.j. .. Itis
obtained directly from the experimentally deter-
mined second-harmonic-generation coefficient by
¥,,=—4d,;,/€®. For most of the cyrstals in Table
I, ¥ionic 18 positive and 7. is negative. There-
fore, the predicted electro-optic coefficients,

7 eum P =¥ onic ¥ elec, involve the algebraic addi-
tion or cancellation of two numbers of compara-
ble values. The only exception is CuCl. Because
of the unfilled shell in Cu, the sense of bond po-
larization in CuCl is different from that in other
crystals.” The signs of #;,pic and #.j.. 0of CuCl
are thus different from others. However, the
magnitude of 7;,,;. is larger than that of 7.1, in
CuCl. We still obtain a negative electro-optic co-
efficient for CuCl. The predicted values in Table
I are in good agreement with experiment. The
worst case is GaP. It is interesting to note that
the electronic contribution is about double the
ionic contribution. This is in excellent agree-
ment with the experimental observation.?

We intend to extend this model to complex crys-
tals with different point-group symmetries. The
generalization of the bond parameters used above

to multibond crystals has already been. considered.
The one parameter which will need added thought
is e j*, the effective ionic charge. It was found
empirically to be equal to C/fiw, in diatomic
crystals.’ If this relation and e * =[(€.+2)/

3€., Je* are valid in the more complex crystals,
then our model can be applied to these cases.
Calculations now in progress on KH,PO,, LiNbO,,
LiTaO,, and ternary chalcopyrite crystals will

be reported separately.
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Electronic states at the metal-silicon interface have previously been postulated in
order to explain the pinning of the Fermi level, and the origin of these states has been
a matter of some dispute. We propose here that in a reactive interface, such as the
interface between Si and transition metals, physical properties of the interface are re-
lated to an interfacial layer, and that the relationship is manifest through the correla-
tion between Schottky barrier height and eutectic temperature.

The theory of the Schottky barrier is an impor-
tant subject concerning solid interfaces and is
relevant to applications in microelectronics."?

The classical theory of Schottky assumes that at
the interface between a metal and a semiconductor
the Fermi levels should match up. This produces
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