A Caltech Library Service

Higher Random-Phase Approximation as an Approximation to the Equations of Motion

Shibuya, Tai-Ichi and McKoy, Vincent (1970) Higher Random-Phase Approximation as an Approximation to the Equations of Motion. Physical Review A, 2 (6). pp. 2208-2218. ISSN 0556-2791.

See Usage Policy.


Use this Persistent URL to link to this item:


Starting from the equations of motion expressed as ground-state expectation values, we have derived a higher-order random-phase approximation (RPA) for excitation frequencies of low-lying states. The matrix elements in the expectation value are obtained up to terms linear in the ground-state correlation coefficients. We represent the ground state as eU|HF〉, where U is a linear combination of two particle-hole operators, and |HF〉 is the Hartree-Fock ground state. We then retain terms only up to those linear in the correlation coefficients in the equation determining the ground state. This equation and that for the excitation energy are then solved self-consistently. We do not make the quasiboson approximation in this procedure, and explicitly discuss the overcounting characteristics of this approximation. The resulting equations have the same form as those of the RPA, but this higher RPA removes many deficiencies of the RPA.

Item Type:Article
Related URLs:
URLURL TypeDescription
Additional Information:©1970 The American Physical Society Received 10 June 1970 Arthur Amos Noyes Laboratory of Chemical Physics Contribution No. 4071.
Issue or Number:6
Record Number:CaltechAUTHORS:SHIpra70
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:6317
Deposited By: Archive Administrator
Deposited On:01 Dec 2006
Last Modified:02 Oct 2019 23:31

Repository Staff Only: item control page