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Analytical solutions for the time-dependent cluster concentrations and nucleation rate in homo-
geneous nucleation are obtained by the singular perturbation approach. The effect of cluster
scavenging by free molecule particles on the kinetics of nucleation is also investigated through
analogous analytical solutions in this case. Apparent conflicting suggestions in the literature con-

cerning the time lag of nucleation are resolved.

I. INTRODUCTION

When the saturation ratio of a vapor is suddenly in-
creased to a value at which homogeneous nucleation
occurs, a transient period exists during which the cluster
concentrations increase to their eventual steady-state
values, and the nucleation rate, defined as the flux of clus-
ters past the critical size, also increases to its steady-state
value corresponding to the new vapor saturation ratio.
In an effort to understand the general character of nu-
cleation phenomena and the observations in nucleation
experiments that utilize sudden changes in saturation ra-
tio, such as expansion cloud chambers, expansion noz-
zles, and free-molecular expansion methods,! the dura-
tion of the transient period in nucleation is of interest.

Under actual nucleation conditions preexisting parti-
cles are frequently present that act as scavengers for the
vapor molecules and clusters, thereby depressing the rate
of new particle formation by nucleation below that in
their absence. One needs also to understand the effect of
preexisting particles on the transient nucleation kinetics;
that is, for example, is the characteristic time required to
establish a steady-state nucleation rate increased or de-
creased in the presence of preexisting particles over that
in their absence? Such open systems occur in many
different situations, such as nucleation in the presence of
cluster scavenging by a preexisting aerosgl,”* of cluster
diffusion loss to the walls in a cloud chamber,* and of a
strong diffusion (or drift) loss of nuclei on the boundaries
of a crystal in the case of an electron-hole liquid forma-
tion by nucleation.’

Previous studies of transient nucleation kinetics have
been reviewed by several authors.®”® Those studies are
either restricted to special numerical solutions®®!° or are
based on inappropriate approximations.'"!? Kashchiev’s
solution of the classic kinetic equation of nucleation had
generally been considered to be the most accurate and
had been widely used,’® although his choice of the eigen-
function cutoff was shown to lead to incorrect results.®
Recent work by Trinkaus and Yoo,'? which employed a
Green’s-function approach, confirmed the analysis of
Kashchiev’s work by Binder and Stauffer.® The earlier
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studies tend to predict a characteristic lag time to attain a
steady state of order 107°-107% s for liquid systems, al-
though Gitterman and co-workers!3™!® have suggested
that the time lag can reach dozens of seconds. They have
attributed the overlooking of this time-lag effect in the
previous studies to the approximations used in those
studies, including the quadratic approximation for the
energy barrier and the method of the steepest descent
used in evaluating the integrals involved.

In using those “diffusion’ approximations the time lag
obtained does not include the time needed for the subcrit-
ical clusters to reach steady state. Instead, the time lag
obtained is only the time required for a cluster to diffuse
across the energy barrier.

The present work is an attempt to solve the time-lag
problem in nucleation. With the aid of singular pertuba-
tion theory,”!® an analytical time-dependent solution is
presented for the cluster size distribution for realistic
boundary and initial conditions. We obtain the charac-
teristic time scales for establishing the steady-state cluster
size distribution, the nucleation rate, and the total parti-
cle formation without incorrect approximation other
than associated with the matched asymptotic expansion.
Our solutions are free of the problem of the incorrect
boundary conditions associated with several previous
studies.

We also solve the time-dependent kinetic equation of
nucleation in the presence of cluster scavenging by free
molecule particles. Thus we provide a quantitative
answer to the time-lag question in an open system in
which the characteristic lifetimes of clusters also play a
critical role in the kinetics of nucleation.

II. BASIC EQUATIONS
The equation governing the continuous cluster size dis-
tribution f(g,?) in a supersaturated vapor is®2°
df(g,t) _ _ dJ(g,t)
at ag

where J(g,t) is the cluster flux defined in the continuous
cluster size (g ) space

) (1)
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J(g,t)=—[3’(g,t)n(g,t)ag n(g.0)

and B(g,t) is the rate of collision between monomers at
concentration f(1,¢) and a g-mer

Blg,t)=f(1,t)s,8* kT /27m )'/* . (3)

The equilibrium cluster size distribution corresponding
to a monomer concentration n(1,t) is

n(g,t)=n(1,t)exp[ —W(g,t)/kT], (4)

with s, and m the surface area and mass of the mono-
mer, respectively. The critical size

3
20

3InS

8« ™ (5)

is the size of cluster corresponding to the maximum free
energy of cluster formation

Wi(g,t)=—gkTInS+s,8* %0 , (6)

where 6=s,0/kT, the saturation ratio S(¢#)=n(1,t)/

neq(1), and n (1) is the saturation monomer concentra-
tion.
About g, a critical region exists in which the

difference between W(g) and W(g,) is smaller than kT,
i.e.,

\W(g)—Wi(g, )| <kT, (7)

the width of which is given by?°

—1/2
1w
2kT ag2

) (8)

8= 8%

which is related to the Zeldovich factor Z by

b s 3p-12
) oz 3g.°6 . 9

Solutions of Eq. (1) for the dynamic cluster size distri-
bution must be subject to appropriate boundary and ini-
tial conditions. The boundary conditions can be specified
at both ends of the cluster size distribution. At g =1, the
monomer number concentration can be assumed to be
the same as the value used to define the equilibrium dis-
tribution

St
n(g)

While for large g, the boundary condition can be estab-
lished by noting that above the critical region the func-
tion n(g) defined by Eq. (4) increases without limit,
whereas the true cluster size distribution f(g,?) remains
finite. Thus

L&) _

0 — . 11
nig = 877 an

We wish to study the transient nucleation kinetics that
occur when the saturation ratio S is raised at =0 to a
specified value. Since the equilibrium cluster concentra-
tions for g =22 are much smaller than that of the mono-
mer, it is reasonable to take the initial condition as
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f(g,0)=n(1)8(g—1), (12)

where 8(g — 1) is the Dirac delta function.

III. TRANSIENT KINETICS OF NUCLEATION —
THE SINGULAR PERTURBATION APPROACH

As in the ste. 1y-state case, the normalized cluster size
distribution f(g,t)/n(g) exhibits a boundary layer struc-
ture about the critical-sized cluster g,.> The small pa-
rameter, denoted as €, which multiplies the term contain-
ing the highest derivative in the equation governing the
cluster distribution, is related to the width of the critical
region 8. A singular perturbation approach®! can be
used to obtain the transient cluster size distribution, tran-
sient nucleation rate, and transient total number of parti-
cles nucleated.

We define the independent variable y(x,t)
=f(g,t)/n(g) and the normalized cluster size x =g /g,,
and transform Eq. (1) into

x 2382 ap(x,t) _ [ 5 |’ 8%(x,z)
Bg,) ot - dx?
2
2|12 +6(1—x_‘/3)]
3x | 8.
X ay(x,t) , (13)

dx

in which Egs. (2), (4), (6), and (9) have been used and
Blg,) is Blg,r) evaluated by Eq. (3) at g=g, and
f(1,t)=n(1). Letting 6/g, =¢€, Eq. (13) becomes

Fplx,e) , |2 —13y | p(x,1)
2 ’ 2 1/3 s¢
€ a2 + 3x€ +6(1—x ) ax
x 27382 ay(x,t)
— - =0 14
Bg,) at (14

The condition € << 1 holds as long as InS << 26*/2, which
is the case in nearly all practical situations.
After a Laplace transformation, Eq. (14) becomes

%y (x,s) 2 _ dy(x,s)
2 ’ & 2 _ 173 ]
€ ——axz + 3x6 +6(1—x ) ax
—2/382
=ﬁ[y(x,S)s—y(x,0)], (15)
where
y(x,s)=f0my(x,t)e_“dt . (16)

Equation (15) together with the boundary conditions
y(l/g.,s)Z%, y(oe,s)=0, 17

can now be solved by the method of singular perturba-
tion. Since the dominant term of dy(x,s)/dx changes
sign at x=1 in the interval [1/g,,~], we expect a
boundary layer (transition layer) at x =1 as noted above.
Thus there are two outer solutions: a yl  (x,s) that
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satisfies the left boundary condition at x=1/g, and a
ylu(r,s) that satisfies the right boundary condition at
x — . The outer solution is expected to be valid far
from the critical region (inner region) around x =1.

The outer solution must satisfy the boundary condition
yia(1/g,,s)=1and y. ,(,s)=0. To the leading order
in € (the first-order correction vanishes), the outer solu-
tions to Eq. (15) that satisfy the boundary conditions are

ST

1_x1/3
exp[sr(x!3—g 1) (18)

/ =1
yout('x’s)—s —1/3
*

1—g
and

You(x,8)=0, (19)

where 7=8%/2B(g, ). Since the growth of the clusters
near g, can be viewed as a diffusion process, the time
necessary to pass through the critical region is the order
of 7, with B(g,) playing the role of an equivalent
diffusion coefficient. 7 is of the order of 10~ s for liquid
systems.

As expected, the outer solutions are not valid near
x =1, so a transition layer about x =1 exists. Since the
thickness of this boundary layer is €, we introduce the
inner variables X=(x—1)/eNA>0) and Y, (X,s)
=pin(x,s). In terms of these variables, Eq. (15) becomes

&Y (X,s) 1 L, o Y (X,s)
3 Ve +2€ (l-i-eX)———-—-———aX2
Y, (X,s)
+3e**(1+e*X)[1—(1+e*X)—“3]—~S—
)¢
-5 (1+e*X)"V3%Y, (X,s) (20)
2B(g,) e

As €—0 with X being fixed, the distinguished limit of Eq.
(20) corresponds to A=1. The boundary condition
y(o0,s)=0 translates into

Yo(o0,s)=0, Y,(c0,s)=0, n=1. 21

The leading-order inner solution of Eq. (20) that satisfies
the boundary conditions is

Y (X,s)=1 A(s)i*"erfc(X )+ 1B(s)i*"erfc(—X) ,  (22)

where i*"erfc(X) is a repeated error function. The con-
stants A4 (s) and B (s) have to be determined by asymptot-
ically matching the outer and inner solutions. The match
consists of requiring that at the intermediate limits
[x >1—,X—>—w0;x—>1+,X—>+ o] the inner and
outer solutions agree. The leading-order match gives

ST

—1/3y—st
£ )

=1
A(s)= s(l g

£
3
(l—g;]“)sr

Xe I'(st+1), B(s)=0. (23)

A. Transient cluster size distribution

To determine the nucleation rate we are most interest-
ed in the cluster size distribution near the critical size

2103
which is given by the inner solution
S§T
1 — — € —gzsr
ym(x,s)=z(1—g,‘/3) T 3] e *
ST x—1
XT(s7+1)i’"erfc (24)
After an inverse Laplace transformation, we have
1 g8« t—AT
Yin(g,t)= Eerfc 5 +exp ‘— " R (25)

where A=g, !> —1+In[3(1—g ') /€].

The transient cluster size distribution far from the crit-
ical region is given by the outer solutions which are the
inverse Laplace transformations of Egs. (18) and (19),

Youlg,t) =0 —pu(g)7) (26)
and

You(8,1)=0, (27)
where u(g)=(g; '’ —x'’—In[(1—x'7)/(1—-g /)]

and O is the unit step function: ©(z)=1 for z>0, 6=1
for z=0, and ©=0 for z <O0.

According to Eq. (26), the subcritical clusters approach
a steady state one by one with a time lag u(g)r. As
shown in Fig. 1, the coefficient u(g) of the characteristic
time p(g )7 for subcritical clusters to attain steady state is
not overly sensitive to the value of the critical cluster size
g,- On the other hand, u(g) increases as g increases, in-

1.5 T T T T T T T T T

1.0 -

0.5 1

0.0 0.5 1.0
g/g,

FIG. 1. Coefficient u(g) in the effective time lag pu(g)r associ-
ated with the subcritical cluster size distribution as a function of
the normalized cluster size g /g .
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dicating that the subcritical clusters attain steady state,
also equilibrium, one by one from the smaller clusters to
the larger ones, such that the rapid establishment of
steady state for the smaller clusters from the monomer is
followed by a lengthening period for each g-mer as the
size increases. In overcoming the larger Gibbs energy
barrier to form a larger cluster the time needed in estab-
lishing a steady-state cluster distribution at larger size is
longer than that for the smaller clusters.

The cluster size distribution beyond the critical region
Yoo vanishes as indicated by Eq. (27). This is also true in
the stationary case as required by the boundary condition
Eq. (16).2

The characteristic parameter in the transient behavior
of the clusters in the critical region A is a function of g,
and 6. For 6=10, the value of A is about 0.34 for g, =30
and 0.45 for g, =100. For =35, its value is about 0.3 for
g. =30 and 0.40 for g, =100. According to Eq. (25), the
cluster size distribution in the critical region becomes
essentially steady state (about 95% of its steady-state
value) for ¢t > (1.5+A)r (about 37), i.e.,

g8«

f(g)=1n(gerfc , (28)

which agrees with the classical steady-state case.!®

We can estimate the ratio between the characteristic
time needed for the establishment of a steady-time sub-
critical cluster distribution p(1—e€)r and that required to
form a steady-state cluster flux in the critical region
(A+1.5)7. For g,=30 and 6=10, this ratio is about
0.45. Thus about one-third of the time needed to estab-
lish full steady-state cluster distribution is spent in form-
ing a steady-state subcritical cluster size distribution.
For g, =100 and 6=10 this ratio of characteristic times
increases to about 0.53. As g, increases, more time is
spent on establishing a steady-state cluster size distribu-
tion outside the critical region. This ratio decreases with
decrease in 6; for 6=35, this ratio is about 0.37 for g, =30
and 0.47 for g, =100. It is clear that in calculating the
time needed to reach a steady-state cluster size distribu-
tion the time needed to reach steady state below the criti-
cal region cannot be neglected. This aspect thus has been
neglected implicitly or explicitly in most previous
analyatic studies.®!!

B. Transient nucleation rate

The transient cluster flux at any size g is given by

- 9
J(g,t)= B(g)n(g)ag

f(gt)

n(g)

=Z(g,)B(g)n(g)exp

X [— [g—sg* +exp

l

and the transient nucleation rate at g =g, is

_t—AT
T

2
} , (29)
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FIG. 2. Normalized transient nucleation rate J(g«,t)/J as
a function of the normalized time ¢ /7.

J(g,,)=—Big, mig,) > | L&l
dg n(g) 8784
:Jssexp l_ €Xp —2 t—T)\T ] s (30)

where J is the steady-state homogeneous nucleation rate
Js=Z(gBlg,In(g,), 31

and Z(g, ) is Zeldovich factor. In the limit as t — o0, we
have from Eq. (30) that J(g,,t)=J.

It is noted that the new derived formula for the tran-
sient nucleation rate, Eq. (30), is functionally different
from the previous ones which have usually been ex-
pressed’ in the form of J=J[1—exp(—t/t.)], where ¢,
is the characteristic time of relaxation of the nucleation
process to a steady state. Different authors have obtained
different expressions for ¢,, but of the order of 7.

In Fig. 2, we show the nucleation rate as a function of
t /7 for different values of g, based on Eq. (30) and that
obtained by Trinkaus and Yo0o.!? The two results are nu-
merically consistent with each other. As shown in Fig. 2,
the time lag associated with the nucleation rate is about
4T,

C. Time-dependent number density
of critical clusters nucleated

The number density of critical clusters formed in the
system following the increase in saturation ratio at t =0
is the integrated flux N(g,,t)= [{J(g,,t")dt". The di-
mensionless total number is
Nig,,t) 1

— a dx _ _
J1 _5fae’b'xe" =1[E (ae bt)—El(a)] ,  (32)

—1/3 _
where a =e*=[3(1—g3)/el?e’* "and b=2/7,
and E, is the exponential integral.
As t/tr—w, we have ae Y0, and E,(ae %)
= —y —Ina +bt+O0(ae ), thus
N(g,,t) 1

t
=——[E +v. + +—=, 33)
Tz 2[ (a)+y,+1Ina] . (
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where y,=0.5772 is Euler’s constant.

Equation (33) thus indicates that at large times,
N(g,,t) increase linearly with time ¢ as expected. The
beginning of the steady-state regime can be determined
experimentally by the time at which the increase of
N(g,,t) becomes linear with time. The time lag (7,)
defined in such a way is given by

T,=+[E(a)+y,+Ina]r. (34)

The time dependence of N(g,,t) is shown in Fig. 3 for
g,=30 and g, =100. The effective time lag associated
with the approach of N(g,,?) to steady state is about 37
which, as expected, is the same order of the time lag asso-
ciated with the nucleation rate. This result is in contrast
with that obtained by Gitterman and his associates.!> '3
They have suggested the time lag associated with
N(g,,t) can reach dozens of seconds even for liquid sys-
tems for “fast” quench cases. For a fast quench the ini-
tial condition is given by Eq. (12). It is this fast quench
case that is the one considered in the present work. They
have attributed the overlooking of this effective long-time
lag in the previous studies to the approximations used in
those studies, including the neglect of the time required
to reach the steady-state cluster distribution below the
critical region, the quadratic approximation for the ener-
gy barrier, and the method of steepest descent used in
evaluating the integrals involved. Since the present ap-
proach is free of those approximations, and we do not
find any anomalous increase in the time lag associated
with N(g,,t), we conclude that the increase in the time
lag found by Gitterman and co-workers must arise from
one of two sources. Either it is a phenomenon related to
nucleation near the critical point of phase transition,
since they used critical dynamics to determine the physi-
cal parameters in the kinetic equation of nucleation, or

N(g,.t)/JesT

FIG. 3. Normalized number density of critical clusters
formed N(g«,t)/J 7 as a function of the normalized time ¢ /7.
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the error was introduced by the approximation of shifting
the real boundary conditions to an unphysical domain in
solving the associated eigenvalue problem. However,
there is no experimental evidence as reviewed in Ref. 20
to support the first possibility.

In solving for the time-dependent cluster size distribu-
tion, the problem was condensed by Gitterman and co-
workers into solving the appropriate Schrodinger equa-
tion by approximating the potential as a harmonic oscil-
lator and shifting the boundary from the lowest end of
the size distribution to —o. The potential with this
equation could be approximated by the harmonic oscilla-
tor only near the critical cluster size, which is equivalent
to the quadratic approximation for the Gibbs energy bar-
rier. The second assumption in shifting the boundary
condition from g =1 to the region g <0 is similar to that
of Trinkaus and Yoo'? in using a Green’s-function ap-
proach. A consequence of this approximation is that the
solution does not satisfy the physical boundary condition.
This approximation, however, may not cause serious er-
ror since the transient nucleation rate obtained by Trin-
kaus and Yoo!? shows a similar behavior with ours as
shown in Fig. 2.

IV. TRANSIENT KINETICS OF NUCLEATION
IN THE PRESENCE OF CLUSTER SCAVENGING

Let us consider a supersaturated vapor system with
preexisting free-molecule particles of sizes larger than
that of the critical cluster corresponding to the existing
supersaturation in the system. The equation governing
the continuous cluster size distribution is given by?

of(g,t) _ _dJ(g,t)
dt og

where y is a dimensionless surface area concentration pa-
rameter defined by

-4
s f(Le) 7

vg "/Blg,t)f(g,t), (35)

14 (36)

with s, the surface area of the monomer and A the sur-
face area density of preexisting particles.

The boundary and initial conditions to Eq. (36) are
given by Egs. (10)-(12). As in the absence of cluster
scavenging, we can solve for the time dependent f(g,?)
by the singular perturbation approach.

To the leading order in € (the first-order correction
vanishes), the outer solutions to these equations that
satisfy the boundary conditions are

J’fmt(x)S):l e 1 Srexp[S’r(xm—g_m)]
s |1—g712 *
ﬁi—ii n" 37
and
You'lx,5)=0, (38)
where m is given by
m=1ydg. 7 =1y0"'gl/°
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and n=(1—g,/17%)/(1+g,!®). As expected, the outer
solutions are not valid near x =1, so a transition layer at
x =1 exists. Since the thickness of this boundary layer is
€, we introduce the inner variables X =(x —1)/e and
Y, (X,s)=yp;,(x,s). Using a similar method to obtaining
the outer solutions we obtain the following leading-order
inner solution:

Y, (X,s)= Els—exp( —AsT)a™T(m +s7+1)

X s Merfe(X) (39)

where a=¢€/127. In the limit of m =0, Egs. (37) and (39)
reduce to Eqgs. (18) and (24).

A. Transient cluster size distribution

The cluster size distribution near the critical size is
given by the inner solution

yin(x,s)=2isexp( —AsT)a"T'(m+s7+1)

X i$7t merfc x—1 (40)
After an inverse Laplace transformation, we have
ym(g,t)=%a’"l“(m+1)i’”erfc 88
exp{—t/T+A
___&\/l?r fXX+ PR g — X e~ dw
(41)
In the limit of m —0, Eq. (41) reduces to
yin(g,t)=%erfc g~8£*—
1 X+exp(—t1/7+A) _ 2
—T/—?T“fx e dw
—g _
=%erfe g 5 * texp | —4 AT} , (42)

which is the transient cluster size distribution in the ab-
sence of cluster scavenging, Eq. (25).

The subcritical transient cluster size distribution far
from the critical region is given by the outer solutions
which are the inverse Laplace transformations of Egs.
(37) and (38), respectively,

1—xt/6 |™
! — . m
Vour(8,1)=0O(t —pu(g)r) Y n ", (43)
which reduces to Eq. (26) for m =0 and

You'g,t)=0. (44)

In the subcritical region, by comparison with Eq. (26),
we note that the presence of cluster scavenging does not
change the time u7 needed to reach the steady state. The
steady-state number density of subcritical clusters is the
same as the equilibrium one corresponding to the Gibbs
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energy potential in the absence of cluster scavenging,’
while in the presence of cluster scavenging the steady-
state number density of subcritical clusters is smaller
than the equilibrium one. The presence of cluster
scavenging does not change the time needed for the sub-
critical clusters to reach steady state indicating the time
for the establishment of a dynamic balance between the
cluster scavenging process and the cluster flux across the
g space is always the same regardless of the values of m.
A consequence of this is the cluster flux becomes g depen-
dent.

B. Transient nucleation rate

The transient cluster flux as defined by Eq. (2) in the
critical region can be obtained from Eq. (41),

J(g,t)=PB(gn(g)Z(g)

X lclz"’\/77'I‘(m+l)i"’"lerfc £ 8
2 )
_fX+exp(—r/‘r+)\)2am(w_X)m+1
X
Xe Wdw |, (45

and the cluster flux in the subcritical region is obtained
from Eq. (42),

1—x /6 m-—1
J(g,t)=B(g)n(g)O(t—p7) 1_—|Tx—17€
—m_ —5/6
x-mn _x ~ (46)

3g, (1+x1/6)2

The nucleation rate defined as the cluster flux at g, is
given by

_ 'm+1)
=J V7| T | =
@)= |V \ 5 Tin /2+1/2)
—fexp(—l/f+}\)2amwm+]e7w2dw .47
0

In the absence of preexisting particles, that is, as m —0,
we have from Eq. (25), or Eq. (46), J(g,,t)
=Jexp(—{exp[ —2(t —A7)/7]}), which is the same re-
sult as that obtained in the case without cluster scaveng-
ing, Eq. (30).

In the limit of large times, we recover the steady-state
nucleation rate in the presence of cluster scavenging,’

Fm+1)
I'm/2+1/2) °

€

Ton=Jn "V |5

sm

(48)

It is known previously? and from Eq. (46) that the nu-
cleation rate in the presence of cluster scavenging can be
reduced significantly from that in its absence depending
on the surface area density present in the system.

The normalized nucleation rate J(g,,t)/J, as a func-
tion of t/7 based on Eq. (46) is shown in Fig. 4 for
different values of m. We note that the presence of clus-
ter scavenging shortens the time lag needed for the nu-
cleation rate to approach the steady state. For m =0 we
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FIG. 4. Normalized nucleation rate J(g,?)/J, as a func-
tion of normalized time ¢ /7 for different values of m.

have the case of transient nucleation in the absence of
cluster scavenging. Thus the suggestion that the time lag
should be very long for an open system® is shown to be
not correct. At a higher surface area density of cluster
scavengers (larger m) present the nucleation rate reaches
the steady state faster than at the lower surface area den-
sity.

This behavior can be understood by analogy to two
chemical reaction systems: A—B and A=B —C. In the
first system the concentration of B reaches a steady state
in a time scale 7y=1/k_,, and 7,=1/(k_,+k,) is re-
quired for B to reach steady state in the second system.
Here k _, and k, are the rate constants of the reactions
of B and A4 and of B and C, respectively. 7,> 7, as a re-
sult of the additional removal path for B in the second
system. By analogy, the nucleation time lag in the pres-
ence of cluster scavenging is shorter than that in its ab-
sence. As k, increases 7, decreases, and the time lag in
the case of higher surface area concentration of preexist-
ing particles is shorter than that at lower concentrations.

Figure 5 shows J(g,,t)/J. For a suppressed nu-
cleation rate, the time for the appearance of nuclei in a
unit volume becomes very long. For example, for
J(g,,t)/J=0.04 in the case presented in Fig. 5 for
m =1.3, the time for a given concentration of critical
sized clusters to appear in a unit volume in the case of
cluster scavenging is about 25 times longer than in ab-
sence.

C. Time-dependent number concentration

The time-dependent number density of critical cluster
nucleation in the system with cluster scavenging is given
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FIG. 5. Normalized nucleation rate J(g4,?)/J as a func-
tion of normalized time ¢ /7 for different values of m.

by
t pexp(—1t'/T+A)
N(g*,t)=Jsmt—JsstfO 20m™w™ 1

Xe “dwdt . (49)

Thus the effective time lag that can be verified experimen-
tally is

t pexp(—t'/7+A) 2 ,
Tom = f f 2amw™ e "W dwdt' (50)
ovo

which becomes equal to 7, given by Eq. (34) in the limit
of m =0.

V. CONCLUSIONS

In this work we have investigated the transient nature
of nucleation by examining the time dependence of the
cluster size distribution, the nucleation rate, and the
time-dependent number density of critical sized clusters
formed. The approach used is based on a singular pertur-
bation method in which approximations made previously,
such as, the quadratic approximation for the nucleation
barrier, and the steepest descent method to evaluate the
integrals involved are avoided.

We have also investigated the transient kinetics of nu-
cleation in the presence of cluster scavenging by free-
molecule particles by solving the kinetic equation of nu-
cleation. It is shown that the presence of cluster scaveng-
ing shortens the total time lag, which decreases with in-
creasing surface area density of cluster scavengers.
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