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Scale-Space Properties
of Quadratic Feature Detectors

Paul Kube and Pietro Perona

Abstract—Feature detectors using a quadratic nonlinearity in the filtering stage are known to have some advantages over linear
detectors; here, we consider their scale-space properties. In particular, we investigate whether, like linear detectors, quadratic
feature detectors permit a scale selection scheme with the “causality property,” which guarantees that features are never created as
scale is coarsened. We concentrate on the design most common in practice, i.e., one dimensional detectors with two constituent
filters, with scale selection implemented as convolution with a scaling function. We consider two special cases of interest:
constituent filter pairs related by the Hilbert transform, and by the first spatial derivative. We show that, under reasonable
assumptions, Hilbert-pair quadratic detectors cannot have the causality property. In the case of derivative-pair detectors, we
describe a family of scaling functions related to fractional derivatives of the Gaussian that are necessary and sufficient for causality.
In addition, we report experiments that show the effects of these properties in practice. Thus we show that at least one class of
quadratic feature detectors has the same desirable scaling property as the more familiar detectors based on linear filtering.

Index Terms—Feature detection, edge detection, scale space, nonlinear filtering, energy filters, quadratic filters, causality.

1 INTRODUCTION

MAGES contain information at multiple scales of resolu-

tion, and detecting image features across a range of
scales is an important step in many visual tasks. Given an
image, one may obtain coarse scale versions of it by
“blurring” or “lowpass-filtering” it in order to perform this
analysis. This idea, often called “multiscale image analysis”
or “scale-space analysis,” dates at least from Rosenfeld and
Thurston [1] and Marr [2]. Whenever the same feature is
present at multiple scales, it is convenient to detect it at
coarse scale and localize it by propagating the results to fine
scales [3]. For this reason it is thought to be important that
features detected at a given resolution were not created
gratuitously at that scale by the blurring process, but rather
are “grounded” in image detail at a finer resolution. A
multiscale feature detection method that never introduces
features as the scale is coarseried has the desirable property
of causality (the term in this context is due to Koenderink
[4]; the property has also been called “monotonicity” [5],
“well-behavedness” [6], “nice scaling behavior” [7], and
“the evolution property” [8]).

It is known that edge detectors which operate by mark-
ing edges at zeros, level-crossings, or extrema, in the output
of a linear filter acting on the image have the causality
property if scale is selected by convolution of the image
with a Gaussian of appropriate variance [5], [7], [9], [10].
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Scale selection by means of nonlinear diffusion [11] has also
been studied (see survey chapters on linear and nonlinear
diffusions in [12]). The idea of analyzing images by nonlin-
ear combination of the outputs of quadrature pairs of linear
filters dates from the late 1970s and early 1980s [13], [14],
[15]. More recently, it has been observed that for feature
detection quadratic filters have advantages over linear fil-
ters, particularly because they are able to detect and localize
features with complex structure [16], [17], [18], [19], [20],
[21], [22], [23]. However, the question whether these quad-
ratic or “energy” detectors permit a causal scale selection
technique has remained open.

We address this question restricting ourselves to one-
dimensional quadratic feature detectors, with scale selected
by convolution of the image with a “scaling” function. We
concentrate on the most common design, detectors with
two constituent filters, and we consider two cases of inter-
est: constituent filters related by the Hilbert transform, and
constituent filters related by the first spatial derivative. We
show that, in the case of Hilbert-pair filters, there exists no
scaling function giving the causality property. In the case of
derivative-pair filters, we describe a family of scaling func-
tions related to fractional derivatives of the Gaussian that
are necessary and sufficient for causality. Thus we show
that at least one class of quadratic feature detectors has the
same desirable scaling property as the more familiar de-
tectors based on linear differential filtering.

Definitions, notation and assumptions are given in Sec-
tion 2. Section 3 states the theorems about the scale-space
properties of Hilbert-pair and derivative-pair quadratic
feature detectors; the proofs of the theorems are in the Ap-
pendix. These results are supplemented with experimental
observations reported in Section 4. Section 5 discusses the
results and directions for future work.
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2 ScaLE, CAUSALITY, AND FEATURE DETECTION

Let h(x) be a real-valued signal. In this paper we assume x € R,
giving direct application to time signals, images with unidi-
rectionally oriented edges, and images with features that
are one-dimensional on a scale comparable to the detector
filter size. Let o> 0 be a real valued scale parameter, with
increasing o corresponding to coarser scales. We are inter-
ested in finding the location of features in the signal / at a
scale o, or, more to the point, in how this feature detection
process behaves as ois varied.

A linear feature detector marks a feature in h(x) at posi-
tion x = x5 and scale 0 = ¢ if X is a local extremum in x of
the linearly filtered signal

L(x,0) = (f * g7 = B)(x) M

with o = ¢;. Here f(x) is the impulse response of a linear
shift invariant filter, ga(x) is a scaling function of the form
g(x/0)/ o, and “+” denotes convolution. Scale selection is a
matter of filtering the signal & by convolution with the
scaling function for some value of o; since convolution is
associative, it is equivalent to view this as using a detector
filter with impulse response f * g%, which depends on the
scale parameter.

A quadratic (or “energy”) feature detector marks a fea-
ture in the signal & at position x = xy and scale o= o if xg is
a local maximum in x of the nonlinearly filtered signal

E(r,0)= Y [(f+5° #h) )] @
feF

with o= ¢ Here, Tis the set of impulse responses of the
constituent filters of the detector. The process of scale selec-
tion is analogous to the case of the linear detector (1), but
the quadratic nonlinearity gives a detector with interest-
ingly different properties.

It 1s known [5], [7], that linear detectors have the causal-
ity property if (and only if) the scaling function is the Gaus-
sian g%x) o exp(—x /20°)/ 0. Our question is whether, like
linear detectors, there are quadratic feature detectors that
have the causality property; that is, whether there exist

choices of constituent filters F and scaling function g%

which guarantee that, for every signal /#, new maxima are
never introduced in E as oincreases.
We make these assumptions:

1) The constituent filter impulse responses f € ¥, the
parameterized scaling function g% and the signal &
are functions R +> R which are sufficiently well be-
haved that E as defined in (2) is smooth and bounded.

2) The scaling function g%x) is of the form g(x/0)/ o, for
some even function g(-): The scaling function has no
preferred direction or scale.

3) g() is not such that g(x/0)/ o o g(x) for all o: scaling
must do more than multiply by a scalar.

4) ¢(x) has a differentiable Fourier transform G(u) (and
so g(x/ 0)/ o has Fourier transform G(o u)).

5) Each f € Fhas a Fourier transform F(u) nonzero for u
in some open set of R.

6) The signal 4 has a Fourier transform H(u).

These assumptions are in the spirit of those found in the

study of scaling functions for linear differential feature de-
tectors, e.g., [5] and [7]; differences are minor and technical.

We will concentrate on the case of quadratic feature de-
tectors with a set of two constituent filters F = {f*, f 1, such
thatf is the Hilbert transform of f* multiplied by a nonzero
constant, or such that f is the first derivative of f* multi-
plied by a nonzero constant. These “Hilbert-pair” and
“derivative-pair” quadratic detector designs comprise all
existing practice of which we are aware.

2.1 Conditions for Causality Failure

If a quadratic feature detector with constitutent filters F
and scaling function g fails to have the causality property,
then there is some signal 7, location x;, and scale g; such
that a local maximum of E(x, o) is created with increasing o
at x = xy, 0= 0. Since E is smooth, (x,, oy is a degenerate
critical point of E with respect to x, and generically the set
of critical points E,(x, 0) = 0 in a neighborhood of (x,, &)
form an upward opening parabola (a “noncausal” fold ca-
tastrophe) as shown in Fig. 1 [6], [24], [25]. E(x, 0) qualita-
tively changes shape as a function of x in the neighborhood
of the generic noncausal degenerate critical point, as shown
in Fig. 2. For o < oy, there is no maximum of E in a neigh-
borhood of xy; at 0= oy, E is locally cubic in the neighbor-
hood of x; with o> oy, there is a local maximum of E near x,.

noncausal degenerate critical point
Ex=0, Ex=0,

Exxx Bxg <0

%o

Fig. 1. The generic scale-space signature of a causality failure, i.e., a
creation of a new maximum, in £(x, o). See text for discussion.

Fig. 2. Typical behavior of £(x,0) as a function of x near a noncausal
degenerate critical point (xg, op). € is small and positive.
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It is straightforward to express the conditions of such a
causality failure in terms of partial derivatives of E at the
degenerate critical point (cf. [7]): A noncausal fold catastro-
phe occurs in E(x, o) at a point x = xo, 0= o if and only if

E(x, o) = 0,
Exx(xor 0'0) =0,
Exo‘(xO/ 60) Exxx(x[)l 60) <0. (3)

Thus, showing the existence of a signal h that satisfies the
conditions (3) for E as defined in (2) is sufficient to show
that the correpsonding multiscale quadratic feature detec-
tor does not have the causality property. If any signal that
produces a causality failure can be transformed into one
that produces a generic causality failure, the converse is
also true, and the nonexistence of 1 to satisfy (3) implies
that the detector has the causality property. Alternatively,
following Hummel [8], one could try to prove causality by
showing that for any 4, E.(x, 0) is the solution to a partial
differential equation that satisfies a minimum and a maxi-
mum principle. (This minimum-principle approach is, of
course, not promising for proving that a detector does not
have the causality property.) Here, we will take the first ap-
proach, and investigate whether or not there exists a signal 1
to satisfy the conditions (3) for particular quadratic detector
designs, i.e., for particular choices of constituent filters Fand
scaling function ¢ satisfying Assumptions 1 through 6.

2.2 Toward Investigating the Causality Property

We will consider whether generic causality failures can oc-
cur in E(x, o) at x = 0; since E is shift invariant with respect
to the signal h, this is without loss of generality. Here we
develop a useful notation for the problem. Essentially, we
will seek an expression for the conditions (3) which reduces
the question of the causality property to the question of
solving a constrained system of linear equations.

Define

i+

9
X, = axa————(f* g7 ) (0).

Partial derivatives of E in ¢ and x involved in the condi-
tions (3) for x, = 0 consist of terms of this form, viz.:

E,(0,0) =2 &) N,
feF
E.(0,0) = Z{( 10) + 4 oAfzo}
feF
xxx 2[ AI OAZ 0 + AO OAfB (J]
fer
E(0,0) = ZZ[A{),lAfLo + Afo,uA);,l]
feF

Recalling from Assumption 2 that g%x) has the form
¢(x/0)/ 0, and writing F, G, and H for the Fourier trans-
forms of f, g, and h, respectively, we have from the convo-
lution and scaling theorems [26]

(f5%=h)(x) = IZ ()G (ou)H (1) du @

and therefore

K, = [ @in)'u " B)G™ (ow)H(u) du (5)
where G™ is the mth derivative of G. Note that G™() is

real, and even or odd in u depending on whether m is even
or odd.

We represent the signal /(x) as the sum of K sinusoidal
components; since hi(x) is real, we can then write, for some
complex coefficients h;, ..., hg

K
H(u) = Z[é(u — Yy +8(u + uk)h;]
k=1
where all the frequencies 1 are positive (the “DC term”
contributes nothing of interest), and “*” denotes complex
conjugation. Thus

Z(Zm [ ()G (0w

(1) ™ E ()G o, i -

We note that this discretization of the spectrum of 4 is
without loss of generality for our purposes, since K can be
arbitrarily large, and a generic causality failure is robust to
sufficiently small perturbations of the integrals (5). Our
approach here can be compared with the “spatial” discreti-
zation of the signal assumed in [7]; we remark that in the
context of digital signal processing applications, discretiza-
tion in both domains is routine.

For further simplification, we can restrict our attention to
the case of constituent filters whose impulse response func-
tions are even- or odd-symmetric in x. (That this restriction
to even-odd detectors is without loss of generality follows
from Lemma 1 in the Appendix.) Letting the constituent
filters F = {f°, f'}, with f"(x) even symmetric and f°(x) odd,
the Fourier transforms F* () and F° (1) of () and f°(x) are
then even real and odd imaginary, respectively. Writing
for the even (real) part and /] be the imaginary (odd) part
that

of each signal coefficient - hy, 50

B = B R B = I

Ny = i) |20t (1, )G o i
k

— ki, we then have, for n even,
s ’

1 1
A[;t m = ; _(Zlﬂ) |i2u1?+m 7 F (uk)G(M) (Ouk)T hz}

and, for n odd,
1
- E(21'7:)"i[zu;*"‘#(uk)cm(auk)7;4
k
Afn m = 2

—2in)" \:ZM”“” ! FO(Mk)G(m)(O'Mk)hi}
k

Now, we introduce the real column K-vectors £ £ the
systems h®, h’, with the kth component of each specified as
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£ = F*(u,)G"(ou,)
1
£ = TFO(”k)G(m)(C’”k)
hy =25
2
hy =i

Further, let U be the K x K diagonal matrix of positive fre-
quencies diag(uy, ..., ug). Then we have

€ . T ,
Af,,,m _ (217[)”[}15 Ut m]
¢ . Ty ¥ ,

A, = @iz [nTUTEe

Af”/ :(Zi”)ni[hoTUn»rmfc,m]
0 - \n1eT ’
Afn,m - —(Zlﬂ)nl[he Ut m]
where “7” denotes matrix transpose. In fact, to study the
conditions for generic causality failure (3) we will need only

to consider partial derivatives with respect to ¢ of order 0
and 1. So, to simplify the notation further, define

fe = fe,O
fo = fa,O
fp, _ fe,l
£ =f"

and, finally, introduce the symbols
o, =h7f = A,
v, =hTUf =4 /20
v, = WU = A,/ 4n’
v, = hTU = -] / 87
v, = hTUE” = A,
v, =h U = AL, /27
w; =h"f" = ‘Af(;,o
w, = h"UF = -, /2n
w, = WU = Ago / 4
w, = KU = AL / 82°
w = hTUE” = A,
w, = WU = A, /2

With this notation, we can state the issue as follows: An
even-odd quadratic feature detector with constituent filters
F=1f, f'} and scaling function g” has the (generic) causal-
ity property if and only if for no diagognalu positive fre-
quency matrix U do there exist vectors h, h to solve the
systems
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feT
(ur)
we) | [
(V) e - % ©)
T 4
wf |
Yy
or]
foT
(Ut}
(vF) gi
(U)o | @
T w‘}
Ufa,] wl
wy
o]

subject to the constraints (3), namely

Eye<vyw—v,wy=0 8

2 2 _
E. <0y =00y + wy —ww, =0 (€)
Evex Ex o B 03w, + 0y wy — 30, w3 — 04 wy) 10
X (v wy— v Wy + v, Wy + 0y wy) <0

Therefore, the issue is whether these constrained systems
have solutions. We discuss answers to this question in the
following sections.

3 SCALE-SPACE THEOREMS

We are considering quadratic feature detectors with two
constituent filters. If one of the constituent filters is the Hil-
bert transform of the other (perhaps multiplied by a nonz-
ero constant), we call it a Hilbert-pair detector. This is the
most common type of quadratic detector in practice; moti-
vation for this design has come from work in psychophysi-
cal modeling [27] as well as consideration of its computa-
tional properties [16], [28]. Because of the quadrature phase
relationship between the constituent filters, these are some-
times called “energy” feature detectors.

Suppose a one-dimensional function f(x) has Fourier
transform F(u); then the Hilbert transform of f has Fourier
transform 7 sgn(u)F(u). This gives a particularly simple form
for the s{ystems (6) and (7), since when the constituent filters
f* and f are Hilbert transforms of each other we have (up
to sign) £° = f° = f. We find that there always exist h’, h’ to
solve these constrained systems, and so there exists a signal
h(x) that leads the detector to a causality failure:

THEOREM 1. No Hilbert-pair quadratic feature detector has the
causality property.
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The proof, in the Appendix, is constructive, in that for
appropriate oy, it gives linear systems which can be solved
to compute a signal h(x) which produces a causality failure
at scale o= oy and x = 0. In the case of Gaussian scaling and
differential constituent filters, this can be done at any scale
0. An example of constructing a causality failure in such a
quadratic detector is shown in Fig. 3; compare with Fig. 2.

0.2

Fig. 3. An example of a causality failure in Hilbert-pair quadratic de-
tector. A new maximum appears with increasing o in E(x, o) at x =0,
o= 0.1. The constituent filters are a first-derivative operator and its
Hilbert transform; scaling is by convolution with a Gaussian. The signal
h(x) that produced this causality failure was constructed by solving the
constrained system described in Section 2, with frequencies uy = 1,
up= 2, Uy = 3, uy = 4. The dashed, dotted, and solid curves graph
E(x, o) as a function of x for o= 0.04, 0.1, 0.16 respectively. The new
maximum can be observed in the £(x, 0.16) curve to the left of x = 0.

If one of the constituent filters in a quadratic detector is
the first derivative of the other (perhaps multiplied by a
nonzero constant), we call it a derivative-pair detector.
Some properties of derivative-pair detectors have been been
discussed by Kube [21]. As with Hilbert-pair detectors, we
obtain simplifications in the form of the systems (6), (7), since
if, for example, fo x) = dfe (x)/dx, then f° = 27UF".

Here however the result is more favorable, and we find
that there exists a family of scaling functions that give de-
rivative-pair detectors the causality property. This family
includes the familiar Gaussian and its even derivatives, but
is somewhat more general. We define it as follows:

If a function g(x) has a Fourier transform G(u), then the
tth derivative of g (with respect to x) has Fourier transform
Q7iw)'G). If t is not an integer, then this is the Fourier
transform of a fractional derivative of g. In general, a frac-
tional derivative of an even, real function will not be real or
even. For example, if g7 is a Gaussian

T —-X
80) = sexp| —-
for some nonzero r and positive s, then the tth derivative of
g7 has Fourier transform
(2rin) 2xr exp(—szn2u2)

which is not real and even, and so cannot be the transform
of a scaling function, unless  is an even integer. The related
function

r|u|t«/ﬁ exp(—sZEQuz)

is, however, real and even for all real f. Expressed as a
function of ou,

Glou) = o] V2rr exp(-s'z"0"u?), an
this is the Fourier transform of an admissible scaling func-
tion. Lacking a better name, we will call such a function a
modified fractional derivative of the Gaussian. This defines a
family of scaling functions; it includes, for example, the
normal density function (whenr =1, s = V2, t=0), and the
second derivative of the normal density function (when r = -

4r/ &, s =2, =2), etc. We will find that scaling functions
from this family are involved in the only known examples of
quadratic feature detectors with the causality property:

THEOREM 2. A derivative-pair quadratic feature detector has the
causality property if and only if its scaling function is an
modified fractional derivative of the Gaussian.

The proof is in the Appendix. We note that there exist
function pairs that are related both by the Hilbert transform
and the first derivative, e.g., F = {cos(x), —sin(x)}. However,
these functions are pure sinusoids, and the apparent con-
tradiction between Theorems 1 and 2 is ruled out by the
assumptions given in Section 2, in particular Assumption 5.

Experiments showing the implications of these theorems
in feature detection on real images are discussed in the next
section.

4 RESULTS OF EXPERIMENTS

Section 3 stated theorems to the effect that causality failures
can occur in quadratic feature detector schemes which use
Hilbert-pair filters and Gaussian scaling, but cannot generi-
cally occur if Gaussian scaling is used with derivative-pair
filters. However, these results leave open the questions
whether causality failures occur often in practice using Hil-
bert-pair detectors on real images, and whether nongeneric
causality failures occur in practice with derivative-pair de-
tectors. We have attempted to address these questions with
experiments we report here.

T30 T30 9 50

) 50
Fig. 4. Typical scaled constituent filter impuise responses £ % gs, 7

gS for the Hilbert-pair quadratic feature detector discussed in the text.
Left, the first derivative of a Gaussian with standard deviation eight
pixels; right, its Hilbert transform.
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B0 T 0T T T s TS0 o T s

Fig. 5. Typical scaled constituent filter impulse responses I * gs, £«

gS for the derivative-pair quadratic feature detector discussed in the
text. Left, the first derivative of a Gaussian with standard deviation
eight pixels; right, its first derivative.

Fig. 6. Typical arrangement of objects used in creating the images
used in experiments. A row of pixels from an image of such objects
was used as the one-dimensional signal h(x) for feature detection.

Six scenes were created by placing matte-surfaced right
rectangular prisms and cylinders randomly on a table;
Fig. 6 shows a typical arrangement of objects. Each scene
was imaged with camera geometry and illumination such
that edges in the images were predominantly vertical. A
typical row of 512 pixels was taken from each such image;
this one-dimensional signal was subjected to quadratic
feature detection as defined in Section 2, using Gaussian
scaling with oin the range 0.5 to 64 pixels. A region of each
image from which the row of pixels was taken and the
graph of the pixel intensities in that row are shown in
Figs. 7-12.

In one set of experiments, the quadratic detector had as
constituent filters the first-derivative operator and its Hil-
bert transform; in the other set of experiments, the quad-
ratic detector had as constituent filters the first-derivative
operator and its first derivative (i.e., the second derivative
operator). Impulse responses of the constituent filters at a
scale of eight pixels are shown in Figs. 4 and 5, respectively.
In each experiment, local maxima were detected with no
thresholding at scales in the range 0.5 to 64 pixels, in 0.5
pixel steps. The resulting scale space representations of the
multiscale features found are also shown in Figs. 7 through
11. Apparent causality failures are indicated with arrows.

It is interesting that while the shapes of the constituent
filter impulse responses are quite similar, the performance

of these two types of quadratic feature detector are qualita-
tively different. For each image, the Hilbert-pair quadratic
detector exhibited causality failure. Some features which
were introduced with increasing scale were ephemeral, but
others were quite robust and persisted over a range of
scales. The derivative-pair quadratic detector generated no
observed noncausal features. These experimental results
are, of course, consistent with the theoretical results stated
in Section 3.

o4

Y / "
LI : .

- e

PR DN N R/ cadndo G, [//n 7 s )

o_ca}/ﬁ Lo /&)r e ,..(.[A,\ Rt, Jusl b \,(.

Fig. 7. From top to bottom: An image with one-dimensional edges; the
graph of image intensity for the top row of pixels in the image; feature
scale-space generated from that 1D signal with a Hilbert-pair quadratic
feature detector; feature scale-space generated from that 1D signal
with a derivative-pair quadratic feature detector. Gaussian scaling and
periodic convolution are used in each case. The Hilbert-pair detector
exhibits causality failures (indicated by arrows); the derivative-pair filter
does not. See Figs. 8, 9, 10, and 11 for other examples. See text for
discussion.
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5 DISCUSSION

The scale-space properties of quadratic feature detectors
being of potential interest, we have investigated whether
any quadratic detectors have the causality property. We
considered one-dimensional derivative-pair and Hilbert-
pair detectors, and found that the former, but not the latter,
can have the property. Further, we showed that there is a
family of scaling functions, related to fractional derivatives
of the Gaussian, which are necessary and sufficient for cau-
sality with derivative-pair detectors. We proved theorems
to this effect, and showed results on real images that show
that the theoretical results hold in practice.

Ronse [28] has studied Hilbert-pair detectors and con-
cluded, on the basis of the relation between maxima in E
and phases of the Fourier components of the signal /4, that
feature points are stable under convolution of the image
with a zero-phase scaling function such as the Gaussian.
We emphasize that this is not true for all features in every
signal 11; as we have shown, Hilbert-pair detectors are inca-
pable of having the causality property, for any scaling
function. However, it is true for feature locations relative to
which the phases of all Fourier components of k are identi-
cal (this includes features at x = 0 for some h{x) which are
even or odd symmetric in x). Though it does not address
the performance of Hilbert-pair detectors on more general
kinds of features, this is a remarkable property, and one that
is not shared by linear or derivative-pair quadratic detectors.

We have restricted our scope in various ways, and corre-
sponding generalizations of our results are possible. For
example, we have concentrated on one-dimensional signals.
A treatment of higher dimensions could be pursued with
the same kind of techniques; if with increasing spatial di-
mension there remains only one isotropic scale parameter
o, generic nondegenerate critical points will always have
essentially a one-dimensional structure [24], [25]. (The Hil-
bert transform and the first derivative do not extend
uniquely to higher dimensions, so a family of filters
parameterized by rotation would have to be considered.)
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In addition, we have only considered the properties of
quadratic detectors with two constituent filters, and only
special cases of these. The cases treated encompass all ex-
amples of quadratic detectors in the literature, but others
may be useful to investigate. Some extensions of the results
here are immediate; for example, any two-filter design
which leads to independent rows in the systems (6) and (7)
will permit a proof of noncausality along the lines given for
the Hilbert-pair case. Other generalizations may be diffi-
cult; the question of the causality property for quadratic
detectors is equivalent to deciding whether a certain system
of quadratic inequalities has a feasible solution, and in its
general form this appears to be a hard problem [29].

One can also question how important the causality
property really is in feature detector design. It may not be
essential in practice to have all features at every scale con-
tinuously traceable to features at scale zero. In our experi-
ments, some of the features introduced with increasing
scale in Hilbert-pair detectors were ephemeral, persisting
only over a narrow range of scales. A multiscale image
processing system which computes image representations
at only discrete scales may not observe such short-lived
events at all. These ephemeral features often have low con-
trast, and are spatially unstable; postprocessing may be able
to eliminate many of them. Further, some persistent non-
causal features may have physical significance, even
though they do not appear at some range of finer scales. In
general, scale-space properties may have to be balanced
against other properties of a feature detector, such as reli-
able detection of desired features, number of local maxima
in the filter response associated to each feature, and so on.

Nevertheless, we have shown that the type of quadratic
detector that has heretofore received most of the attention in
the literature, the Hilbert-pair detector, does not have the
causality property; and these results should direct increased
interest toward the derivative-pair type, which does.

APPENDIX
PROOFS OF THEOREMS

Here we prove Theorems 1 and 2 stated in Section 3, using
notation developed in Section 2, and relying on Assump-
tions 1 through 6 stated there.

We will find the following lemmas useful:

LEMMA 1. Let g% be any scaling function, and let 6 be any
Fourier-transformable odd-symmetric linear shift-invariant
operator (e.g., the Hilbert transform or first derivative op-
erator). Then

1) If for every even functian f°, the even-odd detector
wlth constituent filters {f°, Of°} and scaling function
87 has the causality property, then for every function
f, the detector wzth constituent filters {f, 0 f} and
scaling function g has the causality property.

2) If for every even functzon f°, the even-odd detector
with constituent filters {f*, Of°} and scaling function
g fails to have the causality property, then for every
function f, the detector wzth constituent filters {f, 6 f}
and scaling function g° fails to have the causality

property.

PROOF. Let O(u) be the Fourier representation of the opera-
tor 6. Then, following (4), we can write (2) as

B, 0) = () ] +[(or 57 n) o]
- [ j‘: *™* F(u)H(u)G(ou) duT

+ [ ji e*™*O(u) F(1)H(11)G(ou) d“T

and clearly E(x, 0) remains unchanged, and so exhib-
its the same scale-space properties, if F(u)H(u) is re-
placed by an identical (generalized) function of u.
Taking the two parts of the lemma in turn;

1) We show the contrapositive. With scaling func-
tion g%, suppose some filter pair {f, 8f} exhibits a
failure of the causality property on a signal k. Let
G(o u), F(u), ®w)F(u), H(u) be the corresponding
Fourier transforms. Select an even f* such that its
Fourier transform F'() is nowhere zero, and con-
sider the signal /" with Fourier transform

Substituting, we see that with the same scaling
function, the even-odd pair {f°, 6 f} must ex-
hibit a causality failure on /.

2) For any f, we show there exists a signal & that
will exhibit a failure of the causality property
with filters {f, 8 f}. Let F(u) be the Fourier trans-
form of f. Select even f° such that its Fourier
transform F(u) is zero exactly where F(u) is zero.
Now, since by hypothesis {f*, 8 f°} with scaling
function g fails to have the causality property,
there exists a signal i on which this even-odd
pair exhibits the failure. Let H’(u) be the Fourier
transform of such a signal, and consider the sig-
nal h with Fourier transform

FE(u)H' (1)
F(u)

0 elsewhere.

H(u) = for u such that F(u) # 0

Again, substituting, we see that with the same
scaling function, {f, 8} must exhibit a causality failure
onh. 1

LEMMA 2. Let F(u) and G(u) be the Fourier transforms of some
constituent filter transfer function and scaling function,
respectively. Then for any integers m, n, k such that n < m,
k> m — n, there exists a matrix of positive frequencies U =
diag(uy, ..., w) such that the matrix

(v
( n+‘lf)

(12)
v
(

U"’f)



has full rank, where f; = F(u)G(ouy) for any o in some
open set of R.

PROOF. The matrix (12) can be factored

unT
O ] e
o | i
1= Em—I . diag(f,,..., £,
(Um~lf) ul uk

(U'”f)T uf’ w'

=M diag(f,, ..., £,

Since the matrix M is Vandermonde, M will be full
rank if the frequencies u; are distinct. The matrix
diag(fy,... ;) will be nonsingular just in case no ele-
ment of f is 0; but there always exist k distinct fre-
quencies to make this true for o in some open set,
since by Assumptions 4 and 5 G(u) is differentiable
and not strictly zero, and F(u) is nonzero in some
open set. Thus there exist k distinct frequencies to make
the product of these matrices, viz. (12) full rank. O

THEOREM 1. No Hilbert-pair quadratic feature detector has the

causality property.

PROOF. By Lemma 1, it suffices to show that, under the as-

sumptions stated in Section 2, there exist a diagonal
matrix of positive frequencies U and vectors h’, h’ to
solve the systems (6) and (7) subject to the constraints
(8) through (10) for some . If f is the Hilbert trans-
form of fe, then, in this notation, f = £ = f, and the
systems (6) and (7) become

fT

(uf) o,

(sz)T v,

(U3f)T he = ¥he = Zi (13)
ey Zi

(v¥) 2

fT

(uf)’ w,

v °

(Usf)T h’ = Wh' = zi (14)
ey Zj;

(v |

We will prove the theorem for this case; it should be
clear that multiplying the filters by nonzero scalars
only trivially complicates the proof.

The proof proceeds by cases to consider possible
dependency relationships among the rows of the ma-
trix ¥. For each case, we show that there exist h’, h’ to
solve the systems (13) and (14) subject to the con-
straints (8) through (10).

Begin by selecting g and U = diag(u,, ..., ug), K> 5,
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such that the frequencies 1, are distinct, and such that f;
= Guo)F(uy) #0fork =1, ..., K. (Since F(u) is nonzero
for u in some open subset, and G(u) is differentiable
and not strictly zero, this is possible for any K.) Now,
the first four rows of the matrix ¥ are independent,
from Lemma 2. The cases we consider exhaust the
possible dependence relationships between the vec-
tors Uf’, U’f’ and the first four rows of P.

Case 1. Uf’, U’f’ are independent of {f, Uf, Ulf, U’s.
Then the matrix ¥ is nonsingular and there exist h’, h’

to solve the systems for any arbitrary values of the
constants v;, w;. We can select, for example,

V=W =T =Wy =0y =Ws=1 (15)
vy=1 wy=1 (16)
v =0 v =0 (17)
wy =-1 w; = -1 (18)

which satisfy the constraints (8) through (10).

CAsg 2. Uf is independent of {f, Uf, Ulf, Uaf}, but Uf’
is dependent, say

P
(uh)’
20\ T
(U] =(aB7r9) () (19)
T
(v
for some real numbers «, f3, 7 6. Then there exist h', h’
to solve the systems for arbitrary values of all the con-

stants v;, w; except v3, wj, for which we must have
o
vy = ovy + Po, + 5 + 60,
-
wy = oav, + Pw, + o, + dw,.
We can select, for example,
01:w1:02=w2203:w3=1
,=0 wy=1.

This satisfies (8) and (9) and makes E,,, > 0. Then we
select w’y, v’y such that

wy—v1—06<0
this makes E, ;< 0, and so satisfies (10).
Cask 3. Uf is dependent on {f, Uf, Ulf, Uaf}, say
¢
(ug)’
Uf) = (afyd) (v? f)T
()

But then
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and so
V1= 0wy + oy + s+ 00y

W'y = oy + Pwy + nws + dw,
Uy = 00y + fos + Wy + 00

Wy = 0wy + fws + ywy + SWs

uF(u) G'(ou) = aF(w)G(ow), (22)

wherever F(u) G(ou) # 0. Now solutions to (22) have
the form

Glou) =1 (ouy’ (23)

s0 G(ou) =« G(u), and G is not the Fourier transform of
an admissible scaling function, since it violates As-
sumption 3. Therefore, there is no scaling function
that gives a Hilbert-pair detector with the causality
property. O

THEOREM 2. A derivative-pair quadratic feature detector has the

causality property if and only if its scaling function is a
modified fractional derivative of the Gaussian.

for some real numbers o 5, 7 6, where vs, w5 are such  Proor. We will show that, under the assumptions stated in

that

I
(uf)’ Y

20\7 4
V1) e - o, 0
(Usf) Uy

Us

(U}
s
(Uf)’ Wy
(0 e — | 2
(U3f)T Wy
(U4f)T W

Note that, from Lemma 2, systems (20), (21) are full
rank, and so can be solved for any values of the v;, w;.
We consider subcases.

CaseIlIA. §,  dnot all 0. We are free to select v) = w,
=1,0v,=w, =2,v;3 =8, w3y = w, = ws = 0; this satisfies
constraints (8), (9). Then (10) is satisfied if

8(48 —v) S+ (48 — v )(-16 + vy
— (48~ v)(2uy—vs) 6<0

But this can be done by suitable choice of v,, vs. This
can be seen as follows. Suppose ¢ # 0. Then choose
v, = 16, and note that 2567 — 32 (64 — v5)6 can be made
negative by choice of vs. On the other hand, suppose
d= 0; then 848 — vy [+ 48 — v )(-16 + vy ycan be
made negative by choice of vy, since the ratio of coef-
ficients, viz., vy — 16, can be made to take any desired
value by choice of v, and not both y, Sare 0.

CasglIlIB. = y= 6=0. This implies

Uf' = of

If this fails to hold for some choice of U and o, then
one of the other Cases 1, 2, 3a, or 3b holds, and the
causality property fails to hold. But therefore, from
the definition of f and f’, to avoid failure of the cau-

sality property, G must be a solution to the differen-
tial equation

Section 2, there exist a diagonal matrix of positive fre-
quencies U and vectors h’, h” to solve the systems (6),
(7) subject to the constraints (8) through (10) for some
o, unless the scaling function is a modified fractional
derivative of the Gaussian (defined in Section 3); in
which case there are no solutions. (Again, as for Theo-
rem 1, the restriction to even-odd filter pairs suffices,

by Lemma 1.) If f*(x) = %d%fa(x) for some nonzero

scalar & then, in this notation, we can put f’ = f and
£° = &, and the systems (6), (7) become

gy’

(us)’ ) o,
é(USf) Yy
(U?’f)T h = i’i 24)
que) |
we) |
fT

gue) w,
u) Wy
(ur)' 3
§(U3f’)T

(Here we do not suppress the multiplicative constant
& since its role is not as obvious as in the case of
Theorem 1.) These are in turn equivalent to the systems

(Uf)TT Yy
(Uf) |n =0, 26)
(e |\



fT

2f T ho _ wl
(U ) =| s 7)
(Uf,)T w)

together with the identities

v, = &v,, v, = vy, V] = &v), w, = &w,.
We will find it useful also to introduce the symbol
ws = wy/ & Substituting these identities in (8) through
(10), we find that a generic causality failure requires

the existence of h’, h’ to solve the systems (26) and
(27) subject to the constraints

Ey o< vy w; - §2'02wg =0 (28)

E, o 02— vy, + Ewl —ww, =0 (29)

Eiibro (35204“’3 + Go,w, — v,y = U4wl>

(30)
X (—ézvéwg ~ &v,wy, + vyw; + véwl) <0

We proceed by cases to show these conditions can
be satisfied, if and only if the detector does not use
modified fractional derivative Gaussian scaling.

Now, (28) is satisfied just in case v, = 0 or w; =
52 ws. If v, = 0, (29) is satisfied just in case w; = 0, or w;
= Ewy. If wy = Ew,, (29) is satisfied just in case v, = 0
or v, = 4‘2 v,- So to satisfy (28) and (29), at least one of
the following must hold:

e p,=0andw;=0

e yy=0and w; = ¢zw3

o wy=Cwyand v, = .ﬁzm
We will consider each of these in the cases that follow.
CASE 1. Uf and U’ are both independent of {f, sz,
U*f} (and so U’f is independent of {Uf, Uf). A cau-
sality failure can be constructed, because the systems
(26) and (27) can be made full rank by Lemma 2, and
thus there exist h’, h’ to solve them for any choice of
the v;, w;. Selecting, for example, v, = w3 = 0, wy = vy =
v’y = 1 satisfies the constraints E, = E,, = 0, E,, <0,
E,s>0.

Therefore, to avoid noncausality, the systems (26)
and (27) must be defective.

CAse2. Uf’ is dependent on {f, U’t, U'f), say

fT
(Ue)" = (aBy) (U%)
(U“f)T;
Then
(uty’
(U*)' = (aBy) (U%F)
i
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(v)
{Ue) = &opy) (U“f):
(u°t)

we consider the systems

(' )
(USf)T = vi
(USf)T "05
fT

v Wy
EU4f;T n = gz
.

where we have introduced the symbol wg By
Lemma 2, these systems can be solved for arbitrary
values of the v; and w; thereby determining (28)
through (30). Treating subcases, corresponding to the
possible ways of satisfying the constraints (28) and (29):

CASE 2A. v, = 0 and w; = 0. Substituting into (30), we
get

ExxxExo o —’}’04"05’60]2 - ﬁviwlz
which can be made negative by suitable choice of v,,
vs, wy, if ¥ # 0. If ¥ =0, this can be made negative if

and only if 4> 0. Therefore, no noncausality can arise
in this case, if and only if ¥ =0, and B <0.

CASE2B. v, =0and w; = 4‘2 w;. We have
E,.;=0

50 no noncausality is possible.

CASE2C. wy = ézwg, and v, = éz v, We have

EpoEog o —¥570 (w3 - wséz)(“ws + weéz)
—ﬁ§4vﬁ(-w3 + wséz)z-

This can be made negative by suitable choice of vy, w;,
ws, we, if y# 0, because the ratio of the coefficients of

B vis

wsE” —w,

W& — ws
which can be made to take any value. However, if
¥ =0, as in Case 2a, since the coefficient of £ cannot

be made negative, no noncausality is possible as long
as 8<0.

CASE 3. U2f’ is dependent on {Uf, Usf}, say

() = (o ﬁ)ﬁzzf}

Then



998 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 18, NO. 10, OCTOBER 1996

(Uf)" =(ap) (vt
and
(v
(g f

which is just a special case of Case 2.
CasE4. U'f is dependent on {f, sz, U4f}, say

(U%F) = (ap)

(U3f’)T = (y o ) (sz)T
Then

(U = (yap) (UH"

and

e) = (yap)f
(ut)

We proceed by introducing the symbols v, w, and
considering the systems

w' |
e’ e =|o,
2
o | e
U*zf)T
£ Z),f
e 1|
G

which, again by Lemma 2, can be solved for arbitrary
choice of values for vy, vy, vy, Wy, W1, Wy, and ws. And,
again, treating subcases corresponding to the possible
ways of satisfying the constraints (28) and (29):
CASE4A. v, = 0 and w; = 0. Substituting, we find

2 2 2
ExxxExo i —700047’01 - Bv4w1

and this can be made negative if and only if y= 0 or
> 0; this is the same situation as Case 2a.

CASE 4B. v, = 0 and w; = ézwg. Then E,; = 0 and so
noncausality is impossible.

CASE4C. wy = é‘gw3 and v, = 6204. We get

2
ExxxExo' o _ﬁvié4(¥w3 + ngQ)

which can be made negative if and only if £> 0; this is
the same situation as Case 2c.

Thus from consideration of the possible cases, we
find that the causality property must hold if and only if

Uf = af + US

for some @, and < 0. And so, from the definitions of
f and f’, for the detector to have the causality property
it is necessary and sufficient that G be a solution to
the differential equation

uFu)G (o) = aF(u)G(ou) + B Fw)G(ow)

for some ¢, and B < 0, whenever F(u)G(o 1) # 0. Re-
calling from Assumption 2 that we require G to be of
the form G(ou) and even, (31) has such a solution just
in case

31

Gow) = rl oul’ expl=su’ o) (32)

for some, s, t, s > 0. That is, the scaling function must
be a modified fractional derivative of the Gaussian. O
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